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Understanding Social Relationships in Egocentric
Vision

Stefano Allettoa, Giuseppe Serraa,∗, Simone Calderaraa, Rita Cucchiaraa

aDIEF, University of Modena and Reggio Emilia, Via Vignolese, 905 - 41125 Modena - Italy

Abstract

The understanding of mutual people interaction is a key component for rec-
ognizing people social behavior, but it strongly relies on a personal point of view
resulting difficult to be a-priori modeled. We propose the adoption of the unique
first person perspective of head mounted cameras (ego-vision) to promptly detect
people interaction in different social contexts. The proposal relies on a complete
system that reliably extract people head pose combining landmarks and shape
descriptors in a temporal smoothed HMM framework. Finally, interactions are
detected through supervised clustering on mutual head orientation and people dis-
tances exploiting a structural learning framework that specifically adjusts the clus-
tering measure according to a peculiar scenario. Our solution provides the flexi-
bility to capture the interactions disregarding the number of individuals involved
and their level of acquaintance in context with a variable degree of social involve-
ment. The proposed system exhibits competitive performance over both publicly
available ego-vision datasets and ad-hoc benchmarks built with real life situations.

Keywords: Egocentric Vision, Social Interactions, Group Detection, Video
Analysis, Head Pose Estimation

1. Introduction

Social interactions are so natural that we rarely stop wondering who is inter-
acting with whom or which people form a group and which do not. Nevertheless,
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humans naturally do that neglecting that this task complexity increases when only
visual cues are available. Different situations call for different behaviors: while
we accept to stand in close proximity to strangers when we attend some kind of
public event, we would feel uncomfortable in having people we do not know close
to us when we take a coffee. This is the case where we rarely exchange mutual
gaze with people we are not interacting with, an important clue when trying to
discern different social clusters.

Humans are inherently good at recognizing situations and understanding groups
formation, but transferring this task to a fully automated system is still an open
and challenging issue.

Recently initial works have started to address the task of social interaction
analysis from the videosurveillance perspective [1, 2]. Fixed cameras (used in
videosurveillance scenarios) lack the ability to immerse in the social environment,
effectively losing an extremely significant portion of the information about what is
happening. The recent spread of wearable cameras puts the research on the matter
in a new and unique position. An egocentric video (ego-video) provides an insight
in the social interaction, the recording is performed by a member of the group
itself resulting in a completely new and inherently social perspective. Often called
first-person vision, to recall the needs of using wearable cameras for acquiring and
processing the same visual stimuli that humans acquire and process Indeed, ego-
vision assumes the broader meaning of understanding what a person sees calling
for similar learning, perception and reasoning paradigms of humans. This new
approach carries exceptional benefits but it exposes several problems: being the
camera tied to its user, it follows his or her movements and severe camera motion,
steep lighting transitions, background clutter and severe occlusions occur; these
situations often require new solutions in order to automatically process the video
stream and extract information.

In this paper we address the problem of partitioning people in a video sequence
into socially related groups from an egocentric vision (from now on, ego-vision)
perspective. Human behavior is by no means random: when interacting with
each other we naturally tend to place ourselves in determined positions to avoid
occlusions in our group, stand close to the ones we interact with and organize ori-
entations so as to naturally place the focus on the subjects of our interest. Distance
between individuals and mutual orientations assume clear significance and must
be interpreted according to the situation. F-formation theory [3] describes patterns
that humans naturally tend to create when interacting with each-other and can be
used to understand whether an ensemble of people forms a group or not based on
the mutual distances and orientations of the subjects in the scene. F-formations
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Figure 1: An example of our method’s output. In the left image: eople different colors in bounding
box indicate their belonging to different groups. The red dot represents the first-person wearing
the camera. In the right image: the bird’s eye view model where each triangle represents a person
and link among them represents the groups.

have recently been successfully applied in videosurveillance, with fixed cameras,
in studies aimed at social interaction analysis showing great promise [4, 5].

Hence, the idea behind our approach is to adopt distance and orientation in-
formation and use them to build a pairwise feature vector capable of describing
how two people relate. Instead of using the resulting information in a simple
classification framework, we follow our idea that different situations call for dif-
ferent social interaction types and consequently orientation and distances assume
different importance and meaning, depending on the situation. By this aim we
learn social groups in a supervised correlation clustering framework. We present
a novel approach for detecting social groups using a correlation clustering algo-
rithm that exploits social features to truly capture the social clues inferred from
human behavior.

Here, we provide our main contributions:

• the definition of a novel head pose estimation approach developed to cope
with the challenges of the ego-vision scenario: using a combination of facial
landmarks and shape descriptors, our head pose method is robust to steep
poses, low resolutions and background clutter.

• the formulation of a 3D ego-vision people localization method capable of
estimating the position of a person without relying on calibration. Camera
calibration is a process that cannot be automatically performed on different
devices and would cause a loss in generality for our method. We use in-
stead random regression forests that employ facial landmarks and the head
bounding box as features, resulting in a robust pose independent distance
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estimation of the head.

• the modeling of a supervised correlation clustering algorithm using struc-
tural SVM to learn how to weight each component of the feature vector
depending on the social situation is applied to. This is due to the fact that
humans perform differently in different social situations and the way groups
are formed can greatly differ.

• an extensive evaluation of the results of our method on publicly available
datasets, comparing it to several state of the art algorithms. We test each
component of our framework and extensively discuss the results obtained in
our experiments.

To our knowledge, this is the first approach focusing on detecting social groups
in an ego-vision scenario. Results are very promising and, while they highlight
some open problems, they show a new way for computer vision to deal with the
complexity of unconstrained scenarios such ego-vision and human social interac-
tions.

2. Related Work

According to the main contributions of this paper, it is useful to describe the
related work on its main areas.

Head pose estimation has been widely studied in computer vision. Already
existing approaches can be roughly divided in two major categories, whether their
aim is to estimate the head pose on still images or video sequences.

Among the most notable solutions for HPE in still images, Ma et al. [6]
proposed a multi-view face representation based on Local Gabor Binary Patterns
(LGBP) extracted on many subregions in order to obtain spatial information. Wu
et al. [7] presented a two-level classification framework: the first level has the
objective of deriving pose estimates with some uncertainty; the second level min-
imizes this uncertainty by analysing finer structural details captured by bunch
graphs. While being very accurate on several publicly available datasets (e.g.
[7] achieves a 90% accuracy over the Pointing 04), these works suffer significant
performance losses when applied to less constrained environments like the ones
typical of ego-vision. A recent successfull approach to head pose estimation on
still images in the wild is [8], which models every facial landmark as a part and
uses global mixtures to capture topological changes due to viewpoint. However
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this technique has high computational costs, resulting in up to 40 seconds per im-
age, excessively demanding for the real-time requirements of an ego-vision based
framework. A notable approach is proposed by Li et al. [9]: using 3D infor-
mation, they exploit a physiognomical feature of the human head called central
profile. The central profile is a 3D curve that divides the face and has the char-
acteristic of having its points lying on the symmetry plane. Using Hough voting
to identify the symmetry plane, Li et al. estimate the head pose using the normal
vectors of the central profile which are parallel to the symmetry plane. Recently a
comprehensive study that has summarized the head pose estimation methods and
systems published over the past 14 years has been presented in [10].

Literature focusing on video streams for head pose estimation can be further
divided in whether it uses any kind of 3D information or not. If such information
can be used, a significant accuracy improvement can be achieved as in [11], which
uses a stereo camera system to track a 3D face model in real-time, or [12] where
the 3D model is recovered from different views of the head and then the pose
estimation is done under the assumption that the camera stays still. Wearable
devices used for ego-vision video capture, being aimed to more general purpose
users and being on a mid-low price tier, usually lack the ability to capture 3D
information; furthermore due to the unpredictable motion of both the camera and
the object a robust 3D model is often hard to recover from multiple images. Rather
then using a 3D model, Huang et al. [13] utilized a computational framework
for robust detection, tracking, and pose estimation of faces captured by video
arrays. To estimate face orientations they presented and compared respectively
two algorithms based on MLKalman filtering and multi-state CDHMM models.
Orozco et al. [14] proposed a technique for head pose classication in crowded
public space under poor lighting condition on low-resolution images using mean
appearance templates and multi-class SVM.

In addition, there is a growing interest towards social interactions and human
behavior. Social interactions are a key feature in improving tracking results in
the work by Yan et al. [2]: by mapping pedestrians in the space and linking them,
trajectories tracking can be refined by accounting for the repulsions and attractions
that occur between people. They model links between pedestrians as social forces
that can lead one individual towards another or drive him away. Multiple motion
prediction models are then created and multiple trackers are instanced following
the different models. A different approach to social interactions is proposed by
Noceti et al. [1], who perform activity classification through recognizing groups
of people socially engaged. Pedestrian pose is estimated and a graph of people is
built. The groups are then detected using spectral kernel SVM.
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All these methods, while providing interesting insights on social interactions,
are based on the videosurveillance setting. This scenario presents some signifi-
cant differences with the first person perspective of ego-vision to the point that
completely different approaches may be needed to deal with this change in per-
spective.

Attempts using this new unique perspective are very few. In particular, the
work by Fathi et al. [15] aims to the recognition of five different social situations
(monologue, dialogue, discussion, walking dialogue, walking discussion). By us-
ing day-long videos recorded from an egocentric perspective in an amusement
park, they extract features like the 3D position of faces around the recorder and
ego-motion. They estimate the head pose of each subject in the scene, calculate
their line of sight and estimate the 3D location they are looking at under the as-
sumption that a person in a social scenario is much more likely to look at other
people. A multi-label HCRF model is then used to assign a category to each social
situation in the video sequence. However, this approach focuses of recognizing
single interaction classes and does not take into account group dynamics and their
social relations.

3. Understanding People Interactions

To deal with the complexity of understanding people interaction and detecting
groups in real and unconstrained ego-vision scenarios, our method relies on sev-
eral components (see Fig. 2). We start with an initial face detection and then track
the head to follow the subjects between frames. Head pose and 3D people loca-
tions are estimated to build a “bird view” model that is the input of the supervised
correlation clustering in order to detect group in different contexts based on the
estimation of pairwise relations of their members.

3.1. Detection and Tracking
In order to be capable of working in unconstrained ego-vision scenarios, our

method requires a robust tracking algorithm that can deal with steep camera mo-
tion leading to poor image quality and to frequent target losses. Furthermore, oc-
clusion between members of different groups can often occur and must be treated
accordingly. We evaluate several state of the art trackers [16] on egocentric videos
in order to study their behavior w.r.t. the peculiarity of the ego-vision setting. The
results of this comparison are presented in Section 5.

A preliminary step to the tracking of a subject is to understand whether track-
ing should be performed or not. In fact, a typical ego-vision characteristic is that
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Figure 2: Schematization of the proposed approach.

the camera wearer can have very fast head motion, e.g. when he is looking around
for something (see Fig. 3). This situation means, from a semantic point of view,
that he hasn’t focused his attention on some point of interest and hence that those
frames are probably not worth to elaborate. From a more technical point of view,
the high head motion can cause a significant blur in the video sequence resulting
in an extremely low quality video. If not addressed properly, this situation can
degrade the tracking at the point that it may not be possible to resume it when the
attention of the subject stabilizes again.

To deal with this challenge typical of the ego-vision scenario, we evaluate
at each frame the amount of blurriness and decide whether to proceed with the
tracking or to skip it. The idea behind our approach is to compute the amount
of gradient in the frame and to learn a threshold that discriminates a fast head
movement due to the user looking around from the normal blur caused by mo-
tion of objects, people or background. We define a simple blur function which
recognizes the blur degree in a frame I , according to a threshold θB:
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(a) Fast camera motion (b) Still camera

Figure 3: Two examples of frames from an ego-vision sequence showing the amount of blur in
case of fast head motion or still camera.

Blur(I, θB) =
∑
I

√
∇S2

x(I) +∇S2
y(I), (1)

where ∇S2
x(I) and ∇S2

y(I) are the x and y components of Sobel’s gradient
in the image and θB is the threshold under which the frame is discarded due to
excessive motion blurriness, a parameter which can be learned by computing the
average amount of gradient in a sequence. This preprocessing step, that can be
done in real-time, effectively allows to remove those frames that could lead the
tracker to adapt its model to a situation where gradient features cannot be reliably
computed.

To robustly track people in our scenario we employ the state of the art tracker
TLD [17]. TLD framework features three main components: a Tracker which,
under the assumption of a limited motion between consecutive frames, estimates
the object’s motion. This component of the framework is likely to fail if the object
exits the camera field of view and it is not able to resume the tracking by itself. A
Detector intervenes treating each frame independently and performs the detection
localizing the appearances of the object which have been observed and learned
in the past, recovering tracking after the Tracker fails. The Learning component
observes the performance of both Tracker and Detector, estimates their error and
generates training samples in order to avoid such errors in the future under the
assumption that both Tracker, in terms of object loss, and Detector, in terms of
false positives or false negatives, can fail. The tracking component of TLD is
based on a Median-Flow tracker extended with failure detection: it represents the
object with a bounding box and estimates displacement vectors of a number of
points. The 50% most reliable points are then used to displace the bounding box
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between the two frames using median flow. If the target gets fully occluded or
exits the camera field of view, being di the displacement of a single point of the
Median-Flow tracker and dm the median displacement, it will result in having the
individual displacements scattered around the image and the residual of a single
displacement |di − dm| will rapidly increase. If median|di − dm| is greater than
a fixed threshold, the failure of the tracker can be decreed and the framework will
rely on the Detector to resume it. At each frame, the bounding box resulting from
the tracking phase is merged with the one output of the detection process and only
if neither the Tracker nor the Detector return a bounding box the object is declared
as non-visible.

3.2. Head Pose Estimation
To obtain a reliable estimation of the subject’s head pose, we rely on two

different techniques: facial landmarks and shape based head pose estimation.
Using the first approach, head pose can be accurately computed provided that

the resolution of the face is high enough and that the yaw, pitch and roll angles of
the head are not excessively steep. However when these conditions are not met,
the landmark estimation process fails and hence the head pose cannot be com-
puted. To render our method robust against such situations, we integrate the pose
estimation based on the landmarks with an appearance based head pose estima-
tion that uses HOG features and a classification framework composed of SVM
followed by HMM. Our method effectively integrates these two different compo-
nents achieving the ability to cope with the complexity of the ego-vision scenario
by applying each one of the two techniques when they can yield the best results.

The first component of our method that is used to estimate the head pose is
based on facial landmarks: if these can be computed, head pose can be reliably
inferred and no further processing is needed. To estimate facial landmarks, we
employ the method by Smith et al. [18]. This allows to estimate a set of seman-
tically significant landmarks L = {li = (xi, yi), i = 1, . . . , N}, where (xi, yi) are
the coordinates of the i-th landmark on the image plane and N is the total num-
ber of landmarks. In our experiments we fix N = 49, since it is the minimum
number of points for a semantic face description [19]. The pose estimation results
from the face alignment process done by applying the supervised gradient descent
method, which minimizes the following function over ∆x

f(x0 + ∆x) = ‖h(λ(x0 + ∆x))− φ∗‖22 , (2)

where x0 is the initial configuration of landmarks, λ(x) is the function that
indexes the N landmarks in the image and h is a non-linear feature extraction
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function, in this case the SIFT operator. φ∗ = h(λ(x∗)) represents the SIFT de-
scriptors computed over manually annotated landmarks in the image. Finally, the
obtained pose is quantized over 5 classes, representing the intervals [−90,−60),
[−60,−30), [−30, 30], (30, 60] and (60, 90].

This approach, while providing extremely reliable head poses if the landmark
set can be estimated, fails if applied to steep head poses or to lower resolution
images, we combine it with a second approach based on the shape of the subject’s
head.

To estimate head pose using shape features, a preprocess step is taken before
calculating the head descriptor: to effectively remove the large amount of noise
caused by the background in the unconstrained scenario of ego-vision, we rely on
segmentation. We use an adapted version of the GrabCut [20] algorithm: it aims
at minimizing the energy function

E(α,k, θ, z) = U(α,k, θ, z) + V (α, z), (3)

where N is the number of pixels, z is the image vector, α is the segmentation
mask with αi ∈ {±1}. k, kn ∈ {1, . . . , K} is the vector assigning each pixel to a
unique GMM and θ is the set of parameters of the GMMs.

The data term U(·) is defined

U(α,k, θ, z) =
∑
n

−log(p(zn|αn, kn, θ))− log(π(αn, kn)). (4)

where the Gaussian Mixture Models for either the foreground TF or back-
ground TB are hence defined as p(z|αn, kn, θF ) and p(z|αn, kn, θB).

Our initial experiments showed that a segmentation step based on the bound-
ing box resulting from the tracking phase yields poor results if applied to situa-
tions where no assumptions on the background model were possible. This occurs
because in the tracked bounding box small portions of background pixels are in-
cluded. When those elements do not appear outside the target region, p ∈ TU ,
p /∈ TB (where TU is the region of pixels marked as unknown), they cannot
be correctly assigned to background by the algorithm and produce a noisy seg-
mentation. To address this issue, after an initialization of both foreground and
background regions TF and TB, we build the respective GMMs: these models
represent the initial distribution of color and are used to assign a label α to each
pixel, with . Exploiting the high frame rate of ego videos is possible to assume
that only slight changes in the foreground and background mixtures will occur be-
tween two subsequent frames. This allows, at time t, to build a GMMt based on
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GMMt−1 instead of reinitializing the models: pixels are assigned to foreground
or background based on GMMt−1 and then the GMM for the current frame is
computed. This is equivalent to soft assigning pixels that would end up in the TU
region, which is sensitive to noise.

Once that a precise segmentation of the head is obtained, the resulting image
is converted to grayscale, resized to a fixed size of 100 × 100 in order to ensure
invariance to scale and, eventually, histogram equalization is applied to it. A dense
HOG descriptor is then computed over the resulting image using 64 cells and 16
bins per cell.

Given their potential to increase the overall performance of the classification
step, feature normalization techniques have been applied to the resulting HOG
descriptor. Using a Linear SVM that relies on dot-product, applying power nor-
malization techniques shows to effectively increase the accuracy of our results.
We apply the following function to our feature vectors:

f(x) = sign(x)|x|α with 0 < α < 1. (5)

Based on initial observations we fix α = 0.5. By optimizing this value, the
performance could slightly improve but it would lead to a data-dependent tuning,
a situation in contrast with the highly diversified characteristics of unconstrained
ego-vision scenarios. Using these features, the head pose is then predicted using
a multiclass linear SVM classifier following the same quantization used in the
landmark based estimation. When dealing with high dimensional feature vectors,
the linear SVM has proven competitive w.r.t its kernelized version while requiring
less computational resources coping well with low tier ego-vision devices [21].

Typically, in a social scenario where three or more subjects’ activity revolves
around a discussion or any kind of similar social interaction, orientation transi-
tions are temporally smooth and abrupt changes are avoided as chances tend not
to occur when one subject is talking.

In order to enforce temporal coherence that derives from a video sequence, a
stateful Hidden Markov Model technique is employed. Hidden Markov Models
are temporal graphical models in which the system being modeled is assumed to
be a Markov process with unobserved (hidden) states. The HMM is a first order
Markov chain built upon a set of time-varying unobserved variables/states zt and
a set of observations ot. In our case, we set the latent variables to coincide with
the possible head poses while the observed variable are the input images.

The probability distribution of zt depends on the state of the previous latent
variable zt−1 through a conditional distribution p(zt|zt−1), namely the transition
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probability distribution; while the conditional pdf that involves both observed and
hidden variable is referred as the emission function, p(ot|zt). In a discrete setting,
with an enumerable number of states, the conditional distribution corresponds to
a matrix denoted by A, where the elements are transition probabilities among the
states themselves. They are given by

A = {ajk, j, k = 1 . . . K} ≡ p(ztk = 1|zt1,j = 1) (6)

so that the matrix A has K(K − 1) independent parameters. During learning,
out of the box techniques like the Baum Welch training algorithm can be used
to train the Hidden Markov Model. Nevertheless, whenever applicable, transition
probabilities among discrete states can be directly set by an expert in order to im-
pose constraint on the possible transitions. In practice, we fixed the A values in
order to encode the context of ego-vision videos. In particular, we set in the state
transition matrix a high probability of remaining in the same state, a lower proba-
bility for a transition to adjacent states and a very low probability for a transition
to the not adjacent states. This leads our approach to have continuous transitions
between adjacent poses. Furthermore, this also allows the removal of most of the
impulsive errors that are due to wrong segmentation or to the presence of a region
of background in the calculation of the descriptor. This translates in a smooth
transition among possible poses that is what conventionally happens during social
interaction among people in ego-vision settings.

The joint probability distribution over both latent and observed variables re-
sults:

p(zt,ot) = p(z0)
T∏
t=1

p(ot|zt)p(zt|zt−1). (7)

Our method combines the likelihood p(zt|ot) of a measure ot to belong to a
pose zt provided by the SVM classifier with the previous state zt−1 and the tran-
sition matrix A derived from the HMM, obtaining the predicted pose likelihood
which is the final output.

In order to calibrate a confidence level to a probability in a SVM classifier,
so it can be used as a observation for our HMM, we trained a set of Venn Pre-
dictors (VP) [22], on the SVM training set. We have the training set in the form
S = {si}i=1...n−1 where si is the input-class pair (xi, yi). Venn predictors aim
at estimating the probability of a new element xn belonging to each class Yj ∈
{Y1 . . . Yc}. The prediction is performed by assigning each one of the possible
classification Yj to the element xn and dividing all the samples {(x1, y1) . . . (xn, Yj)}
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(a) Current frame (b) Depth grid (c) Width grid

(d) Grid overlapping (e) Bird view (f) People pairwise relations

Figure 4: Steps used in our distance estimation process.

into a number of categories based on a taxonomy. A taxonomy is a sequence
Qn, n = 1, . . . , N of finite partitions of the space S(n) × S, where S(n) is set of
multisets of S of length n. In the case of multi class SVM the taxonomy is based
on the largest SVM score, therefore each example is categorized using the SVM
classification in one of the c classes.
After partitioning the element using the taxonomy, the empirical probability of
each classification Yk in the category τnew that contains (xn, Yj) is:

pYj(Yk) =
|{(x∗, y∗) ∈ τnew : y∗ = Yk}|

|τnew|
(8)

This is the pdf for the class of xn but after assigning all possible classification to
it we get:

Pn = {pYj : Yj ∈ {Y1, . . . , Yc}} (9)

that is the well-calibrated set of multi probability prediction of the VP used as the
emission function of Eq. 7.

3.3. 3D People localization
To provide the most general framework possible, we decide not to use any

camera calibration technique in estimating the distance of a subject from the cam-
era. The challenges posed by this decision are somehow mitigated by the fact that,
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aiming to detect groups in a scene, the reconstruction of the exact distance is not
needed and small errors are lost in the quantization step. A depth measure which
preserves the positional relations between individual suffices.

Relying on the assumption that all the heads in the image lay on a plane, the
only two significant dimensions of our 3D reconstruction are (x, z), resulting in a
“bird view” model. In order to estimate the distance from the person wearing the
camera, we employ the facial landmarks computed in the head pose estimation
phase. Being N = |L|, we build the feature vector

d = {di = ‖li, li+1‖ , i = 1, . . . , N − 1, li ∈ L} , (10)

where ‖·‖ is the standard euclidean distance. This feature vector is used in a
Random Regression Forest [23] trained using the ground truth depth data obtained
from a Kinect sensor. In order to minimize the impact on the distance of a wrong
set of landmarks, we apply over a 100 frames window a Robust Local Regression
smoothing based on the LOWESS method [24]. The distances vector is smoothed
using the robust weights given by

wi =

{
(1− (ri/αMAD)2)2 if |ri| < αMAD,

0 if ri ≥ αMAD
, (11)

where ri is the residual of the i-th data point produced by the local regression,
MAD is the median absolute deviation of the residuals MAD = medial(|r|) and
α is a constant value fixed to 6.

This technique provides a good estimation of the distance of a face from the
camera, coping well with the non-linearity of the problem and with the topological
deformations that are due to changes in pose.

In the case that facial landmarks estimation fails, we compute the distance
from the camera by using the tracked bounding box as input for a Random Re-
gression Forest properly trained using this feature. This result in a slightly less
accurate estimation but makes our method robust to the failure in the landmark
extraction process.

In order to estimate the position of a person accounting for the projective de-
formation in the image, we build a grid with variable cells sizes. The distance
allows to locate the subject with one degree of freedom (x) (Fig. 4b): the semi-
circle in which the person stands is decided based on the distance computed early
on, resulting in a quantization of the distance. Using the x position of the person
in the image plane and employing a grid capable of accounting for the projective
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deformation (Fig. 4c), it is now possible to place the person with one further de-
gree of freedom z. By overlapping the two grids (Fig. 4d) the cell in which the
person stands can be decided and the bird’s view model can finally be created (Fig
4e).

Each people is now represented by its position in the 3D space (x, z, o), where
o represents the estimated head orientation and a graph connecting people is cre-
ated (Fig. 4f). Each edge connecting two people p and q has a weight φpq which
is the feature vector that includes mutual distance and orientations.

4. Social Group Detection

Head pose and 3D people information can be used to deal with the group de-
tection problem, introducing the concept of relationship between two individuals.
Given two people p and q, their relationship φpq can be described in terms of their
mutual distance, the rotation needed by the first to look at the second and vice
versa φpq = (d, opq, oqp). Note that distance d is by definition symmetric, while
rotations opq and oqp are not, thus the need of two orientation features instead of
one. A practical example is given by the situation where two people are facing
each other, opq = oqp = 0: in this case both orientations are the same; on the
contrary if the two subjects have the same orientation resulting in p looking at q’s
back, they will have opq = 0 and oqp = π, hence the need of two separate features.

It can often be hard to practically fix this definition of relationship and use
it independently from the scenario, due to the human characteristic of forming
social groups in very different ways according to the scenario they are in. Some-
times people being in the same group is given away by the mutual orientations
and distances or sometimes they are all looking at the same object and none of
them looks at any other group member, but still they form a group. In any case, it
clearly emerges the need for an algorithm capable of understanding different so-
cial situations, effectively learning how to treat distance and orientation features
depending on the context.

4.1. Correlation Clustering via Structural SVM
To partition social groups based on the the pairwise relations of their members

we apply the correlation clustering algorithm [25]. In particular, given a set of
people x in the video sequence, we model their pairwise relations with an affinity
matrix W , where for Wpq > 0 two people p and q are in the same group with
certainty |Wpq| and for Wpq < 0 p and q belong to different clusters. The corre-
lation clustering y of a set of people x is then the partition that maximize the sum
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of affinities for item pairs in the same cluster:

arg max
y

∑
y∈y

∑
r 6=t∈y

Wrt. (12)

Here, the affinity between two people p and q, Wpq is modeled as a linear combi-
nation of the pairwise features of orientation and distance over a temporal window.
This temporal window effectively determines how many frames are used to com-
pute the current groups, capturing variations among the groups composition and
maintaining robustness to noise. In order to obtain the best way to partition people
into socially related groups in the given social situation, our experiments showed
that the weight vector w should not be fixed but instead learned directly from the
data.

Given an input xi, a set of distance and orientation features of a set of people,
and yi their clustering solution, it can be noticed that the output cannot be mod-
eled by a single valued function, since a graph describing connections between
members suits better the social dimension of the group interaction. This leads to
an inherently structured output that requires to be treated accordingly. Structural
SVM [26] offers a generalized framework to learn structured outputs by solving
a loss augmented problem. This classifier, given a sample of input-output pairs
S = {(x1,y1), . . . , (xn,yn)}, learns the function mapping an input space X to
the structured output space Y .

A discriminant function F : X ×Y → < is defined over the joint input-output
space. Hence, F (x,y) can be interpreted as measuring the compatibility of an
input x and an outputy. As a consequence, the prediction function f results

f(x) = arg max
y∈Y

F (x,y,w) (13)

where the solution of the inference problem is the maximizer over the label space
Y , which is the predicted label. Given the parametric definition of correlation
clustering in Eq. 12, the compatibility of an input-output pair can be defined as

F (x,y,w) = wTΨ(x,y) = wT
∑
y∈y

∑
r 6=t∈y

φpq (14)

where φpq is the pairwise feature vector of elements p and q. This problem of
learning in structured and interdependent output spaces can been formulated as a
maximum-margin problem. We adopt the n-slack, margin-rescaling formulation
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of [26]:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i, ∀y ∈ Y\yi : wT δΨi(y) ≥ ∆(y,yi)− ξi.

(15)

Here, δΨi(y) = Ψ(xi,yi) − Ψ(xi,y), ξi are the slack variables introduced to
accommodate for margin violations and ∆(y,yi) is the loss function. In this case,
the margin should be maximized in order to jointly guarantee that for a given
input, every possible output result is considered worst than the correct one by at
least a margin of ∆(yi,y)−ξi, where ∆(yi,y) is bigger when the two predictions
are known to be more different.

The quadratic program in Eq. 15 introduces a constraint for every possible
wrong clustering of the set. Unfortunately, this results in a number of wrong
clusterings that scales more than exponentially with the number of items. As
performance is a sensitive aspect of each ego-vision application, approximated
optimization schemes have to be considered. In particular, we rely on the cutting
plane algorithm in which we start with no constraints, and iteratively find the most
violated one:

ŷi = arg max
y

∆(yi,y)−wT δΨi(y) (16)

and re-optimize until convergence. Finding the most violated constraint requires
to solve the correlation clustering problem, which we know to be NP-hard [25].
Finley et al. [27] propose a greedy approximation algorithm which works by ini-
tially considering each person in its own separate cluster, then iteratively merging
the two clusters whose members have the highest affinity.

One important aspect of this supervised correlation clustering is that there is
no need to know beforehand how many groups are in the scene. Moreover, two
elements could end up in the same cluster if the net effect of the merging process
is positive even if their local affinity measure is negative, implicitly modeling the
transitive property of relationships in groups which is known from sociological
studies.

4.2. Loss function
How such algorithm can be effective its learning phase strictly depends on the

choice of the loss function since it has the power to force or relax input margins.
The problem of clustering socially engaged people is in many ways similar

to the noun-coreference problem [28] in NLP, where nouns have to be clustered
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according to who they refer to. Above all, the combinatorial number of potential
connections is shared. For this problem, the MITRE loss function [29] has been
identified as a suitable scoring measure. The MITRE loss, formally ∆M(y, ȳ),
is based on the understanding that,instead of representing each subject’s links to-
wards every other person, connected components are sufficient to describe dy-
namic groups and thus spanning trees can be used to represent clusters.

Consider the two clustering solutions y, ȳ and an instance of their respective
spanning forests Q and P . The connected components of Q and P are identified
respectively by the trees Qi, i = 1, . . . , n and Pi, i = 1, . . . ,m. Let |Qi| be
the number of people in group Qi and p(Qi) the set of subgroups obtained by
considering only the relational links in Qi that are also found in the partition P .
A detailed derivation of this measure can be found in [28].

Accounting for all trees Qi we define the global recall measure of Q as

RQ =

∑n
i=1 |Qi| − |p(Qi)|∑n

i=1 |Qi| − 1
(17)

The precision of Q can be computed by exchanging Q and P , which can be also
seen as the recall of P with respect to Q, guaranteeing that the measure is sym-
metric. Given the recallR the loss is defined as

∆M = 1− F1 (18)

where F1 is the standard F -score.

5. Experimental results

To evaluate our social group detector and each of the main components (head
pose estimation algorithm, trackers and 3D people localization approach) we pro-
vide two publicly available datasets: EGO-HPE datasets and EGO-GROUP.

EGO-HPE dataset1 is used for testing our head pose estimation method. This
dataset presents videos with more than 3400 frames fully annotated with head
poses. Being aimed to ego-vision applications, this dataset features significant
background clutter, different illumination conditions, occasional poor image qual-
ity due to camera motion and both indoor and outdoor scenarios.

EGO-GROUP2 contains 18 videos, more than 10000 frames annotated with
group compositions and 23 different subjects. Furthermore, 5 different scenarios

1http://imagelab.ing.unimore.it/files/EGO-HPE.zip
2http://imagelab.ing.unimore.it/files/EGO-GROUP.zip
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(a)

(b)

(c)

(d)

(e)

Figure 5: Example sequences from the EGO-GROUP dataset.

are proposed in order to challenge our method in different situations: a laboratory
setting with limited background clutter and fixed lighting conditions (Figure 5a),
a coffee break scenario with very poor lighting and random backgrounds (Figure
5b), a conference room setting where people movement and positioning is tied to
seats (Figure 5c), an outdoor scenario (Figure 5d) and a festive moment with a
crowded environment (Figure 5e)

5.1. Head Pose Estimation
One of the more crucial and challenging components for our social group de-

tection is the automatic extraction of the head pose of the subjects in the scene. A
high error in such data creates a strong noise in the features used to cluster groups.

Our method for estimating the head pose is based on the merging of two sepa-
rate components: landmarks and HOG-based pose classification. Both approaches
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Table 1: Comparison between different approaches evaluated.

Method EGO-HPE1 EGO-HPE2 EGO-HPE3 EGO-HPE4
HOG+PN 0.710 0.645 0.384 0.753
HOG+PN+HMM 0.729 0.649 0.444 0.808
Landmarks 0.537 0.685 0.401 0.704
Landmarks+HOG 0.750 0.731 0.601 0.821
Landmarks+HOG+HMM 0.784 0.727 0.635 0.821

have strong-sides and down-sides: using facial landmarks can be extremely accu-
rate and fast, but it requires them to be successfully computed which can prevent
the system to work under steep head poses or low resolutions. While steep profile
poses (e.g. ±90) can be difficult to classify using landmarks, human physiognomy
makes it a task that can be performed with more success using shape features like
HOG. The HOG descriptor is also much less sensitive to scale, which allows to
perform the head pose estimation even to those subjects far from the person wear-
ing the camera.

Table 1 provides a comparison between the different approaches we evaluated,
showing how the HOG and the landmark based approaches when combined to-
gether can achieve performance that none of them could have singularly achieved.

In order to show how ego-vision unique perspective can affect the results of
an approach if not explicitly taken into account, we tested our egocentric head
pose estimation method against other current state of the art methods over the
EGO-HPE dataset. The first method we compared to is proposed by X. Zhu et
al. [8]: by building a mixture of trees with a shared pool of parts, where each
part represents a facial landmark, they use a global mixture in order to capture
topological changes in the face due to the viewpoint, effectively estimating the
head pose. In order to achieve a fair comparison in terms of required time, we
used their fastest pretrained model and reduced the number of levels per octave to
1. This method, while being far from real-time, provides extremely precise head
pose estimations even in ego-vision scenarios when it can overcome detection
difficulties. The second method used in our comparison is [30]. This method
provides real-time head pose estimations by using facial landmark features and
a regression forest trained with examples from 5 different head poses. Table 2
shows the results in terms of accuracy of this comparison.

5.2. Tracking Evaluation
In order to employ a current state of the art tracker in our method, we per-

formed an evaluation comparing four state of the art trackers and two baselines.
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Table 2: Comparison of our head pose estimation and two state of the art methods on EGO-HPE
dataset.

Our Method Zhu et al. [8] Dantone et al. [30]
EGO-HPE1 0.784 0.685 0.418

EGO-HPE2 0.727 0.585 0.326

EGO-HPE3 0.635 0.315 0.330

EGO-HPE4 0.821 0.771 0.634

The trackers tested are: STR [31], HBT [32], TLD [17], FRT [33]; for a com-
prehensive tracking review please refer to [16]. A color histogram based nearest
neighbor baseline tracker (NN) and a normalized cross correlation tracker (NCC)
have also been included in our experiments. Provided that all four state of the art
trackers perform well on normal scenarios, we tested them over 8 videos we man-
ually annotated with target’s bounding boxes, extracted from our EGO-GROUP
dataset. These videos feature some of the main problems typical of egocentric
videos.

The main challenges a tracker has to deal with when applied to first person
video sequences are the head motion causing blur and quickly moving the target
out of the scene, recurring occlusions, changes in lighting conditions and in scale.
One of the more problematic aspects is ego-motion: Fig. 6c shows the perfor-
mance of the trackers over a video rich of ego-motion. It can be seen how, in this
scenario, two main features come in play: loss detection and model adaptability.
STR, while having an adaptive model, lacks the ability to detect the loss of target
resulting in being unable to cope with the fast movements of the object in and out
of the camera field of view. Without loss detection, it results in adapting the model
to a portion of background effectively degrading it. HBT cannot recover from a
loss resulting in being unable to recover after the initial fast camera motion. It
emerges that, if challenged with fast ego-motion, simpler tracking by detection
approaches (NN, NCC) can outperform more complex tracking methods. TLD,
performing both tracking and detection, results in being robust to such situations.

A major issue in ego-vision is the severe camera motion, where the camera
can abruptly get closer to the subject or change its perspective. Fig. 6d shows an
example of such a situation: around frame 50 the target starts moving away from
the person wearing the camera and it is where most of the trackers fail. TLD is
the only one that can perform scale adaptivity and as the figure shows it is the
only one, in the very end of the sequence, that can resume tracking with an high
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Overlap percentage between predicted bounding box and ground truth in our tracking
evaluation. (a) indoor, first person motion; (b) outdoor, low camera motion; (c) indoor, high
camera motion; (d) indoor, controlled environment; (e) indoor, crowded sequence; (f) indoor,
poor lighting. The frame number refers to the frame which had its ground truth for the subject’s
bounding box annotated, which is a frame out of 5. Best viewed in colors. Tracker legend: NN:
Cyan; HBT: Yellow; TLD: Green; STR: Magenta; NCC: Blue; FRT: Black

overlap percentage. FRT, HBT and STR can also resume tracking but they have
not adapted to the new scale, resulting in a very low overlap due to the low ratio
of intersection and union of the bounding boxes.

The results of this analysis, which are summarized in the survival curve plot
of Fig. ??, combined with it being the fastest among the considered trackers,
led us to employ TLD in our framework. White it can be a useful tool, it clearly
emerges that the current tracking state of the art lacks the ability to fully cope with
the complexity of egocentric videos. All the analyzed trackers present on some
degree a weakness that leads them to failure when facing a particular challenge.

To somehow mitigate the impact of the ego-vision setting on the tracking per-
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Figure 7: Plot showing the F-measure results of TLD and TLD with blur detection and removal
(TLD + BD)

formances, we introduced a preliminary step of blur detection that effectively re-
moves the frames where the fast head motion causes the failure of the tracking
process. Fig. 7 shows a comparison between tracking with TLD with and with-
out the blur detection phase. It can be noticed how the increase in performances
strictly depends on the amount of blurriness caused by head motion contained in
the video. For example, in the first video a significant amount of blurred frames
can be removed effectively preventing the TLD model to degrade, resulting in an
increase in performance of 22% going from 0.421 to 0.514. On the other hand,
due to them being more still, the blur detector do not remove any frame in videos
4 and 6 resulting in the same performance.

5.3. Distance Estimation
To evaluate our approach in distance estimation, we compare it to two differ-

ent alternatives. Using the same regression architecture, two commonly employed
approaches involve using the bounding box of the head or the segmented area of
the face as features (our baseline). Table 3 shows this comparison in terms of
absolute error. The Bounding Box method employs the TLD tracker in order to
estimate the subject’s bounding box, while the Area method relies on the seg-
mentation and backprojection approach similar to the one used in HBT in order
to robustly estimate the area of the person’s face. The results of this comparison
show that relying on biological features like the ratio between facial landmarks
can greatly improve results against less complex spacial features.
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Table 3: Comparison between different distance estimation approaches.

Method Abs. Error
Area (baseline) 12.67
Bounding Box 5.59
Landmarks 1.91
Landmarks + Moving Average 1.72
Landmarks + LOESS 1.68
Landmarks + RLOESS 1.60

Aiming to improving our results, we apply to our distances sequence a smooth-
ing filter. As Table 3 shows, using a moving average filter can improve the results
by 9, 95%, while LOESS and RLOESS smoothing methods yield respectively an
error reduction of 12.04% and 16.23%. In both LOESS and RLOESS methods the
span has been set to 10% of the data.

5.4. Groups estimation

Table 4: Comparison between training variations on our method. The table shows how different
training choices can deeply impact on the performances: while the laboratory scenario presents a
rather balanced training environment, a training set extracted from the party or the coffee scenarios
can overfit on some features leading to very high performances when applied to videos with the
very same situation and worse results if used on other data. All tests have been performed using a
window size of 8 frames.

Training: Laboratory Training: Coffee Training: Party
Test scenario Error Precision Recall Error Precision Recall Error Precision Recall
Coffee 10.74 83.04 97.29 9.23 82.67 100.00 18.04 68.76 100.00
Party 9.33 100.00 83.63 0.00 100.00 100.00 0.00 100.00 100.00
Laboratory 11.91 91.68 85.79 14.75 74.67 99.43 14.43 74.81 100.00
Outdoor 11.47 87.88 95.11 10.22 82.09 98.27 11.30 81.17 100.00
Conference 16.27 75.24 93.32 14.56 73.94 95.15 18.97 75.58 95.28

Training: Outdoor Training: Conference Training: All
Test scenario Error Precision Recall Error Precision Recall Error Precision Recall
Coffee 6.80 92.54 94.92 13.88 79.99 88.41 8.11 85.50 99.60
Party 10.92 100.00 80.34 7.11 90.12 95.42 3.15 96.27 98.05
Laboratory 27.75 72.60 72.81 12.02 90.75 87.22 19.97 74.32 88.05
Outdoor 16.22 81.11 90.24 16.71 74.92 94.81 16.24 84.33 88.67
Conference 14.46 74.09 95.20 13.95 74.67 95.10 17.07 74.04 93.73

Eventually, when detecting social groups the choice of which data train onto
is extremely crucial: in different social scenarios distances and poses can assume
different significances. For this reason, in order to achieve good performances in a
real world application training should be context dependent. However, the risk of
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overfitting is considerable: Table 4 shows the performances of our method applied
to every scenario of the EGO-GROUP dataset by repeating the training over the
first video from each scenario. Results obtained by training the method over the
union of the training sets of each scenario are also displayed. To our knowledge,
this is the first work that tackles with group partitioning in an ego-centric video
perspective, hence the lack of further comparisons with other approaches.

In particular from this data can be seen how, for example, training the weights
over the outdoor sequence outperforms training on the coffee setting when testing
on the coffee itself, but performs rather worse on different scenarios. This is due
to overfitting on a particular group dynamic present in both the training and the
coffee videos, but absent from other sequences. In order to have an estimate of
how different trainings perform, standard deviation over the absolute error can be
computed. It emerges that laboratory setting is the more general training solution
with an average error of 11.94 and a standard deviation of 2.61, while training
over the party sequence, although it can achieve impeccable results over its own
scenario and an average error of 12.55, presents a much higher deviation (7.65).
Training over the set given by the union of each training set from the different
scenarios results in a standard deviation of 7.01 over a mean error of 12.91, show-
ing how this solution, while maintaining the overall error rates, does not provide
a gain in generality. This confirms that different social situations call for different
feature weights and that a context dependent training is needed to adapt to how
humans change their behavior based on the situation.

To further highlight the need for a training phase capable of learning how
to treat each feature, we show the results of the clustering without performing
training. This is done by fixing all the feature weights to the same value resulting
in the algorithm to equally treat distance and orientations. Table 5 provides the
results of this comparison: it can be noticed how without treating each feature with
its own significance the algorithm often ends up placing every subject in the same
group. This is showed by the high recall and the lower precision: the MITRE
loss function penalizes precision for each person put in the wrong group while
the recall stays high. Placing every person in the same group hence results in an
average error due to the fact that, not leaving any subject out of a group provides
a high recall.

An important parameter of our group detection approach is the dimension of
the clustering window: being able to change window size allows to adapt to dif-
ferent situations. The window size effectively regulates over how many frames
to calculate the groups, resulting in being much less noise-sensitive with bigger
windows but less capable of capturing quick variations among the groups compo-
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Table 5: Comparison between training the correlation clustering weights using SSVM and per-
forming clustering without training (fixed weights). The window size used in the experiment is
8.

Method Coffee Party Laboratory Outdoor Conference
Error 12.75 0.00 14.28 17.13 15.54

CC Precision 74.86 100.00 73.12 71.81 74.43
Recall 96.29 100.00 97.55 97.98 91.39
Error 9.23 0.00 11.91 16.22 13.95

CC+SSVM Precision 82.67 100.00 91.68 81.11 74.67
Recall 100.00 100.00 85.79 90.24 95.10

Figure 8: Comparison between absolute error results under various window sizes in our method.

sition. On the other hand, a small window size allows to model even very small
changes in groups but its performances are strictly tied to the amount of noise in
the features, e.g. wrong pose estimations or an imprecise 3D reconstruction. In
our experiments we show that a window size of 8 frames provides a good compro-
mise between robustness to noise in the descriptor and fine grained response of our
system. Figure 8 reports the results on EGO-GROUP of our method in terms of
absolute error, evaluated with the MITRE loss function described in Section 4.2,
varying window sizes. As the plot shows, results changing window sizes change
depending on the amount of noise in the features used to compute the groups.
In particular, it can be noticed how the party sequence (red plot) does not benefit
from increasing the window size: this is due to the good performance in head pose
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and distance estimations. Since there is very little noise to remove, the decay in
accuracy observed at windows size 32 is mainly caused by the loss of information
caused by the excessively coarse grain in the group estimation. On the other hand,
the coffee or laboratory settings (blue and green plots) presents some difficulties
in the head pose estimation, thus the gain in performances increasing window
sizes. However, by increasing it too much the loss of information overcomes the
gain from the noise suppression and worsens the performances. In general, it can
be noted how increasing the window size past 8 - 16 usually worsens the overall
performances of the proposed method.

Figure 9: Weights values in the 5 different training scenarios. Scenarios are 1) laboratory, 2) party,
3) conference, 4) coffee, 5) outdoor.

To further evaluate our approach we discuss how the clustering weights vary
in different scenarios. Figure 9 shows the comparison between the different com-
ponents of the weight vectors. As can be noticed, performing the training over
different scenarios yield significantly different results. For example, clustering
a sequence in the 4th scenario gives more importance to the second feature (the
orientation of subject 1 towards subject 2), slightly less importance to the spatial
distance between the two and very little importance to the orientation of 2 towards
1. In scenario 5, the outdoor sequence, the most important feature is recognized
to be the distance, correctly reflecting the human behavior where, being outdoor,
different groups tend to increase the distance between each-other thanks to the
high availability of space.

A negative weight models the fact that, during the training, our approach has
learned that the feature that weight relates to can decrease the affinity of a pair. A
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typical example of such situation is when a person is giving us the back: while
our orientation can have a high similarity value towards that person, that feature
will probably lead the system to wrongly put us in the same group. Our approach
learns that there are situations where some features can produce wrong clustering
results and assigns a negative weight to them.

Figure 10: Examples of the results of our method. Different groups are shown by different link
colors.

6. Conclusion

In this paper we have presented a novel approach for estimating the group
composition in ego-vision settings. We provided a head pose estimation method
designed for this scenario that relies on two different features in order to deal with
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the complexity of the task, resulting robust to steep head poses, low resolutions
and background clutter. We provided a 3D people localization method that do
not rely in camera calibration, a process that with the widespread diffusion of
wearable devices would have caused a loss in generality. Following our idea that
different social situations cause different behaviors in humans, which calls for dif-
ferent weights in the social features that must be used to estimate the group, we
used Structural SVM to learn how to treat the distance and pose information. This
results in a method capable of adapting to the complexity of human social interac-
tions and allows for the use of a Correlation Clustering algorithm to predict group
compositions. Our experiments show promising results in the group estimation
task testing the most significant aspects of our algorithm.

We adapted the TLD tracker to use our blur detection algorithm in order to im-
prove its performances by removing the frames where the fast head motion caused
the image quality to drop. While this process helps in increasing the robustness of
the tracking process, some considerations about tracking in ego-vision could be
made. From our experiments, where we compared several state of the art trackers
over first-person video sequences, clearly emerged how trackers designed to work
with videos recorded from still cameras face some difficulties when applied to the
unconstrained scenarios of ego-vision. Target occlusion or its moving out of the
camera field of view can often occur and some sort of loss detection is needed to
cope with this situation. Many trackers do not provide this feature yet, resulting
in having much lower performances than expected. Due to the importance of the
tracking step, we feel the need for a tracker solely designed with the ego-vision
paradigm in mind. This would greatly help to tackle with further challenges that
require a robust tracking process such as action and object recognition or social
interactions analysis.
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