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Abstract

Conditional Random Rields (CRF) have been widely applied in image segmentations. While most studies rely on hand-
crafted features, we here propose to exploit a pre-trained large convolutional neural network (CNN) to generate deep
features for CRF learning. The deep CNN is trained on the ImageNet dataset and transferred to image segmentations
here for constructing potentials of superpixels. Then the CRF parameters are learnt using a structured support vector
machine (SSVM). To fully exploit context information in inference, we construct spatially related co-occurrence
pairwise potentials and incorporate them into the energy function. This prefers labelling of object pairs that frequently
co-occur in a certain spatial layout and at the same time avoids implausible labellings during the inference. Extensive
experiments on binary and multi-class segmentation benchmarks demonstrate the promise of the proposed method. We
thus provide new baselines for the segmentation performance on the Weizmann horse, Graz-02, MSRC-21, Stanford
Background and PASCAL VOC 2011 datasets.

Keywords: Conditional random field (CRF), Convolutional neural network (CNN), Structured support vector
machine (SSVM), Co-occurrence

1. Introduction

The task of image segmentation is to produce a pixel level labelling of different object categories, with wide
variety of applications ranging from image retrieval to object recognition. It is challenging as the objects may appear
in various backgrounds and different visual conditions. CRFs [24] model the conditional distribution of labels given
observations, representing the state-of-the-art in image/object segmentation [38 37, 12,30} [33]]. In [38]], Szummer e?
al. proposed to learn the coefficients of CRF potentials using structured support vector machines (SSVM) and graph
cuts. Since then, SSVM has been widely applied for CRF learning in segmentation tasks.

In the pipeline of CRF learning based image segmentation, finding a good feature representation is of great sig-
nificance, and can have a profound impact on the segmentation accuracy. Most previous studies rely on hand-crafted
features, e.g., using color histograms, HOG or SIFT descriptors to construct bag-of-words features [[11,112}[30,139|29].
Recently, feature learning and especially deep learning methods have gained great popularity in machine learning and
related fields. This type of methods typically take raw images as input and learn a (deep) representation of the images,
and have found phenomenal success in various tasks such as speech recognition [[17]], image classification 20} i8], ob-
ject detection [[13]] efc. See Bengio et al. 3] for a detailed review. Deep learning methods attempt to model high-level
abstractions in data at multiple layers, inspired from the cognitive processes of human brains, which generally starts
from simpler concepts to more abstract ones. The learning is achieved by using deep architectures, e.g., deep belief
networks (DBNs) [17]], stacked autoassociator networks [4]], deep convolutional neural networks (CNNSs) [25 20, 28],
etc. Among them, CNNs are high-capacity machine learning models with a very large number of (typically a few
million) parameters that are optimized from labelled training examples. The success of CNNs in various vision tasks
[25} 20] is mainly due to their ability to learn rich mid-level features that accommodate within-class variance and at
the same time possess discriminative information. This is in contrast to low-level hand-crafted features.

On the other hand, prior work [34} 23| [35] has demonstrated that holistic reasoning about the occurrences of all
classes helps to improve segmentation performance. These are based on the considerations that neighbouring image
regions may be occupied by frequently co-occurring objects, and object pairs of mutual exclusion are less likely to
appear together. For example, a cow is more likely to show up together with grass rather than a monitor, and grass
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is less likely to appear above sky. Therefore, we here propose to construct spatially related co-occurrence pairwise
potentials to exploit the context information during inference.
In summary, we highlight the main contributions of this work as follows.

e We show that cross-domain image features learned by CNNs with labelled data from ImageNetﬂ can be suc-
cessfully transferred for segmentation purpose. By thoroughly evaluating the performance of the CNN features
of different depths and comparing with the traditional bag-of-words and unsupervised feature learning methods,
we demonstrate the power of CNN features in image segmentation.

o We illustrate that SSVM based CRF learning with CNN features yields astounding results and thus provide new
baselines for segmentation performance on the Weizmann horse, Graz02, MSRC-21, Stanford Background and
PASCAL VOC 2011 datasets.

e We incorporate spatially related co-occurrence pairwise potentials into the inference and gain further perfor-
mance boost.

2. Related work

We briefly review some work that is relevant to ours. The first work on using convolutional networks for scene
parsing is [16]. In [16], they train a deep CNN using a supervised greedy learning strategy taking pixels as input
to yield a pixel-wise labelling of an image. While somewhat preliminary, they achieved marginal improvement over
CRF learning based segmentation methods. We show in this paper that deep CNN features transferred from ImageNet
(ImageNet is an image dataset organized according to the WordNet hierarchy, containing millions of labelled images.)
combined with SSVM based CRF learning outperforms most state-of-the-art methods. Schulz et al. [36] propose to
predict the segmentation mask by adding a pairwise class location filter to the conventional CNN architecture of [25].
In the work of [[10], the authors use a multiscale convolutional network trained from raw pixels to extract dense feature
vectors that encode regions of multiple sizes centered on each pixel and present impressive results on several datasets.
Our work differs from [10] in two aspects. First, we transfer a deep CNN trained on the ImageNet [20] dataset to
segmentation while [10] trains a 3-stage convolutional network [25]] on the current training data of the segmentation
dataset, and we demonstrate experimentally that better performance can be achieved by our method. Secondly, our
method uses SSVM to learn CRF potentials while no learning is involved in [10]. Figure [I] shows a sketch of our
segmentation pipeline.

Most recently, Girshick ez al. [13] demonstrate that a deep CNN trained on ImageNet can be successfully trans-
ferred to object detection and great performance boost is achieved on the PASCAL VOC 2012 dataset. As an extension
of their statement, they also conduct a scene labelling experiment on the PASCAL VOC segmentation dataset to val-
idate the power of deep CNN features on the segmentation task. Our work is mainly inspired from theirs, but differs
in that we combine deep CNN features with SSVM based CRF learning in contrast to their region proposals and sup-
port vector regression based method. Furthermore, we thoroughly evaluate the performance of deep CNN features
compared to the bag-of-words features and unsupervised learned features, and provides new baselines for labelling
performance on various segmentation benchmarks.

Co-occurrence statistics have been exploited and demonstrated its strength in the community. In [34], the authors
incorporate semantic object context as a post-processing step by considering the co-occurrence counts of label pairs.
Ladicky et al. [23] explores the inference methods for CRF with co-occurrence statistics by considering a class of
global potentials. Different from their methods that ignore spatial relations of the co-occurrences, we propose to
construct spatially related co-occurrence pairwise potentials, which favor labellings of object pairs that frequently
co-occur in a certain spatial layout while at the same time prevents unreasonable labellings. Our method is inspired
from [35]] but differs in that they incorporate the mutex information by adding a mutex constraint to the inference
problem while we simply construct co-occurrence pairwise potentials, and most importantly, we explore CNN features
combined with SSVM based CRF learning.
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Figure 1: An illustration of the proposed segmentation pipeline. We first over-segment the image into superpixels and then compute deep convo-
lutional features of the patch around each superpixel centroid using a pre-trained deep CNN. The learned features are then used to learn a CRF for
segmentation.

3. Method

3.1. Segmentation using CRF models

Given X = {x;} a collection of image instances with corresponding labels Y = {y;}, where 7 indexes images,
CRF considers the log-loss of the overall energy

1
P(y|x;w) = Zexp(—ZE(yi,xi;w)). (1)

where w are parameters and Z the normalization term. The energy E of an image x with segmentation labels y over
the nodes (superpixels) N and edges S, takes the following form:

Ey,x;w) =Y 2D xw)+ Y 2@y x;w), @)
peEN (p,9)€S

Here x € X,y € Y; &) and &2 are the unary and pairwise potentials, both of which depend on the observations
as well as the parameter w. CRF seeks an optimal labelling that achieves maximum a posterior (MAP), which mainly
involves a two-step process [38]: 1) Learning the model parameters from the training data; 2) Inferring a most likely
label for the test data given the learned parameters. The segmentation problem thus reduced to minimizing the energy
(or cost) over y by the learned parameters w, which is:

y* = argmin E(y,x;w). 3)
yeY
3.2. Learning CRF in the large-margin framework

Applying the large-margin based CRF learning is to solve the following optimization:
. 1 2 C
Jun g Iwlls + Zﬁi
Vi=1,...,m, andVy € Y;. “)

where A : Y x Y — R is a loss function associated with the prediction and the true label mask. In general, we have
A(y,y) = 0and A(y,y’) > 0 for any y’ # y. Intuitively, the optimization in (@) is to encourage the energy of the
ground truth label E(y;, x;; w) to be lower than any other incorrect labels E(y,x;; w) by at least a margin A(y;,y).
The sSsVM solves (@) by iteratively finding the most violated constraint for each example :

y;i = argmin E(y,x;w) — Ay, y)- )
yeyY

Ihttp://image-net.org
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To learn CRF in the large margin framework, we consider energy functions that are linear in the parameter w,
which indicates that the unary and the pairwise potentials in (2)) can be written as:

W (4P x; w) = <w(1),¢(1)(yp,x)>, (6)
and
O (yP Yt x; W) = <W(2), ¢(2)(y”,yq,><)> : M

where ¢(1), $(?) are the unary and pairwise feature mappings respectively and (-, -) denotes inner products. Clearly
we have w = w(l) ® w(? (@ stacks two vectors). We will show how to construct the feature mappings over the
learned deep features in the following.

Implementation details. After obtaining the learned deep features, we define feature mappings upon them to con-
struct the energy function. Consider the image x with label y, let xP be the feature vector associated with the p-th
superpixel, and K is the number of classes (possible labels). Then we define the unary feature mappings as

e (P, x) = [I(yP = 1)x"",... I(y* = K)x"'], (8)

where I(-) is an indicator function which equals 1 if the input is true and 0 otherwise. In the case of multi-class,
the dimension of qb(l)(yp ,X) can be too large when x? is high dimensional. To address this issue, we first train an
one-vs-all multi-class linear SVM over the features of superpixels, and then use the output confidence scores of the
p-th superpixel as xP to construct the unary potential. Similar strategy is used in [12}|30l]. Accordingly, the pairwise
feature mapping is constructed as

¢ (P, y?,x) = Lyg - I(y” # y7), ©9)

where L, can be the shared boundary length or inversed color difference between neighbouring superpixels.
The energy function in (2)) can then be written as

E(y,x;w) = < W oMy X> < C Y 6Py X)> (10)
|

peEN p,q)ES

To deal with the unbalanced appearance of different categories in the dataset, we define A(y;,y) as the weighted
Hamming loss, which weighs errors for a given class inversely proportional to the frequency it appears in the training
data, similar to [30]. We use the method of [40] to solve the inference in @

3.3. Inference with co-occurrence pairwise potentials

To fully exploit context information, we consider the frequency of co-occurred object pairs in different spatial
layouts during the inference. On one hand, this prefers labelling of frequently co-occurred label pairs in a certain
spatial relation; while on the other hand, it excludes unreasonable labellings of co-occurrences (mutex constraint,
similar as [35]), such as grass, water or road appearing above sky. Different from the mutex constraint used in [335]],
we incorporate the co-occurrence constraint into the pairwise term by devising spatially related co-occurrence pairwise
potentials. We consider four spatial relations of the adjacent superpixel pairs: p is above q, p is below g, p is left to q
and p is right to q. Then the feature mapping for the pairwise potential in (T0) is written as:

S ooParytx) = Y P+ Y Py x)

(p,q)€S (p,9)€81 (p,q) €82
+ > P00+ Y. oWyt x). (1)
(p,9)€83 (p,9)€84

where 81, 8o, 83, 84 are the sets of edges where p and q are in the spatial relations “above”, “below”, “left” and “right”
respectively, and 8 = 81 U8, U83 U84, and 8; N8; = D fori # j,i,5 =1,2,3,4.
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To construct the co-occurrence pairwise potentials, we assume that the training data is sufficiently large. The
pairwise potentials in (IT)) can then be written as:

6P (4P, Y1, %) = Lyg - I(y” # y9) - i(yP, y?),i = 1,2, 3, 4. (12)

where g;(y?, y?)

co—occur

_ 1 . ; N} . . .
= ) with f; (y?,y?) = ~..- Here, Ny is the number of training images in

which yP and y9 co-exist, and N;;q (i = 1,2,3,4) are the numbers of training images in which y? and y? appear in
the four spatially related neighbouring superpixels respectively. If N;q = 0, meaning that y? and y? never appear in
the ith spatial relation, then g;(y?,y?) = inf, preventing the inference to yield such pair labellings. Intuitively, this
would prefer labellings that frequently co-occurred in certain spatial relations in the training data, and avoid those
mutual exclusion labellings, such as grass appear above sky.

Note that the mutex constraint used in [35] can be seen a special case of our co-occurrence pairwise poten-
tials, as it is equivalent to ours when we set g;(y”,y?) = inf for fi,_ .cur(¥?,y?) = 0 and g;(y?,y?) = 1 for
Lo oecur (WP y?) # 0. We will provide experimental comparison with this case in Section After learning the
CRF using SSVM, we construct co-occurrence pairwise potentials for prediction. We add a trade-off parameter o
multiplied to the pairwise term and tune it from 0.5 to 2 based on validation sets.

4. Experiments

To demonstrate the effectiveness of the proposed method, we first compare the CNN features with the traditional
bag-of-words feature and an unsupervised feature learning method [7]] as well as evaluate the impact of depths to the
performance of the CNN features in Section [4.2] We then compare with state-of-the-art methods on several image
segmentation datasets in Section [.3]

4.1. Experimental setup

For the CNN features, we use the model trained on ImageNet provided by Caffe [18]. The network follows the
famous AlexNet [20], and is composed of 5 convolutional layers and 2 fully connected layers together with a soft-max
layer.

We evaluate the performance of the proposed method on Weizmann horse, Graz-02, MSRC-21, Standford Back-
ground and PASCAL VOC 2011 segmentation challenge dataset. The Weizmann horse datase consists of 328 horse
images from various backgrounds, with groundtruth masks available for each image. We use the same data split as in
[5], [21], and we simply resize the images to 256 x 256. The Graz-02 dataseﬂ contains 3 categories (bike, car and
people). This dataset is considered challenging as the objects appear at various background and with different poses.
We follow the evaluation protocol in [31] to use 150 for training and 150 for testing for each category.

The MSRC-21 dataset [37] is a popular multi-class segmentation benchmark with 591 images containing objects
from 21 categories. We follow the standard split to divide the dataset into training/validation/test subsets. The Stand-
ford Background dataset [15]] is a collection of outdoor scene images from several publicly available datasets, which
consists of 715 images coming from 8 categories. Each image is approximately 320 x 240 pixels and contains at
least one foreground object. We use the same evaluation protocol as in [[15] to report 5-fold cross validation accuracy
(global and per-category). The VOC 2011 dataset consists of images from 20 objects and background. We train on
the training set and test on the validation images. The performance are quantified by the standard VOC measure [9].

We start with over-segmenting the images into superpixels using SLIC [1] (~ 700 superpixels per image) and then
compute features within regions around each superpixel centroid with different block sizes (36 x 36, 48 x 48, 64 x 64,
72 x 72'). We construct four types of pairwise features also using different block sizes to enforce spatial smoothness,
which are color difference in LUV space, color histogram difference, texture difference in terms of LBP operators
as well as shared boundary length [[12]. Training our model on the MSRC-21 dataset takes around 2 hours. During
prediction, the inference is rather efficient (less than 1 sec per image).

2http://www.msri.org/people/members/eranb/
3http://www.emt.tugraz.at/-pinz/
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SVM SSVM
Bow UFL L5 L6 L7 | BoW UFL L5 L6 L7
Sa 875 893 90.1 927 91.1 | 923 946 952 957 951
So 587 63.6 689 746 729 | 725 80.1 824 840 823

Metric

Table 1: Performance of different methods on the Weizmann horse dataset. CNN features perform significantly better than the traditional BoW
feature and the unsupervised feature learning method, with features of the 6th layer performing marginally better than other compared layers. SSVM
based CRF learning performs far better than SVM.

4.2. Baseline Comparison

To show the superiority of the deep CNN over the unsupervised feature learning, we compare with the traditional
bag-of-word (BoW) feature and features learned from a popular unsupervised feature learning method [7]. Specifi-
cally, we first extract dense SIFT descriptors within each superpixel block and then quantize them into BoW feature
using nearest neighbour search with a codebook size of 400. For the unsupervised feature learning, we first learn a
dictionary of size 400 and patch size 6 x6 based on the evaluated image dataset using Kmeans, and then use the soft
threshold coding [7] to encode patches extracted from each superpixel block. The final feature vectors are obtained
by performing a three-level max pooling over the superpixel block.

To investigate the roles of different layers in the proposed segmentation method, we evaluate the performance of
features from the last three layers of the CNN model (5th, 6th and 7th layers). The 5th layer (with dimension 9216)
is the last convolutional layer of the CNN. The 6th layer (with dimension 4096) is a fully connected layer follows the
5th layer and the 7th (with dimension 4096) is the final layer of the feature learning pipeline. Using the two types
of learned features, we compare the SSVM based CRF learning with a baseline method, namely, linear SVM, which
classifies each superpixel independently without CRF learning. The datasets used in this section are Weizmann horse,
Graz-02 and MSRC-21. We use BoW to denote the bag-of-words feature, UFL represent the unsupervised feature
learning method, and L5, L6, L7 are CNN features of the 5th, 6th and 7th layer respectively.

Weizmann horse. We first test on the Weizmann horse dataset. The performance are quantified by the global pixel-
wise accuracy S, and the foreground intersection over union score .S, similar as in [5]. S, measures the percentage of
pixels correctly classified while .S, directly reflects the segmentation quality of the foreground. The compared results
are reported in Table [I| We can observe that the CNN features perform consistently better than the bag-of-words
feature and the unsupervised learned feature in both SVM and SSVM. By enforcing smoothness term, SSVM based CRF
learning obtain far better segmentations than simple binary model as SVM. Furthermore, features of different depths
exhibit almost similar performance with the 6th layer performs marginally better than the other compared layers in
both SVM and SSVM. In Figure |2} we show some examples of qualitative evaluation, which yields conclusions that
are in accordance with those from Table [T}

Graz-02. For a comprehensive evaluation, we use two measurements to quantify the performance of our method
on the Graz-02 dataset, which are intersection over union score and the pixel accuracy (including foreground and
background). We report the results in Table 2] It can be observed that feature learning methods generally outperform
the traditional bag-of-words feature, with CNN features standing as the best. As for different depths, feature of the
6th layer consistently outperforms all the other compared layers in both SVM and SSVM, which is in accordance with
the conclusion of [13]. We show some segmentation examples in Figure [3] from which we can see that SSVM based
CRF learning with CNN features produces segmentation similar to ground truth.

MSRC-21. The compared results with features of different layers are summarized in Table [3] Different from the
binary cases as Weizmann horse and Graz-02, features of the 7th layer perform the best, which may results from the
fact that MSRC is much more difficult due to the many categories. Figure 4] shows some qualitative results of SSVM
based CRF learning with different features, from which similar conclusions can be drawn.

4.3. State-of-the-art comparison

Based on the above evaluation, we choose the best performed 6th layer for the binary (Weizmann horse and Graz-
02) and 7th layer features for the multi-class datasets (MSRC-21, Stanford Background and VOC 2011) to learn CRF
and compare with state-of-the-art results in this section. For the three multi-class datasets, we add the results of
incorporating the mutex and co-occurrence pairwise potentials introduced in Section[3.3]
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Category bike car ‘ people bike car ‘ people
intersection/union (foreground, background) (%) pixel accuracy (foreground, background) (%)
BoW | 66.5(50.4, 82.7) | 66.8 (42.2,91.5) | 64.0 (41.9,86.2) | 79.0(67.9,90.2) | 75.8 (55.2,96.3) | 74.5 (55.4,93.7)
UFL | 69.7 (55.0, 84.5) | 73.1(52.7,93.4) | 61.4(37.2,85.6) | 81.7(72.4,91.1) | 80.9 (64.4,97.4) | 71.2 (48.2,94.3)
SVM L5 74.6 (62.4,86.8) | 76.0 (58.4,93.7) | 65.9(47.0,84.9) | 86.3(81.2,91.4) | 86.3(76.2,96.4) | 80.9 (72.4, 89.4)
L6 | 77.7(66.7,88.6) | 78.1 (61.8,94.5) | 68.9 (51.1,86.6) | 88.4 (84.4,92.5) | 87.2(77.3,97.0) | 83.0(75.2,90.8)
L7 | 77.1(66.0,88.2) | 77.6 (60.8,94.3) | 68.4(50.5, 86.3) | 88.2(84.1,92.2) | 86.6(76.3,97.0) | 82.8 (75.1,90.5)
BoW | 70.9 (56.6,85.2) | 75.7(57.2,94.1) | 71.3(53.5,89.1) | 82.5(73.5,91.6) | 83.2(68.9,97.6) | 81.4 (68.2,94.7)
UFL | 74.2(61.5,86.9) | 77.9 (60.9,94.9) | 70.9 (53.0, 88.8) | 85.4(78.6,92.1) | 83.8 (69.3,98.4) | 81.5(68.9,94.2)
SSVM L5 81.6 (72.3,90.8) | 84.5(72.6,96.4) | 75.4 (61.1,89.7) | 91.0 (88.0,93.9) | 90.6 (82.8,98.3) | 88.8(85.3,92.3)
L6 | 82.0(73.1,91.0) | 85.6 (74.5,96.6) | 79.6 (67.2,92.1) | 91.6 (89.5,93.7) | 91.4 (84.4,98.4) | 90.0 (85.1, 94.8)
L7 81.7 (72.6,90.8) | 85.1(73.7,96.5) | 76.0 (62.0,90.0) | 91.3 (89.0,93.6) | 91.2(84.0,98.4) | 89.3 (86.1,92.4)

Table 2: Compared results of the average intersection-over-union score and average pixel accuracy on the Graz-02 dataset. We include the
foreground and background results in the brackets. CNN features perform significantly better than the traditional BoW feature and the unsupervised
feature learning, with features of the 6th layer performing the best among the compared layers in both SVM and SSVM. SSVM based CRF learning
performs far better than SVM.

[5)

£, . 2 2 5 L . ] ¥ oz

BoW |61 87 60 29 47 83 56 66 60 54 66 53 68 7 61 33 51 27 35 19 29| 50.1 627

UFL |57 95 77 55 59 96 56 70 61 41 67 65 31 17 67 30 75 52 26 32 6 |54.1 695

SVM L5 77 91 8 79 83 95 80 8 81 76 84 81 52 55 82 64 83 81 63 68 25| 748 82.1
L6 78 95 88 81 87 95 83 88 86 75 8 83 55 58 8 69 8 84 67 72 28| 77.6 849

L7 80 98 89 82 91 96 8 87 8 76 8 86 58 59 87 68 87 8 67 T4 311|790 86.0

BoW |65 8 87 64 74 90 58 75 78 56 85 54 55 6 60 14 66 50 35 38 8 | 574 70.7

UFL |70 97 87 69 77 98 45 75 77 49 86 82 26 12 81 40 79 49 14 47 1 60.1 76.1
SSVM L5 71 97 92 8 95 98 94 82 93 80 95 92 76 65 94 72 8 87 71 78 51| 839 869
L6 71 94 93 89 96 96 95 85 92 8 95 90 71 68 94 77 92 93 75 81 54| 858 873

L7 71 95 92 87 98 97 97 89 95 8 96 94 75 76 89 84 88 97 77 87 52| 86.7 88.5

Table 3: Segmentation results on the MSRC-21 dataset. We report the pixel-wise accuracy for each category as well as the average per-category
scores and the global pixel-wise accuracy (%). Deep learning performs significantly better than the BoW feature and the unsupervised feature
learning, with SSVM based CRF learning using features of the 7th layer of the deep CNN achieving the best results. SSVM based CRF learning
performs far better than SVM.

Binary datasets. Table 4| shows the compared segmentation results on the Weizmann horse and the Graz-02 datasets.
We use a different evaluation metric for comparison on the Graz-02 dataset, which is the F-score (F' = 2pr/(p + 1),
where p is the precision and r is the recall) for each class and the average over classes. In both cases, our method
outperforms all the compared methods.

Multi-class datasets. The compared global and average per-category pixel accuracies on the MSRC-21 and the Stan-
ford Background datasets are summarized in Table[5] On the MSRC dataset, our method outperforms all the methods
except [35]. When incorporated with mutex or co-occurrence pairwise potentials in inference, we obtain further im-
provements. As expected, the co-occurrence potentials outperform the mutex potentials. [35]] performs slightly better
than ours in terms of global accuracy (they did not report average per-category accuracy), which may results from the
fact that they use a fully connected CRF while ours are not.

As for the Stanford Background dataset, we can see that our method performs better than [[10] and outperforming
all the others. The work of [10] trains a 3-stage multiscale convolutional network on the training images while we

Method Sa So Method bike | car | people | average
Levin & Weiss |27 95.5 - Marszalek & Schimid [31] | 61.8 | 53.8 | 44.1 53.2
Cosegmentation [19] | 80.1 - Fulkerson et al. [11 664 | 54.7 51.4 57.5
Bertelli et al. |3 94.6 | 80.1 Aldavert er al. [2 719 | 629 58.6 64.5
Kuttel er al. [21] 94.7 - Kuettel er al. [21] 632 | 748 | 66.4 68.1
Ours 95.7 | 84.0 Ours 84.5 | 854 | 804 834

Table 4: State-of-the-art comparison of segmentation performance (%) on the Weizmann horse (left) and Graz-02 (right) datasets.



Method Global (%) | Average (%)

Shotton ez al. |37 72 67

Ladicky er al. [22] 86 75 Method Global (%) | Average (%)
Munoz et al. [32 78 71 Gould et al. |15 76.4 -
Gonfaus et al. [14] 77 75 Munoz et al. [32 76.9 66.2
Lucchi et al. [30 73 70 Lempitsky et al. [26 81.9 724
Yao et al. |39 86.2 79.3 Farabet et al. |10 814 76.0
Lucchi et al. [29 83.7 789 Roy et al. 35 81.1 -
Ladicky et al. [23 87 77 Ours 82.6 76.2
Roy et al. [35 91.5 - Ours (mutex) 82.6 763
Ours 88.5 86.7 Ours (co-occur) 83.5 76.9
Ours (mutex) 90.3 89.2

Ours (co-occur) 91.1 90.5

Table 5: State-of-the-art comparison of global and average per-category pixel accuracy on the MSRC-21 (left) and the Stanford Background (right)
datasets.

VOC 2011 val bg | aero bike bird boat bottle bus car cat chair cow table dog house mbike person plant sheep sofa train  tv | mean
Ours 78.3 (439 204 232 227 246 422 410 361 126 249 198 250 238 386 533 200 366 202 381 246/ 319
Ours (mutex) 79.8 | 53.1 238 264 288 286 516 482 378 13.1 297 223 284 296 452 52.7 21.0 462 209 462 29.6 | 363
Ours (co-occur) | 81.5 | 55.7 236 240 277 273 528 541 371 149 371 286 229 331 49.7 54.2 274 493 223 493 309 | 383

Table 6: Results of per-category and mean segmentation accuracy (%) on the PASCAL VOC 2011 validation dataset. Best results are bold faced.

directly transfer the deep CNN trained on the ImageNet to here sparing the effort of network training. Adding mutex
potentials to our method do not bring any performance boost. By further investigations, we found that this is because
there is only eight categories (one of which is the ambiguous foreground category) in this dataset, which leads to the
fact that the only mutex information obtained is that grass, water and road can not appear above sky. Instead, our
co-occurrence potentials perform much better, leading to further performance boost. We show some segmentation
examples in Figure[5]

The segmentation results on the PASCAL VOC 2011 validation dataset are reported in Table[6] In [13]], Girshick
et al. achieved an average accuracy of 47.9 by using augmented training data and extra annotation set. Here we did
not use any extra dataset but only the VOC training set. By introducing mutex or co-occurrence pairwise potentials,
constant improvements are observed on most of the categories. As expected, our co-occurrence potential again out-
performs the mutex potential. In Table|/] we compare with the recent work of Carreira et al. [6], which performed
evaluations with the same settings as ours (using the train/val set). Our method achieves the same accuracy as [6].
Note that the dimension of the feature descriptors used in [[6] is tens of thousands of (33589) while ours is 4096.
Qualitative examples and some failure cases are shown in Figure[6|and Figure

5. Conclusion

We propose to learn CRF using SSVM based on features learned from a pre-trained deep convolutional neural
network for image segmentation. The deep CNN is trained on ImageNet and proved to perform exceptionally well
when transferred to object segmentation. We learn the CRF in the large margin framework by SSVM, and then conduct
inference with co-occurrence pairwise potentials incorporated. Extensive experimental evaluations on the Weizmann
horse, Graz-02, MSRC-21, Stanford Background and the PASCAL VOC 2011 dataset demonstrate the advantages of
our method and provide new baselines for further research.
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Figure 3: Segmentation examples on the Graz-02 dataset. 1st row: Test images; 2nd row: Ground truth; 3rd row: Segmentation results produced
by SSVM based CRF learning with bag-of-words feature; 4th row: Segmentation results produced by SSVM based CRF learning with unsupervised
feature learning; 5th row: Segmentation results produced by SSVM based CRF learning with the 6th layer CNN features.
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Figure 4: Segmentation examples on MSRC. st row: Test images; 2nd row: Ground truth; 3rd row: Segmentation results produced by SSVM based
CRF learning with bag-of-words feature; 4th row: Segmentation results produced by SSVM based CRF learning with unsupervised feature learning;
5th row: Segmentation results produced by our method with co-occurrence pairwise potentials.
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Figure 5: Segmentation examples on the Stanford Background dataset. 1st row: Test images; 2nd row: Ground truth; 3rd row: Segmentation results
produced by our method with co-occurrence pairwise potentials.
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Figure 7: Failure examples on the VOC 2011 dataset. 1st row: Test images; 2nd row: Ground truth; 3rd row: Segmentation results produced by
our method with co-occurrence pairwise potentials.
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