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Abstract

Clustering methods with dimension reduction have been receiving considerable

wide interest in statistics lately and a lot of methods to simultaneously perform

clustering and dimension reduction have been proposed. This work presents a novel

procedure for simultaneously determining the optimal cluster structure for mul-

tivariate binary data and the subspace to represent that cluster structure. The

method is based on a finite mixture model of multivariate Bernoulli distributions,

and each component is assumed to have a low-dimensional representation of the

cluster structure. This method can be considered an extension of the traditional

latent class analysis. Sparsity is introduced to the loading values, which produces

the low-dimensional subspace, for enhanced interpretability and more stable extrac-

tion of the subspace. An EM-based algorithm is developed to efficiently solve the

proposed optimization problem. We demonstrate the effectiveness of the proposed

method by applying it to a simulation study and real datasets.

Key words: binary data, clustering, dimension reduction, EM algorithm, latent class

analysis, sparsity
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1 Introduction

Binary data are commonly observed and analyzed in many application fields: behavioral

and social research, biosciences, document classification, and inference on binary images.

For example, Ekholm et al. [1] analyzed biomedical data including five unequally spaced

binary self-assessment measurements of arthritis and obesity data on the presence or

absence of obesity in five cohorts of children. Also, the binarized data of the MovieLens

100K and the Netflix dataset, which are popular datasets for collaborative filtering tasks,

have been analyzed by Kozma et al. [2]. One of the purposes of analyzing binary data,

as well as continuous data, is the partitioning of objects which have binary features into

several unpredetermined homogeneous groups (clusters). For clustering of objects with

many variables, it is quite important to know if some of the variables do not contribute

much to the structure of clusters because the inclusion of redundant information can

reduce the performance of the cluster analysis [3]. Also, a lower-dimensional (say two or

three dimensional) representation of the cluster structure, based on the most significant

information, is very useful for evaluating and interpreting the results of the cluster

analysis [4].

Hence, what is needed is a procedure that constructs a low-dimensional representa-

tion of the multivariate binary data, such that the cluster structure in the data is max-

imally revealed. For this purpose, researchers often carry out a preliminary dimension

reduction technique (e.g., [5–10]). Among the references, [5] and [6] developed principal

component analysis (PCA) models for binary data, while the other references have de-

veloped more general PCA models to handle exponential family data. Cluster analysis is

then performed on the object scores on the first few principal components. Although it is

easy to implement, this two-step sequential approach, also called the tandem approach,

provides no assurance that the components extracted in the first step are optimal for the

subsequent cluster analysis, because the two steps are implemented separately by opti-

mizing a different loss function [4, 11–15]. For multivariate continuous data, instead of
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the two-step tandem clustering procedure, several methods that simultaneously perform

cluster analysis and dimension reduction have been proposed [4, 13,15–17].

On the other hand, for multivariate binary data, a few methods can conduct the

analysis for simultaneously obtaining a cluster structure and a subspace for the cluster

structure. Patrikainen and Mannila [18] have developed a subspace clustering method of

binary data that can be used in high-dimensional settings. Cagnone and Viroli [19] have

proposed a factor mixture analysis model for multivariate binary data, in which latent

variables are distributed as a finite mixture of multivariate Gaussian distributions.

In general, there are two types of clustering techniques with finding subspaces: one

intends to find a subspace that is common to all clusters [14], while the other aims to find

a subspace specific to each group [20]. These two techniques can be used for different

purposes. The former has a strong point in helping researchers to understand the con-

figuration of objects and cluster centers in a single low-dimensional space. We need this

technique if we want to analyze the data at hand using a component-based approach like

the ordinary factor analysis and principal component analysis. The illustration shown

in [4] is useful for understanding how to analyze the data using the common subspace

clustering. On the other hand, the latter approach is needed for analyzing the data based

on the assumption that the data points could be drawn from multiple subspaces. For

example, a video sequence could contain several moving objects, and different subspaces

might be needed to describe the motion of different objects in the scene [20]. In this

paper, we focus on the common subspace clustering.

In the related works to the subspace clustering, there are several works on the prob-

lem of multi-task learning in which multiple tasks share a low-dimensional subspace. In

the multi-task problem, parameters to be estimated are assumed to share some common

structure in the tasks. For example, parameters are devided into two parts: one is com-

mon to all tasks and another is specific to each task [21]. Also, [22] assumes that tasks’

structure is summarized by a positive definite matrix which is linked to the covariance
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matrix between the tasks. For supervised learning, [23] uses the formulation in which

tasks share a linear low-dimensional subspace, and [24] proposes an optimization prob-

lem regularized by the projection distance of task-related parameters from the manifold

shared by all tasks. In addition, for semi-supervised learning, there are some works that

formulate the subspace shared by multiple tasks [25,26].

As described above, Patrikainen and Mannila’s [18] method allows for obtaining

a cluster structure and a subspace for the cluster structure simultaneously. However,

their method is rather cluster-specific subspace clustering. In addition, in the past few

decades, because of technical advances in storing and processing data, we can obtain

a large dataset that includes a large number of variables. Thus, we need to take into

account such high-dimensional data. Cagnone and Viroli’s [19] method, which is a

common subspace clustering technique, cannot be used for a high-dimensional setting

straightforwardly and may need strict restrictions for their parameters because of the

identifiability problem.

Thus, we propose a new method to simultaneously find a cluster structure of multi-

variate binary data and an optimal low-dimensional space for clustering. The proposed

model is based on the framework of latent class analysis (LCA) [27], which is used not

only for analyzing the relation between categorical variables and discrete latent fac-

tors but for clustering objects with categorical features (e.g., [28]). Furthermore, our

proposed method can deal with high-dimensional data.

The remainder of this paper is structured as follows. In Section 2, we introduce a

new method to cluster multivariate binary data with dimension reduction. Section 3

describes an algorithm for the proposed optimization problem. Section 4 is devoted to

studying the working of the clustering method using artificial and real data examples.

Finally, we sum up our findings and set out directions for future expansion in Section 5.
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2 Proposed method

Let ỹ = (ỹ1, . . . , ỹD)
′ be a random vector of D binary variables. Suppose there are K

latent (unobservable) classes in a population and let ũk, k = 1, . . . ,K, be an allocation

variable that takes “1” if an observation belongs to class k, and “0” otherwise. We

write ũ = (ũ1, . . . , ũK)′. We assume that the allocation variable follows a multinomial

distribution, i.e., the probability that ũ takes the value u = (u1, . . . , uK)′ is

f(ũ = u) =
K∏
k=1

ξuk
k ,

where ξk = Pr(ũ1 = 0, . . . , ũk = 1, . . . , ũK = 0).

Given that an observation is in the kth latent class, the probability that the random

vector ỹ takes the value y = (y1, . . . , yD)
′, where each yd takes 0 or 1, is represented as

Pr(ỹ = y | ũk = 1). The unconditional probability of the response y when we do not

know the latent class of the observation is

Pr(ỹ = y) =
K∑
k=1

ξk Pr(ỹ = y | ũk = 1). (2.1)

Here, we need to specify how the probability Pr(ỹ = y | ũk = 1) depends on

parameters. We postulate that, given the latent class to which an observation belongs,

the responses on the binary variables are independent:

Pr(ỹ = y | ũk = 1) =
D∏

d=1

Pr(ỹd | ũk = 1). (2.2)

This assumption of conditional independence has been widely used in latent class mod-

eling in sociology [29], and is directly analogous to the assumption in the factor analysis

model that observed variables are conditionally independent given the factors [27].

Finally, to specify the model completely, we need to specify a set of parameters
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that define the conditional probability of ỹ, with the value of ũ given. Suppose that

ỹ1, . . . , ỹN are mutually independent random variables that have the same distribution

as ỹ, and the entries of Y = (ynd) are those realizations. We assume that, given

the class k, ỹd follows the Bernoulli distribution with success probability πkd. For the

traditional LCA [27], we consider a parameter vector θk = (θk1, . . . , θkD)
′, where θkd

is the logit transformation of πkd. We define the inverse logit transformation π(θ) =

{1 + exp(−θ))}−1. The success probabilities can be represented using the canonical

parameters θkd as πkd = π(θkd). Let ỹnd be the dth element of ỹn. The individual

data-generating probability given the class then becomes

Pr(ỹnd = ynd | ũk = 1) = Pr(ỹnd = ynd | ũk = 1, θkd)

= π(θkd)
ynd{1− π(θkd)}1−ynd

= π(qndθkd),

with qnd = 2ynd − 1 since π(−θ) = 1 − π(θ). Then, these representations lead to the

compact form of the log likelihood as

N∑
n=1

log

(
K∑
k=1

ξk

D∏
d=1

π(qndθkd)

)
.

We aim to obtain a low-dimensional representation of binary data in which the true

cluster structure exists. Thus, we assume that canonical parameter θkd has a low-rank

representation as follows:

θkd = µd + f ′
kad, (2.3)

where µd ∈ R, and for some positive integer L, fk ∈ RL and ad ∈ RL. Here, µd,

fk, and ad denote a centroid for the dth variable, a component score of the kth clus-

ter, and a loading value for the dth variable, respectively. We write ξ = (ξ1, . . . , ξK)′,

µ = (µ1, . . . , µD)
′, F = (f1, . . . ,fK)′, and A = (a1, . . . ,aD)

′. To guarantee the determi-
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nation of the decomposition for F and A, we require that F has orthonormal columns.

Then the log likelihood can be written as

ℓ(ξ,µ,F,A) =

N∑
n=1

log

(
K∑
k=1

ξk

D∏
d=1

π(qnd(µd + f ′
kad))

)
. (2.4)

Here, to deal with the high-dimensional problem, we assume that most of the ele-

ments of the true A are exactly zero. A sparse loading matrix implies variable selec-

tion in cluster analysis. That is, variables with non-zero loadings can be considered

to contribute to a cluster structure in a low-dimensional space, whereas variables with

zero loadings have no effect on the cluster structure. Furthermore, the introduction

of sparsity of the loading coefficients through the representation (2.3) of the canonical

parameters for a Bernoulli distribution will benefit the generalization of learned mod-

els. Thus, we propose to perform variable selection using the penalized likelihood with

sparsity-inducing penalties. If K = 1 and fk is observable, Eq. (2.4) is the log likelihood

for D logistic regression models. This connection with logistic regression suggests the

use of the L1 penalty to obtain a sparse loading matrix, as in the Lasso regression [30].

Specifically, consider the penalty

Pλ(A) =
L∑
l=1

λl∥ǎl∥L1 = λ1

D∑
d=1

|ad1|+ · · ·+ λL

D∑
d=1

|adL|,

where ǎl denotes the lth column of A and λl is a regularization parameter. The choice

of values for λl will be discussed later. We obtain cluster components ξ, µ, and F and

a sparse loading matrix A by maximizing the following penalized log likelihood:

S(ξ,µ,F,A) = ℓ(ξ,µ,F,A)−N · Pλ(A). (2.5)

We call this procedure the clustering of binary data with reducing the dimensionality

(CLUSBIRD). We can interpret penalized maximization as the device for generating a
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suitable optimization function, but not a realistic representation of the actual data-

generating process. Thus, in this sense, the conditional independence given the latent

class for obtaining the likelihood in Eq. (2.4) is assumed. A computational algorithm

for solving the maximization problem is presented in the next section.

The effectiveness of the introduction of sparsity is illustrated in Figure 1 using a

rank-two model (i.e., L = 2). The details of the setting will be presented in Section 4.

While the regularized model can recover the original loading vector efficiently under the

sparsity assumption, the unregularized model gives more noisy results. In the context of

the ordinary factor analysis model, a sparse structure for the loading matrix provides an

easy interpretation of the result, whereas it is difficult to interpret the relation between

variables and factors if the loading matrix has no sparse structure. Browne [31] provides

an excellent overview of the sparsity and rotation techniques which aim to obtain a

sparse structure. In addition, Hirose and Yamamoto [32] discuss the sparsity problem in

the factor analysis model, although their model aims to estimate the relation between

continuous variables and continuous factors, and also cannot provide clusters of objects.

Similar to the ordinary factor analysis model, noisy loading values may lead to difficulty

in the interpretation of the result in our model. Thus, for the proposed model, sparse

loading values offer an advantage.

Same as many mixture models, the proposed model also have identifiability problems

on relabeling components, overfitting and generic identifiability [33]. Specifically, on the

generic identifiability problem, it is known that in general the mixtures of binomial

distributions are not identifiable (See for details [33] and references therein). In Section

4, we will evaluate the identifiability problem using artificial data.

3 Optimization Algorithm

As is often the case, we apply the EM algorithm [34] to solve the maximization problem

(2.5). Let U = (unk) be N realizations of mutually independent random variable ũ. In
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addition, denote the conditional probability (2.2) by pk(y | θk). Then, the complete-data

likelihood can be written as follows:

LC(Y,U | ξ,µ,F,A) =

N∏
n=1

{
K∏
k=1

pk(yn | θk)uk

K∏
k=1

ξuk
k

}
.

As described in the previous section, we aim to obtain the sparse loading matrix A;

therefore, the penalty term for sparsity should be introduced. Thus, the complete-data

log likelihood with the penalty is

ℓC(Y,U | ξ,µ,F,A)

=

N∑
n=1

K∑
k=1

unk log pk(yn | θk) +
N∑

n=1

K∑
k=1

unk log ξk −N · Pλ(A). (3.1)

The EM algorithm consists of a step maximizing the conditional expectation of the

complete-data log-likelihood function (3.1) given the observable data Y and a set of

parameters, {ξ(t),µ(t),F(t),A(t)}. Here, ξ(t) denotes the value of ξ at the tth step in the

algorithm, and this notation is applied to other parameters. From the above formulation,

we can see that the penalized complete-data log likelihood (3.1) is a linear function with

respect to values of unk. Thus, to obtain the conditional expected value of ℓC , we only

have to replace unk with its conditional expectation,

u∗nk := E
[
unk | Y; ξ(t),µ(t),F(t),A(t)

]
=

ξ
(t)
k pk(yn | θ(t)

k )∑K
k=1 ξ

(t)
k pk(yn | θ(t)

k )
, (3.2)

where θ
(t)
k = (θ

(t)
k1 , . . . , θ

(t)
kD)

′, k = 1, . . . ,K, is obtained through Eq. (2.3) using {ξ(t),µ(t),F(t),A(t)}.
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Thus, the conditional expectation of the complete-data log likelihood is as follows:

Q(ξ,µ,F,A | ξ(t),µ(t),F(t),A(t))

= E
[
ℓC | Y; ξ(t),µ(t),F(t),A(t)

]
=

N∑
n=1

K∑
k=1

u∗nk log pk(yn | θk) +
N∑

n=1

K∑
k=1

u∗nk log ξk −N · Pλ(A).

In the M-step of the EM algorithm, we consider the following maximization problem

(ξ̂, µ̂, F̂, Â) = argmax
ξ,µ,F,A

Q(ξ,µ,F,A | ξ(t),µ(t),F(t),A(t)). (3.3)

Same as the usual mixture models, the estimate of ξ can be obtained by

ξ̂k = N−1
N∑

n=1

u∗nk, for k = 1, . . . ,K − 1, (3.4)

and ξ̂K = 1−
∑K−1

k=1 ξ̂k.

Given the estimate of ξ, the maximization problem in (3.3) with respect to µ, F,

and A is equivalent to the minimization of the following function:

g(µ,F,A) = −
N∑

n=1

K∑
k=1

u∗nk log pk(yn | θk) +N · Pλ(A). (3.5)

Here, the function g in (3.5) is non-quadratic. Then, instead of directly dealing with

the non-quadratic function g, we minimize a surrogate function, called the majorizing

function [35], to solve the minimization problem of a quadratic function. In the ma-

jorization algorithm, a suitably defined quadratic upper bound of (3.5) is minimized,

which provides optimal values for the actual function m. A function h(x | y) is said to

majorize a function m(x) at y if

h(x | y) ≥ m(x) for all x and h(y | y) = m(y).
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In the geometrical view, the function surface h(x | y) lies above the function m(x) and

is tangent to it at the point y; therefore h(x | y) becomes an upper bound of m(x).

To minimize m(x), the majorization algorithm decreases the objective function m(x) in

each step and is guaranteed to converge to a local minimum of m(x). When applying the

majorization algorithm, the majorizing function h(x | y) is chosen so that it is easier to

minimize than the original objective function m(x). The study by Hunter and Lange [35]

can be referred for an introductory description of the majorization algorithm.

To find a suitable majorizing function of (3.5), we consider the first term of (3.5).

Note that, for a given point y,

− log π(x) ≤ − log π(y)− {1− π(y)}(x− y) +
1

8
(x− y)2, (3.6)

and the equality holds when x = y [36, 37]. This equation provides quadratic upper

bounds for the first term of (3.5) at the tangent point y. Thus we can apply the

majorization algorithm for our problem.

We now present details of the majorization algorithm via the upper bound of− log π(x)

in (3.6). By completing the square, Eq. (3.6) can be rewritten as

− log π(x) ≤ − log π(y) +
1

8
[x− y − 4 {1− π(y)}]2 . (3.7)

Substituting x and y with qndθkd and qndθ
(t)
kd , respectively in (3.7) and using qnd = ±1,

we obtain

− log π(qndθkd) ≤ − log π(qndθ
(t)
kd ) +

1

8
(θkd − z

(t)
nkd)

2, (3.8)

where

z
(t)
nkd = θ

(t)
kd + 4qnd

{
1− π(qndθ

(t)
kd )
}
.
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Thus, we obtain the following quadratic upper bound of the first term of (3.5):

1

8

N∑
n=1

K∑
k=1

u∗nk

D∑
d=1

(θkd − z
(t)
nkd)

2. (3.9)

Eq. (3.9) then yields the following upper bound (up to a constant) of the criterion

function g(µ,F,A) defined in (3.5):

h(µ,F,A | µ(t),F(t),A(t))

=
1

8

N∑
n=1

K∑
k=1

u∗nk∥z
(t)
nk − (µ+Afk)∥2 +N · Pλ(A), (3.10)

where z
(t)
nk = (z

(t)
nk1, . . . , z

(t)
nkD)

′.

The majorizing function given in (3.10) is quadratic in each of µ, F, and A when the

other two are fixed, and thus alternating minimization of (3.10) with respect to µ and

A has closed-form solutions. We now drop the subscript (t) for notational convenience.

For fixed F and A, set z̄kd = N−1
k

∑N
n=1 u

∗
nkznkd where Nk =

∑N
n=1 u

∗
nk, and write

z̄k = (z̄k1, . . . , z̄kD)
′. Then the optimal µ̂ is given by

µ̂ = argmin
µ

N∑
n=1

K∑
k=1

u∗nk∥znk − (µ+Afk)∥2

= N−1
K∑
k=1

Nk(z̄k −Afk). (3.11)

Optimization of F requires a numerical procedure because of its orthonormality.

To update F for fixed µ and A, we apply the gradient projection (GP) algorithm

with the orthonormal constraint [38, 39]. The only problem specific thing required

for the GP algorithm is the gradient of (3.10) viewed as a function of F. Let z̄∗kd =

N−1
k

∑N
n=1 unk(znkd−µd), and write Z̄∗ = (z̄∗kd). Furthermore, let N be a K ×K diago-

nal matrix where the kth diagonal element is Nk. Then, the gradient of h at F is given
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as follows:

Γ =
∂h

∂F
=

1

4
N(FA′ − Z̄∗)A. (3.12)

Using Γ as the gradient in the GP algorithm with orthonormal constraint, we obtain

the optimal F̂.

Finally, for fixed µ and F, the dlth element adl of A is updated by solving the

minimization problem in (3.10) directly. Let vdl =
∑N

n=1

∑K
k=1 u

∗
nk(znkd − µd)fkl and

wll′ =
∑K

k=1Nkfklfkl′ . Then, up to a constant, the loss function with respect to A can

be written as

h′(A) =
1

8

D∑
d=1

L∑
l=1

L∑
l′=1

wll′adladl′ −
1

4

D∑
d=1

L∑
l=1

vdladl +N

L∑
l=1

λl

D∑
d=1

|adl|.

Let sdl = sign(adl) for adl ̸= 0, and sdl ∈ [−1, 1] for adl = 0. Thus, the subdifferential

∂h′dl(A) of h′(A) at adl is as follows:

∂h′dl(A) =

{
1

4

L∑
l′=1

wll′adl′ −
1

4
vdl +Nλlsdl

}
. (3.13)

Then, the optimal âdl can be obtained by

âdl =
1

wll
sign(cdl)max(0, |cdl| − 4Nλl), (3.14)

where cdl = −
∑

l′ ̸=l adl′ + vdl.

The procedure of the proposed optimization algorithm is summarized in the follow-

ing. The initial value of ξ is determined by the result of the ordinary k-means clustering

for the data, and those of µ and A are determined by the random numbers generated

from the Gaussian distribution. The initial value of F is also determined by the Gaussian

random numbers and then orthonormalized.

Clustering results are obtained by the posterior distribution of the allocation variable
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Algorithm 1 Optimization algorithm

1: Set t = 1 and initial values of ξ(1), µ(1), F(1), and A(1).
2: Calculate the conditional expectation of unk using (3.2).
3: Update ξ using (3.4) and set ξ(t+1) = ξ̂.
4: Update µ using (3.11) and set µ(t+1) = µ̂.
5: Update F by the GP algorithm with the gradient Γ in (3.12) and set F(t+1) = F̂.
6: Update A using (3.14) and set A(t+1) = Â.
7: If the penalized log likelihood (2.5) converges, then the algorithm finishes. If not,

t← t+ 1 and go to the step 2.

unk with estimated parameters, ξ̂, µ̂, F̂, and Â. That is, the estimated number k̂ of the

cluster to which the nth subject is assigned is given by

k̂ = argmax
k

ξ̂kpk(yn | θ̂k)∑K
l=1 ξ̂lpl(yn | θ̂l)

with θ̂kd = µ̂d + f̂ ′
kâd and θ̂k = (θ̂k1, . . . , θ̂kD)

′.

Also, the individual component score G = (gnl) (n = 1, . . . , N ; l = 1, . . . , L), which

expresses the low-dimensional configuration of an individual object n, can be obtained by

the post hoc model with the estimated parameters. The detailed procedure is described

in Appendix A.

Prior to applying the above algorithm, the value of the regularization parameters,

λ = (λ1, . . . , λL)
′, should be determined. We use the cross-validation approach for

mixture models. That is, we choose the one that maximizes the five-fold cross-validated

likelihood. Although different parameters can be used for different component loading

vectors, we consider using only a single regularization parameter λ for all loadings.

Also, we need to determine the number of components L. Since K − 1 components are

sufficient to express the configuration of K clusters [4, 15], we choose the value of L in

{1, . . . ,K − 1} based on the cross-validated likelihood. In real data analyses in Section

4.2 and 4.3, we demonstrate this selection procedure.
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4 Numerical examples

4.1 A Monte Carlo simulation

We conducted a simulation study to evaluate the performance of the proposed method,

compared with tandem analysis (TA), in which sparse logistic principal component anal-

ysis (SLPCA) [6] is conducted, followed by the ordinary k-means clustering of estimated

principal component scores. Also, on the performance of recovering a true cluster struc-

ture, we compared the proposed model with Bouguila’s [40] feature weighting clustering

technique (FW). Bouguila’s model aims to estimate cluster assignments of objects with

multivariate binary features, although the method cannot provide the component score

for individual objects unlike the proposed model and TA. For FW, we used the uniform

distribution as prior distributions of parameters.

The artificial data Y were generated through the CLUSBIRD model (2.1) with three

clusters (K = 3) and two dimensional structure (L = 2). That is, an object ynd that

was assigned to cluster k was generated by ynd ∼ Ber(πkd). To determine the value

of πkd, the values of µ, F, and A were generated. We used a zero vector for µ. Each

centroid fk of clusters in the two-dimensional space were randomly generated so that

the distance between two clusters was equal for all combinations of two clusters, and

then the F = (f1,f2,f3) was orthonormalized. The loading matrix A was set at

A =


c · 1D1 0D1

0D1 c · 1D1

0D2 0D2

 ,

where 1q and 0q denote q-vectors of ones and zeroes, respectively. Here, c is a scalar

whose value was determined based on sample size as described below. In this simulation

study, we considered three factors: sample size (N = 100, 300), the number of variables

(D = 10, 1000), and the proportion of informative variables on the cluster structure

16



(m = 0.5, 1.0). Then, we set the value of c was set at 2.5 for D = 10 and 0.5 for

D = 1000. The number D1 was calculated as D1 = ⌊m2 D⌋, where ⌊·⌋ denotes a floor

function. Thus, based on the above structure of A, 2D1 variables contributes the low-

dimensional structure and D2(= D − 2D1) variables are random error variables. For

each condition, we generated 50 replications, thus yielding 2× 2× 2× 50 = 400 random

samples in total.

We used the adjusted Rand index (ARI) [41] and the normalized mutual information

measure (NMI) [42] to assess the recovery of cluster memberships. The ARI has a

maximal value of 1 in the case of a perfect recovery of the underlying cluster structure,

and a value of 0 in the case where the true and estimated class assignments coincide

no more than would be expected by chance. The NMI is bounded range [0, 1], in which

a value of 0 indicates a purely independent label assignment and a value close to 1

indicates significant agreement.

In this study, we used 50 sets of random initial values of all parameters for the

proposed model and FW, and 10 sets for SLPCA. Also, we used the parameter values of

K as its value, i.e., a value of 3 for the three methods and L as its value, i.e., a value of 2

for the proposed model and TA. The values of tuning parameter λ in the SLPCA model

were determined by BIC as defined in [6]. To reduce computational burden, we selected

the values of tuning parameters only in the first replication for each condition, and then

used the values of the parameter obtained from the selection by BIC (for SLPCA) or

cross-validation (for the proposed model) for the remaining replications.

Table 1 shows results of the ARI and NMI obtained from the three methods, along

with the values of D, m, and N . Each figure shows the median values of the ARI or

NMI for 50 replications under each condition. Regardless of the number of variables,

the proposed method provided better or equivalent results than tandem analysis under

all conditions. We can see that the recovery of the cluster structure became better when

the sample size and/or the proportion of the informative variables increased. Also,
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compared with FW, the recoveries of the proposed method were superior or similar to

those of FW in almost all conditions.

Next, we evaluated the local optima using the artificial data used in the above

simulation. Here, two cases were considered: one was the data set consisting of 10

variables and the other was the data set consisting of 1000 variables. Also, the sample

size for both cases was 300 and the proportion m of informative variables on the cluster

structure was 1.0. Figure 2 shows that trajectories of the values of the penalized log-

likelihood functions in optimization processes of 200 different initial starts. We can see

that for the case where D = 10, many initial starts attained the maximal solution.

Actually, 162 out of 200 initial starts converged at the same value of the penalized log

likelihood. On the other hand, for the case of D = 1000, only the two initial values

attained the maximal solution. Thus, when a data set at hand is large, i.e., D is large,

it is recommended to use sufficiently large number of initial starts.

In addition, we evaluate the identifiability problem using the above result. For the

case of D = 10, the solutions that had the same value of the penalized log likelihood

provided the same partitioning and thus they had the same value of the ARI (0.902).

Thus, in this case, the identifiability problem of the proposed model had no influence

on the clustering performance. Also, we evaluated the performance of estimating the

low-dimensional expression of the data. Figure 3 shows the plot of estimated component

scores of individual objects for the solutions obtained by the proposed model with two

different initial starts that provide the same value of the penalized log likelihood. We can

see that the two configurations are identical. Thus, it can be concluded that the solutions

with the same value of the penalized log likelihood provide the same partitioning and

the same low-dimensional expression.

In the case where D = 1000, the two solutions, which attained the almost the same

value (within the precision) of the penalized log likelihood, shown at the right panel in

Figure 2, had the same partitioning except two objects. This may be due to the little
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difference in their values of the penalized log likelihoods of -204228.1 and -204226.5. The

two solutions provided the same value of the ARI of 0.990, and thus the difference implies

little impact on interpreting the cluster structure. In addition, Figure 4 shows the plot

of estimated components scores of individuals for the two solutions. Although there is

a small difference between the two configurations due to the difference in partitionings,

we can interpret one low-dimensional expression in almost the same manner as the other

one.

From the above evaluations, we conclude that the identifiability problem of the pro-

posed model have little impact on analyzing the data in practice, as long as we use many

initial values to maximize the penalized log-likelihood function and check their results.

4.2 Binary image classifications

Handwritten digit recognition has many application scenarios such as auto-mail classifi-

cation according to zip code and signature recognition [40]. We used binary image data

that were available from the well-known UCI database [43] which contains 5,620 objects.

Each object represents one of the integers from 0 to 9, and we used images of 1, 2, 3,

and 4, for which examples are shown in Figure 5. Each normalized bitmap includes a

32× 32 matrix, i.e., a 1,024-dimensional binary vector, in which each element indicates

one pixel with a value of white or black. Fifty objects for each number were selected

and thus 50× 4 = 200 objects were analyzed by the proposed method, tandem analysis

(TA), and Bouguila’s method (denoted as FW) with K = 4. For the proposed method,

the value of a tuning parameter λ was determined by the cross-validation and for the

tandem approach, we used BIC.

First, for the proposed model, we selected the value of L using cross-validation

approach, which resulted in L = 3. And then, we implemented the proposed model and

tandem analysis with L = 3 and Bouguila’s method. The values of the ARI and NMI

obtained by the three methods are shown in Table 2. The CLUSBIRD and FW model
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showed much the same clustering recovery and the results of the two method on the

clustering recovery were better than that of the tandem analysis.

Next, to compare the performance of the proposed method with the tandem approach

in terms of finding a suitable low-dimensional configuration for the cluster structure, the

two method were applied to estimate component scores of individual objects with L = 2.

Estimated component scores with clusters are shown in Figure 6. It can be seen that the

proposed method provided a well-separated and compact low-dimensional cluster struc-

ture. On the other hand, tandem analysis provided crude recovery of the true cluster

structure. From the low-dimensional expression, we can explore the characteristics of

objects and the cluster structure graphically. For example, we can see the distance of

a certain object from other clusters, which determines the characteristic of the object,

and also we can grasp the shapes of clusters.

4.3 Population classification using single nucleotide polymorphism data

Association studies based on high-throughput single nucleotide polymorphism (SNP)

data have become a popular way to detect genomic regions associated with complex

human diseases. A crucial issue in association studies is population stratification de-

tection [44], which is to determine whether a population is homogeneous or has hidden

structures within it. With the presence of population stratification, a naive case-control

approach that did not consider the stratification would yield biased results and, there-

fore, draw inaccurate scientific conclusions [45]. We used the SNP dataset available in

the International HapMap project [46], filtering out those with minor allele frequencies

greater than 0.01 and those missing genotype rates less than 0.05. The dataset consists

of 3 different ethnic populations of 90 Asians (45 Han Chinese in Beijing, China; CHB

and 45 Japanese in Tokyo, Japan; JPT), 60 Caucasians (Utah residents with ancestry

from northern and western Europe; CEO), and 60 Africans (Yoruba in Ibadan, Nige-

ria; YRI). Here, we conducted the proposed method and tandem analysis to detect the
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three-subpopulation structure using the SNP data on the 210 subjects.

Since there were too many SNPs (2.2 million, 2.3 million, and 2.6 million SNPs for

CHB-JPT, CEO, and YRI populations, respectively) to analyze those data, we had to

select SNPs that were seen to be associated with detection of the subpopulation. First,

using PLINK [47], we conducted three association analyses in which each population was

considered as a case and the other two populations were control. Then, we obtained SNPs

which had genome-controlled p-values less than 0.1%. All those SNPs were considered to

be related to the differences among the three ethnic populations. After selecting SNPs

with no missing values, we finally obtained 589 SNPs of 210 subjects.

We conducted the proposed CLUSBIRD method, tandem analysis, and Bouguila’s

method with K = 3 using the SNP data. A tuning parameter λ was determined by BIC

for tandem approach and the cross-validation for CLUSBIRD. First, using the proposed

model, we selected the value of L using the cross-validation approach, which resulted

in L = 2. Then, we implemented CLUSBIRD and tandem analysis with L = 2. The

results are shown in Figure 7. We can see that the proposed method recovered the true

ethnic populations perfectly. In contrast, tandem analysis provided a crude recovery

of the populations. The tandem analysis, SLPCA, provided a bit sparse estimation of

loading values, where only a few SNPs had large loading values for the first component

and many SNPs had low loading values for the second component. Although this sparse

structure may provide easy interpretation for the estimated low-dimensional structure,

the structure did not contain the true ethnic populations well. The proposed method

provided a reasonably sparse structure of loading values. Actually, all SNPs used for

this analysis had some relation to the detection of populations. Thus, it is reasonable

that all SNPs had large loading values. In addition, for the proposed method, almost all

SNPs had high loading values for one component, resulting in easy interpretation of the

low-dimensional structure. In addition, for comparison, we conducted the Bouguila’s

model to the data. Then, the result of the ARI is 1.0, that is, the Bouguila’s method
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can also recover the true cluster structure perfectly, though the method cannot provide

the component scores of objects like CLUSBIRD and tandem analysis.

5 Conclusion

In this paper, we proposed a new procedure, called CLUSBIRD, for simultaneously

finding the optimal cluster structure for multivariate binary objects and finding the

subspace to represent the cluster structure. The proposed method can provide the

weight for each binary variable, which indicates the contribution of the variable to the

cluster structure. In general, tandem analysis for clustering objects with dimension

reduction is likely to fail in finding the cluster structure. In fact, our numerical examples

demonstrate the inability of tandem analysis to detect the cluster structure and subspace

for the structure. Those examples also show that our proposed method can provide a

better cluster structure than tandem analysis. Furthermore, from the examples, we

found that our procedure can work well for data that had a mildly larger number of

variables than the sample size.

The proposed model can be considered an extension of the ordinary latent class anal-

ysis (LCA) [27]. However, the ordinary LCA cannot provide loading values for variables

and a low-dimensional structure. Also, LCA may not provide an appropriate estimation

with the moderately high-dimensional dataset we used in the numerical examples. From

this point of view, the proposed method can provide useful insight for researchers.

The proposed method can be extended to deal with various problems. For example,

it is useful for the proposed model to deal with categorical variables, not just binary

variables. In addition, the ordinary LCA model is ready for multi-group analysis, the

analysis with covariates, and analysis of repeated measures data [29]. Using the formu-

lation of LCA, the proposed model can also contain those features. Furthermore, we

can develop a cluster-specific subspace clustering technique based on the CLUSBIRD

model. These could be interesting topics for further research.
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Appendix A: Estimation of individual latent scores

To obtain individual component scores, G = (gnl), we propose a two-step approach.

First, we estimate all parameters, µ, A, F, and ξ, in the CLUSBIRD model. Then, we

assume that a cluster structure of individuals is present in a low-dimensional space that

is the same as that for the cluster center F. That is, the estimated loading matrix Â

and low-dimensional centroids µ̂ also define the subspace for the individuals. Thus, we

consider the following post hoc model. Suppose that ỹnd (n = 1, . . . , N ; d = 1, . . . , D)

follows the Bernoulli distribution with success probability πnd = π(θnd), where θnd is

the logit transformation of πnd. In addition, we assume that the canonical parameter

θnd has a low-rank representation

θnd = µ̂d + g′
nâd,

where gn = (gn1, . . . , gnL)
′ with G′G = IL. Here, we write

S(G) =
N∑

n=1

D∑
d=1

log π(qnd(µ̂d + g′
nâd)).

Then, we obtain individual component scores by maximizing S(G) over G. Similar to

the solution of F in Section 3, the optimal G can be obtained using the GP algorithm.
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Table 1: Median values of adjusted Rand index (ARI) and normalized mutual infor-
mation criterion (NMI) for 50 replications in each condition; D, m, and N denotes the
number of variables, the proportion of informative variables on the cluster structure,
and sample size, respectively.

Measure D m N TA FW CLUSBIRD
ARI 10 0.5 100 0.189 0.250 0.370

300 0.354 0.418 0.450
1.0 100 0.740 0.770 0.797

300 0.563 0.828 0.833
1000 0.5 100 0.010 0.017 0.005

300 0.025 0.275 0.488
1.0 100 0.021 0.075 0.000

300 0.017 1.000 0.990

NMI 10 0.5 100 0.208 0.287 0.337
300 0.326 0.397 0.410

1.0 100 0.700 0.734 0.759
300 0.500 0.769 0.775

1000 0.5 100 0.027 0.040 0.045
300 0.029 0.269 0.564

1.0 100 0.043 0.098 0.025
300 0.023 1.000 0.983
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Table 2: The values of the ARI and NMI obtained by the three methods for binary
image data.

TA FW CLUSBIRD

ARI 0.593 0.896 0.883
NMI 0.610 0.881 0.863
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Figure captions

Figure 1. The results of analyzing an artificial dataset with N = 100, D = 100, L = 2,

and K = 4; top, middle, and bottom panels show the true loadings, absolute values

of loadings from the unregularized model, and absolute values of loadings from the

regularized model, respectively; left and right panels show loadings for the first and

second components, respectively; the penalty parameter was selected using the five-fold

cross-validation.

Figure 2. Trajectories of the values of the penalized log-likelihood functions in optimiza-

tion processes of 200 initial values; the left panel and the right panel show those for the

cases where the numbers of variables are 10 and 1000, respectively; a red line indicates

the best value of the penalized log likelihood in each case.

Figure 3. Plots of component scores estimated by CLUSBIRD using the two initial starts

that provide the same value of the penalized log likelihood for the data set consisting

of 10 variables; the colors and shapes of plotted points denote the true and estimated

memberships, respectively.

Figure 4. Plots of component scores estimated by CLUSBIRD using the two initial starts

that provide the same value of the penalized log likelihood for the data set consisting

of 1000 variables; the colors and shapes denote the true and estimated memberships,

respectively.

Figure 5. Examples of normalized bitmaps.

Figure 6. Plots of component scores estimated by CLUSBIRD and tandem analysis;

in the plots, the number denotes the estimated cluster and the color denotes the true

cluster.
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Figure 7. Plots of component scores (left) and loading values (right) estimated by

CLUSBIRD and tandem analysis; in the left panel, the colors and shapes denote the

true and estimated memberships, respectively; loading values were scaled so that the

value existed in [−1, 1].
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Figure 1: The results of analyzing an artificial dataset with N = 100, D = 100, L = 2,
and K = 4; top, middle, and bottom panels show the true loadings, absolute values
of loadings from the unregularized model, and absolute values of loadings from the
regularized model, respectively; left and right panels show loadings for the first and
second components, respectively; the penalty parameter was selected using the five-fold
cross-validation.
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Figure 2: Trajectories of the values of the penalized log-likelihood functions in optimiza-
tion processes of 200 initial values; the left panel and the right panel show those for the
cases where the numbers of variables are 10 and 1000, respectively; a red line indicates
the best value of the penalized log likelihood in each case.
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Figure 3: Plots of component scores estimated by CLUSBIRD using the two initial starts
that provide the same value of the penalized log likelihood for the data set consisting
of 10 variables; the colors and shapes of plotted points denote the true and estimated
memberships, respectively.
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Figure 4: Plots of component scores estimated by CLUSBIRD using the two initial starts
that provide the same value of the penalized log likelihood for the data set consisting of
1000 variables.
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Figure 5: Examples of normalized bitmaps.
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CLUSBIRD Tandem Analysis
(ARI = 0.710; NMI = 0.739) (ARI = 0.453; NMI = 0.517)
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Figure 6: Plots of component scores estimated by CLUSBIRD and tandem analysis;
in the plots, the number denotes the estimated cluster and the color denotes the true
cluster.
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CLUSBIRD
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Figure 7: Plots of component scores (left) and loading values (right) estimated by CLUS-
BIRD and tandem analysis; in the left panel, the colors and shapes denote the true and
estimated memberships, respectively; loading values were scaled so that the value existed
in [−1, 1].
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