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Abstract

On-line signature verification still remains a challenging task within biometrics. Due to their behavioral nature (op-
posed to anatomic biometric traits), signatures present a notable variability even between successive realizations. This
leads to higher error rates than other largely used modalities such as iris or fingerprints and is one of the main reasons
for the relatively slow deployment of this technology. As a step towards the improvement of signature recognition
accuracy, the present paper explores and evaluates a novel approach that takes advantage of the performance boost
that can be reached through the fusion of on-line and off-line signatures. In order to exploit the complementarity of the
two modalities, we propose a method for the generation of enhanced synthetic static samples from on-line data. Such
synthetic off-line signatures are used on a new on-line signature recognition architecture based on the combination
of both types of data: real on-line samples and artificial off-line signatures synthesized from the real data. The new
on-line recognition approach is evaluated on a public benchmark containing both real versions (on-line and off-line) of
the exact same signatures. Different findings and conclusions are drawn regarding the discriminative power of on-line
and off-line signatures and of their potential combination both in the random and skilled impostors scenarios.

Keywords: On-line signature verification, On-line and off-line signature fusion, Signature synthesis, Off-line
signature verification, Biometric performance evaluation

1. Introduction

Among the different biometric traits that have been
proposed and studied in the literature, automatic hand-
written signature verification stands out as one of the
most attractive due to its social and legal acceptance,
derived from the widespread use that has traditionally
been given as a personal authentication method. In ad-
dition, handwritten signature also presents the appeal-
ing feature of being easily acquired either with an ink-
ing pen over a sheet of paper or by electronic means
with a number of existing pointer-based devices (e.g.,
pen tablets, PDAs, mobile phones, touch screens, etc.)
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As a consequence, signature recognition has been a very
consistent and active field of research over the last three
decades, with multiple works being published in this
lapse of time. All these research efforts have been com-
piled in a number of comprehensive surveys that give a
clear overview of the state of the art evolution from the
first pioneering works in the 80s to date [1, 2, 3, 4, 5, 6].

However, in spite of its advantages, the practical de-
ployment of this technology has been slower than what
was foreseen some years ago, as its performance re-
mains a step behind other largely used traits like finger-
print or iris. Such a poorer performance is mainly ex-
plained by three aspects that are typical of behavioural
biometrics (i.e., biometric traits that we learn to pro-
duce): i) due to its behavioural nature, the intra-class
variability (i.e., difference among samples of the same
individual) is in general higher than that of physiolog-
ical biometrics (i.e., traits we are born with); ii) also,
learned traits such as the signature present a relatively
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low permanence over time, which decreases the accu-
racy of recognition systems [7]; iii) finally, the fact that
a signature is something that we can learn to produce
opens two different impostor scenarios:

• Random impostors: also known as zero-effort im-
postors, are common to all biometrics, and refer to
the case where the attacker tries to access the veri-
fication system with his own trait, while claiming a
different user’s identity. This is the most usual op-
erating scenario defining the baseline performance
of applications related to areas such as access con-
trol or commercial transactions. As such, bio-
metric verification systems are almost in all cases
tuned to achieve a certain required performance in
this scenario (i.e., the decision threshold is fixed
considering random impostors).

• Skilled impostors: this scenario is unique for be-
havioural biometrics. This type of traits allow a
different person to learn how to produce the gen-
uine user’s biometric identifier (e.g., the signature).
In this scenario, the attacker has some knowledge
of the genuine trait and tries to access the system
imitating it. Such skilled forgeries usually lie in-
side the subject’s intraclass variability leading to
a significant decrease of the recognition perfor-
mance. This operational framework is specially
relevant in forensic related applications (e.g., sig-
nature forgery detection in checks or official docu-
ments).

The previous three behavioural-related aspects turn
automatic verification of the handwritten signature into
a very challenging research area. Such authentica-
tion task may be divided into two different but related
modalities, according to the input information available:
i) On-line or dynamic signature recognition, which is
based on the time functions produced during the sign-
ing process (e.g., position trajectories or pressure versus
time), acquired using devices like touch screens or digi-
tizing tablets; and ii) off-line or static signature recogni-
tion, based on the static image of the signature, usually
digitalized from a hard copy document.

Traditionally, on-line signature has been regarded as
more accurate than its off-line version due to the greater
amount of information available [6]. As already pointed
out, off-line verification is based mainly on the geo-
metric characteristics of the signature, while for the dy-
namic problem recognition algorithms can use not only
the geometry but also how this geometry was generated
and, therefore, should yield better performance rates.

However, in the case of dynamic signature some infor-
mation such as the grey level distribution, the ink depo-
sition model, or the geometric dependencies, could be
difficult to exploit. Consequently, it is reasonable to as-
sume, as it has already been shown in different works
[8], that the optimal scenario in terms of recognition ac-
curacy is to perform authentication based on both ver-
sions of the same signature (dynamic and static) and not
on just one of them.

Unfortunately, in real applications this is very rarely
the case, since the simultaneous acquisition of dynamic
and static instances from the same signature is consid-
erably time consuming, essentially due to the postpro-
cessing steps required by off-line samples (e.g., digital-
ization and segmentation of the image). Due to these
practical impediments, and in spite of their superior per-
formance, fusion recognition approaches based on dy-
namic and static data have been largely neglected. As a
consequence, for most real-time authentication applica-
tions, research has been focused on dynamic signature
recognition thanks to its simple and fast automatic ac-
quisition and its higher recognition performance com-
pared to its off-line counterpart.

In the present work, we propose a novel strategy to
overcome the above mentioned reality, i.e. non avail-
ability of both on-line and off-line versions of the same
signature for recognition purposes. In particular, we
describe a new method for the synthetic generation of
static samples from their real dynamic instances. This
method allows to incorporate certain on-line informa-
tion from the real signature (e.g., the speed, the pressure
or the pen-ups trajectory), to the synthetic static image
in order to increase its discriminative power specially
in the presence of skilled forgeries. Then, synthetically
generated off-line data are used within a novel on-line
recognition architecture to enhance the performance of
current top-ranked dynamic signature verifiers, compar-
ing the accuracy of the new proposed approach with tra-
ditional fusion techniques based only on real data.

Such a study has been motivated by three facts, al-
ready highlighted above, which may be observed in the
current general signature context in biometrics, namely:

• Signature performance rates are still below the ac-
curacy demanded by industry for many real-world
applications and, therefore, new improved recog-
nition algorithms and approaches are required.

• There is still not enough understanding of the rela-
tionship between on-line and off-line handwritten
data and their potential synergy.

• Although some studies already exist both on on-
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line and off-line synthetic signature generation
[9, 10, 11], the potential applications of synthetic
biometric data are still largely unexplored.

With the previous motivations in mind, the questions
raised in the present article include: Under the exper-
imental setup considered in the work, does the on-line
modality outperform off-line recognition systems? Al-
though both types of data (static and dynamic) are ex-
tracted from the same signature, what is their level of
complementary? Can the fusion of both types of sys-
tems improve the best overall individual performance?
Is it possible to generate synthetic off-line data from real
dynamic signatures which improve the performance of
the on-line based systems? How does synthetic off-line
signature perform compared to real off-line data? Does
the synthetic generation of off-line data allow creating
enhanced signature static images in terms of their recog-
nition performance? What other advantages can be ob-
tained through the synthetic generation of off-line data
from real on-line signatures?

The main objectives and contributions of the present
work are directly derived from the previously raised
questions and may be summarized as follows:

• Performance comparison on the exact same pub-
lic benchmark (i.e., database and evaluation pro-
tocol) of top ranked state of the art on-line and
off-line systems, both in the random and skilled-
forgery scenarios. This way, valuable findings are
extracted regarding the accuracy of both modali-
ties.

• Analysis of the complementarity of on-line and
off-line signature both in the random and skilled-
forgery scenarios.

• Development and analysis of a dynamically-
enhanced method for the automatic generation of
synthetic off-line data from real on-line signatures.

• Proposal of a new on-line signature recognition ar-
chitecture based on the combination of real dy-
namic data and automatically generated synthetic
off-line data (from those same real on-line sam-
ples).

The rest of the paper is structured as follows. A sum-
mary of the closest related works is given in Sect. 2. The
novel approach for the generation of enhanced synthetic
off-line signatures from on-line data is described in
Sect. 3. The experimental protocol including databases,

recognition systems and tests is presented in the follow-
ing two sections, Sects. 4 and 5. Validation and ex-
perimental results, as well as the new proposed on-line
recognition architecture are given in Sect. 6. Conclu-
sions are finally drawn in Sect. 7.

2. Related Work

The present research work is related to a number
of different areas within signature biometrics such as
on-line and off-line monomodal signature verification
[4, 5] or synthetic handwritten signature generation
[12, 10, 13]. Each of these fields presents a solid re-
search background with multiple studies impossible to
cover here extensively. For this reason, the current sec-
tion only refers to those works which are thematically
closer to the objectives mentioned in Sect. 1. In par-
ticular, we will focus on past research which addresses
the direct comparison of on-line and off-line signature
verification performance and the feasibility of combin-
ing them in order to improve their overall recognition
accuracy. Accordingly, other works that may be found
in the literature which exploit certain common features
between dynamic and static samples with different goals
such as improving off-line signature segmentation [14],
or aiding off-line signature recognition based on previ-
ous on-line enrolment [15], will not be covered here.

The fusion of static and dynamic signature to enhance
the performance of automatic recognition systems has
already been studied in several works, where it has been
shown that such a fusion approach can yield a signifi-
cant decrease in the error rates [8, 16, 17, 18]. Although
all of them represent very valuable research efforts, in
most of these previous approaches, experiments are car-
ried out on small proprietary databases which do not
contain real off-line data (static signatures are gener-
ated as single stroke images from the on-line version)
or where on-line and off-line samples were not acquired
simultaneously but on different sessions. This way, such
studies rely on experimental protocols where both ver-
sions (static and dynamic) of the exact same signatures
are not available. In the present work all validation
experiments have been carried out on the same public
benchmark which comprises the on-line and off-line in-
formation for the same signatures of 132 users.

One of the first efforts that considered the combina-
tion of on-line and off-line features was conducted in
[18]. The tests were carried out over a very limited
database comprising 20 signatures per subject of 14 in-
dividuals. As many as 16 of those signatures were used
to train user specific classifiers based on Hidden Markov
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Models (HMM). Only 40 skilled forgeries and 20 ran-
dom forgeries were considered in the experiments. Al-
though this work set the path for later research on on-
line and off-line signature performance comparison, it
does not strictly study the fusion of both types of sys-
tems, but rather analyzes the complementarity of dif-
ferent static- and dynamic-based sets of features ex-
tracted from on-line samples. Competitive results were
achieved in the work after combining the static and dy-
namic descriptors with a relative performance increase
of around 3% with respect to the best individual feature
set. Such a feature-based strategy was later followed in
the literature by more comprehensive studies [19, 20].

The first work that effectively studied the potential
fusion between on-line and off-line signature verifica-
tion systems was reported in [16]. The authors used a
proprietary database captured with a digitizing tablet to
analyze the performance of: i) an on-line verifier based
on the pressure, pen-ups and total duration of the sig-
nature; and ii) an off-line authentication system based
on a feature vector extracted applying 1D-Log Gabor
wavelets and Euler numbers. Then, score level fusion of
the two approaches was applied, reporting a small per-
formance improvement of around 1% with respect to the
best monomodal system. One of the limitations of this
study is that no off-line real data was acquired. All static
samples were synthetically generated as simple single
stroke images from the on-line versions. Therefore, it is
not possible to establish a fair comparison between the
performance of real and synthetic off-line signatures or
whether their fusion with the dynamic data yields simi-
lar results.

In [17] the authors also analyze the benefits of com-
bining static- and dynamic-based classifiers. However,
no real off-line signatures are used in the experiments.
As in the previous case, in this work the on-line sig-
nature is converted into a simple static image from
which two rotation and scaling invariant features were
extracted: the Normalized Fourier Descriptors (NFD)
and the Normalized Central Moment (NCM). The speed
signal was used to model the on-line sample. The au-
thors claim that the combination of the three descriptors
(speed, NFD and NCM) using a one hidden-layer per-
ceptron, achieved an error rate of 0%, on the random
forgery scenario evaluated over a proprietary database
of 100 users with 10 repetitions per signer. The skilled
forgery scenario was not considered.

Probably the most comprehensive work published to
date in the field of on-line and off-line signature fusion
was reported in [8]. In this case, experiments are car-
ried out on a subset of the BiosecurID database which
contains both on-line and off-line versions of the same

samples for 132 users with 16 genuine signatures and
12 skilled forgeries per signer [21]. Different enrolment
scenarios are considered (with four and 12 signatures,
respectively) where it is shown that the combination of
both modalities clearly outperforms the individual re-
sults, with an average relative improvement of around
50%, which is specially significant for the skilled forg-
eries case.

3. Enhanced Off-line Signature Generation from
Dynamic Signature Sequences

The present section describes the new method for the
generation of “dynamically enhanced” synthetic off-line
signatures. The proposed technique will be evaluated
later in Sect. 6 and used to improve the overall perfor-
mance of on-line recognition systems.

The basis behind this novel approach and the contri-
bution with respect to other previously proposed meth-
ods [10, 11], is the integration of on-line information
not present in regular static signatures (e.g., pressure,
speed or trajectory during pen-ups), in order to produce
enriched synthetic off-line samples that are expected to
be more discriminative than those obtained by simply
linking the dynamic trajectory points.

Although other signals such as the azimuth and ele-
vation angles of the input pen might be taken into ac-
count, in this work we consider that an on-line signa-
ture is defined by three time sequences {xt[m], yt[m],
pt[m]}, specifying respectively the x and y coordinates,
and the pressure applied during the signing process at
the time instants m = 1, . . . ,M. Azimuth and elevation
are discarded for two main reasons: i) not all acquisi-
tion sensors capture these signals (e.g., usually mobile
or hand-held devices such as tablets or smart phones do
not detect them); ii) these functions usually present a
high level of intravariability and their use for signature
recognition purposes is at least unclear [19].

The whole generation approach is illustrated in Fig. 1,
where it can be seen that the method takes as input an
on-line signature (defined by the sequences xt, yt and
pt) and returns as output a synthetic off-line signature
defined by two images: i) Ienhanced, which embeds in its
grey level distribution and its stroke thickness, pressure
and speed information contained in the original on-line
signature; and ii) Ipen−ups, which is generated from the
trajectory information captured by the on-line digitizing
device when the pen is not in contact with the paper.

The different successive steps included in the genera-
tion process of each of the two synthetic static images,
Ienhanced and Ipen−ups, are described in the following sec-
tions.
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Figure 1: Diagram of the enhanced off-line signature generation approach used in the work and described in Sect. 3.
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3.1. Scaling and interpolation
Real dynamic signatures are usually captured with

digital devices such as tablets, smart-phones or PDAs,
which generate discrete time sequences (i.e., xt, yt, pt).
On the other hand, real static signatures are acquired
with commercial scanners that produce images defined
in the 2-D spatial domain (I(x, y)). Therefore, some pre-
processing of the real on-line data is required to be able
to generate synthetic off-line images compatible with
the real ones. In particular:

• Scaling. In the present work, real off-line signa-
tures were scanned at RS can ∼ 600 dpi (see the
database description in Sect. 4.1). On the other
hand, the on-line acquisition device used in the
acquisition had a resolution of RTab ∼ 2540 dpi.
Therefore, in order to generate synthetic off-line
samples with the same resolution as the real static
data, on-line coordinates are scaled by a factor
κ = RS can/RTab.

• Interpolation. Since static signatures are continu-
ous, the scaled discrete time on-line sequences (xt,
yt, pt) are linearly interpolated using Bresenham’s
line algorithm to obtain 8-connected sequences of
length L: {xc[n], yc[n], pc[n]}Ln=1.

3.2. Enhanced Static Signature Image: Ienhanced

In order to obtain the signature initial simple-stroke
image (Is in Fig. 1), the scaled and interpolated coordi-
nate sequences, {xc[n], yc[n]}Ln=1 are plotted on a white
background for {pc[n]}Ln=1 > 0 resulting in a black and
white bitmap image.

The enhanced signature image is obtained by con-
volving each pixel from the simple-stroke image with
a specific kernel. These kernels model the pen-tip spot
at the different pixels using a different 2-D Gaussian for
each pixel.

Let’s define the sequence of images {In(x, y)}Ln=1 as
follows:

In(x, y) =
{

1 if (x ≡ xc[n]) and (y ≡ yc[n]) and (pc[n] > 0)
0 otherwise (1)

Then, the intermediate static signature Iint (see Fig. 1)
is computed as:

Iint(x, y) =
L∑

n=1

In(x, y) ∗Gn(x, y), (2)

where Gn(x, y) is defined as the following 2-D Gaussian
function:

Gn(x, y) = A[n] · exp
(
−

(
x2

2ϕx[n]
+

y2

2ϕy[n]

))
. (3)

This Gaussian function comprises the pressure and
speed information from the on-line signature as follows:

• Pressure information. The Gaussian amplitude
is computed as, A[n] = pc[n] · ∆p + pmin, where
∆p and pmin are parameters to normalize A[n] in
the range [0.2 − 2.2]. Such normalization margin
has been empirically selected in order to allow a
wide range of gray-scale values related to the pres-
sure signal, while avoiding any loss of information
(i.e., grey points normalized to white) that could be
potentially produced by a null Gaussian amplitude
(for instance in the case of selecting a normaliza-
tion range [0 − 1]).

• Speed information. One of the most discriminant
on-line features is the signing time, which depends
on the speed and the signature length. The hori-
zontal and vertical speed functions (vxt, vyt) can be
obtained as the first derivative of the original co-
ordinate signals (xt, yt), with vxt[1] = vyt[1] = 0.
As described in Sect. 3.1, the speed signal is then
linearly interpolated to obtain {vxc[n], vyc[n]}Ln=1.

Signature strokes are directly affected by speed:
The higher the signing speed, the thinner the
strokes become. To approximate this concept, the
speed information is introduced in the 2-D Gaus-
sian changing the blob width as part of the stan-
dard deviations (ϕx[n], ϕy[n]). When these stan-
dard deviations (spread of the elliptical blob) take
high values, the spot width is enlarged (i.e., cor-
responding to low speed). On the other hand, the
width becomes narrower for low values of the stan-
dard deviations (i.e., high speed). Such standard
deviations are defined as:

[
ϕx[n], ϕy[n]

]
=
ϕpen · RS can

δ
·
[
cos (vnx[n]) , cos

(
vny[n]

)]
(4)

where

[
vnx[n], vny[n]

]
=

π/2

max
n

(
{vxc[n], vyc[n]}

) ·[vxc[n], vyc[n]
]
(5)

RS can is defined as the spatial resolution of the
static images (600 dpi in this work, as described
in Sect. 3.1), δ is the conversion factor from mm to
inches (δ = 2.54) and ϕpen is empirically fixed to
3 mm in order to highlight the speed effect in the
stroke. Given the equations above, it is possible to
have null standard deviations, i.e. (ϕx[n], ϕy[n])=0,
which leads to some points in the signature with no
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width. To avoid such situation, for those points in
which

[
cos (vnx[n]) , cos

(
vny[n]

)]
= 0, the value of

the cosine is substituted by ϵ = 10−6.

Although both modulations, pressure (i.e., stroke
grey level) and speed (i.e., stroke width), are applied
at the same time through the use of G, for illustrative
purposes, the two effects have been depicted separately
in Fig. 1 (see diagrams “Is+pressure” and “Is+speed”).

After the pressure and speed information have been
included in the synthetic sample Iint, a virtual viscous
ink profile is applied to produce the final image Ienhanced

(see Fig. 1). It is based on the overlapping of each con-
secutive individual spot so as to make them correspond
to the rolling action of the ballpoint pen. Then, the his-
togram of the virtual trajectory is equalized to a real his-
togram of viscous ink. A similar approach is described
in [11], in order to obtain a final realistic output in terms
of the stroke texture.

3.3. Pen-ups Static Signature Image: Ipen−ups

On-line devices are usually able to recognize the
movement of the pen tip when it is close to the device,
even if it is not in contact with the writing surface. This
contactless movement is known as the pen-up trajectory,
and corresponds to the time sequences when the pres-
sure is null.

Since the pen does not deposit ink during pen-ups,
they are not depicted in real static signature images.
These trajectories, however, present some discrimina-
tive features that could be exploited in the skilled forg-
eries scenario, as impostors tend to imitate the inked
image omitting the non-visible pen-up trajectory. The
use of this information in off-line signature verification
could therefore improve the accuracy of static synthetic
signatures compared to their real versions, at a low com-
putational cost.

The pen-up trajectory can either be added to Ienhanced,
or generated as a new image. Given the relevance of
pen-up information and that its combination with the
inked strokes could occlude its discriminative ability
(in general pen-up strokes are much shorter than inked
ones), a new image with just the pen-ups is generated,
Ipen−ups.

As a first step, an initial simple stroke pen-ups
image Ispu is generated considering only the values
{xc[n], yc[n]}Ln=1 where {pc[n]}Ln=1 = 0, after the scaling
and interpolation process.

Then, this initial image Ispu is transformed follow-
ing a similar process to that described in Sect. 3.2 to
generate Ienhanced. However, in this case the Gaussian

 

Acquisition 

 

 
 

OUTPUT 1 

Real on-line signature sequence 

OUTPUT 2 

Real off-line signature image 

Figure 2: Diagram of the BiosecurID DB acquisition process. Users
signed on a paper template that limited the scaling and rotation vari-
ability, placed over a digitizing tablet. This way, the on-line and off-
line versions of the same signature were acquired simultaneously.

function G presents an amplitude A[n] equal to one (in-
dependent of the pressure signal), so that only the stroke
width is modulated according to the speed information,
while the grey level remains constant.

Finally, the same ink deposition model as in the case
of Ienhanced is applied, resulting in a new image Ipen−ups,
which takes advantage solely of the trajectory and the
dynamic information found in pen-ups.

4. Databases and Recognition Systems

To fulfil the objectives set in the introduction of the
present article, two databases of on-line and off-line sig-
natures as well as three state of the art signature recog-
nition systems are used. Both, databases and systems,
are described next.

4.1. On-line and Off-line Signature Databases: Real
and Synthetic

Two complementary databases are used in the exper-
imental protocol: i) a real database containing on-line
and off-line versions of the exact same signatures, and
ii) a synthetic database of off-line signatures generated
according to the method described in Sect. 3 based on
the dynamic signatures of the real database.

As real evaluation database a subcorpus of the sig-
nature data in the BiosecurID multimodal database was
used. BiosecurID was acquired in five different Span-
ish universities and comprises eight different biometric
traits of 400 users captured in four sessions over a six
month time span [21].
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Handwritten signatures were acquired with the In-
tuos3 A4/Inking pen tablet placing a predefined paper
template over the digitizing device as shown in Fig. 2.
The users were told to sign inside a delimited grid
in order to reduce the rotation and size variations (25
mm × 120 mm). Signatures were performed on the
marked area with a special inking pen which also cap-
tured the x and y trajectories and the pen pressure dur-
ing the signing process, with a sampling frequency of
100 Hz. This way, both versions, dynamic and static,
of the same samples were captured simultaneously. In
order to obtain the final off-line digitized samples, the
grid-templates used to capture the static signatures were
scanned at 600 dpi into png grey level files, which were
then processed to automatically segment the signature
images, stored with the same codename as their on-line
versions.

Consequently, the database contains the off-line (on
paper) and on-line versions of the exact same real sig-
natures. This characteristic makes BiosecurID the ideal
benchmark for the study considered in this work.

Although, as highlighted above, the dynamic and
static data of the database come from the exact same real
signatures, some small variations may exist between
both versions of one signature, mainly due to acquisi-
tion errors, e.g.: i) the user signed outside the prede-
fined area, therefore, during the automatic segmentation
process of the off-line sample, part of the signature is
lost (i.e., strokes falling outside the paper signing grid);
ii) during the acquisition there was a misalignment be-
tween the tablet and the paper template placed on it,
leading to a slight rotation difference between the static
and dynamic versions of the signature; and iii) also, in
some cases, due to a short malfunction of the dynamic
acquisition device, part of the on-line information is lost
or incomplete.

As the database was acquired in five different venues,
five different inking pens were used. Such ink variabil-
ity among off-line samples could entail a performance
deviation difficult to estimate and which falls out of the
scope of the present work. To avoid this bias in the re-
sults, only the signature subcorpus captured at one of the
venues, the Universidad Autonoma de Madrid, which is
the largest within the database, will be considered in the
work.

The BiosecurID-Signature UAM subcorpus com-
prises 132 users, with 16 genuine signatures (four per
session) and 12 skilled forgeries (three per session) for
every subject. Hence, the database contains the on-line
and off-line data of 16×132 = 2, 112 genuine signatures
and of 12 × 132 = 1, 584 skilled forgeries.

Genuine and skilled forgery real samples of the same

user are shown in the first two rows of Fig. 3, where
both the dynamic and static versions of the same signa-
tures are depicted. In the second row, it may be noticed
that the lowest part of the first off-line genuine signature
image, as well as the top and bottom parts of the skilled
forgery, are missing. As explained above, this is due
to the automatic segmentation process that removes sig-
nature segments that fall outside the designated signing
grid.

The synthetic off-line data used in the experiments
was generated taking as input the on-line real signatures
of the BiosecurID-Signature UAM database. That is, for
each real on-line signature in the BiosecurID-Signature
UAM DB (genuine or skilled forgery), its off-line syn-
thetic version is produced following the methodology
described in Sect. 3. Therefore, the synthetic off-line
dataset presents exactly the same structure as the real
version, that is: 4 sessions, 132 users, 4 genuine signa-
tures and 3 skilled forgeries per session and user.

Last row in Fig. 3 shows the synthetic static samples
corresponding to the three real signatures depicted in the
first two rows. As described in Sect. 3, synthetic signa-
tures are defined by two different images: Ienhanced (third
row, top), which incorporates pressure and speed infor-
mation from the real dynamic signature; and Ipen−ups

(third row, bottom), obtained from the signature trajec-
tory during pen-ups. We can observe the high similarity
existing between real (second row) and synthetic (third
row) off-line samples.

Therefore, as presented in the current section, the ex-
perimental protocol described in Sect. 5 and depicted in
Fig. 4, comprises three different versions of the exact
same signatures: i) real on-line version, ii) real off-line
version, and iii) synthetic off-line version. The three
complementary signature subsets are publicly available
from the Biometric Recognition Group-ATVS web-
page1.

4.2. On-line and Off-line Signature Recognition Sys-
tems

In the experiments, two different on-line signature
verification systems and one off-line signature system
are used. All three systems have been selected from rep-
resentative technologies available nowadays in the sig-
nature recognition state of the art.

The two dynamic signature recognition algorithms
are based on totally different features and matchers.
This way, as one of the main objectives set for the study,

1http://atvs.ii.uam.es/index
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Figure 3: Real on-line, real off-line and synthetic off-line versions of typical signature examples that can be found in the BiosecurID-Signature
UAM database used in the experiments. Two genuine samples (first two columns) and a skilled forgery (last column) of the same user are shown.
On-line samples are depicted with their corresponding time functions (x and y trajectories and pressure function p). Synthetic samples were
generated following the method described in Sect. 3. Each synthetic signature is defined by two images: Ienhanced (third row, top) and Ipen−ups
(third row, bottom). The whole database (real on-line, real off-line and synthetic off-line) is publicly available from the Biometric Recognition
Group-ATVS webpage.
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it will be possible to establish the impact that the fu-
sion of a top-performing off-line signature verification
system has on the overall accuracy of different on-line
authentication strategies. These two systems are:

• On-Line System A: function-based + DTW.
This function-based local approach uses a sub-
set of nine time sequences selected using the Se-
quential Forward Floating Selection (SFFS) algo-
rithm from the total set of functions defined in [22]
(which includes, among others, the first and sec-
ond order derivatives of x and y). The nine signals
are directly matched using Dynamic Time Warp-
ing (DTW) [23]. The goal of DTW is to find an
elastic match among samples of a pair of time se-
quences of different lengths that minimize a given
distance measure. In this particular implementa-
tion, which is thoroughly described in [22], we
use the Euclidean distance as the measure to be
optimized and only three correspondences among
samples of the compared sequences are allowed.
The final score is computed as the average of the
scores obtained between the test signature and the
enrolled samples. This system ranked among the
top three algorithms in all the tasks of the recent
BioSecure Signature Evaluation Campaign BSEC-
2009 [24].

• On-Line System B: feature-based + Maha-
lanobis distance. This system models the sig-
nature as a holistic multidimensional vector com-
posed of the best performing 40-feature subset ex-
tracted in [20] from the total set of 100 global fea-
tures described in [19]. In the present study, we
used this 40-feature representation of the signa-
tures normalizing each of them to the range [0,1]
using tanh-estimators [25]. Finally, the similarity
scores are computed using the Mahalanobis dis-
tance between the input vector and a statistical
model of the attacked client estimated using a num-
ber of training signatures.

The offline signature verifier used in the experimental
protocol is based on texture descriptors and a Support
Vector Machine Classifier (SVM), as described below:

• Off-Line System C: LBP + SVM. The system
used for the evaluation of the real and synthetic sig-
natures is a fusion of two LS-SVM classifiers [26],
trained to work with Local Binary Patterns (LBP)
and Local Directional Patterns (LDP), respectively.
Signature images are divided into twelve overlap-
ping blocks and the corresponding features are ex-
tracted. Dimensionality is then reduced using the

Discrete Cosine Transform, and the final score is
computed as the sum of the two partial scores
coming from each of the classifiers. This system
would have ranked second with an overall error
(OE) of 11.4% at the very challenging off-line sig-
nature verification competition 4NSigComp2010
[27] (the winning system had a 8.9% OE, while
all other algorithms presented an OE over 16%).

In the present work, the previous LS-SVM system
is adapted to work with the dynamically enhanced
synthetic off-line signatures generated according
to the method described in Sect. 3. As shown in
Fig. 1, each synthetic sample is represented by an
enhanced image, Ienhanced, and an image compris-
ing only the pen-up information Ipen−ups. Both im-
ages are parameterized separately and their LBP
and LDP features concatenated to feed each of the
two LS-SVM classifiers.

5. Experimental protocol

The experimental protocol has been designed to com-
ply with the objectives set in the introduction of the
work. For this purpose, it uses the databases and sys-
tems described in Sect. 4 in order to carry out three dif-
ferent experiments as depicted in Fig. 4. Each of the
three evaluation experiments has been defined to fulfill
some specific goals:

• Experiment 1: Monomodal. The main objective
of this experiment is to assess the individual perfor-
mance of the three on-line and off-line verification
systems described in Sect. 4.2. The off-line recog-
nition algorithm is evaluated both on the real and
synthetic static data. This way, a total of four per-
formance results are obtained for this experiment
(in blue in Fig. 4), named according to the type of
data used (on-line real, off-line real or off-line syn-
thetic) and the recognition system evaluated (A, B
or C): on-line real A, on-line real B, off-line real C
and off-line synthetic C.

For each of the four performance results mentioned
above, three sets of scores are computed: gen-
uine, impostor random and impostor skilled. As
depicted in Fig. 4, all users are enrolled to the sys-
tem using their 4 first session signatures. Gen-
uine scores are computed comparing the enrolled
model to the 12 remaining genuine samples from
the other three sessions, leading to 132 × 12 =
1, 584 genuine scores. Impostor scores for the
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Figure 4: Diagram of the experimental protocol followed in the work. The protocol together with the objectives of each of the three experiments
highlighted in the figure, are described in Sect. 5. Further details on the databases and the on-line and off-line recognition systems may be found
respectively in Sects. 4.1 and 4.2. For each experiment the EER is given in percentage for the random forgeries EERrd and the skilled forgeries
EERsk scenarios. In the fusion experiments, the percentage to the right of each EER refers to the performance improvement with respect to the
best of the individual on-line verification systems fused. The higher weight of the fusion rules always corresponds to the best of the two combined
systems. All results and figures are further explained in Sect. 6.
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random scenario are computed comparing the en-
rolled models to the 12 samples of sessions 1-3
from the remaining users, which makes a total of
132×131×12 = 207, 504 random impostor scores.
While, finally, impostor scores for the skilled sce-
nario are obtained matching the enrolled model to
all 12 skilled forgeries available for that user, pro-
ducing 132 × 12 = 1, 584 skilled impostor scores.

For the case of the genuine and skilled impostor
scores, the protocol described above is repeated
four times, using each time as enrollment samples
the four genuine signatures corresponding to each
of the four sessions. This way, the final number
of scores are: 4 × 1, 584 = 6, 336 genuine scores,
1 × 207, 504 = 207, 504 random impostor scores
and 4 × 1, 584 = 6, 336 skilled impostor scores.
These sizes of the three score sets are maintained
in the following two experiments (i.e., fusion 2 and
fusion 3).

This experiment will allow reaching the following
objectives: i) fairly compare the performance of
on-line and off-line verification systems under the
exact same benchmark (database and protocol) for
the random and skilled scenarios; ii) compare the
performance of the off-line verification system on
real and synthetic data as a way to validate the syn-
thetic generation approach proposed; and iii) set
the baseline results to be compared with experi-
ments 2 and 3.

• Experiment 2: Fusion 2. In this case, as shown in
red in Fig. 4, results from experiment 1 are com-
bined on a two by two basis. The new scores are
named according to the two fused results. The
fusion rule selected is the largely used weighted
sum [28, 29], which is applied after normalizing
the scores to the [0,1] range. Weight selection has
been based on some preliminary development ex-
periments, finally setting them to the values shown
in Fig. 4 (the higher weight always corresponds to
the best of the two fused systems).

The goals targeted with this experiment are: i)
evaluate the complementarity of state of the art
on-line and off-line verification approaches by as-
sessing the performance improvement that can be
achieved through their fusion (Fusion Real AC,
BC); ii) evaluate whether the performance reached
combining on-line real data with off-line real data
is similar to that obtained when static synthetic
data is used (Fusion Real AC, BC vs Fusion Syn-
thetic AC, BC); iii) compare the fusion of on-

line and off-line systems to the case of combining
two different on-line recognition algorithms (Fu-
sion Real AC, BC vs Fusion Real AB).

• Experiment 3: Fusion 3. This scenario is similar
to the one studied in experiment 2. However, in
this test all three systems considered in the experi-
mental protocol are combined using only real data
in one case and synthetic off-line samples in the
other. Again, the fusion strategy and name con-
vention followed to obtain the results are the same
used in experiment 2 (in green in Fig. 4).

Similarly to experiment 2, these tests are thought
to: i) determine if off-line verification can improve
the performance of already fused on-line systems
(Fusion Real ABC); and ii) if real and synthetic
static data also behave in a similar manner in this
scenario (Fusion Real ABC vs Fusion Synthetic
ABC).

6. Results

In this section the results from the three experiments
described in the experimental protocol (Sect. 5) are pre-
sented. Figures 5 and 6 are introduced to graphically
illustrate two of the main objectives set for the work:

• Assess the efficiency of the synthetic off-line sig-
nature generation method presented in Sect. 3. For
this purpose, in Fig. 5 we compare the perfor-
mance of the off-line system C described in Sect. 5,
working with real off-line signatures and with syn-
thetic static samples. Both the random forgeries
(left) and the skilled forgeries (right) scenarios are
shown. The results are depicted in terms of the De-
tection Error Trade-off (DET) curves which repre-
sent in one plot the two types of errors that may oc-
cur in biometric verification systems: the False Ac-
ceptance Rate (FAR) and the False Rejection Rate
(FRR). As a meaningful performance metric, the
Equal Error Rate (i.e., EER, operating point where
both the FAR and FRR are equal) also appears in
each of the DET plots.

• Determine whether on-line signature recognition
can be improved through the use of synthetic off-
line data. For this purpose, the performance of the
on-line systems considered in the experiments (i.e.,
systems A, B and AB) is directly compared to the
performance of their fusion with synthetic static
signatures (i.e., systems AC, BC and ABC syn-
thetic). In order to establish such comparison in an
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easy manner and to be able to extract meaningful
conclusions, results for the random and skilled sce-
narios are depicted in Fig. 6 using as before DET
curves.

All the EERs corresponding to the DET plots shown
in Figs. 5 and 6 are summarized in Table 1 together with
their 95% confidence intervals.

For a detailed description of the experiment and its
objectives please see Sect. 5. A visual representation of
the experiments can be found in Fig. 4. Also in Fig. 4,
the EER for all the tests may be consulted as a tool for
quick reference and comparison among tests. The EER
appears in percentage for the random forgeries EERrd
and the skilled forgeries EERsk scenarios. In the fu-
sion experiments in Fig. 4, the percentage to the right of
each EER refers to the performance improvement with
respect to the best of the individual on-line verification
systems fused.

6.1. Experiment 1 - Monomodal: Results
For this experiment we will focus on the analysis of:

i) the DET curves shown in Fig. 5 corresponding to the
evaluation of the off-line signature verification system
C; and ii) the EERs shown in Table 1 corresponding to
the individual on-line systems A and B and off-line sys-
tem C. Several interesting conclusions may be extracted
from these results when they are compared on a two by
two basis:

• “Off-line Real C” vs “On-line Real A”. These re-
sults confirm on a public, replicable and objec-
tive benchmark, what was already pointed out in
several previous works [8, 18]: dynamic signature
contains more information than its static version
and, therefore, can lead to lower error rates when
two highly competitive on-line and off-line recog-
nition algorithms (systems A and C) are compared.

• “Off-line Real C” vs “On-line Real B” random sce-
nario. The previous observation does not hold
in the random impostor scenario if the selected
on-line recognition system is medium- or low-
performing (system B). That is: on-line verifica-
tion algorithms have the potential to, but do not
necessarily outperform static-based ones. This de-
pends on the algorithms compared.

• “Off-line Real C” vs “On-line Real B” skilled
scenario. In the case of skilled forgeries, even
top-ranked off-line algorithms (system C) fail to
achieve lower error rates than medium- or low-
performing on-line systems (system B). Such an

observation reinforces the largely extended belief
that forgers tend to imitate the shape and geome-
try of the signatures in order to produce a similar
“drawing”, paying less attention to how that draw-
ing was produced (i.e., the dynamics of the signa-
ture). Furthermore, in general it is easier to obtain
the geometric information of a signature (i.e., off-
line version) than its dynamic features (i.e., on-line
version). For the latter case, the attacker would
need to be present at the moment of the signing
and, even in that case, he would only be able to
witness the process once. Therefore, for the skilled
forgeries scenario, on-line signature recognition
appears to be, almost independently of the system
considered, a more reliable technology than static-
based recognition.

• “Off-line Real C” vs “Off-line Synthetic C”. The
DET curves corresponding to these two experi-
ments are almost superimposed (see Fig. 5), which
means that the tested off-line recognition system
(system C) performs almost identically on real and
synthetic static data for both impostor scenarios
(random and skilled). Such a result implies that
the proposed synthetic off-line signature genera-
tion approach produces synthetic data with very
similar variability to real samples and, hence, can
potentially be used to assess the performance of
off-line recognition systems. It is also worth not-
ing that the additional dynamic information in-
tegrated in the synthetic data (i.e., pen-ups and
speed), results in a non-negligible performance im-
provement in the skilled impostors scenario where
the EER decreases from 20.28% with real signa-
tures to 17.41% with synthetic samples (a relative
improvement of 17%). This sustains the hypothe-
sis that forgers try to imitate the signature shape,
while neglecting the dynamics or the pen-up infor-
mation for which, in general, they do not posses
any information.

6.2. Experiment 2 - Fusion 2: Results

In this case we will focus on the analysis of the DET
curves shown in the first row of Fig. 6 where the indi-
vidual on-line systems (real A and real B) are compared
to their fusion with synthetic off-line data (synthetic AC
and synthetic BC). Several observations can be made in
view of these results:

• “On-line Real X” vs “Fusion Synthetic XC” ran-
dom. Here XC is used as a generic name to re-
fer to both on-line systems A and B. These results

13



 

 

Figure 5: Comparative DET curves for the off-line system C working with: real off-line signatures and synthetic off-line signatures. Both the
random (left column) and skilled (right column) impostors scenarios are shown. Results are interpreted and conclusions extracted in Sect. 6.

show that synthetic off-line signature data (fused
systems AC and BC) can significantly improve the
performance of on-line signature verification algo-
rithms (systems A and B), in this case the increase
is as high as 33% and 79% in terms of the EER.
This observation should be highlighted as one of
the most important findings of the present article:
synthetic static signature and real dynamic infor-
mation present a large degree of complementar-
ity that can be exploited to improve the accuracy
of even top-performing dynamic-based algorithms
(e.g., system A).

• “On-line Real X” vs “Fusion Synthetic XC”
skilled. As before, XC is used as a generic name to
refer to both on-line systems A and B. The previ-
ous conclusion cannot be generalized to the skilled
impostor scenario. In this case, synthetic static
data only contributes to increase the verification
accuracy of medium- or low-performing on-line al-
gorithms such as system B, which presents a rela-
tive EER improvement of 35%. However, the ad-
dition of synthetic off-line information has barely
any effect on dynamic systems with already very
low error rates such as system A (relative improve-
ment of 6%). This result supports the hypothe-
sis that almost all the information used to detect
skilled forgeries is contained within dynamic data.

6.3. Experiment 3 - Fusion 3: Results
The second row of Fig. 6 shows the DET curves cor-

responding to the fusion of the two on-line systems (real
AB) and the fusion of all three verification algorithms
systems (synthetic ABC). Two main conclusions can be
drawn from these results:

• “Fusion Real AB” vs “Fusion Synthetic ABC” ran-
dom. As was already shown in experiments 1 and
2 for unimodal on-line systems, the performance
of multimodal dynamic verification (i.e., fusion of
systems A and B) is also improved both by real and
synthetic off-line data under the random impostor
scenario (with relative improvements in terms of
the EER of 24% and 28% respectively). This con-
firms the complementarity of the information com-
prised in static and dynamic data noted in previ-
ous experiments. It also reinforces one of the main
contributions of the present work already pointed
out in experiment 2: synthetic off-line signatures
can be used to improve the performance of on-line
recognition systems (even if these are the result of
the fusion AB of two individual systems A and B).

• “Fusion Real AB” vs “Fusion Synthetic ABC”
skilled. Similarly to what was already observed in
experiment 2, in the case of skilled forgeries there
is technically no performance gain due to the large
performance difference between the on-line algo-
rithm (fusion of systems A and B) and the static-
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Figure 6: Comparative DET curves for the on-line systems considered in the experiments (i.e., A, B and AB) and their fusion with synthetic off-line
data (i.e., AC, BC and ABC). Both the random (left column) and skilled (right column) impostors scenarios are shown. Results are interpreted and
conclusions extracted in Sect. 6.
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Comparison: EER in % (± 95% confidence interval in %)
C-real C-synth. A AC B BC AB ABC

Random 4.81 (±0.53) 4.89 (±0.53) 1.85 (±1.33) 1.46 (±0.3) 19.15 (±0.97) 4.15 (±0.49) 0.74 (±0.21) 0.63 (±0.19)
Skilled 20.26 (±0.99) 17.41 (±0.93) 6.94 (±0.63) 6.30 (±0.6) 21.48 (±1.01) 12.04 (±0.8) 4.91 (±0.53) 5.09 (±0.54)

Table 1: Comparative table of the EERs for the DETs shown in Figs. 5 and 6. Both the random and skilled forgeries scenarios are considered. The
95% confidence intervals of the EERs are shown in parenthesis.

based algorithm (system C). In this scenario, the
information added by static data is not enough to
enhance the overall verification accuracy.

6.4. Results Summary

As already mentioned, all the results presented in
Sects. 6.1, 6.2 and 6.3 are graphically summarized in
terms of the EER and its relative improvement in Fig. 4.
The observations and conclusions extracted from these
results in the previous sections may be summarized as
follows:

• As already mentioned in the discussion of the in-
dividual experiments, probably the most important
contribution of the article is that: synthetically gen-
erated off-line data can be used to significantly and
consistently improve the performance of dynamic
signature recognition systems in the random sce-
nario, independently of whether these are individ-
ual systems (e.g., A or B) or a fusion of several on-
line matchers (e.g., AB). This conclusion is drawn
from the comparison of results (see Fig. 6 and Ta-
ble 1): system A vs AC-synthetic, system B vs BC-
synthetic, system AB vs ABC-synthetic. The aver-
age relative improvement obtained in this scenario
is of 40%, with an increase in the accuracy as high
as 20% for even top performing algorithms.

• The same comparative results show that (see Fig. 6
and Table 1): In the skilled forgery scenario
the previous observation only holds for low- to
medium-performing on-line signature recognition
systems (system B vs BC-synthetic). In the case
of competitive on-line verification algorithms their
performance is maintained (it does not decrease).

• Real off-line data and synthetic off-line data gener-
ated from dynamic information following the ap-
proach proposed in Sect. 3, behave almost identi-
cally in the random impostor scenario (i.e., see the
comparison C-real vs C-synthetic in Fig. 5 and Ta-
ble 1).

• Regarding the same comparison (i.e., C-real vs C-
synthetic shown in Fig. 5 and Table 1), in the case

of skilled forgeries the synthetic samples present a
higher discriminative power (relative improvement
of 17%), probably due to the addition of motion
information (i.e., speed and pen-up trajectories) in
the generation process.

• On-line data contain more information than off-
line data and therefore can potentially lead to lower
error rates (i.e., system A vs C). This observation
is stronger for the skilled impostor scenario where
it holds even for low-performing on-line systems
(i.e., system B vs C). This conclusion reinforces
the largely extended belief that forgers tend to im-
itate the shape and geometry of the signatures in
order to produce a similar “drawing”, paying less
attention to how that drawing was produced (i.e.,
the dynamics of the signature). Therefore, the on-
line modality has a much larger discriminative po-
tential against skilled impostors.

In view of the previous summary, we propose a novel
architecture for on-line verification, which exploits the
complementarity of dynamic and static signature recog-
nition through the generation of synthetic off-line data.
The new method tries to solve the traditional on-line vs
off-line dichotomy, taking the best from both modali-
ties. Like any other on-line verification system, the pro-
posed approach receives only two inputs (see the dia-
gram in Fig. 7): the real enrolled on-line model and
the real dynamic test signature (which can be a genuine
sample, random impostor or skilled impostor). These
two inputs are matched using any generic on-line signa-
ture verification approach (either an individual system
or fusion of different matchers) to produce a single on-
line score son. Simultaneously, the two on-line inputs
are transformed into synthetic static samples which are
compared using any off-line verification system, gener-
ating this way a single off-line score so f f . Finally, the
two scores (on-line and off-line) are combined to pro-
duce one single output s.

The methodology is general, since it can integrate:
i) any on-line verification system either unimodal (such
as systems A and B considered in the present work) or
multimodal, as combination of several algorithms (such
as the fusion AB used in the experiments); ii) any off-
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Figure 7: Diagram of the novel on-line signature recognition architecture proposed in the present work. The use of synthetic off-line data to
complement the dynamic inputs is supported by the results presented in Sect. 6 and summarized in Fig. 4.

line verification system (such as system C considered in
the present work); iii) any fusion strategy to combine
the on-line (son) and off-line (so f f ) matching scores.

Another added value of this architecture is its high
practical potential for real world applications. The pro-
posed approach does not need any further requirements
with respect to currently deployed on-line verification
systems: from two input dynamic signatures one sim-
ilarity score is generated. The performance improve-
ment is obtained at the expense of a small increase in
the system response time due to the computational cost
derived from: 1) the generation of the off-line synthetic
samples; 2) the matching of the off-line synthetic sam-
ples. In the particular case of the experiments presented
in this article, carried out on MATLAB 2012a running
on a standard core i6 PC using windows 7, such extra
computational cost was on average around 0.3 seconds,
for every matching transaction. Such an increase in the
system’s throughput would be acceptable for most real
operational contexts.

7. Conclusions

When dealing with an on-line verification problem,
it should be assumed that off-line data is not available.
However, in the present work, a method to generate syn-
thetic static samples from on-line signatures has been
proposed. It has been experimentally shown that the be-
haviour of such synthetic samples is very similar to their
real off-line versions, and that they can complement on-
line information.

This way, one of the main contributions of the work
is the use of the novel generation method to fuse both
types of data, real on-line and synthetic off-line, in order
to improve the performance of on-line verification algo-
rithms. The level of improvement achieved through this
fusion depends on the impostor scenario considered:

• Random impostors: As already mentioned in the
introduction, this represents a very relevant sce-
nario, as the decision threshold of most applica-
tions is fixed according to the error rates obtained
in this operational framework. As such, it defines
in many cases the baseline performance of the sys-
tem. The very significant performance boost ob-
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tained in this case through the fusion of the syn-
thetic off-line data with the three on-line systems
tested is, on average, of 40%.

• Skilled impostors: This is the most relevant sce-
nario in forensic-related applications. In this case,
the accuracy of on-line systems is only improved
through the fusion with synthetic static data if the
original algorithm presented a low-performance.
For top-ranked on-line systems the performance is,
in the worst case, preserved.

Another significant value of the work is the synthetic
off-line signatures generation method proposed. The
synthetic static samples are “dynamically enhanced”,
embedding part of the time-related information of the
original on-line signatures (e.g., speed and pen-up tra-
jectories). This way, their discriminative power in the
skilled impostors scenario is increased with respect to
regular real static signatures where only the image is
available.

In summary, three main contributions may be high-
lighted from the present research work with respect to
the current state of the art in signature biometrics: i)
a new method for the generation of “dynamically en-
hanced” synthetic off-line signatures starting from real
on-line data has been proposed; ii) different findings re-
garding the discriminative capabilities and the comple-
mentarity of off-line and on-line signature in the random
and skilled forgeries scenarios have been extracted, us-
ing a public benchmark which contains the dynamic and
static versions of the same signatures; and iii) a new
on-line signature recognition architecture based on the
combination of real dynamic data and synthetic static
data has been proposed. The architecture has been val-
idated on the same benchmark as top-ranked traditional
algorithms, showing that, depending on the scenario and
the systems considered, a significant performance im-
provement can be achieved.

This research reinforces the findings of previous
works showing that, even though on-line signature has
a higher potential for recognition tasks, it does not com-
prise all the information present in the signature trait.
This way, off-line data can be a very valuable asset to
significantly increase the overall performance of this
biometric trait. Furthermore, the generation of synthetic
static data can become a realistic alternative to close the
dichotomy between on-line and off-line signature and
promote research towards a unified signature biometric
that benefits from both modalities in order to reach the
degree of deployment that was foreseen for this technol-
ogy some years ago.
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