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Abstract

To integrate the benefits of statistical methods into syntactic pattern

recognition, a Bridging Approach is proposed: (i) acquisition of a grammar

per recognition class; (ii) comparison of the obtained grammars in order to

find substructures of interest represented as sequences of terminal and/or

non-terminal symbols and filling the feature vector with their counts; (iii)

hierarchical feature selection and hierarchical classification, deducing and

accounting for the domain taxonomy. The bridging approach has the benefits

of syntactic methods: preserves structural relations and gives insights into the

problem. Yet, it does not imply distance calculations and, thus, saves a non-

trivial task-dependent design step. Instead it relies on statistical classification

from many features. Our experiments concern a difficult problem of chemical

toxicity prediction. The code and the data set are open-source.
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1. Introduction1

Statistical pattern recognition has a simple representation in the form of2

vectors allowing efficient ways to manipulate them, while syntactic pattern3

recognition has expressive representations, – graphs, strings, and so on, –4

but lacks object manipulation tools. Until recently, the syntactic and struc-5

tural communities coexisted without much interaction. Yet, with the ever6

increasing difficulty of tasks in pattern recognition, more and more often the7

questions are asked: –Can we have advantages of both paradigms? –Which8

are the trade-offs in such combinations?9

Syntactic pattern recognition can be used if there is a clear structure10

in the patterns and a grammar can be observed in a natural way. Forcing11

modeling on data, e.g. imposing linear ordering, hampers the performance12

[1]. Objects are represented by a variable-cardinality set of symbolic features.13

Let there be n different grammars G1, ..., Gn, one for each recognition14

class Ck k = 1, .., n. A pattern px of an object x, – where, x can be a written15

digit, speech sample, protein sequence, etc. – must first be transformed to a16

sequence of terminal symbols, that is, smallest units. For example, a protein17

sequence as a string18

px = ATTTGGGGCTTATATAT, (1)

where A, T, C,G are terminal symbols corresponding to the four nucleotides19

in the DNA. Examples of a recognition class Ck form a training set S(Ck):20

S(Ck) = {pk1, pk2 , pk3, ...}, (2)
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and a grammar Gk is sought, such that L(Gk) ⊇ S(Ck). For a review of21

grammatical inference issues the reader is referred to [2], [3].22

There exist various distance metrics to measure similarity between pat-23

terns. Let D(px, Ck) be some distance from a pattern px to a class Ck. The24

(smallest) distance between an input pattern px and a recognition class Ck
1

25

is26

D(px, Ck) = min{D(px, pk)|pk ∈ L(Gk)}. (3)

In the literature, three main approaches to syntactic pattern recognition27

are typically singled out [4]:28

– with an error-correcting parser,29

– distance-based, and30

– stochastic.31

An error-correcting parser decides whether px belongs to L(Gi) or not.32

If px belongs to L(Gi), x is assigned to category Ci, and it is rejected other-33

wise. The distance-based scheme computes a distance from px to L(Gk). If34

D(px, L(Gi)) is smallest among all the classes C1...Cn, x is assigned to cate-35

gory Ci. Here, a statistical component is often added, and the distances to36

recognition classes are the input to a statistical classifier, where C4.5 or the37

kNN are known to perform well and keep the classification process human38

readable. Stochastic schemes consist in adding occurrence probabilities to39

productions in the schemes defined above.40

Obviously, object representation is crucial, and graphs would be ideal in41

many applications, but learning graph grammars is largely infeasible due to42

1or equivalently, between px and L(Gk)
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complexity issues2, instead graph embedding, e.g. [6], [7], and kernel meth-43

ods, e.g. [8], [9], are used. For the research trend on graphs in pattern44

recognition, the reader is referred to [10]. Strings are suitable, since a regu-45

lar or context-free grammar can be efficiently learnt and similarity measures46

calculated. If the target language is regular, hidden Markov models (HMMs)47

have been used in many applications [11]. For example, they are the main-48

stream tool to discover chromatin states [12], or protein regions [13] with49

distinct biological functions. The problem is that HMMs treat sequences50

as one-dimensional strings of independent, uncorrelated symbols. Although51

computationally convenient, this assumption is not structurally realistic [14],52

because many phenomena have more complex structure than regular: nat-53

ural language, palindrome structures in biology, and so on. Furthermore,54

once the target structure rises in terms of structural complexity from regular55

to context-free, one must make quite a number of task-dependent modeling56

decisions, and as a result applications become harder to design and reuse.57

Still, such efforts exist in optical character recognition [15], analysis of coro-58

nary artery images [16], in chemical biodegradability prediction [17], [18],59

and some other.60

Statistical pattern recognition has a simple representation in the form61

of vectors and efficient ways to manipulate them [19]. It has gained a much62

greater popularity than the syntactic paradigm. Yet, faced with ever grow-63

ing difficulty of tasks, a recent tendency is to adapt ideas from syntactic64

2A problem of parsing non-trivial graph languages is PSPACE-complete or NP-

complete. Defining graph-grammars generating languages with a polynomial membership

problem is an open problem [5].
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methods. For example, in image understanding, ontologies are used for the65

loss function design: it is less of an error to take a cat for a dog, since both66

are animals, than a cat for a truck. In image tagging, structurally related67

features were shown to improve performance: if a ship has been detected,68

the probability for the the sea should be high. In graph matching, structural69

information allows for constraint formulation: if a face is adjacent to a neck70

in one graph, it should be so in the other one, too. For an overview the71

reader is referred to [20]. Another idea proposed is to gain interpretability of72

predictive models in some creative task-dependent way, which often comes73

with a cost in recognition accuracy compared to black-box solutions or may74

require that the underlying linear model works well on the data set: for ex-75

ample, adding a heat map coloring technique to interprete linear support76

vector machine models [21].77

This work, too, explores connections between the two paradigms, but our78

idea is different. In our previous work [18], we departed from the fact that79

there is a grammar for chemicals, very much like a natural grammar, and, we80

designed a syntactic pattern recognition scheme together with a procedure81

to search for important substructures in the grammars. In this submission,82

we propose to fill the feature vector with the counts of potentially important83

substructures. These substructures are automatically segmented, have an84

automatically chosen degree of structural abstraction and special statistical85

properties. The proposed Bridging Approach brings the following benefits:86

1. The method’s essential capacity is to cope in the absence of expert87

knowledge, that is, no indications with respect to which features to88

extract or where to look for them in the input sequence.89
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2. It gives insights into the problem in two respects. Firstly, the method90

works with a variable-length parsable input and finds the regions of91

interest in sequences with a suitable level of abstraction for their rep-92

resentation. Secondly, subsequent hierarchical vector-based feature se-93

lection and classification account for the domain’s taxonomy.94

3. It is easier-to-implement than a classical syntactic scheme, since it does95

not imply distance calculations. Therefore, it saves a non-trivial design96

step from the syntactic paradigm.97

Our experiments concern a difficult problem of chemical toxicity prediction.98

Our parser processes molecules in the SMILES format, which is a string99

representation of a 2D molecular graph. From two sets of molecules with100

opposite properties S(G⊕) and S(G⊖), a predictive model is built with the101

Bridging Approach.102

The rest of the paper is organized as follows. Section 2 explains how103

chemicals are represented as strings and how they are parsed. Section 3104

explains the steps of the Bridging Approach. Section 4 covers the exper-105

iment. Finally, conclusions are drawn in Section 5. The SMILES parser106

and the bridging approach are available on request from the correspond-107

ing author. The database used for experiments is NCTRER DSSTOX at108

hppt://www.epa.gov/nheerl/dsstox/sdf nctrer.html109

2. Parsing Chemicals110

The chemical language SMILES was designed “to represent molecular111

structure by a linear string of symbols, similar to a natural language“ [22].112

A sequence in SMILES represents a molecular structure as a graph.113
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Atoms: Atoms are represented by their atomic symbols: C, Cl, N, O, etc.114

This is the only required use of letters in SMILES. Hydrogen atoms (H) are115

normally omitted, since valences make it clear where they are missing. For116

example, an atomic chain CCSCCCCC3 is depicted in Figure 1.117

Bonds: Single bonds are usually omitted in SMILES. Double and triple118

bonds are represented by the symbols = and #, respectively, for example, in119

Figure 2.120

Branches. Branches are specified by enclosures in parentheses, as in Fig-121

ure 3.122

Cyclic Structures: Cyclic structures are represented by breaking one sin-123

gle (or aromatic) bond in each ring. The bonds are numbered in any order,124

designating ring opening (or ring-closure) bonds by a digit immediately fol-125

lowing the atomic symbol at each ring closure. This leaves a connected126

noncyclic graph, which is written as a noncyclic structure, as in Figure 4.127

With the rules above almost all organic structures can be described as128

strings. For more details, the reader is referred to [22].129

A context-free parser based on the SMILES grammar we devel-130

oped creates a syntax tree from SMILES, see Appendix A for further details.131

3. The Bridging Approach132

Input is parsed structured data, the Bridging Approach will study it and133

build a predictive model based on its conclusions. Briefly, its steps are:134

1. acquisition of a grammar per recognition class;135

3Due to chemical convention in graphics, whenever a label on graph node is missing, it

is C and a line segment represents a chemical bond.
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2. comparison of the obtained grammars in order to find substructures136

of interest represented as sequences of terminal and/or non-terminal137

symbols and filling the feature vector with their counts;138

3. hierarchical feature selection and hierarchical classification, deducing139

and accounting for the domain taxonomy.140

Step 1: acquisition of a grammar per recognition class.141

The general assumption is that objects with similar structures have simi-142

lar properties. Given two sets of examples from opposite classes (for example,143

active and non-active chemicals), we can learn grammars that account for144

their structures: L(Gk) ⊇ S(Ck). Examples are taken from the training set145

one by one. Whenever an example cannot be parsed with the current gram-146

mar, the grammar is extended with new rules to accommodate the example.147

The grammar inference algorithm from SMILES [18] is reproduced in Ap-148

pendix B. The input to it is a training set with parsed SMILES of chemicals149

belonging to the same activity class, and the output is the grammar G and150

table T of two columns:151

〈production p〉 and 〈how many times p was used〉.152

Step 2: comparison of the obtained grammars in order to re-153

veal substructures of interest represented as sequences of terminal154

and/or non-terminal symbols.155

For a binary problem4, the tables for the two classes, T⊕ and T⊖, are156

compared, in order to search for the substructures of interest. There is a157

4A multiclass problem can be recast into a series of binary classification problems with

one-versus-all [23], one-versus-one [24] and error-correcting output codes [25], [26].
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qualitative and quantitative aspect to this search. The qualitative aspect158

concerns feature segmentation: what are the substructures of interest and159

how they are represented as terminal and/or non-terminal symbols. The160

quantitative question is which statistical properties the substructures should161

possess, in order that the counts of their occurrences can be useful as features162

in statistical classification.163

The qualitative issue is resolved by the grammar. Consider examples of164

productions:165

sig2 → sig6sig6, (4)
166

sig6 → C1Csig3CCC1, (5)
167

sig6 → C1CCCCC1. (6)

The left-hand side of productions entirely depends on the right hand side168

and is redundant, that is, it is of the form sigarity, where the arity is the169

number of units that appear in the right-hand side. Thus, we can work with170

the right-hand side only. The grammar defines how the substructures are171

segmented and the level of abstraction. In our example the substructures are172

sig6sig6, C1Csig3CCC1, C1CCCCC1.173

From a quantitative perspective, naturally one would look closely at fre-174

quently encountered molecular substructures that are exclusive for one class.175

Unfortunately, such ideal ”structural alerts“ are infrequent due to many176

chemical exceptions, and we can’t hope that they alone can solve the classifi-177

cation and explanatory tasks. Common substructures need to be considered.178

In order to favor the ones that are more frequent in one class and less frequent179

in the other, the ones that have the importance value greater than average180
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are taken, where181

Importance(Xi) = |count(Xi) in T⊖ − count(Xi) in T⊕|. (7)

Step 3: hierarchical feature selection from the pool of substruc-182

tures of interest and hierarchical classification, deducing and ac-183

counting for the domain taxonomy at the feature selection and184

classification steps.185

Initially, two types of substructures are filtered: the substructures found186

in one of the classes exclusively and common substructures that are more187

frequent to in class than in the other. In order to incorporate this intuition188

into a predictive model, it needs to be backed with statistics. Additionally:189

1. It should be taken into account that many domains have natural tax-190

onomies, for example species, chemicals etc form families and subfami-191

lies. Within a taxonomic category, objects have comparable structures192

and property-specific structural clues can further be discovered. In193

terms of structure (morphology), the gold fish can be compared to the194

carp, but not to the hamster.195

2. The method should keep the criteria for classification human-readable.196

Decision trees are a standard choice, when human readability and gaining197

insights are sought. Further, C4.5 [27] automatically partitions the feature198

space and chooses appropriate features for classification in each subregion.199

4. Experiment200

Data: A large number of chemicals present in the environment are es-201

trogens, that is they are structurally similar to hormones and disrupt en-202
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docrine functions in animals and humans [28]. The NCTR (National Cen-203

ter for Toxicological Research) Estrogen Receptor Binding database [29],204

hppt://www.epa.gov/nheerl/dsstox/sdf nctrer.html, consists of 232 chemi-205

cals. Its creation was motivated by the desire to summarize the knowledge206

about estrogens and have a reliable data set of consistent design that would207

fully cover structurally diverse set of natural, synthetic, and environmental208

estrogens. Once the list of chemicals had been composed by experts, they209

were tested on rats in well validated and standardized analytical procedure.210

The estrogen activity was measured on the scale from 0 to 100: 0 corresponds211

to inactive, the chemicals with the activity values ≥ 23 are labeled as active,212

and the structures labeled as inconclusive have the activity value equal to213

5. The authors also provided a set of chemical rules linking substructures,214

types of chemicals and their resulting activity. Among the 232 samples: 89215

chemicals are active (the ⊕ class), and 123 are inactive (the ⊖ class), and 8216

chemicals are labeled as inconclusive. We decided to include the inconclusive217

chemicals as a third class to observe the tendencies.218

Learning settings: the experiments were carried out in 10-fold cross219

validation. A 90% part of data was taken for training purposes to carry out220

steps 1-3 of the Bridging Approach. The remaining 10% was used for testing.221

Results: The confusion matrix for the experiment is presented as Table222

1. As had been expected, the grammar for the inconclusive class was very223

small (since it had too few training examples) and therefore useless. Conse-224

quentially, the inconclusive class could not be recognized, and its chemicals225

appeared to fall randomly into the active and inactive classes. Further, when226

calculating recognition accuracy and other characteristics, the inconclusive227
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class was not taken into account. The overall recognition is 75%, recall =228

0.69, precision = 0.71 and F-measure = 0.7.229

A predictive model is considered successful, if its accuracy is better than230

70% [30]. Our result is above this baseline, is comparable to some studies on231

the same database (67% [31], 78% [32], 79% [33]), but is considerably behind232

the best result reported of 85% [34] with two black-box methods that imple-233

mented the Random Forest with 500 trees and Classification by Ensembles234

from Random Partitions (CERP). That is in line with the literature, e.g.235

[34]: readability often goes with a cost in accuracy.236

Once the recognition capacity of the method had been concluded to be237

satisfactory, the learning procedure was repeated on the whole dataset to238

obtain a decision tree that summarizes the activity in terms of structural239

features, which is depicted in Figure 12 in Appendix C.240

The database creators provided an expert model with if- then- rules to241

summarize extrogenic activity based on advanced expertise in organic chem-242

istry [29], for details see Appendix C. We compared the method’s findings243

against the expert model. The expert rules were made following all the con-244

ventions and accommodating systematic chemical theory. The data-driven245

model had a limited data set with structures and labels only. Yet by far and246

large, the data-driven conclusions are in line with the expert rules. Some-247

times, the expert model uses parameters, other than presence/absence of a248

substructure, for example, a solubility-related coefficient log p. These pa-249

rameters, too, can be successfully predicted from structure, and the Bridging250

Approach copes in the absence of this knowledge. Further details on the251

model comparison are given in Appendix C.252
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5. Conclusions253

Our idea has been to bridge from syntactic to statistical pattern recog-254

nition. The feature vector is filled with the counts of the substructures that255

are extracted from grammars. Having grammars automatically solves the256

task of feature segmentation and the choice of degree of abstraction for their257

representation. The selected features have sophisticated statistical proper-258

ties, that is, max information gain at a particular point of the hierarchically259

divided feature space.260

Compared to the syntactic paradigm, the new traits are:261

• The proposed bridging model is directly recyclable in other applica-262

tions, as long as the input can be parsed.263

• It does not imply distance calculations and, instead, relies on vector264

classification, and, therefore, saves a non-trivial design step compared265

to the syntactic paradigm.266

Having gained the new advantages, the method preserves the inherent strengths267

of the syntactic paradigm:268

• Its essential capacity is to cope in the absence of expert knowledge,269

that is, no indications which features to extract.270

• It preserves structural relations and works with a variable-length parsable271

input. It finds regions of interest in sequences with a suitable level of272

abstraction for their representation, and learns a decision tree that op-273

erates on presence/absence of these structures. Altogether, it leads to274

human-readable classification and gives insights into the problem.275
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Appendix A. Parsing examples284

Input to the parser is a SMILES of a chemical compound. The parser285

starts with the first atom in the SMILES string, uniquely identifies each286

atom with its position number and disambiguates which atom is linked to287

which other atoms and by which type of bond. Then, it reconstructs a tree288

representation of the compound.289

An obvious challenge is that different SMILES exist for the same molecule.290

For example, a molecule from Figure 1 can be rotated and written as CCC-291

CCSCC in place of CCSCCCCC. Canonical SMILES are not a solution, since292

they can’t be drawn for the reason that are a hash value due to principles of293

their construction, and we don’t want a black box construction. Our solu-294

tion is sorting substructures in a natural order, when comparing sequences295

of substructures in grammar inference and in search.296

Generally, the parser implements the SMILES language. Given the de-297

scription from Section 2, few additional decisions are left to be made with298
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respect to how non-terminals are assembled and finally reduced to the start299

symbol S. The additional rewriting rules are as follows.300

Rule 1: under our modeling non-terminals are denoted with the symbol301

sigarity
5 and differ with respect to their arity, which is the number of the302

non-terminal’s child nodes, for example:303

304

sig6 → N1CCCCC1. (A.1)

The numbers do not count, since they are special symbols.305

Rule 2: Atomic chains, that is, molecules without rings or branches, are306

reduced directly to the start symbol S:307

S → CCSCCCCC. (A.2)

Figure 1 depicts this molecule6.308

Rule 3: unlike atomic chains, branched and cycles are reduced to a non-309

terminal. For example, an atom and a branch hanging from it is reduced310

to a non-terminal of a corresponding arity. CC(CCCBr)CC is reduced to311

Csig5CC, where sig5 → C(CCCBr), as in Figure 5.312

An example of multiple branches stemming from the same atom is CC(F)(Br)I,313

depicted in Figure 6.314

Rule 4: children nodes of a non-terminal node can be atoms and/or315

substructures, and in order to calculate arity the number of such units is316

counted.317

5Traditionally non-terminals are labeled with σarity , which we spell in the Latin alpha-

bet as sigarity.
6Also a functionality to depict SMILES can be useful, e.g. [35]
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Rule 5: if a ring is not a stand-alone ring as in Figure 2, the starting318

atom of the cycle (the one after which the number is put) is marked as sig1,319

and this disambiguates the branch from a cycle.320

Very similar SMILES can lead to different parsing results, an example321

of the significance of parentheses is CC(C1CCC1)CC in Figure 7 (left) and322

CCC1CCC1CC in Figure 8.323

Rule 6: In parser’s output, shared atoms have a special tag that they324

belong to two different cycles. Otherwise, for example C2OC1CCC2CC1 in325

Fig 9, is simply reduced to sig6sig6.326

The above examples were simple to illustrate the parsing decisions. A327

couple of more complex molecules from the DSSTox NCTRER database are328

drawn in Figures 9 and 10.329

Appendix B. Grammar Inference Algorithm330

Under our modeling non-terminals are all marked with the symbol sig331

and differ with respect to their arity, which is the number of their child332

nodes, for example:333

334

sig6 → N1CCCCC1. (B.1)

The parsed SMILES are processed in postorder. In the algorithm below:335

– j is the number of a node in post-order enumeration;336

– Xj is a string of the child nodes of the node j:337

Xj = x1x2...xl, (B.2)

with l ≥ 1. For example above, for sig6 the string of child nodes isNCCCCC.338

Since the tree graph is traversed in post-order, at the point of reducing Xj to339

16



a non-terminal sigl, each of its child nodes x1x2...xl have been parsed either340

as atoms or as non-terminal sigarity nodes.341
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Data: The training set D of size n with parsed SMILES of chemicals

belonging to the same activity class.

Initialization: Set G to contain empty sets for

• the set of atoms A,

• the set of non-terminals N ,

• the set of rules P ,

• the start symbol S,

and an empty table T with two columns: 〈 p: production from P 〉 〈

count(p): how many times p was used〉.

n = the number of instances in D.

for i = 0 to n, while i < n do

i = i+ 1;

read the ith SMILES in D;

in postorder, for each node j in SMILES do
If any atoms from Xj are not in A, add them to A.

If the string Xj can not be reduced with productions from P{

add the rule: sigl 7→ x1x2...xl to P ;

If sigl is not in N , add it to N .

}

Let p be the rule used to reduce Xj ;

if p is not in T , add p to T with count(p) = 0.

count(p) = count(p) + 1;

end

end

Result: the grammar G = (A, N , S, P ) generalizing the activity class

to which the input samples in D belong and a table T with

grammar productions and their counts.

Algorithm 1: Polynomial time algorithm for grammatical inference of

structures belonging to the same activity class from their parsed SMILES.

342
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Appendix C. Data-driven and Expert Model343

The data-driven model in the form of if-, then- rules obtained with344

the Bridging Approach is depicted in Figure 12. The conditions check for345

the presence of particular structural alerts. The ratio at the leaf boxes is346

〈number of correctly classified samples, number of errors〉.347

The expert model from [29] is summarized to:348

1. If a chemical contains no ring structure, it is unlikely to be an estrogen349

receptor ligand (ER-ligand).350

2. If a chemical has a nonaromatic ring structure, then it is unlikely to be351

an ER ligand, if it does not contain an O, S, N.352

3. If a chemical has a non-OH aromatic structure, then its binding po-353

tential is dependent on the existence of key structural features and a354

solubility-related coefficient log p.355

4. If a chemical contains a phenolic ring, then it tends to be an ER ligand,356

if it contains any additional key structural features. For the chemicals357

containing a phenolic ring separated from another benzene ring with358

the number of bridge atoms ranging from none to three, it will most359

likely be an ER ligand.360

The rules in the expert model are based on systematic chemical knowl-361

edge. The data-driven model had a limited data set with chemical structures362

and labels for their activity only. Yet, by and large, the data-driven conclu-363

sions are in line with the expert rules:364

1. Many of the chemicals covered by the 1st rule of the expert model365

end up at node 26 and node 31 passing as negative through numerous366

check-ups on the presence of different cyclic substructures.367
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2. The chemicals that satisfy the expert rule 7 from the original diagram368

[29] end up at the nodes 16 and 11. Node 9 ( =C@, O) is equivalent to369

the presence of a phenolic ring.370

3. The expert model has complex cases where the binding potential is371

determined with the help of non-structural information such as log p.372

The data-driven model is not allowed to use any additional information373

and accommodates these chemicals checking a lengthy list of structural374

conditions.375
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Predicted as -- Predicted as 
inconclusive

Predicted as + Real Class: 

66 0 27 --

5 0 3 inconclusive

29 0 100 + 

Table 1: Confusion matrix: active (+), inconclusive, and inactive (–). 

Table 1



Atomic chain CCSCCCCC.  

Figure 1



Double bond: C=C. 

Figure 2



Branches: CCN(CC)CC. 

Figure 3



SMILES: O1CCCCC1N1CCCCC1. Rings are broken, and a number is put to 
leave a mark where the bond was broken.  

Figure 4



Branch is reduced to a non-terminal. 

Figure 5



CC(F)(Br)I is reduced to “Csig3I”. 

Figure 6



SMILES CC(C1CCC1)CC. The cycle is reduced to a non-terminal sig2. The 
nonterminal has two child units: an atom and another non-terminal.   

Figure 7



SMILES: CCC1CCC1CC. 

Figure 8



Two intersecting rings: C2OC1CCC2CC1.  
In the parser’s internal presentation the 
atoms there are special tags @1 (and @2) 
after each atom, disambiguating to which 
cycle it belongs. Shared atoms are 
followed by @1@2: 
C1@1@2O2@1@2C3@1@2C4@2C5@2C6
@1@2C7@1C8@1.  Subscript is atom’s ID 
from the SMILES strings.  

Figure 9



A molecule from the database: 
O=C(C(C(C=C3)=CC=C3O)=CO2)C1=C2C=C(O)C=C1O. 

Figure 10



A molecule from the database: 
O([Si](CC1C=CC=CC=1)(CC)[Si](CC2=CC=CC=C2)(C)C. 

Figure 11



Method’s predictive model in the form of IF- THEN- rules. 

Figure 12




