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Abstract

The size of datasets has been increasing rapidly both in terms of number of
variables and number of events. As a result, the empty space phenomenon
and the curse of dimensionality complicate the extraction of useful informa-
tion. But, in general, data lie on non-linear manifolds of much lower dimen-
sion than that of the spaces in which they are embedded. In many pattern
recognition tasks, learning these manifolds is a key issue and it requires the
knowledge of their true intrinsic dimension. This paper introduces a new
estimator of intrinsic dimension based on the multipoint Morisita index. It
is applied to both synthetic and real datasets of varying complexities and
comparisons with other existing estimators are carried out. The proposed
estimator turns out to be fairly robust to sample size and noise, unaffected
by edge effects, able to handle large datasets and computationally efficient.
Keywords: Intrinsic dimension, Multipoint Morisita index, Fractal
dimension, Multifractality, Dimensionality Reduction

1. Introduction

The 21st century is more and more data-dependent and, in general,
when collecting data for a particular purpose, it is not known which vari-
ables matter the most. This lack of knowledge leads to the emergence of
high-dimensional datasets characterized by redundant features which arti-
ficially increase the volume of data to be processed. As a result, the empty
space phenomenon [1] and the curse of dimensionality [2] make it challeng-
ing to conduct pattern recognition tasks such as clustering and classification.
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The goal of Dimensionality Reduction (DR) [3, 4], sometimes called
manifold learning, is to address this issue by mapping the N sampled data
points into the lower dimensional space where they truly lie. Such a space
is often considered as a manifold of intrinsic dimension M1 embedded in a
Euclidean space of dimension E with E ≥M . E equals the number of vari-
ables of a dataset and the Intrinsic Dimension (ID) of a manifold is equal to
the theoretical ID of the data. If a manifold is space-filling, its dimension
M ≈ E. In contrast, if the Euclidean space is partially empty, M < E.
The optimality of DR greatly depends on the accuracy of ID estimates.
An underestimation of the theoretical ID will result in the implosion of the
data manifold and information will be irreparably lost. On the contrary, an
overestimation will lead to noise in the final mapping. From an application
perspective, DR can be used to produce low dimensional syntheses of high
dimensional datasets [5] and as a preprocessing tool for supervised learning
[6, 7] and data visualization [8].

DR methods perform variable transformations to capture the complex
dependencies which generate redundancy within datasets. Nevertheless, it
is often important not to recast data. The Fractal Dimension Reduction
(FDR) algorithm [9, 10, 11, 12] was designed to this end. The fundamental
idea is to remove from a dataset all the variables which do not contribute to
increasing its ID. FDR can also be adapted to supervised feature selection
methods [13]. The goal is then to reject irrelevant or redundant variables
(or features) according to a prediction task (i.e. regression or classification).
Although ID estimation lies at the core of FDR, more traditional unsuper-
vised [14, 15, 16] and supervised [17, 18, 19, 20, 21, 22] feature selection
methods do not consider it. It has, however, a great potential in speeding
up search strategies, such as those used in [23, 24, 25, 26].

These different approaches highlight that ID estimation is a fundamen-
tal problem when dealing with high-dimensional datasets. Unfortunately,
ID estimators [27, 28] suffer from the curse of dimensionality as well. Their
overall performance depends on many factors (to various degree), such as
the number of data points, the theoretical ID of data and the shape of
manifolds. The present research deals with a new ID estimator in order to
provide a solution to the problems raised by these factors. It is based on
the recently introduced multipoint Morisita index (m-Morisita)[29, 30, 31].

1In Physics, mainly, M is often referred to as the degrees of freedom of data
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The m-Morisita index is a measure of global clustering closely related to
the concept of multifractality and, so far, it has been successfully applied
within the framework of (2-dimensional) spatial data analysis [29, 30].

The paper is organized as follows: In Section 2, traditional fractal-based
and maximum likelihood methods of ID estimation are presented. Section
3 derives a new ID estimator from the m-Morisita index and introduces
a new algorithm for its application to high-dimensional datasets. Section
4 is devoted to comparisons between the proposed estimator and those of
Section 3. Their behaviour regarding sample sizes, noise and the dimension
of manifolds is analysed. A special attention is also paid to their bias and
variance by using Monte-Carlo simulations and real world case studies from
the UCI machine learning repository are examined. Finally, conclusions are
drawn in Section 5.

2. Existing Methods

Many ID estimation methods have been proposed [27, 28, 32, 33, 34]
and they can be roughly divided into projection (e.g. PCA) and geometric
methods (e.g. fractal, nearest-neighbor and maximum likelihood methods).
This section focuses on fractal-based and maximum likelihood estimators.
They are commonly used in a wide range of applications and they generally
provide non-integer values as ID estimates.

2.1. Fractal-Based Estimation Methods
The word fractal was first coined by B. Mandelbrot [35] to describe

scale-invariant sets. At small scales δ, for a given point pattern, one has
that:

nbox(δ) ∝ δ−D0 (1)

where nbox(δ) is the number of grid cells necessary to cover the whole pattern
and D0 is known as the box-counting dimension [35, 36, 37]. In practical
applications, due to its simplicity, D0 often replaces the Hausdorff dimen-
sion D (or fractal dimension) and it can be proved that D0 is an upper
bound of D [38].

In complex cases, the scaling behaviour of the moments of point distri-
butions cannot be fully characterized by only one fractal dimension and a
full spectrum of generalized dimensions, Dq, is required. Such distributions
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are referred to as being multifractal [39, 40, 41, 42]. Dq is generally obtained
by using a generalization of the box-counting method [39, 40, 41, 43] based
on Rényi’s information, RIq(δ), of qth order [44]. The central scaling law of
this approach can be written as follows for q 6= 1:

exp(RIq(δ)) ∝ δ−Dq (2)

where

RIq(δ) = 1
1− q log(

nbox(δ)∑
i=1

pi(δ)q) (3)

In this last equation, pi(δ) = ni/N is the value of the probability mass
function in the ith grid cell of size δ (ni is the number of points falling into
the ith cell) and q ∈ R\{−1}. Finally, one has that:

Dq = lim
δ→0

RIq(δ)
log(1

δ
) (4)

and

lim
q→1

Dq = dfi (5)

D2 = dfcor (6)

where dfi and dfcor are, respectively, the information dimension [45, 39] and
the correlation dimension [46].

Usually, dfcor is computed with the Grassberger-Procaccia (GP) algo-
rithm [46]. This algorithm is designed to better take advantage of the range
of available pairwise distances between points. It can be introduced as
follows: at small scales, for a point set, XN = {x1, . . . , xN}, one has that

C(δ) ∝ δdfcor (7)

where
C(δ) = 2

N(N − 1)

N∑
i=1

N∑
j=i+1

1{‖xi−xj‖≤δ} (8)

with 1 being an indicator function and dfcor can be expressed as

dfcor = D2 = lim
δ→0

log(C(δ))
log(δ) (9)
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The available values of RIq(δ) and log(C(δ)) depend on the data res-
olution. A commonly used method for estimating Dq consists in plotting
RIq(δ) vs log(δ−1) for a chosen scale interval. The final estimate is then the
slope of the linear regression fitting the linear part of the resulting chart.
The procedure is the same for the GP algorithm, except that dfcor and
log(C(δ)) replace, respectively, Dq and RIq(δ). Eventually, both Dq (in
general 0 6 q 6 2) and dfcor can be used as ID estimators.

Although these methods may entail some disadvantages due to the finite-
ness of datasets [33], they have been successfully applied in various fields,
such as spatial [47, 48] and time series [49] analysis, cosmology [50], clima-
tology [36, 51, 52] and pattern recognition [53, 54]. They have also been
used in different procedures improving their overall performance [55].

2.2. Maximum Likelihood Estimation Methods
The Maximum Likelihood Estimation (MLE) of ID was introduced in

[28]. The proposed method relies on the assumption that the k-nearest
neighbors (k-NN) of any point xi of a point set XN = {x1, . . . , xN} are
stemming from a uniform probability density function f(xi). As a con-
sequence, for a fixed xi, the observations are treated as a homogeneous
Poisson process within a small sphere Sxi

(R) of radius R centred at xi. On
this basis, the inhomogeneous binomial process {N(t, xi), 0 ≤ t ≤ R} with

N(t, xi) =
N∑
j=1

1{xj∈Sxi (t)} (10)

counts the number of observations within the distance t of xi and can be
approximated as a Poisson process. The rate of this process is:

λ(t, xi) = f(xi) V (m(xi)) m(xi) tm(xi)−1 (11)
where m(xi) is the dimension of the manifold on which xi lies and V (m(xi))
is the volume of the unit sphere in Rm(xi) centred at xi. The log-likelihood
function of N(t, xi) can then be expressed as:

L(m(xi), θ(xi)) =
∫ R

0
log(λ(t, xi)) dN(t, xi)−

∫ R

0
λ(t, xi) dt (12)

where θ(xi) = log(f(xi)). Finally, the MLE for m(xi) provides a local
estimator of ID [28, 56, 57]:

m̂k(xi) =
 1
k − 2

k−1∑
j=1

log
(
Tk(xi)
Tj(xi)

)−1

(13)
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where k > 2 is the number of NN taken into account and Tk(xi) is the
distance between xi and its kth NN.

If it is assumed that all the observations belong to the same manifold,
one has that:

m̂k = 1
N

N∑
i=1

m̂k(xi) (14)

which is simply an average over the whole dataset and, for k ∈ {k1, k1 +
1, ..., k2} with k1 > 2, the final estimate of ID is provided in [28]:

m̂ = 1
k2 − k1 + 1

k2∑
k=k1

m̂k (15)

A delicate issue which arises from Equations 13, 14 and 15 is the range of
the values k to be chosen. In practical applications, this is similar to the
choice of the scale interval in the fractal-based methods. Here, as well, the
finiteness of datasets may greatly influence the final estimate of ID if the
considered values k are not carefully selected. In [28], it is advocated to
retain a range of small to moderate values, so that each Sxi

(R) is small
enough to ensure f(xi) ≈ const and large enough to contain sufficiently
many points.

In [58], a modified version of the MLE algorithm is proposed. It consists
in averaging the inverse of the N estimators m̂k(xi) of Equation 14, so that
the final estimator of Equation 15 is replaced with:

m̂ = 1
k2 − k1 + 1

k2∑
k=k1

 1
N(k − 1)

N∑
i=1

k−1∑
j=1

log
(
Tk(xi)
Tj(xi)

)−1

(16)

Although the second version of the algorithm is better for small values of
k, both of them yield similar results [57] and have been successfully applied
in various studies [28, 58, 56]. Finally, notice that, in the remainder of
this paper, the estimators of Equations 15 and 16 will be named after their
authors, m̂LB and m̂MG.
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Figure 1: Computation of the m-Morisita index in two dimensions for m = 2 and m = 3
and for three benchmark patterns

3. A New Estimator of Intrinsic Dimension

3.1. The m-Morisita Index
The m-Morisita index [29, 30], Im,δ, is a global measure of clustering. It

is a generalization of the Morisita index [31, 59] and it was first proposed
in [30] for the analysis of population distributions in ecology. It was later
modified in [29] to take into account the notion of scale in spatial data anal-
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ysis and a relationship to multifractality was established.

For its computation, Im,δ, requires a dataset to be covered with a grid
of Q quadrats (or cells) of changing size δ (see Figure 1). For a fixed δ,
Im,δ measures how many times more likely it is that m (m ≥ 2) randomly
selected data points will be from the same quadrat than it would be if the
N points of the dataset were distributed at random (see Figure 1). It is
calculated as follows:

Im,δ = Qm−1
∑Q
i=1 ni(ni − 1)(ni − 2) · · · (ni −m+ 1)
N(N − 1)(N − 2) · · · (N −m+ 1) (17)

where ni is the number of points in the ith quadrat and N is the total num-
ber of points. The computation of the index starts with a relatively large
quadrat size δ. It is then reduced until it reaches a minimum value and a
plot relating every Im,δ to its matching δ can be drawn.

Figure 1 illustrates the computation of the index in two dimensions for
three benchmark point distributions (or patterns), for three different scales
and form = 2 andm = 3. For the highest possible δ, when only one quadrat
is considered, Im,δ returns the same value for each pattern and m. As the
number of quadrats increases, Im,δ adopts a specific behaviour for each of
the three benchmark distributions. If the points are distributed at random,
every computed Im,δ oscillates around the value of 1. If the points are
clustered, the value of the index increases as δ decreases and, finally, if the
points are dispersed, the index approaches 0 at small scales [29, 60]. Further,
as m increases, Im,δ becomes more and more sensitive to the structure of
the pattern under study. In complex situations, Im,δ computed with small
m may miss structures which are detected with higher m.

3.2. The Morisita Estimator of Intrinsic Dimension
Several parallels can be drawn between them-Morisita index and Rényi’s

information of qth order. In particular, it was established, for fractal point
sets, that [29]:

lim
δ→0

log (Im,δ)
log(1

δ
)

1
m− 1 ≈ E −Dm = Cm (18)

where m ∈ {2, 3, 4, · · · }, Cm is the codimension of order q = m, E is the
dimension of the Euclidean space where the dataset is embedded and Dm is
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Rényi’s generalized dimension of order q = m. In practical applications, for
finite datasets, it can be shown that Equation 18 is verified only under the
condition that H := max

i
(ni) � m [29]. If so, Cm can be estimated from

the slope, Sm, of the straight line fitting the linear part of the plot relating
log (Im,δ) to log

(
1
δ

)
. Then, Cm ≈ Sm/(m− 1) and one has that:

Dm ≈ E −
(

Sm
m− 1

)
(19)

where m ∈ {2, 3, 4, · · · }.

In high-dimensional spaces, the condition H � m is hardly ever met at
small scales. In such situations, it is important to notice that the major
difference between log (Im,δ) and RIm(δ) lies in the following inequality:

nmi > ni(ni − 1) · · · (ni −m+ 1) (20)

Consequently, unlike log (Im,δ), RIm(δ) seriously overestimates the proba-
bility of randomly drawing m-tuples of points from grid cells characterized
by a small ni. Such cells are numerous at small scales or when the sample
size is limited and can greatly affect the accuracy of Dm. From this per-
spective, it is possible to suggest a new ID estimator based on log (Im,δ) (for
m ≥ 2):

Mm := E −
(

Sm
m− 1

)
(21)

which should be more robust to sample size than Dm (see Equation 4).
Notice that Mm should only be computed under the condition that H > m
at all considered scales. In the remainder of this paper, Mm will be referred
to as the Morisita estimator of ID. It will be thoroughly tested in Section 4
with synthetic datasets of various complexities and with real data from the
UCI machine learning repository.

3.3. An Algorithm for Large Datasets
Algorithms used for handling large datasets should be affected as little

as possible by the amount of main memory available. Regarding Mm, the
main issue concerns the way the number of points per quadrat is counted.
A good algorithm must be able to effectively disregard empty quadrats. It
is also more appealing if its implementation is straightforward in most pro-
gramming environments (e.g. R and Matlab). To fulfil these requisites, the
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Algorithm 1 The Morisita INDex for ID estimation (MINDID)
INPUT: a N ×E matrix, D, with N points and E features; a vector L of
values `; a vector M of contiguous values m. OUTPUT: a vector contain-
ingMm for each valuem.
1: Rescale each variable to [0, 1]
2: for all values ` do
3: Divide each element of D by ` and round the result to the next lowest

whole number in a N × E matrix called D`
4: Count the number, nbr_l, of different lines in D` and store their

frequency in a vector, ni, of size nbr_l
5: for all values m do
6: Compute log (Im,δ) (See Equation 23) using the vector ni and store

the result in a | L | × |M | matrix called logMindex
7: end for
8: end for
9: Optional: Compute the values δ (See Equation 24) using the vector L

and store the result in a vector ∆ of cardinality | L |
10: for all values m do
11: Compute Mm (See Equation 21) using logMindex and ∆ (or L)
12: end for

MINDID algorithm (see Algorithm 1) incorporates a version of an algorithm
suggested in [10]. It rescales each variable of a dataset D to [0, 1] and takes
advantage of the properties of the square cells of the hyper-grid covering
the data: for a given cell size δ, each value of the dataset is divided by `
(see Figure 1) and rounded to the next lowest integer. In this way, in the
resulting matrix, all the data points falling into the same cell are matched
by as many equal lines.

Another issue concerns Qm−1, since it is often given the value Inf (e.g.
R and Matlab) for small values of ` when E � 1. A way to overcome this
problem is to resort to log (Im,δ) instead of Im,δ. Qm−1 is related to ` and
E through:

Qm−1 =
(1
`

)E(m−1)
(22)

and

log (Im,δ) = E(1−m) log (`)+log
(∑Q

i=1 ni(ni − 1) · · · (ni −m+ 1)
N(N − 1) · · · (N −m+ 1)

)
(23)
10



This solution is satisfactory, since the computation of Mm (See Equation
21) only requires log (Im,δ). Consequently, the second part of the MINDID
algorithm is devoted to the implementation of Equation 23.

Finally, the computation of Mm is carried out using either log(`) or
log(δ). In the rest of this paper, the second option will be preferred. Notice
that ` and δ are related as follows:

δ = `
√
E (24)

4. Assessment of the Morisita Estimator of ID

4.1. Synthetic Data
Several datasets were built, so that each of them resides on a known

manifold (or near a known manifold in the case of noisy data). They can
be divided into four categories (see Figure 2):

1. Swiss rolls (e.g. [3]) of 1000, 5000 and 10 000 points. The theoretical
ID of the data is equal to 2.

2. Noisy Swiss rolls of 1000, 5000 and 10 000 points. The noise is mod-
elled as a Gaussian variable G ∼ N(0, σ2) where σ varies from 0 to
0.5.

3. Uniform clouds of 1000, 5000 and 10 000 points. Each of theN distinct
points xi, with i ∈ {1, 2, · · · , N}, is described by a E-dimensional
vector [x1

i , x
2
i , · · · , xEi ]T ∈ RE, the components of which are sampled

from E i.i.d. variables following a uniform distribution. E is gradually
increased from 1 to 7 and is equal to the theoretical ID of the data.

4. This last category is based on the properties of the Cartesian prod-
uct of some fractals [38, 61]. One-dimensional Cantor sets of 8192
and 65 536 points are first created. The resulting vectors are shuffled
seven times to generate as many variables. A Euclidean space RE can
then be constructed and E is gradually increased from 1 to 7. The
dimension of the data manifold (i.e. the theoretical ID) is equal to
log(2)
log(3)E, where log(2)

log(3) is the Hausdorff dimension of a one-dimensional
Cantor set.
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Figure 2: (a) A Cantor set of 512 points for E = 2; (b) a realization of a uniform cloud
of 500 points for E = 2; (c) a Swiss roll of 10 000 points without noise and (d) a Swiss
roll of 10 000 points with noise G ∼ N(0, 0.252)

4.2. Comparison Between Mm and Dm Using Synthetic Data
Two categories of datasets were used to compare Mm with Dm: the uni-

form point clouds and the Cantor sets. They were employed with varying
N and E (see Subsection 4.1) and for each combination of these two pa-
rameters, 100 sets were generated. The results are displayed in Figures 3
and 4 and in Tables 1 and 2.

12



Figure 3: The results of the application of I2,` and RI2(`) to 100 uniform point clouds
of 10 000, 5000 and 1000 points. In the bottom-right table, the corresponding estimates
of D2 and M2 are provided as follows: the mean (computed over the 100 sets) ± the
standard deviation. The results written in bold script indicate that the theoretical ID
falls within the mean value ± one standard deviation.

In the case of the uniform point clouds, RI2(`) and log (I2,`) were com-
puted by using an interval of the parameter `−1 ranging from 1 to 15 (see
Equation 24). Figure 3 shows the results for N = 10 000, N = 5000 and
N = 1000 and for increasing E. The points of each plot are the mean values
yielded by the two indices over the 100 sets and the error bars correspond
to the standard deviations.
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Figure 4: The results of the application of I2,` (left) and RI2(`) (right) to 100 Cantor
sets of 8192 and 65 536 points. In the bottom table, the corresponding estimates of D2
and M2 are provided as follows: the mean (computed over the 100 sets) ± the standard
deviation. The results written in bold script indicate that the theoretical ID falls within
the mean value ± one standard deviation.
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If the value of H (see Subsection 3.2) was smaller than 2 at certain scales
` for a given dimension E, the entire plots describing the corresponding be-
haviours of RI2(`) and log (I2,`) were not drawn. This was motivated by
the condition that H must be greater than m at all scales for Mm to be
computed.

In spite of this limitation, Mm provides better ID estimates than Dq

when the same values of ` are considered. In Figure 3, this is highlighted,
for the largest E, by the steady state reached by RI2(`) at small scales,
which shows a departure from the power law of Equation 2. As a conse-
quence, D2 cannot be derived from a linear regression calculated over the
whole range of `. In contrast, log (I2,`) follows, on average and throughout
the scales, the power law which underlies Equation 21: all the plots are
superimposed on a constant mean level of 0 as expected from a Poisson
distribution (i.e. a random space-filling set). The cost of this near absence
of bias is an increase in the variability of the values provided by log (I2,`) as
` decreases. As indicated in the table of Figure 3, this drawback has only
a small impact on the variabilities of the final ID estimates which remain
low.

Still with regard to the table of Figure 3, the means and standard devi-
ations of the ID estimates2 were calculated only if the dependence between
log (I2,`) or RI2(`) and ` could be reasonably approximated by using a linear
regression over all the scales (i.e if only one slope could be distinguished in
the different plots). The results show that D2 becomes unreliable for E > 2,
while M2 works better and can even be used up to E = 6 for N = 10 000.

The results of M2 and D2 were written in bold script if the theoretical
ID fell within the mean value ± one standard deviation. Shapiro-Wilk tests
were first conducted to check whether or not the estimates could be assumed
to come from normal distributions (only if the standard deviations were not
equal to 0.00). At a 5% α level, the hypothesis of normality could not be
rejected for any of the estimate distributions. The theoretical ID fell within
the mean value ± one standard deviation for each result yielded by M2.
Regarding D2, it only happened twice for high values of N and for E = 1.
Notice that the same notation will be used throughout the section.

2The linear slope of the plots must be multiplied by −1 to yield Sm and Dq, since the
x-axis represents ` instead of `−1
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N = 65 536 M2 D2 M3 D3 M5 D5

E = 1 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00
E = 2 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00
E = 3 1.89 ± 0.00 1.88 ± 0.00 1.89 ± 0.00 1.88 ± 0.00 1.89 ± 0.00 1.87 ± 0.00
E = 4 2.52 ± 0.00 2.39 ± 0.00 2.52 ± 0.00 2.37 ± 0.00 2.53 ± 0.01 2.33 ± 0.00
E = 5 3.16 ± 0.00 - 3.16 ± 0.02 - - -
E = 6 3.79 ± 0.02 - - - - -
E = 7 4.43 ± 0.07 - - - - -

Table 1: The results of the application of Mm and Dm to 100 Cantor sets of 65 536 points
for m = 2, m = 3 and m = 5. The mean ± the standard deviation is provided for each
E-dimensional space. The results written in bold script indicate that the theoretical ID
falls within the mean value ± one standard deviation.

Finally, the number of E-dimensional spaces, for which M2 can be cal-
culated, decreases as N is reduced. The reason is that it becomes less likely
that at least two points will fall into the same cell at small scales when
E � 1. Nevertheless, whatever N , the bias affecting RI2(`) is always no-
ticeable for the greatest E and tends to lead to an underestimation of ID
in any case.

Similar comments can be made about the results obtained for the Can-
tor sets (see Figure 4). For this second category of data, the interval of the
parameter `−1 follows a geometric series with ratio r = 3 and ranges from
1 to 81. In this way, the grid used for the computation of both log (I2,`)
and RI2(`) is in accordance with the mathematical construction of a Can-
tor set. For the same arguments as those previously set out, M2 turns out
to be a more reliable estimator of ID than D2: here as well, a bias affects
the behaviour of RI2(`) when the number of points in occupied cells is low.
It is also interesting to notice that M2 can be computed up to E = 5 for
N = 8192, although the lowest considered scale ` is smaller than it was for
the uniform point clouds. This is due to the dimension of the data manifold
that is systematically less than E. As a consequence, a Cantor set is not
space-filling and it is more likely that at least two points will fall into the
same cell than it would be if the N data points were randomly distributed
within the entire Euclidean space. This observation highlights that the
curse of ID [12] (i.e. the problems induced by a high ID) is a central issue
when studying high-dimensional spaces.

The Cantor sets were also used to assess the accuracy of Mm and Dm

for m greater than 2. Tables 1 and 2 show the results for, respectively,
N = 65 536 and N = 8192. In both cases, Mm provides results closer
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N = 8192 M2 D2 M3 D3 M5 D5

E = 1 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00
E = 2 1.26 ± 0.00 1.26 ± 0.00 1.26 ± 0.00 1.25 ± 0.00 1.26 ± 0.00 1.25 ± 0.00
E = 3 1.90 ± 0.00 1.82 ± 0.00 1.90 ± 0.00 1.80 ± 0.00 1.90 ± 0.01 1.76 ± 0.00
E = 4 2.53 ± 0.01 - 2.53 ± 0.03 - - -
E = 5 3.16 ± 0.04 - - - - -
E = 6 - - - - - -
E = 7 - - - - - -

Table 2: The results of the application of Mm and Dm to 100 Cantor sets of 8192 points
for m = 2, m = 3 and m = 5. The mean ± the standard deviation is provided for each
E-dimensional space. The results written in bold script indicate that the theoretical ID
falls within the mean value ± one standard deviation.

to the theoretical ID than those yielded by Dm for E > 2. Nevertheless,
the difference between the two estimators is lessened as the value of m
is increased. This follows from Equation 20: when m (m = q) is high,
the impact of the inequality is negligible, while the implementation of Mm

requires more data points than that of Dm.

4.3. Comparison Between M2 and the Distance-Based Estimators Using
Synthetic Data
M2 was also compared to the other estimators of ID presented in Sec-

tion 2, namely dcor, m̂LB and m̂MG. The Swiss rolls and the uniform point
clouds were used for this task. The parameters of each estimator were set
using the Swiss rolls of 1000 points and stayed unchanged in the whole sub-
section. At each step, it was made sure that these parameters were close to
the ideal ones. RegardingM2, the interval of the parameter `−1 was chosen,
so that it ranged from 5 to 15 and the two MLE estimators were computed
with k going from 10 to 20. More challenging, the interval of the parameter
δ of dcor turned out to be relatively complicated to set, since it tended to
deviate from the ideal values as both N and E were increased. It was finally
decided to resort to percentiles and the problem was empirically solved as
follows: (a) 1 percent of the pairwise distances between points had to be
lower than the smallest δ and 7 percent of them had to be lower than the
largest one; (b) the range of the interval was divided by 100 to produce
intermediate values of δ. It is also worth mentioning that each variable was
rescaled, so that it ranged from 0 to 1. Such a transformation is mandatory
when working with data of different nature. Regarding dcor, m̂LB and m̂MG,
it amounts to using the Mahalanobis distance and, if the data are not noisy,
it has, of course, no influence on Mm (or Dq), since the grid employed in its
computation is also transformed.
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Swiss Roll N = 1000 N = 5000 N = 10 000
M2 2.03 ± 0.03 2.03± 0.01 2.03± 0.00
dcor 1.95± 0.01 1.94± 0.00 1.94± 0.00
m̂LB 1.95± 0.02 1.98± 0.01 1.98± 0.01
m̂MG 1.95± 0.02 1.98± 0.01 1.98± 0.00

Table 3: The results of the application of the four estimators to Swiss rolls of N = 1000,
N = 5000 and N = 10 000 points (100 sets for each N). The mean ± the standard
deviation of the estimators, computed over the 100 sets, is provided for each N . The
result written in bold script indicates that the theoretical ID falls within the mean value
± one standard deviation (the theoretical ID of the Swiss Roll is 2).

Tables 3 and 4 show the results (mean ± standard deviation computed
over 100 sets) provided by the four estimators for, respectively, the Swiss
rolls and the uniform point clouds. The values yielded by the four esti-
mators are similar when the data points are densely distributed on their
manifold. This situation is encountered for the Swiss rolls and for relatively
low E and high N in the case of the uniform distributions. When the data
points are sparse (low N and/or high theoretical ID) and provided that it
can be calculated,M2 provides better ID estimates. dcor, m̂LB and m̂MG are
always able to yield a result, but, when the data are simply too sparse for
M2 to be computed, they tend to seriously underestimate the true ID of the
data. The underestimation reduces as N increases and it can be assumed
that it is caused (at least partially) by edge effects.

Several Edge effect corrections have been proposed and thoroughly stud-
ied in spatial data analysis [62], but the problem has often been overlooked
in ID estimation methods. dcor appears to be more affected by this problem
than the other estimators. Nevertheless, the case of dcor is difficult to deal
with, since the ideal range of the parameter δ is very sensitive to N and E.
Consequently, concerning the uniform distribution clouds, it was decided
that a new series of 10 estimations would be carried out for N = 5000 and
N = 10 000 with improved parameters. The results appear in italics in Ta-
ble 4 and reveal that the modifications have improved the estimates, even
if m̂LB and m̂MG stay better.
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M2 dcor m̂LB m̂MG

N = 1000

E = 1 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
E = 2 2.00 ± 0.01 1.91± 0.01 1.95± 0.02 1.95± 0.02
E = 3 3.00 ± 0.05 2.74± 0.02 2.83± 0.02 2.83± 0.03
E = 4 4.04 ± 0.19 3.51± 0.03 3.66± 0.03 3.65± 0.04
E = 5 - 4.24± 0.04 4.45± 0.05 4.44± 0.05
E = 6 - 4.93± 0.04 5.20± 0.06 5.20± 0.06
E = 7 - 5.59± 0.04 5.92± 0.07 5.92± 0.07

N = 5000

E = 1 1.00 ± 0.00 0.99± 0.00
1 .00 ± 0 .00 1.00 ± 0.00 1.00 ± 0.00

E = 2 2.00 ± 0.00 1.91± 0.01
1 .95 ± 0 .00 1.98± 0.01 1.98± 0.01

E = 3 3.00 ± 0.01 2.74± 0.01
2 .84 ± 0 .01 2.90± 0.01 2.90± 0.01

E = 4 4.00 ± 0.04 3.51± 0.01
3 .68 ± 0 .01 3.78± 0.02 3.77± 0.02

E = 5 5.02 ± 0.13 4.24± 0.01
4 .47 ± 0 .02 4.61± 0.02 4.60± 0.02

E = 6 - 4.93± 0.01
5 .22 ± 0 .01 5.40± 0.03 5.40± 0.03

E = 7 - 5.58± 0.01
5 .94 ± 0 .01 6.18± 0.03 6.17± 0.03

N = 10 000

E = 1 1.00 ± 0.00 0.99± 0.00
1 .00 ± 0 .00 1.00 ± 0.00 1.00 ± 0.00

E = 2 2.00 ± 0.00 1.91± 0.00
1 .97 ± 0 .00 1.98± 0.00 1.98± 0.01

E = 3 3.00 ± 0.00 2.74± 0.01
2 .90 ± 0 .01 2.93± 0.01 2.92± 0.01

E = 4 4.00 ± 0.02 3.51± 0.01
3 .78 ± 0 .01 3.82± 0.01 3.81± 0.01

E = 5 5.00 ± 0.08 4.24± 0.01
4 .62 ± 0 .01 4.66± 0.02 4.66± 0.02

E = 6 6.06 ± 0.24 4.93± 0.01
5 .42 ± 0 .01 5.48± 0.02 5.47± 0.02

E = 7 - 5.58± 0.01
6 .19 ± 0 .02 6.27± 0.02 6.26± 0.02

Table 4: The results of the application of the four estimators to uniform distribution
clouds of N = 1000, N = 5000 and N = 10 000 points (100 sets for each N). The mean
± standard deviation, computed over the 100 sets, is provided for each N . The results
written in bold script indicate that the theoretical ID falls within the mean value ± one
standard deviation (the theoretical ID of a uniform point cloud is E).
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Figure 5: (left) Application of M2, m̂LB and m̂MG to noisy Swiss rolls of N = 1000;
(right) Application of M2 to noisy Swiss rolls of N = 1000, N = 5000 and N = 10 000.
The x-axis represents the standard deviation of the noise and, for each level, 100 sets are
considered.

4.4. Comparison Between the Estimators Using Noisy Synthetic Data
The presence of noise implies that the data points are located near a

manifold instead of being exactly on it [28]. Consequently, a robust ID
estimator should be as insensitive to noise as possible. In order to test the
robustness of M2, the noisy Swiss rolls, presented in Subsection 4.1, were
used and the results are displayed in Figure 5. On the left, a comparison
between M2, m̂LB and m̂MG was conducted to show how the mean and
the standard deviation of the estimates (computed over 100 sets) change
as the noise increases. Leaving aside the initial difference, the sensitivity
of the three estimators appears to be similar. The right hand-side of the
figure highlights that the number of points N has a low influence on the
responsiveness ofM2 to noise. These results demonstrate that the behaviour
of M2 in presence of noise is not better or worse than that of the other two
estimators.

4.5. Comparison Between the Estimators Using Real Data
M2, D2, m̂LB, m̂MG and dcor were used to estimate the ID of four real

datasets from the UCI machine learning repository: (1) Housing values in
suburbs of Boston, (2) Statlog (vehicle silhouettes), (3) Statlog (image seg-
mentation) and (4) Combined cycle power plant. The output variables and
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the duplicate events were removed. The number of points N and the num-
ber of variables E of the resulting datasets are indicated in Table 5. Notice
that the true ID of real data is unknown and the goal of this subsection is
to show that the results provided by M2 are coherent with the theory and
with the observations made for the synthetic data.

Figure 6: Application of I2,` and RI2(`) to four real datasets

Figure 6 shows the linear regressions required for the computation ofM2
and D2. Here as well, RI2(`) appears to converge to a constant value as `
decreases. The departure from the power law denoted by the dashed line is
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Real Data Housing Values Vehicle Silhouettes Image Segmentation Power Plant
N 506 846 2086 9527
E 13 18 19 4

M2
3.02

`−1 ∈ {2, 3 · · · , 19}
6.04

`−1 ∈ {2, 3 · · · , 10}
2.84

`−1 ∈ {2, 3 · · · , 19}
3.05

`−1 ∈ {5, 6 · · · , 19}

D2
2.73

`−1 ∈ {2, 3, 4}
5.02

`−1 ∈ {2, 3}
2.99

`−1 ∈ {2, 3, 4, 5, 6}
2.84

`−1 ∈ {5, 6 · · · , 19}

m̂LB
3.64

k ∈ {4, 5, · · · , 20}
5.63

k ∈ {3, 4, · · · , 11}
3.54

k ∈ {10, 11, · · · , 20}
3.11

k ∈ {4, 5, · · · , 20}

m̂MG
2.98

k ∈ {4, 5, · · · , 20}
5.57

k ∈ {3, 4, · · · , 11}
2.98

k ∈ {4, 5, · · · , 20}
2.78

k ∈ {4, 5, · · · , 20}

dcor
2.87

0.05 ≤ δ ≤ 0.5
4.98

0.1 ≤ δ ≤ 0.4
2.69

0.04 ≤ δ ≤ 0.15
2.97

0.02 ≤ δ ≤ 0.16

Table 5: Application of the ID estimators to four real datasets from the UCI machine
learning repository

more pronounced when N is relatively low and the assumed ID rather high
(according to the ID estimates of Table 5). This can be observed with the
vehicle silhouette data. In contrast, the power plant dataset is characterized
by a great number of points N and a relatively low ID (according to the
final ID estimates of Table 5). As a result, the entire range of the parameter
` can be used to perform linear regression. But, regarding M2, in each of
the case studies, the solid line is a good approximation of the behaviour of
log (I2,`) and all the values of ` can be systematically retained for ID estima-
tion. This primacy of M2 over D2 is in accordance with the results found
for the synthetic data, for which the Morisita estimator always provided
equivalent or better ID estimates than Dq. The variability of log (I2,`) for
small values of `, observed in the case of the vehicle silhouettes, was also
shown to have only a limited effect on the accuracy of M2 (see Figures 3
and 4). Based on this examination of Figure 6, M2 appears to adequately
capture the scaling properties of the four real world datasets.

The final ID estimates of the real world datasets are given in Table 5.
Although the results provided by D2 were computed by using only the red
points, they are less than those of M2, except for the image segmentation
data. It is also worth mentioning that D2 yields 3.09 for the power plant
dataset if it is calculated with only the three points on the right side of
the plot, which is close to the estimate of M2. These observations are co-
herent with the conclusions drawn from the synthetic data: for the lowest
considered values of `, the behaviour of RI2(`) can be evaluated by linear
regression and the corresponding ID estimates tend to slightly underesti-
mate both the ground truth and the values yielded by M2 over the entire
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range of examined scales. Besides, the difference between the two estima-
tors fades away for rather large N and low theoretical ID (see Figures 3
and 4). The power plant and the vehicle silhouette datasets are real world
illustrations of this last point. The number N of the former is large enough
to fully characterize a 3-dimensional space (the assumed ID is about 3 and
N = 9527), while the space where the latter resides is sparsely filled with
points (the assumed ID is greater than 5 and N = 846). As a result, the
range of ` and the final ID estimate of the two estimators differ more for
the vehicle silhouette dataset than for the power plant one. In each plot
of Figure 6, the difference is highlighted by the gap between the dashed
line and the actual values of RI2(`) at the lowest scales. It is large in the
case of the vehicle silhouettes, while it is non-existent for the power plant
data. The two remaining datasets (i.e. the housing values and the image
segmentation) are in an intermediate situation, as it is confirmed by the
values given in Table 5. Thus, the comparison between M2 and D2 using
real world data shows an excellent consistency with what was expected from
the theory and the synthetic data analysis.

Regarding the distance-based methods, the estimates of dfcor are, as
expected, lower than those provided by M2. In contrast, the results of m̂LB

and m̂MG tend to be less similar than for the synthetic data and they do
not systematically underestimate the values ofM2. These slight differences,
related to the complex specificities of the analysed datasets, do not question
the good performance of the suggested estimator. Indeed, in each of the case
studies, the values of M2 are close to, at least, one of the two MLE-based
results. And, finally, by comparison with the range of values yielded by
all the other estimators, it can be definitely maintained that M2 provides
sensible ID estimates.

5. Conclusion

The Morisita estimator, Mm, is a new tool for estimating the Intrinsic
Dimension (ID) of data. It is related to Rényi’s generalized dimensions,
Dq, for m = q ≥ 2. Mm tended to provide better results than Dq on the
synthetic data used in this study. This turned out to be particularly true
for order 2 (i.e. m = q = 2) when the data points were sparsely distributed.
The application to four real datasets from the UCI machine learning repos-
itory confirmed the good properties of the suggested estimator. From the
perspective of pattern recognition, M2 might be of great interest, since it
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could be a good replacement for D2 in algorithms, such as the fractal dimen-
sion algorithm [9, 12]. It might also open a new door to fractal supervised
feature selection [13] of large datasets (our current work in progress), since
its accuracy is coupled with a high computational efficiency.

M2 was also compared with three distance-based estimators, namely
dcor, m̂LB and m̂MG. It yielded good results when applied to the synthetic
data and, by comparison, the real world applications revealed that it was
able to provide reasonable ID estimates in challenging case studies. There-
fore, in addition to the above-mentioned application in feature selection,
the Morisita estimator of ID can be considered as a new tool for conducting
advanced data mining tasks (e.g. dimensionality reduction [3], monitoring
network analysis [36]) in many varied fields where the other estimators are
commonly used (e.g. pattern recognition [27], physics [46, 39], cosmology
[50], climatology [52] and ecology [47]).

Finally, it is also worth mentioning that the multipoint Morisita index is
a ratio of probabilities deep-rooted in the field of spatial clustering analysis.
Consequently, Mm can be viewed from a dual perspective, a fractal one and
a statistical one, which helps to interpret the results.
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