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Abstract

Classification on structure data, such as graphs, has drawn wide interest in recent

years. Due to the lack of explicit features to represent graphs for training classifica-

tion models, extensive studies have been focused on extracting the most discriminative

subgraphs features from the training graph dataset to transfer graphs into vector data.

However, such filter-based methods suffer from two major disadvantages: (1) the sub-

graph feature selection is separated from the model learning process, so the selected

most discriminative subgraphs may not best fit the subsequent learning model, result-

ing in deteriorated classification results; (2) all these methods rely on users to specify

the number of subgraph features K, and suboptimally specified K values often result in

significantly reduced classification accuracy.

In this paper, we propose a new graph classification paradigm which overcomes

the above disadvantages by formulating subgraph feature selection as learning a K-

dimensional feature space from an implicit and large subgraph space, with the optimal

K value being automatically determined. To achieve the goal, we propose a regularized

loss minimization-driven (RLMD) feature selection method for graph classification.

RLMD integrates subgraph selection and model learning into a unified framework to

find discriminative subgraphs with guaranteed minimum loss w.r.t. the objective func-
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tion. To automatically determine the optimal number of subgraphs K from the expo-

nentially large subgraph space, an effective elastic net and a subgradient method are

proposed to derive the stopping criterion, so that K can be automatically obtained once

RLMD converges. The proposed RLMD method enjoys gratifying property including

proved convergence and applicability to various loss functions. Experimental results

on real-life graph datasets demonstrate significant performance gain.

Keywords: Feature Selection, Classification, Graph Classification, Sparse Learning

1. Introduction1

Recent years have witnessed an increasing number of applications involving objects2

with structural relationships, including chemical compounds in Bioinformatics [1],3

brain networks [2], image structures [3], and academic citation networks [4]. For these4

applications, graph is a natural and powerful tool for modeling and capturing depen-5

dency relationships between objects.6

Unlike conventional data, where each instance is represented in a feature-value7

vector format, graphs exhibit node-edge structural relationships and have no natural8

vector representation1. As a result, a common practice is to transfer graphs into vec-9

tors [5, 6, 7, 8, 9] in structure space or in Euclidean space, so that traditional machine10

learning algorithms such as Support Vector Machines (SVM) and Decision Tree can11

be applied. In the structure space (also referred to as quotient space) [7, 8], the dis-12

tance relations and nature of the original data are preserved, and some geometrical13

and analytical concepts such as derivatives of functions on structures can be deter-14

mined, so that it can be applied to solve problems in structural pattern recognition.15

In the Euclidean space, the structural relations may be lost, but it provides simpler16

and more powerful analytical techniques for data analysis. Therefore, numerous ap-17

proaches [10, 9, 11, 12, 13, 14, 15, 16, 17, 18] have been proposed to represent graphs18

in Euclidean space. The key idea of transferring graphs into vectors in Euclidean space19

is to extract a set of subgraphs as features and use the presence/absence of the features20

1In this paper, we only consider graphs with labels but no other feature values on nodes and edges.
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Figure 1: Subgraph-based methods for graph classification from the feature selection perspective. TFM

methods (A) sequentially perform frequent subgraph mining 1©, optimal feature selection 2©, and classifier

learning process 3©. DFM methods (B) integrate the feature selection 2© into the frequent subgraph mining

1© process. Our embedding method RLMD (C) unifies all steps ( 1© 2© 3©) into a whole framework, and

iterates until convergence 4©.

to represent each graph. From a feature selection perspective [19], these subgraph-21

based algorithms follow a filter approach for graph classification, i.e., the subgraph22

feature selection and the subsequent model training are separated into two steps. In23

summary, existing filter-based graph classification methods roughly fall into the fol-24

lowing two categories:25

Two-step Filter Methods (TFMs): This type of method first mines a set of frequent26

subgraphs as features and then applies a feature selection procedure to the discovered27

subgraphs, and uses the selected subgraph features to learn a classifier (e.g., an SVM or28

Naive Bayes), as shown in Fig. 1 (A). An early study [9] has shown that using frequent29

subgraphs as features can achieve reasonable good classification results. However, be-30

cause TFMs separate subgraph feature discovery and feature evaluation into two steps,31

they may suffer from severe disadvantage in that the number of discovered subgraphs32

will grow exponentially when the minimum support value for subgraph mining is low.33

As a result, it will make the feature selection step heavily time-consuming. On the other34

hand, for relatively high minimum support values, many good subgraphs are pruned out35

because they do not meet the frequency requirement, so cannot be found to represent36

graphs.37
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Direct Filter Methods (DFMs): To improve the subgraph feature selection efficiency,38

numerous approaches [11, 12, 15, 16, 17] have been proposed to combine subgraph39

mining and feature selection into one step, representing a direct discriminative feature40

selection [18] scheme. So the feature selection is integrated into a subgraph mining41

process (Fig. 1 (B)), with pruning rules derived from the anti-monotone property of42

the significance (p-value) of each graph being used to reduce the search space. While43

DFMs substantially overcome the subgraph feature selection bottleneck, they also have44

a number of major disadvantages: (1) The subgraph selection is separated from the45

model learning process, so the selected subgraphs features may not best fit the under-46

lying learning model, and (2) All these methods require users to specify the number of47

subgraph features K, whereas the optimal number of subgraphs K required for training48

a good classifier for graph classification is unknown and difficult to determine. Al-49

though subgraphs are selected using optimized measures, due to the redundancy inside50

the feature set, the accuracy of the classifiers, when varying the number of selected51

subgraph features K, is highly variable, as shown in Fig. 2. This is a common problem52

for all existing filter-based graph classification methods.53

The above observations motivate the proposed research which aims to integrate54

subgraph mining, feature selection, and model training into one single framework (Fig.55

1 (C)) with the optimal number of subgraphs K being automatically determined for56

graph classification. To achieve this goal, we formulate subgraph feature selection as57

the problem of learning a K-dimensional feature space from a huge subgraph space58

in order to result in minimum regularized loss on the training data as follows:59

min
w

1
n

n∑
i=1

L(yi, f (xi)) + γR(w) (1)

where {xi, · · · , xn} are the vector representations of the training graphs, L is a loss60

function measuring the difference between the prediction f (xi) and the true label yi,61

and R(w) is a regularization term on parameters w to avoid over-fitting.62

Indeed, the optimization in Eq.(1) has been widely studied [20, 21, 22] in machine63

learning community, but mainly for data with vector format. Several significant chal-64

lenges remain for graph data:65

1. Implicit Subgraph Features: For graph classification, no subgraph features are66
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readily available (i.e., xi is unknown) for training the model in Eq.(1). Instead,67

the feature space used to represent graphs is implicit and needs to be discovered68

by subgraph mining procedure as needed.69

2. K-dimensional Features from Huge Subgraph Space: The number of sub-70

graph candidates representing graphs is exponentially large. Finding an optimal71

number of K subgraphs for different graph datasets (in order to result in best72

classifiers), is crucial but has not been addressed by existing research.73

In this paper, we propose a unified regularized loss minimization-driven (RLMD) graph74

classification framework. Our theme is to progressively select the most discriminative75

subgraph features from the training data in order to achieve minimum regularized loss76

for a well defined objective function. To integrate subgraph selection into the model77

learning process (Challenge 1), we formulate an objective function and design a sub-78

gradient method to induce a measurement to assess the utility of each subgraph, so that79

the best subgraph features can be identified and incrementally included to optimize80

the objective function for maximum performance gain. To determine the optimal K81

value for each dataset (Challenge 2), we use an elastic net [21] and derive a stopping82

condition, so that the K value can be automatically obtained when the algorithm con-83

verges. By using the automatically determined optimal K value, as shown in Fig. 2,84

RLMD finds 180 best subgraphs and achieves the best performance, which is 6% more85

accurate than the second best method.86

The main contributions of this paper are summarized as follows:87

• We propose an embedded and theoretically convergent graph classification algo-88

rithm, which can automatically determine the optimal number of subgraphs K89

for graph classification. This is a unified approach in the sense that (1) it can em-90

ploy any differentiable loss function (including least squares, exponential, and91

logistic loss functions) for graph classification; and (2) it integrates subgraph92

mining, feature selection, and model learning into one single framework.93

• We generalize the column generation technique of gBoost [23] for graph classi-94

fication, and demonstrate that gBoost [23] is a special case of our loss minimiza-95

tion algorithm.96
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Figure 2: Classification accuracy for filter subgraph-based methods w.r.t. different numbers of subgraphs

on the NCI-1 chemical compound dataset. IG is a TFM method which uses information gain to select

subgraphs, whereas gHSIC [12] is a DFM method. All methods use SVM as a base classifier. The optimal

number of subgraph features K is crucial, but difficult to decide for filter methods. In comparison, the

proposed method (RLMD) automatically finds 180 best subgraphs and achieves the highest accuracy, which

is 6% more accurate than the second best method.

• We propose the use of elastic net (which integrates two sparsity-inducing regu-97

larization norms, `1-norm and `2-norm) to produce a sparse and robust solution98

for discriminative subgraph selection.99

• We derive a branch-and-bound rule according to the subgradient of our objective100

function to prune search space for optimal subgraph mining.101

• Experimental results show that our algorithm RLMD outperforms two-step fil-102

ter methods (TFMs), direct filter methods (DFMs), and gBoost algorithm with103

significant performance gain.104

2. Related Work105

Our work is closely related to graph-based learning and graph classification.106

2.1. Graph-based learning107

Learning from data with dependency structures has been commonly addressed by108

existing research. Instead of considering samples as I.I.D observations, graph-based109

learning takes the relationships/correlations between samples to ensure effective learn-110

ing. For example, graph-based approaches have been popularly used to propagate la-111

bels in semi-supervised learning [24, 25, 26], where training samples are connected112

through one or multiple graphs. A recent method [27] considers preserving global and113
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local structures inside the training data for feature selection. For large scale networks,114

predicting linkage relationships between nodes (i.e. link prediction) can be used for115

friendship recommendation in social networks [28], or suggesting potential interac-116

tions between proteins in bioinformatics research. A recent work [29] proposed to use117

latent feature kernels to support link prediction on sparse graphs. All above methods118

consider a large scale network with thousands (or millions) of integer-connected nodes119

in the network. In contrast, we consider small graph classification problem, in which120

each graph has a label indicating the property of the graph, and the graph normally121

contains tens or several hundreds of nodes. The purpose is to predict the label of the122

graph by using node and structure information inside the graphs, for purposes such123

as chemical compound activity prediction [1] and gender classification using magnetic124

resonance connectome (i.e. brain-graph) [2].125

2.2. Graph Classification126

Existing methods for graph classification [18, 10, 9, 11, 12, 13, 14, 15, 16, 17,127

23, 30, 31] can be roughly categorized into two groups: similarity-based methods and128

vector representation-based methods.129

2.2.1. Similarity-based methods130

These approaches aim to directly learn global similarities between graphs by using131

graph kernels [9, 32, 33, 34] or graph embedding [35]. Global similarities are then fed132

to similarity-based classifiers, such as KNN or SVM, for learning. One clear drawback133

of global similarity-based approaches is that the similarity is calculated based on global134

graph structures, such as random walks or embedding space. Therefore, it is not clear135

which substructures are more important for classifying graphs into different classes.136

2.2.2. Vector representation-based methods137

Another branch of methods transfer graphs into vector representations in structure138

space or in Euclidean space. In structure space [7, 8], geometrical and analytical con-139

cepts such as the angle between structures and the derivatives of functions on structures140

can be obtained, so that the structural pattern recognition problems can be formulated141

as optimization problems with certain cost functions. In Euclidean space, the goal is142
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to transfer graphs into vector representations in Euclidean space so existing analytical143

techniques can be applied for data analysis. Methods in this category are mainly filter-144

based approaches, including two-step filter methods (TFMs) or direct filter methods145

(DFMs).146

TFMs are straightforward approaches for graph classification which simply de-147

compose frequent subgraph generation and selection as two separated steps. An early148

work [9] has shown that learning an SVM classifier based on the discovered frequent149

subgraphs can achieve reasonably good accuracy for graph classification. On the other150

hand, research [16, 15] also indicates that TFM methods may result in a bottleneck151

for the subsequent feature selection module. Specifically, the number of frequent sub-152

graphs will grow exponentially if the minimum support threshold is low, which imposes153

a great challenge for the subsequent feature selection task. This challenge has moti-154

vated many direct filter methods (DFMs), which seek to integrate subgraph discovery155

and feature selection into one step.156

For DFMs (a review on this category can be found in [18]), a key issue is to157

define a proper measurement to assess the utility of each subgraph. Yan et al [17] pro-158

posed a LEAP algorithm to exploit the correlation between structural similarity and159

significance similarity, so that a branch-and-bound rule can be derived to prune out160

unpromising searching space efficiently. Ranu and Singh [16] proposed a scalable161

GraphSig algorithm, which is able to mine significant subgraphs with low frequencies.162

Thoma et al. [15] propose a CORK algorithm to find subgraph features. Recently, re-163

searchers have extended DFM to other graph applications, and have proposed effective164

algorithms such as gSemi [11] for the semi-supervised setting, gCGVFL [36] for multi-165

view learning, gHSIC [12] for multi-label classification, and our recent multi-graph166

classification for classifying graph bags, each containing multiple graphs [37, 38].167

Although filter methods for graph classification have been extensively studied, they168

all suffer from two major disadvantages: (1) the feature selection is not linked to the169

model learning process. As a result, the selected subgraph features may not best fit170

the underlying learning algorithms; and (2) the optimal number of subgraphs K for171

graph classification is difficult to decide and often varies from dataset to dataset, and172

inappropriately specified K value often results in significantly reduced classification173
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accuracy. This is the common drawback for filter-based methods [19].174

Embedded Methods. Our algorithm belongs to the embedded approach which inte-175

grates the subgraph selection into the model training process. In this subcategory, Saigo176

et al [23] proposed a gBoost (its variants for imbalanced graph classification [39, 40]177

and cost-sensitive learning [41] are proposed recently) algorithm which formulates the178

graph classification as a linear program. As will be elaborated in Sec 4.6, our algorithm179

is more general in the sense that it can adopt any differentiable loss function and use180

more robust regularization to produce better performance. In fact, gBoost [23] can be181

considered as a special case of our loss minimization problem.182

3. Problem Definition183

Definition 1. Connected Graph: A graph is denoted by G = (V, E, L = {L1, L2},A =184

{A1,A2}), whereV is the vertex set, E ⊆ V×V is the edge set,A = {A1,A2} withA1185

and A2 being the set of labels for vertices and edges, respectively; and L = {L1, L2},186

L1 : V → A1, L2 : E → A2 are labeling functions that assigns labels to a node or an187

edge, respectively. A connected graph is a graph such that there is a path between any188

pair of vertices.189

In this paper, we focus on connected graphs and assume that each graph G has a class190

label y, y ∈ Y = {−1,+1}. We only focus on binary-class classification tasks, but our191

methods can be easily extended to multi-class tasks.192

Definition 2. Subgraph: Given two graphs G = (V, E, L = {L1, L2},A = {A1,A2})193

and gk = (V′, E′, L′ = {L′1, L
′
2},A

′ = {A′1,A
′
2}), gk is a subgraph of G (i.e., gk ⊆ G) if194

there is an injective function f̂ : V′ →V, such that ∀(a, b) ∈ E′, we have ( f̂ (a), f̂ (b)) ∈195

E, L′1(a) = L1( f̂ (a)), L′1(b) = L1( f̂ (b)), L′2(a, b) = L2( f̂ (a), f̂ (b)). If gk is a subgraph of196

G (gk ⊆ G), G is a supergraph of gk (G ⊇ gk).197

Subgraph-based Graph Classification: Given a set of labeled graphs T = {(G1, y1),198

· · · , (Gn, yn)}, subgraph-based graph classification aims to select an optimal set of dis-199

criminative subgraphs F1 from T , and learn a classification model from the reduced200

subgraph space F1 to predict previously unseen test graphs with a maximum accuracy.201

SetF1 is optimal if the classifier learned fromF1 has the highest classification accuracy,202
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compared to classifiers trained from any subset of T . A major feature of our method is203

that it can automatically determine the best set of subgraph features to represent each204

graph datasets without requiring users to specify the number of subgraph features. This205

essentially advances the existing subgraph feature-based graph classification methods206

from finding the most discriminative subgraph features to finding the best subgraph set207

for maximum accuracy gain.208

4. Regularized Loss Minimization for Graph Classification209

To support graph classification, state-of-the-art algorithms [23, 10] use a set of210

subgraphs discovered from the training graphs as features, where each subgraph gk can211

be used to represent a graph Gi as follows:212

~gk (Gi) = 2I(gk ⊆ Gi) − 1; (2)

Here I(a) = 1 if a holds, and 0 otherwise. This rule simply maps a graph Gi into +1 if213

gk ⊆ Gi, or -1 otherwise.214

LetF = {g1, · · · , gm} be the full set of subgraphs for the training graphs. We can use215

F as features to represent each graph Gi into a vector space as xi = {~g1 (Gi), · · · , ~gm (Gi)},216

with xk
i = ~gk (Gi). In the following subsection, Gi and xi are used interchangeably as217

they both refer to the same graph. Given the full subgraph features F , the prediction218

function for the graph xi is a linear classifier:219

f (xi) = xi · w + b =
∑
gk∈F

wk~gk (Gi) + b (3)

where w = [w1, · · · ,wm]′ is the weight vector for all features F , and b is the bias of220

the model. The predicted class of xi is +1 if f (xi) > 0 or -1 otherwise. Note that221

in practice, subgraph space F is implicit and exponentially large, i.e., the number of222

subgraphs grows exponentially with respect to the number of nodes.223

4.1. Regularized Loss Minimization Formulation224

In this paper, we propose to learn a K-dimensional feature space from the implicit225

and large subgraph space F to achieve the lowest regularized empirical risks for the226
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graph dataset, with K being automatically determined. Eq.(1) can be reformulated as227

the following objective function:228

minJ(w, b) = min
w,b

1
n

n∑
i=1

L(yi, xi · w + b)︸                      ︷︷                      ︸
C

+ γ1‖w‖1 + γ2‖w‖22︸               ︷︷               ︸
R

(4)

The first term Cmeasures the loss on the training graphs, where L(yi, f (xi)) can be any229

loss function measuring the misclassification penalty of a graph Gi. The second part R230

consists of regularization terms to enforce sparse and robust solutions. Parameters γ1231

and γ2 are used to trade-off these parts (γ1 ≥ 0, γ2 ≥ 0). For the regularization, our232

objective is to obtain a sparse and stable solution on w, i.e., low dimensional subgraph233

features for final graph classification. Here, we combine both `1 and `2 norm, which is234

known as elastic net in machine learning [21]. The motivation of our regularization is235

as follows:236

The `1-norm regularizer (
∑

k |wk |) can produce solutions with many coefficients be-237

ing 0, which is known as lasso [20] and has been widely applied for variable selections.238

Although `1 regularization can produce a sparse solution, it suffers from two major239

disadvantages: (1) the number of selected variables is limited by the number of obser-240

vations; and (2) the lasso penalized model can only select one variable from a group241

of correlated variables and does not care which one is selected [21]. In contrast, `2242

regularization, which is widely used in SVM formulation ((‖w‖22 =
∑m

k=1 |wk |
2)), can243

produce more stable and robust classification results. However, `2 formulation cannot244

produce a sparse solution. By combining `1 and `2 norm, known as elastic net [21], we245

can overcome these issues and enjoy the sparse and stable properties.246

4.2. Sparse Subgraph Learning: Challenges and Solution Overview247

Challenges: For explicit vector data with moderate feature size, the problem defined in248

Eq.(4) can be effectively solved in traditional supervised learning. However, for graph249

data the challenges are evident: (1) the feature set F is unavailable (implicit) unless250

we enumerate all subgraphs from the training graphs, which is NP-complete; and (2)251

the whole subgraph set is exponentially large, and only a small subset of subgraphs are252

useful for classifiers to achieve maximum graph classification accuracy.253
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Solution Overview: To solve the aforementioned challenges, we propose a regularized254

loss minimization-driven (RLMD) subgraph selection method for graph classification.255

Driven by our formulation in Eq.(4), our principle is to iteratively mine the best sub-256

graph feature to reduce the empirical loss on the training graphs. To this end, we resort257

to the subgradient method in the functional space to define the utility of each sub-258

graph, and embed the feature selection/ranking into the subgraph mining/enumeration259

process. To handle the exponentially large subgraph space, we derive an effective260

branch-and-bound pruning scheme to reduce the search space. After a new subgraph261

is selected, we include and re-solve the new restricted objective function of Eq.(4) by262

using currently selected subgraphs. To find optimal K value, we derive a stopping cri-263

terion for our feature selection procedure based on the subgradient in the functional264

space, so that K can be automatically obtained once the algorithm converges.265

Logistic Loss Function: A Running Example. Our method is based on the gradi-266

ent/subgradient on the functional space of the objective function Eq.(4). In this paper,267

we use the logistic loss function as an example to illustrate how subgraph selection is268

performed by subgradient methods, and the logistic loss function is given as follows:269

L(yi, f (xi)) = log
(
1 + exp

{
− yi f (xi)

})
(5)

Note that our algorithm is a general method in the sense that any other differentiable270

loss function, such as least square lossL(y, ft) = 1
2 (y− ft)2 or exponential lossL(y, ft) =271

exp{−y ft}, can be directly used in our algorithm. As discussed latter in Section 4.6,272

our method is also applicable to convex locally Lipschitz but non-differentiable loss273

functions such as the hinge loss used by the (margin) perceptron and linear SVM.274

The partial derivative of the loss term C in Eq.(4) on the subgraph feature gk is275

defined as ∂C
∂wk

. For logistic loss function,276

∂C
∂wk

= 1
n

n∑
i=1

∂L(yi, f (xi))
∂ f (xi)

∂ f (xi)
∂wk

= − 1
n

n∑
i=1

yi xk
i

1+eyi f (xi ) =
n∑

i=1
yiαixk

i

(6)

Here, αi = − 1
n(1+eyi f (xi )) can be regarded as a weight associated with graph Gi for the277

subgraph mining process.278
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4.3. RLMD Subgraph Selection for Graph Classification279

Because we aim to learn a sparse solution of subgraph features (K-dimensional280

feature space) from graph data, some subgraphs/features gk with zero weights, i.e.,281

wk = 0 will not be used for learning the classification model. Thus it makes sense282

to partition the subgraph features F into two disjoint subsets F1 and F2. F1 stores283

active features which are used to learn the classification model and this set is frequently284

updated as desired, and F2 includes unselected graphs with 0 weights (i.e., for gk ∈285

F2,wk = 0). Then we can iteratively select the best feature from F2 to F1, and solve286

the following restricted subproblem:287

minJt

(
w, b

)
= min

w,b

1
n

n∑
i=1

L
(
yi, xi(t) · w + b

)
︸                         ︷︷                         ︸

C′

+ γ1‖w‖1 + γ2‖w‖22︸               ︷︷               ︸
R′

= Jt(w(t), b(t))

(7)

where xi(t) is the feature representations for graph Gi based on the active set F1 in the288

t-th iteration, and
(
w(t), b(t)

)
is the solution of Eq.(7). Note thatJt(w, b) is used here to289

denote the restricted subproblem Eq.(7) while J(w, b) is referred to original problem290

in Eq.(4).291

The optimal number of subgraphs K can be automatically determined by setting292

K = |F1| once the algorithm converges. Note that given a solution
(
w(t), b(t)

)
, the293

loss term C′ in Eq.(7) equals to C in Eq.(4) because the prediction of of graph mainly294

depends on the active set F1, i.e., C′ = C. In the following, we will derive the stopping295

condition of our algorithm, and prove its convergence.296

Stopping Condition for Optimal K value: Our objective function Eq.(4) is con-297

vex and non-smooth, i.e., it may be non-differentiable at a point w. When it is non-298

differentiable at w, we can compute its generalized gradient (i.e., subgradient) instead.299

According to the optimization conditions, when reaching the optimum, we will have300

0 ∈
∂C

∂wk
+ γ1ok + 2γ2wk; (8)

where ok is the subgradient with respect to wk301

ok ∈

 sign(wk) : wk , 0

[−1, 1] : wk = 0
(9)
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where sign(a) = 1 if a > 0 otherwise −1.302

According to Eq.(8) and Eq.(9), we can now state the optimal condition for our303

sparse subgraph learning problem.304

Proposition 1. Optimal Solution: Let ŵ = [ŵ1, · · · , ŵm]. Suppose that (ŵ, b̂) is the305

optimal solution of our objective function Eq.(4), then Eq.(10) and Eq.(11) hold.306

∂C

∂ŵk
+ γ1sign(ŵk) + 2γ2ŵk = 0 if ŵk , 0 (10)

|
∂C

∂ŵk
| ≤ γ1 if ŵk = 0 (11)

Eq.(11) holds because for ŵk = 0, the third term of Eq.(8) disappears. Combining307

Eq.(8) and Eq.(9) will result in Eq.(11).308

To reduce the objective value Jt in Eq.(7), we propose to select a subgraph in F2309

whose weight violates Eq.(11), and update the selected active set F1 with the newly310

selected feature and re-optimize the restricted subproblem Eq.(7) with current features.311

This process will repeat until no candidate violates Eq.(11). In other words, Eq.(11)312

is a stopping condition and determines the number of subgraphs being selected for313

RLMD’s subgraph selection process.314

Utility of Subgraphs: Eq.(11) can be used naturally to induce a criterion for quantify-315

ing the utility value of a subgraph. The larger | ∂C
∂wk
| is, the more informative it will be316

for reducing the objective function. Accordingly, we formally define the informative317

score as follows:318

Definition 3. Informative Score: For a subgraph pattern gk, its informative score for319

graph classification is defined as follows:320

Θ(gk) = |
∂C

∂wk
| = |

∂C′

∂wk
| = |

n∑
i=1

yiαixk
i | (12)

where αi = − 1
n(1+eyi f (xi )) .321

Note that the informative score directly depends on the weight of each graph αi, which322

is calculated based on the active set F1. Intuitively, the best subgraph of F2 is the one323

with the maximum informative score, because it is more likely to violate the stopping324

condition Eq.(11).325
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Algorithm 1 Regularized Loss Minimization-Driven Subgraph Selection (RLMD) for

Graph Classification
Require:

{(G1, y1), · · · , (Gn, yn)} : Training Graphs;

S max: Maximum number of iterations;

Ensure:

w, b: Parameters for classifier model

1: αi = 1/n; F1 ← ∅; t ← 0;

2: while t < S max do

3: Mine an optimal subgraph features g? with maximum informative score defined by Eq.12 ; //Algo-

rithm 2;

4: if Θ(g?) ≤ γ1 + ε then

5: break;

6: end if

7: F1 ← F1
⋃

g?;

8: Solve Eq.(7) based on F1 to get the new solution
(
w(t), b(t)

)
;

9: Update the graph weights on each training graph

αi = − 1
n(1+eyi f (xi (t)))

10: t ← t + 1;

11: end while

12: K = |F1 |;

13: return w, b;

RLMD Algorithm: Algorithm 1 illustrates the detailed steps of RLMD for graph326

classification. Initially, the weights for all training graphs are equally set as 1/n, and327

the active set F1 is initialized to be empty.328

In the next step, the algorithm mines an optimal subgraph g? from F2 which has329

the highest informative scores defined by Eq.(12). This step involves a subgraph min-330

ing procedure, which will be addressed in the next subsection. On steps 4-5, if current331

optimal subgraph no longer violates the optimal condition Eq.(11), the algorithm termi-332

nates. Here, we have relaxed the convergence condition to ε tolerance; this is because333

in the last few iterations, the maximum score will only change subtly (we set ε = 0.005334

in our experiments).335

On step 7, we add the newly selected subgraph g? to the existing subgraph set336

F1, and re-solve the following restricted subproblem Eq.(7). To solve this restricted337
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objective function, we use the MALSAR toolbox 2 in our experiments. It is worth338

noting that because this step only involves a very small number of features, it is very339

efficient in practice.340

Subsequently, the algorithm updates the weight αi for each graph Gi. This will help341

compute the derivative of ∂C
∂wk

for subgraph mining in next round. After the algorithm342

terminates, the optimal number of subgraphs K can be easily obtained as K = |F1| = t343

on step 12.344

Note that our algorithm 1 generalizes the column generation technique in gBoost [23]345

by iteratively selecting the most violated subgraph in each iteration until convergence.346

Our algorithm 1 relies on ε and γ1, which serve as a stopping condition to determine K.347

In practice, ε is a subtle value insensitive to the algorithm performance. Meanwhile,348

γ1 is much easier to set than asking users to specify K values because γ1 is chosen in a349

much smaller range, as we will demonstrate in Section 5.2.4.350

4.4. Theoretical Study351

Theorem 1. (Convergence Property:) Algorithm 1 guarantees that the restricted ob-352

jective function Eq.(7) will monotonically decrease.353

PROOF. Suppose in the t-th iteration, the optimal objective value based on current t

features (i.e., |F1| = t) is obtained with
(
w(t), b(t)

)
, i.e.,

Jt

(
w(t), b(t)

)
=

1
n

n∑
i=1

L
(
yi, xi(t) · w(t) + b(t)

)
︸                                ︷︷                                ︸

C=C′

+ γ1‖w(t)‖1 + γ2‖w(t)‖22︸                     ︷︷                     ︸
R=R′

= (C+R)
|
(
w(t),b(t)

)

then in the t + 1-th iterations, the optimal objective value for Eq.(7) is

minJt+1(w, b) = min(C + R) ≤ (C + R)
|
(
[w(t),0],b(t)

) = Jt(w(t), b(t)
)

Here [w(t), 0] means that the weights for subgraphs selected in the t-th iteration remain354

unchanged while the weight for newly selected subgraph in the t+1-th iteration is 0.355

2http://www.MALSAR.org
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Thus the objective value of the restricted problem Eq.(7) based on the currently356

selected features F1 always monotonously decreases in two successive iterations. Be-357

cause the objective function value is non-negative (bounded), we can ensure that it will358

finally converge as iteration continues. The proof is complete.359

Suppose the algorithm converges in the K-th iteration with a solution
(
w(K), b(K)

)
,360

and the objective value for Eq.(7) is JK
(
w(K), b(K)

)
. By adding m − K zeros for361

subgraphs in F2 to w(K), i,e., ŵ(K) = [w(K), 0 · · · ], we obtain a solution
(
ŵ(K), b(K)

)
362

for Eq.(4).363

Corollary 1. Optimal Solution Guarantees: If Algorithm 1 converges with solution364 (
w(K), b(K)

)
for Eq.(7), then

(
ŵ(K), b(K)

)
is an optimal solution for Eq.(4).365

PROOF. According to our Proposition 1,
(
ŵ(K), b(K)

)
is an optimal solution of Eq.(4),

because ∀wk = 0 (gk ∈ F2), we have Θ(gk) < γ1 based on our stopping condition. Thus

we will have

JK
(
w(K), b(K)

)
= J

(
ŵ(K), b(K)

)
= minJ(w, b)

where JK
(
w(K), b(K)

)
and J

(
ŵ(K), b(K)

)
refer to the objective values of the restricted366

subproblem Eq.(7) and Eq.(4), respectively.367

We have proved that objective value for Eq.(7) is monotonously decreasing (Theo-368

rem 1) and its recovered solution
(
ŵ(K), b(K)

)
is an optimal solution to Eq.(4) (Corol-369

lary 1).370

4.5. Optimal Subgraph Mining371

In order to mine optimal subgraph g? on step 3 of Algorithm 1, we need to perform372

the subgraph enumeration procedure. In RLMD, we employ the frequent subgraph373

mining-based algorithm gSpan [42]. The key idea of gSpan is that each subgraph has374

a unique DFS Code, which is defined by a lexicographic order of the discovery time375

during the search process. By employing a depth first search strategy on the DFS Code376

tree (where each node is a subgraph), gSpan can enumerate all frequent subgraphs377

efficiently.378

17



During the subgraph mining process, the search space is exponentially large, which379

requires an effective pruning scheme to reduce the search space. In this subsection, we380

will derive the upper-bound of the informative score for each subgraph, which helps381

prune the search space and speed up the subgraph mining.382

Theorem 2. (Upper-bound Score:) Let g and g′ be two subgraph patterns, and g ⊆ g′,383

for the subgraph g, we define384

A1(g) = 2
∑

{i|yi=+1,g∈Gi}

αi

A2(g) = 2
∑

{i|yi=−1,g∈Gi}

αi

A3 =
∑n

t=1 αiyi

385

Θ̂(g) =

 max{|A1(g) − A3|, |A2(g)|} : A3 ≥ 0

max{|A2(g) + A3|, |A1(g)|} : A3 < 0

then Θ(g′) ≤ Θ̂(g), where Θ(g′) is defined in Eq.(12).386

PROOF. We start with the definition of Θ(g′):387

Θ(g′) = |
n∑

i=1
yiαix′i |

= |
n∑

i=1
yiαi · [2I(g′ ⊆ Gi) − 1]|

= |2
∑

g′⊆Gi

yiαi −
∑n

i=1 αiyi|

= |A1(g′) − A2(g′) − A3|

≤

 max{|A1(g′) − A3|, |A2(g′)|} : A3 ≥ 0

max{|A2(g′) + A3|, |A1(g′)|} : A3 < 0

≤

 max{|A1(g) − A3|, |A2(g)|} : A3 ≥ 0

max{|A2(g) + A3|, |A1(g)|} : A3 < 0

= Θ̂(g)

The first inequality holds because for αi < 0, A1(g′) ≤ 0 and A2(g′) ≤ 0, so the upper-388

bound depends on A3. If A3 ≥ 0, A1(g′) and A3 will have different signs, then the389

upper-bound is the maximum between {|A1(g′) − A3|, |A2(g′)|}. The case is similar for390

A3 < 0. The second inequality holds because |A1(g′)| ≤ |A1(g)| and |A2(g′)| ≤ |A2(g)|391

for g ⊆ g′.392
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Algorithm 2 Optimal Subgraph Mining
Require:

{(G1, y1), · · · , (Gn, yn)} : Training graphs;

αi : Weight for each graph example;

F1: Already selected subgraph set;

Ensure:

g?: The optimal subgraph;

1: η = 0;

2: while Recursively visit the DFS Code Tree in gSpan do

3: gp ← current visited subgraph in DFS Code Tree;

4: if gp has been examined then

5: continue;

6: end if

7: Compute scores Θ(gp) for subgraph gp according Eq.(12);

8: if gp < F1 & Θ(gp) > η then

9: η = Θ(gp);

10: g? ← gp;

11: end if

12: if Θ̂(gp) > η then

13: Depth-first search the subtree rooted from node gp;

14: end if

15: end while

16: return g?;

Theorem 2 states that for any super graph of a subgraph g, its informative score is393

upper-bounded by Θ̂(g). This rule can prune unpromising candidates effectively.394

Optimal Subgraph Exploration Algorithm: Our optimal subgraph mining algorithm395

is listed in Algorithm 2. The minimum value η in the optimal set is initialized on step 1.396

Duplicated subgraph features are pruned on steps 4-5, and the informative score Θ(gp)397

for gp is calculated on step 7. If gp is not selected before (gp < F1) and Θ(gp) is larger398

than η, we replace the optimal subgraph g? with the current gp and update the optimal399

score η (steps 8-11).400

A branch-and-bound pruning rule, according to Theorem 2, is subsequently used to401

prune the search space on step 12. Lastly, the optimal subgraph g? is returned on step402

16.403
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The above pruning process is a key feature of our algorithm, because we do not404

require a support threshold value for subgraph mining (whereas all filter subgraph min-405

ing methods will require users to predefine a threshold value in order to discover sub-406

graphs).407

4.6. Relation to gBoost408

Our RLMD subgraph selection algorithm advances the existing column generation409

style techniques employed in gBoost [23] for graph classification. The learning objec-410

tive function for gBoost is411

max
ρ,w,ξ

ρ − 1
vn

∑n
i=1 ξi

s.t. yi
∑m

k=1 ~gk (Gi)wk + ξi ≥ ρ;∑m
k=1 wk = 1;

wk ≥ 0, ξi ≥ 0;

(13)

From [43], we know that this formula is equivalent to the following linear program-412

ming:413

min
w,ξ

∑m
k=1 wk + C

∑n
i=1 ξi

s.t. yi
∑m

k=1 ~gk (Gi)wk + ξi ≥ 1;

wk ≥ 0, ξi ≥ 0;

(14)

Eq.(14) is actually a `1 svm formulation, and can also be formulated as the regularized414

loss minimization formulation problem:415

min ‖w‖1 + C
n∑

i=1

Lh(yi, f (xi)) (15)

Here, Lh(yi, f (xi)) = max(1 − yi f (xi), 0), which is known as hinge loss in machine416

learning.417

Compared to our objective function in Eq.(4), we can find that gBoost (Eq.15) is418

a special case of Eq.(4), with the `2 regularization term being 0. Although the hinge419

loss function is non-differentiable, our subgradient method still applies, as long as ∂C
∂wk

420

in Eq.(6) is properly defined. This observation shows the following advantages of our421

algorithm: (1) gBoost employs a hinge loss function which is similar to SVM and422
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requires the problem to be formulated as a linear programming. Our algorithm gen-423

eralizes and advances gBoost by removing the linear programming constraint and can424

employ any differentiable loss function, in addition to the logistic loss function con-425

sidered in our paper. This generalization has great attractiveness in many applications,426

especially when the probability estimation for classification is required (the logistic427

function can provide some probabilistic information compared to the hinge loss func-428

tion); (2) while gBoost employs `1 norm regularization to obtain a sparse solution, our429

algorithm considers an additional norm `2. This combined norm (known as elastic net)430

enables a sparse and more stable solution.431

5. Experiment432

5.1. Experimental Settings433

Benchmark Data: We validate the performance of the proposed algorithm on two434

types of graph classification datasets.435

Anti-cancer activity prediction (NCI): The NCI graph collection3 is a benchmark436

for predicting the biological activity of small molecules for different types of cancers.437

Each NCI dataset belongs to a bioassay task for anticancer activity prediction, such438

as Breast cancer or Leukemia cancer. Each molecule is represented as a graph, with439

atoms representing nodes and bonds denoting edges. A molecule is positive if it is440

active against a certain type of cancer, or negative otherwise. Table 1 summarizes nine441

NCI graph classification tasks used in our experiments, where columns 2-4 denote the442

number of positive molecules, the total number of graphs, and the type of cancer of443

each dataset. In our experiments, we randomly select 1000 graphs from each dataset444

with balanced class distributions for graph classification.445

Predictive Toxicology Challenge Dataset (PTC): The PTC challenge includes a446

number of carcinogenicity classifications for the toxicology prediction of chemical447

compounds4. The dataset we selected contains 417 compounds with four types of448

test animals: MM (male mouse), FM (female mouse), MR (male rat), and FR (female449

3http://pubchem.ncbi.nlm.nih.gov
4http://www.predictive-toxicology.org/ptc/
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Table 1: Datasets Used in Experiments

ID #Pos #Total Learning tasks

1 1793 37349 Non-Small Cell Lung

33 1467 37022 Melanoma

41 1350 25336 Prostate

47 1735 37298 Central Nerv Sys

81 2081 37549 Colon

83 1959 25550 Breast

109 1773 37518 Ovarian

123 2715 36903 Leukemia

145 1641 37043 Renal

rat). Each compound has labels selected from {CE, SE, P, E, EE, IS, NE, N}. Similar450

to [44], we set {CE, SE, P} as positive labels, and {NE,N} as negative labels.451

Baseline Methods: In our experiments, we consider three types of baseline methods,452

namely the two-step filter methods (TFMs), direct filter methods (DFMs), and embed-453

ded methods, as follows:454

• IG+SVM is a TFM method that simply mines a set of frequent subgraphs, and455

then performs feature selection by using Information Gain. A SVM classifier is456

trained by using selected subgraph features for graph classification.457

• TOP+SVM is similar to IG+SVM except that it selects the top K subgraphs458

based on their frequency rather than their information gain values.459

• gSemi+SVM [11] is a DFM method, which integrates the feature selection into460

the subgraph mining process. The measurement for feature selection mainly con-461

siders the must-link and cannot link constraints between graph samples within462

the same or between different classes.463

• gHSIC+SVM [12] is another DFM method which exploits the correlations be-464

tween features and labels.465

• gBoost [23] is a state-of-the-art embedded method which formulates the feature466

selection as a linear problem and selects subgraph features which best fit the467
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objective function.468

• RLMD is our proposed method which employ a logistic loss function together469

with an elastic net for regularization, and automatically determines optimal num-470

ber of subgraphs K.471

We conduct 10-fold cross-validation on all graph datasets and report the average472

results and standard errors of 10 folds in the final result. The parameters for γ1 are473

selected from {0.005,0.01,0.03,0.05}, and γ2 is selected from {0.01,0.03,0.05}. We474

will further analyze the impact of γ1 and γ2 in wider ranges in Section 5.2.4. For the475

filter methods (IG+SVM, TOP+SVM, gSemi+SVM, and gHSIC+SVM), the minimum476

support for frequent subgraph mining is set to 10% on NCI graph datasets and 1%477

on PTC classification tasks, and an SVM classifier is trained with C parameter from478

the range {0.1,1,10,100, 1000,10000}. For the gBoost algorithm, the parameter v is479

selected from {0.1, 0.2, 0.3, 0.4}. Following [23], we select the best average results480

of 10-fold cross-validation for each baseline algorithm by varying these parameters,481

which represents the best performance each baseline can achieve.482

For fairness of comparison, we increase the number of features to be selected for483

the filter methods (IG+SVM, TOP+SVM, gSemi+SVM, and gHSIC+SVM), and in-484

crease the iterations for the embedded methods (gBoost and RLMD), then collect and485

compare the performance of all algorithms under the same number of features. We set486

S max = 200, which defines the maximum number of features used to learn the classifier487

models. Note that for RLMD, the algorithm may stop before reaching the maximum488

iterations/subgraphs we set, i.e., the optimal K is obtained. When RLMD stops, the489

optimal number of subgraph features has been discovered and RMLD will not add490

additional subgraphs to the feature set. We also compare RLMD under the optimal491

subgraph value to other baselines with the same number of K features (the purpose is492

to show that the optimal subgraph features discovered by RLMD are indeed optimal493

for graph classification).494
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5.2. Experimental Results495

5.2.1. Results on NCI Graph Dataset496

For the NCI graph datasets, we vary the number of selected subgraph features from497

20 to 200 for filter methods, and the number of iterations for gBoost and RLMD from498

1 to 200. The accuracies and AUC values are shown in Fig. 3.499

Comparison with Filter methods: The results in Fig. 3 show that with the in-500

crease in the number of features/iterations, the filter methods (TOP+SVM, IG+SVM,501

gSemi+SVM, and gHSIC+SVM) are inferior to RLMD. This is because filter methods502

separate the feature selection module from the model learning process. The subgraph503

features selected from filter methods may not fit the underlying learning model very504

well (we use SVM in our experiments). This is actually an observed common draw-505

back of filter methods [19]. The performance among these filter-based methods varies506

from one graph dataset to another, and none of them significantly outperforms others.507

For instance, gSemi+SVM outperforms TOP+SVM, IG+SVM, and gHSIC+SVM on508

NCI-1 (Fig. 3.A) when the number of selected graphs is considerably large (≥ 160),509

but is worse than gHSIC on NCI-109 (Fig. 3.G). This may be attributed to the inherent510

differences underneath the graph datasets.511

How many subgraphs to select: Another drawback of filter methods, shown in our512

experiments, is that the performance of filter methods varies significantly w.r.t. dif-513

ferent numbers of selected features (K). Indeed, all these filter methods only select514

subgraph features with maximum discriminative score regardless of the redundancy515

among the features. Adding redundant features may decrease the performance of an516

algorithm. Further analysis of subgraph features is presented with a case study in the517

next subsection.518

In contrast, for embedded methods, the above drawbacks can be handled effec-519

tively. Our algorithm RLMD unifies the feature selection and model learning into a520

whole framework, so that the feature selection process is driven by the well-defined521

objective function, and the selected features can further enhance the learning models.522

At the same time, RLMD is guaranteed to be convergent given an appropriate γ1 value,523

which means that we do not need to specify the total number of selected graphs K. For524
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Figure 3: The classification accuracy and standard error on NCI dataset w.r.t. the number of selected graphs.

The optimal number of subgraphs selected by RLMD (once it converges for all 10 folds experiments) is

marked by a star ∗ at x-axis.
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instance, in Fig. (3).A, RLMD reaches convergence with 180 features.525

RLMD vs. gBoost: It is evident that RLMD outperforms gBoost for most datasets.526

This is mainly because gBoost only uses `1-norm regularization to produce a sparse527

solution. As pointed out in [21], the lasso (`1-norm) has several drawbacks: (1) when528

the number of features (m, which is exponentially huge) is much bigger than the num-529

ber of observations (n), the `1 norm selects at most n variables before it saturates; and530

(2) when the pairwise correlations in a group of variables are very high, lasso tends to531

select only one variable from the group and does not discriminate which one it selects.532

By contrast, RLMD uses an elastic net (combination of `1 and `2 norm), which encour-533

ages a grouping effect, where strongly correlated features will be included/excluded.534

As a result, RLMD results in a similar sparsity of representation to gBoost, but often535

outperforms gBoost.536

Table 2: Averaged accuracies and standard errors on NCI Graphs with Optimal K.

ID RLMD
TOP

+SVM

IG

+SVM

gHSIC

+SVM

gSemi

+SVM
gBoost

1 0.759±0.014 0.686±0.019 0.687±0.018 0.677±0.018 0.700±0.015 0.724±0.009

33 0.769±0.008 0.701±0.011 0.687±0.019 0.703±0.012 0.697±0.015 0.739±0.008

41 0.755±0.009 0.677±0.017 0.649±0.015 0.672±0.015 0.670±0.009 0.740±0.008

47 0.738±0.009 0.683±0.013 0.652±0.015 0.665±0.012 0.690±0.012 0.714±0.014

81 0.740±0.010 0.679±0.012 0.660±0.014 0.659±0.015 0.658±0.009 0.725±0.013

83 0.726±0.012 0.644±0.012 0.632±0.012 0.658±0.011 0.639±0.020 0.708±0.016

109 0.742±0.010 0.657±0.016 0.683±0.009 0.677±0.012 0.661±0.017 0.721±0.015

123 0.707±0.010 0.609±0.019 0.647±0.012 0.648±0.014 0.635±0.012 0.663±0.013

145 0.764±0.015 0.704±0.013 0.695±0.012 0.676±0.013 0.697±0.020 0.734±0.018

Overall Performance with Optimal K: In Table 2, we summarize the performance537

of our algorithm under optimal K value with other methods, where filter methods use538

the same number of subgraphs (K) for graph classification, and gBoost runs until con-539

vergence. The result in Table 2 clearly demonstrates that RLMD outperforms two-540

step filter methods (TOP+SVM and IG+SVM), direct filter methods (gHSIC+SVM541

and gSemi+SVM), and gBoost algorithm in NCI datasets.542
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Figure 4: Case Study: comparison of discriminative subgraph features discovered by different algorithms.

Subgraph features with high similarities are grouped and highlighted in the dashed rectangles. Subgraphs

mined by filter methods are similar to each other and share high redundancy.

5.2.2. Case Study: Subgraph Feature Comparison543

In this subsection, we use NCI-1 dataset as a case study to investigate subgraphs544

discovered by different algorithms. In our experiments, the top-10 subgraph features545

are discovered and illustrated in Fig. 4.546

It is evident that the features for all filter methods (TOP, gSemi, and gHSIC) share547

high correlations. For the gSemi algorithm, for instance, the top-10 subgraphs form548

3 groups. In each group, the subgraph features are very similar to each other. This is549

because the subgraph mining algorithm follows the depth-first-search (DFS) scheme,550

and subgraphs from the same sub-tree are very close to each other in terms of their ge-551

ometrical structure. Because these methods consider each subgraph independently, the552

selected subgraphs may have high redundancy, which imposes a great challenge in de-553

termining the optimal K subgraphs for graph classification and also causes fluctuating554

results when the K values are varied.555

In contrast, the subgraph correlations for gBoost and RLMD are much smaller.556
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The subgraphs discovered by gBoost and RLMD are highly overlapping (the first 5557

subgraphs are identical). As pointed out by [21], `1 regularization tends to select only558

one subgraph from a group of features and is not selective about which one is included,559

thus the redundancy among the features in gBoost is minimal. By using elastic norm,560

RLMD retains several group effects (some discriminative features may be included and561

excluded simultaneously), and usually achieves better results. This result is consistent562

with observations reported in [21] for vector data.563

5.2.3. Results on PTC Tasks564

We also conducted extensive experiments on the PTC datasets. The accuracies and565

AUC values (i.e., the area under ROC curves) are reported in Tables 3 and 4, where the566

results are obtained after RLMD converges, and K = 200 for all filter methods.567

Table 3: Accuracies and standard errors on PTC graphs with Optimal K for 10-fold cross-validation.

ID RLMD
TOP

+SVM

IG

+SVM

gHSIC

+SVM

gSemi

+SVM
gBoost

MR 0.655±0.013 0.606±0.024 0.607±0.025 0.596±0.019 0.601±0.020 0.608±0.027

MM 0.664±0.019 0.060±0.025 0.599±0.023 0.613±0.021 0.603±0.019 0.622±0.018

FR 0.704±0.018 0.607±0.029 0.584±0.029 0.635±0.026 0.619±0.023 0.678±0.008

FM 0.615±0.018 0.592±0.031 0.594±0.026 0.581±0.021 0.575±0.018 0.603±0.017

Table 4: AUC values and standard errors on PTC graphs with Optimal K for 10-fold cross-validation.

ID RLMD
TOP

+SVM

IG

+SVM

gHSIC

+SVM

gSemi

+SVM
gBoost

MR 0.681±0.021 0.597±0.025 0.596±0.025 0.560±0.021 0.580±0.021 0.649±0.033

MM 0.680±0.020 0.593±0.025 0.590±0.025 0.583±0.024 0.600±0.022 0.600±0.034

FR 0.673±0.022 0.600±0.029 0.575±0.029 0.618±0.021 0.623±0.021 0.640±0.026

FM 0.614±0.013 0.585±0.032 0.587±0.024 0.582±0.021 0.580±0.017 0.583±0.017

The results in Tables 3 and 4 show that RLMD achieves considerable performance568

gains over all filter methods (TFM and DFM) and gBoost algorithm for all PTC datasets.569
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Note that for PTC classifications, AUC values are more important because they are all570

imbalanced classification tasks.571

5.2.4. Parameter Analysis572

In this subsection, we study the impact of parameters γ1 and γ2 on algorithm per-573

formance. Both γ1 and γ2 values are selected from {0, 0.01, 0.03, 0.05, 0.07, 0.09,574

0.11, 0.15, 0.2}, and the results under 10-fold cross-validation on NCI-1 and NCI-33575

are shown in Fig. 5.576

Impact of γ1 values: The experimental results in Fig. 5 show that γ1 plays a more577

important role for the final classification model. With the increase of γ1 from 0 to 0.2,578

the classification performance drops rapidly in terms of accuracy.

Table 5: Impact of different γ1 values on NCI-1 dataset with γ2 = 0.03, S max = 200.

γ1 0 0.01 0.03 0.05 0.15

#Selected Subgraphs 200 180 130 65 0

Accuracy 0.775 0.759 0.711 0.679 0.5

AUC 0.831 0.811 0.795 0.713 0.5

579

To better understand the impact of γ1, we also summarize the number of subgraphs580

selected with different γ1 values in Table 5. The results show that increasing γ1 values581

will result in fewer subgraphs being selected for the final classifier model, because a582

larger `1 norm regularizes more elements as 0. For γ1 = 0, there is no sparse solu-583

tion. In other words, every subgraph should be used for graph classification. In this584

case, RLMD will only terminate when all subgraphs are incorporated for learning the585

model, or the maximum number of iterations S max is reached. As the subgraph space586

is exponentially large, it is impractical to use all subgraph features to learn the model.587

The algorithm relies on S max to terminate (200 is set in our experiment). The result588

shows that γ1=0 even achieves better classification result, which is attributed to the fact589

that although `1 regularization introduces a sparse solution, it may be biased in some590

applications [45], so the accuracy may drop. For other cases with γ1 being considerably591

large (γ1 = 0.5), the regularization term dominates the objective function Eq.(4) with592

no subgraph being used for classification, which results in poor classification accuracy.593
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Figure 5: The accuracies with different γ1 and γ2 values.

The overlapping of subgraphs with different γ1 values
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Figure 6: The overlapping of subgraphs (common subgraphs vs. different subgraphs) for different γ1 values

on NCI-1 dataset with a 70%-30% splitting on the NCI-1 dataset, i.e., 70% graphs are randomly selected as

training graphs, and 30% are used as test graphs. γ2 = 0.03 and S max = 200.

Table 6: Impact of different γ2 values on NCI-1 dataset with γ1 = 0.01.

γ2 0 0.03 0.07 0.15 0.2

Accuracy 0.748 0.759 0.74 0.741 0.72

AUC 0.810 0.811 0.806 0.811 0.78
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Table 7: Impacts of different ε values on NCI-1 dataset.

ε 0.01 0.005 0.001 0.0001

Accuracy 0.748 0.759 0.761 0.760

AUC 0.803 0.811 0.814 0.812

Note that the convergence property of our algorithm is dependent on γ1. In our594

experiments, we notice that γ1 is very easy to set (in a small range [0.01,0.03]) for595

obtaining satisfactory results. This is much easier than requiring users to specify the596

number of subgraph features K needed for each graph dataset, because users may not597

have any prior knowledge about the selection of K values for different datasets, and598

different K values often result in significant changes in the algorithm performance.599

Interplay between γ1 and subgraph selection: We further compare the common sub-600

graphs selected by different γ1 values, and report the results in Fig. 6. The results show601

that the subgraphs selected by using a smaller γ1 values contain many subgraphs which602

are selected by using a larger γ1 value. This observation is further evident in Fig.6.(E)603

and (F). The reason is that a smaller γ1 value will result in more subgraph features to be604

selected, which increases the possibility of covering a small subgraph set selected by605

using a larger γ1 value. In other words, a slightly smaller γ1 value will result in more606

subgraph feature candidates to be explored and be beneficial for the classification task.607

Impact of γ2 values: We also vary γ2 from 0 to 0.2, and report the results in Table608

6. The results show that a small regularization value γ2 = 0.03 outperforms the case609

of γ2 = 0, where the `2 regularization effect disappears (only `1 is used). This result610

is consistent with observations from a previous study [21]. This may be because `1611

ignores the correlated subgraphs in a group of features. When γ2 keeps increasing,612

the classification performance drops because the larger `2 regularization dominates the613

objective function and the loss minimization term has less effect.614

Impact of ε values: We vary the ε values from 0.01 to 0.0001 to study the final classifi-615

cation performance of our algorithm, and report the final classification results in Table616

7. The results show that as long as ε is subtle (from 0.001 to 0.0001), our classifica-617

tion can achieve similar classification results, i.e., an ε-tolerance accuracy result to the618
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optimal solution.619

6. Conclusion620

In this paper, we proposed a regularized loss minimization-driven (RLMD) graph621

classification method. We argued that existing filter-based subgraph selection methods622

simply focus on finding most discriminative subgraph features, and suffer severe disad-623

vantages in determining the optimal number of subgraphs for graph classification and624

separating feature selection from the model learning phase. As a result, they might be625

able to find most discriminative subgraph features, but cannot form high accuracy clas-626

sifiers because they cannot determine how many discriminative features are needed to627

train classifiers with the best performance gain. By integrating subgraph mining, dis-628

criminative subgraph selection, and model learning into one unified framework, RMLD629

is able to automatically determine the optimal number of discriminative subgraphs for630

best graph classification results. Our algorithm generalizes the state-of-the-art gBoost631

algorithm in the sense that it can employ any differentiable loss function and achieve632

better classification accuracy by using an elastic net regularization. Experimental re-633

sults on real-world graph datasets show a clear performance gain over existing two-step634

filter methods (TFMs), direct filter methods (DFMs), and embedding methods.635
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