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Abstract

The aura concept has been developed from the set theory and is an efficient tool to characterize

texture images. It is based on the notion of “aura set” and on the associated “aura measure” that

involve the neighborhood of each image pixel. In this paper, we propose to extend this concept to the

framework of fuzzy sets in order to take the imprecise nature of images into account. We define the

notions of fuzzy aura sets and of aura measures to compute fuzzy aura matrices as texture descriptors.

Fuzzy aura measures assume no restrictions about the neighborhood shape, size, and spatial invariance.

Extensive tests of texture classification on Outex benchmark datasets show that fuzzy aura matrices

computed with spatially-variant neighborhoods often outperform other powerful texture descriptors

on both gray-level and color images.
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1. Introduction

The classification of texture images is a fundamental problem in computer vision [1] and many

texture features that characterize the relationships between gray levels of neighboring sites have been

proposed for texture classification [2]. Among them, those derived from Gray-Level Co-occurrence

Matrices (GLCMs) are very popular [3] because they provide good texture classification results [4]. A

GLCM well characterizes textures because it gathers all the spatial co-occurrences of the pairs of sites

associated to all the pairs of gray levels of an image.

Gray-Level Aura Matrices (GLAMs) proposed by Elfadel and Picard [5] rely on a set-theoretic

concept called the “aura set” which describes the relative presence of a set of sites with a given

gray level in the neighborhood of another set of sites with another gray level. An aura set can be

characterized by a number called “aura measure” that expresses the amount of mixing between the

two neighboring site sets. A GLAM gathers all the aura measures of the pairs of site sets associated

to all the pairs of gray levels present in an image.

With Elfadel and Picard’s aura measure, GLAMs can be viewed as a generalization of GLCMs

and their computation schemes are very similar. Formally, a co-occurrence is defined according to
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the direction and distance between two sites, whereas an aura measure uses a neighborhood with any

shape and size. A co-occurrence corresponds to a site-based viewpoint, whereas an aura measure is

based on sets of sites and provides an interpretation of gray-level co-occurrences as set boundaries.

GLAMs are therefore used for a few years as new tools for texture representation and synthesis [6, 7],

and image retrieval [8, 9], classification [10–15] and segmentation [16]. However, the original aura

measure produces GLAMs that do not strictly represent the aura sets of an image. In this paper, we

first propose a new cardinal-based measure and experimentally show that it better characterizes the

aura sets for texture classification purposes.

Digital images carry more or less fuzziness because of the imprecision inherent to the discretization

of both the spatial domain (sampling) and the levels (quantization). Hence, boundaries separating

the various image regions are not precisely defined and the site levels are imprecise measures of the

reflectance of the surfaces observed by the camera. Furthermore, the hypothesis that texture images are

mainly represented by spatial repetitions of a pattern may not be valid any longer. Image processing

techniques based on fuzzy concepts have then been proposed in order to take all these imprecisions into

account [17–19] and fuzzy GLCMs have been designed to characterize texture images [20–23]. Another

contribution of this paper is a generalization of aura measures to the fuzzy framework. We consider

both Elfadel and Picard’s aura measure and our cardinal-based one to characterize fuzzy aura sets,

and show that fuzzy GLAMs are more relevant descriptors of texture images than GLCMs.

All the works about the aura set cited before follow Elfadel and Picard’s seminal proposal and

consider spatially-invariant neighborhoods. The underlying assumption is that the neighborhood of

each site is the translate of a generic neighborhood, as for structuring elements used by mathematical

morphology. The last contribution of this paper is to show that the aura set theory can drop this

restriction by defining neighborhoods that are specific to each site. In the context of fuzzy sets,

we illustrate that adaptive neighborhoods are useful for image analysis, with texture classification

as an example. Such interest is investigated by Verdú-Monedero et al. [24] and by Landström and

Thurley [25] with a formulation using mathematical morphology. We show that the aura definitions

provide an elegant formalism as well to deal with spatially-variant neighborhoods and that the derived

measures efficiently hold such adaptability.

The rest of the paper is organized as follows. The second section recalls some definitions and

properties of the aura concept in the context of crisp sets, and explains how to apply it to describe

textures by GLAMs. In the third section, we extend these definitions to fuzzy sets and propose the

fuzzy GLAMs to overcome the limitations of crisp aura sets for texture analysis. The fourth section

highlights how spatially-variant neighborhoods can be useful to represent images by fuzzy GLAMs in

different cases of image degradation. By reporting experimental results, the fifth section shows the

benefits of the proposed approach for texture classification.
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2. Crisp aura

In this section, we recall some definitions in relation to the aura concept applied to a gray-level im-

age, namely the aura set, aura measure, and gray-level aura matrix. More details about the properties

and demonstrations of the notions given below can be found in [5]. Measures derived from the aura

concept are used to characterize the spatial distribution of the gray levels. We show the limitations of

these measures to recognize gray-level texture images when acquisition conditions vary.

2.1. Aura sets of a gray-level image

To define an image, let us consider a finite lattice S fitted with a neighborhood structure N =

{Ns, s ∈ S}, where Ns is a neighborhood of the site s. Let us now consider a gray-level image I

quantized with q levels and defined on S, such that each site s ∈ S is characterized by its gray level

I(s). We call gray-level set the set Sg ⊆ S of sites with a given gray level g, 0 ≤ g ≤ q − 1, namely

Sg = {s ∈ S, I(s) = g}. Then, {Sg, 0 ≤ g ≤ q − 1} is a partition of S such that
⋃q−1

g=0 Sg = S and

Sg ∩ Sg′ = ∅ for g 6= g′.

Definition 1. Let Sg and Sg′ be two gray-level sets. The aura set OSg′
(Sg) of Sg with respect to Sg′

for the neighborhood structure N is defined by [5]1:

OSg′
(Sg) =

⋃

s∈Sg

(Ns ∩ Sg′) . (1)

It is the subset of Sg′ composed of the sites that are present in the neighborhood of those of Sg. It

provides an interpretation of the presence of Sg′ in the neighborhood of Sg.

Figure 1(a) shows a gray-level image defined on a 5 × 5 lattice S and two gray-level sets S2 and

S3. For the neighborhood Ns defined identically at any site s as shown in figure 1(b), the aura set

OS3
(S2) of S2 with respect to S3 is composed of the sites marked as boxes in figure 1(c). Note that it

differs from the aura set OS2
(S3) of S3 with respect to S2, composed of the sites marked as diamonds

in figure 1(d).

When the neighborhood Ns is defined identically at any site s, it can be viewed as a translation

at each site of a generic neighborhood denoted as N and called the structuring element. The aura set

of a gray-level set Sg with respect to Sg′ can then be defined using the basic morphological dilation

operator ⊕ as the intersection between Sg′ and Sg dilated by N [5]:

OSg′
(Sg) = (Sg ⊕N ) ∩ Sg′ . (2)

1Like Elfadel and Picard, we omit the notational dependency of the aura set on N because this neighborhood structure

is given once and for all.
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(d) Aura set
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(e) Local-count aura

measure ml(2, 3)

(arrows)

Figure 1: Examples of two aura sets on a simple gray-level image.

2.2. Aura measures and gray-level aura matrices

Elfadel and Picard [5] define the aura measure as a function on the lattice S that characterizes an

aura set. The gray-level aura matrix is a representation of the aura measures for all the possible pairs

of gray-level sets in the lattice. This compact representation can be used as a descriptor of gray-level

texture images. In the following, we present two aura measures that characterize the size of an aura

set, and their associated aura matrices.

2.2.1. Local-count aura measure and aura matrix

The aura measure proposed by Elfadel and Picard is defined as the number of times that a site of

Sg′ is in the neighborhood of a site of Sg. To get the measure value for two given gray-level sets Sg

and Sg′ and a given neighborhood structure N, one needs to examine the neighborhood Ns of each

site s of Sg and to count the sites of Sg′ . We therefore refer to Elfadel and Picard’s measure as the

local-count aura measure and denote it as ml(g, g
′).

Definition 2. The local-count aura measure of a gray-level set Sg with respect to a set Sg′ according

to the neighborhood structure N = {Ns, s ∈ S} is defined as:

ml(g, g
′) =

∑

s∈Sg

|Ns ∩ Sg′ | , (3)

where |·| is the cardinal operator. The corresponding local-count GLAM (GLAMl), denoted as Ml, is

the q × q integer matrix defined by Ml = [ml(g, g
′)], 0 ≤ g, g′ ≤ q − 1.

As noted by Elfadel and Picard [5], the local-count aura matrix is closely related to the gray-level

co-occurrence matrix (GLCM) defined as the q × q matrix C =
[

ct(g, g′)
]

whose element (g, g′) is the

number of pairs of sites with gray levels g and g′ that are related by a translation vector t [3]:

ct(g, g′) =
∣

∣(s, s+ t) ∈ S2, (I(s) = g) ∧ (I(s+ t) = g′)
∣

∣ .
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Indeed, when the neighborhood Ns ≡ N t

s
= {s+ t} specifically contains only one neighbor, a GLAMl

is identical to a GLCM because ml(g, g
′) can be interpreted as the number of co-occurrences of sites

s with gray level g and neighboring sites s + t with gray level g′ [5]. When Ns is more generally

composed of n neighbors, it can be decomposed as Ns =
⋃n

i=1 N ti
s

into n disjoint basic neighborhoods

N ti
s
, each containing only one neighbor given by its translation ti from s. Hence,

ml(g, g
′) =

n
∑

i=1

cti(g, g′) , (4)

such that a GLAMl can be considered as a sum of GLCMs taken over these n basic neighborhoods.

2.2.2. Cardinal aura measure and aura matrix

The above measure is adopted by most authors because it generalizes GLCMs and is well suited to

image synthesis or processing problems [6–16, 26]. However, this measure does not actually evaluate

the number of sites of Sg′ that are neighbors of any site of Sg, i.e., the number of sites that belong to

OSg′
(Sg). We therefore also consider the most straightforward way to measure the size of an aura set,

namely by its cardinal. We call it the cardinal aura measure and denote it as mc(g, g
′).

Definition 3. We define the cardinal aura measure of a gray-level set Sg with respect to a set Sg′

according to the neighborhood structure N as:

mc(g, g
′) =

∣

∣

∣OSg′
(Sg)

∣

∣

∣

(1)
=

∣

∣

∣

∣

∣

∣

⋃

s∈Sg

(Ns ∩ Sg′)

∣

∣

∣

∣

∣

∣

. (5)

The corresponding cardinal GLAM (GLAMc), denoted as Mc, is the q × q integer matrix defined by

Mc = [mc(g, g
′)], 0 ≤ g, g′ ≤ q − 1.

2.2.3. Numerical examples and interpretation

Figure 1 is a numerical example for the above two aura measures. Figure 1(e) shows how to compute

the local-count aura measure for g = 2, g′ = 3, and for the neighborhood defined at all sites s as shown

in figure 1(b): the 9 arrows give ml(2, 3). On figures 1(c) and 1(d), we directly read the cardinal aura

measures mc(2, 3) = 7 as the number of boxes and mc(3, 2) = 5 as the number of diamonds.

The local-count aura measure evaluates the number of times that a site of Sg′ is a neighbor of a

site of Sg, whereas the cardinal aura measure evaluates the number of sites of Sg′ that are neighbors

of a site of Sg. A high value for these two measures indicates that a lot of the sites of the two sets are

close and/or mixed according to the neighborhood structure N. A low value indicates that Sg and Sg′

are rather separated from each other.

We retain both measures to compare the texture discriminative power of their respective aura

matrices Ml and Mc used as texture descriptors. For example, the two aura matrices of the image
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(a) Texture image Io

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

0 0 4 5 1 0 4 5

(b) Degraded texture

image Id

Figure 2: A synthetic gray-level texture image and its degraded version.

shown in figure 1(a) built with the neighborhood of figure 1(b) are:

Ml =





0 3 3 12
3 0 0 0
2 0 4 9
13 0 9 2



 and Mc =





0 2 2 8
3 0 0 0
2 0 3 7
8 0 5 2



 .

Note that ml(g, g
′) ≥ mc(g, g

′) for any pair of gray levels (g, g′) [5], but all the cells that are zero in

Mc are also zero in Ml. However, the highest values do not occur exactly in the same cells: the cell

(0, 3) contains the highest value of Mc but not of Ml.

In the remainder of this paper, a gray-level aura matrix is simply called GLAM and denoted M

when the aura measure can be either of the above two, and similarly in the fuzzy case.

2.3. Limitations of crisp aura

Texture images always exhibit some degradations due to the imperfections in the image acquisition

and encoding processes. In order to show the limitations of GLAMs to characterize such an imprecise

texture information, let us consider a synthetic and simple texture image Io that represents four binary

stripes (see figure 2(a)) and its degraded version Id (see figure 2(b)). Both are defined on a 8×8 lattice

S and quantized with q = 6 levels. Computing the GLAMs with the neighborhood of figure 1(b), we

get for each image and each aura measure2:

Ml[Io] =











60 0 0 0 0 24
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
24 0 0 0 0 60











and Ml[Id] =











37 8 0 0 16 0
8 7 0 0 0 8
0 0 0 0 0 0
0 0 0 0 0 0

16 0 0 0 14 16
0 8 0 0 16 14











,

and:

Mc[Io] =











32 0 0 0 0 24
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
24 0 0 0 0 32











and Mc[Id] =











23 8 0 0 16 0
8 7 0 0 0 8
0 0 0 0 0 0
0 0 0 0 0 0
16 0 0 0 14 16
0 8 0 0 16 14











.

2When required, like here, the source image is appended to a GLAM M or a fuzzy GLAM M̃ .
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Let us measure the similarity between these two images by the intersection between their normalized

GLAMs3, defined as (see section 3.3.4 for a detailed discussion):

Inter (M [Io],M [Id]) =

q−1
∑

g=0

q−1
∑

g′=0

min

(

M [Io](g, g
′)

∑q−1
a=0

∑q−1
a′=0 M [Io](a, a′)

,
M [Id](g, g

′)
∑q−1

a=0

∑q−1
a′=0 M [Id](a, a′)

)

.

The intersection between the texture image and its degraded version is either equal to Inter (Ml[Io],Ml[Id]) =

0.304 or to Inter (Mc[Io],Mc[Id]) = 0.240, according to the aura measure used. Given that the inter-

section value ranges from 0 (for very different images) to 1 (very similar images), these low values show

that GLAMs can be strongly affected by small changes of some gray levels. To avoid this problem, we

propose to incorporate the notion of fuzzy sets in the aura concept.

3. Fuzzy aura

In this section, we first recall some notions about fuzzy sets and fuzzy numbers that are used to

introduce fuzzy sets of a gray-level image. We then extend the aura concept to these so-called “fuzzy

gray-level sets” and we explain how it is used to build fuzzy GLAMs (FGLAMs).

3.1. Fuzzy gray-level set

In the fuzzy set theory, the set S of all sites is called the universal set and a fuzzy subset S of the

universal set can be represented by a function µS : S → [0, 1], called the membership function of S.

The value µS(s) represents the membership degree of the site s to the set S. The ordinary subsets of S,
called crisp sets, can be considered as particular cases of its fuzzy subsets for which the membership

degree is restricted to {0, 1}. Given a gray-level image I defined on S and quantized with q levels,

and a gray level g, 0 ≤ g ≤ q − 1, we call fuzzy gray-level set the fuzzy set Sg ⊆ S defined by its

membership function µSg
(i.e., by the membership degree µSg

(s) of each site s ∈ S).
To define µSg

, we consider the gray levels as fuzzy numbers defined by Jawahar and Ray [20]. A

fuzzy number g̃ is characterized by its membership function µg̃(x) : R → [0, 1] that can be defined in

several ways [27]. It often takes the form µg̃(x) = f (|x− g|), where f is a function which controls the

shape of the fuzzy number and g is the crisp counterpart of the fuzzy number g̃ [20, 22]. Some types

of fuzzy numbers are particularly important, notably in applied fuzzy arithmetic [28]. Among them

3A GLAM M is said to be normalized iff
∑

g,g′ m(g, g′) = 1. The normalization step ensures that two GLAMs are

comparable even if the size of their source images are different or/and if the sum of all the cells in each GLAM differs,

like for Mc[Io] and Mc[Id] in this example.
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are the symmetrical Gaussian and the triangular fuzzy numbers g̃ whose membership degrees of x ∈ R

are:

µg̃(x) = exp

(

− (x− g)2

2α2

)

(6)

and:

µg̃(x) = max

(

0, 1− |x− g|
α

)

, (7)

where α is a real positive constant which controls the span of the fuzzy number. The triangular fuzzy

number is used for example by Jawahar and Ray for texture representation [20]. Its membership

degree equals 1 at x = g, decreases as the difference between x and g increases, and cancels out when

|x− g| ≥ α.

When fuzzy numbers are gray levels, the membership degree of each site s to the fuzzy set Sg is

the membership degree µg̃ (I(s)) of the gray level I(s) to the fuzzy number g̃:

µSg
(s) = µg̃ (I(s)) , (8)

where the discrete membership function µg̃ : [0, . . . , q − 1] → [0, 1] defines the fuzzy number g̃.

3.2. Fuzzy aura set

3.2.1. Definition

In the fuzzy framework, the neighborhood Ns of a site s is now a fuzzy subset of S. The neighbor-

hood of each site s ∈ S is hence defined as a (membership) function of all the sites r ∈ S, hereafter
referred to as the neighborhood function and denoted as vs(r). In other words, vs(r) is the membership

degree of any site r to the neighborhood of a specific site s.

Definition 4. Let Sg and Sg′ be two fuzzy gray-level sets defined by their membership functions µSg

and µSg′
. We define the fuzzy aura OSg′

(Sg) of Sg with respect to Sg′ as the fuzzy subset of S with

the following membership degree at each site r ∈ S:

µOS
g′

(Sg)(r) = min

{

sup
s∈S

[

min
(

µSg
(s), vs(r)

)]

, µSg′
(r)

}

(9)

Justification. The crisp aura set (see equation (1)) can be rewritten as:

OSg′
(Sg) =

⋃

s∈S

(Ns,Sg
∩ Sg′) , (10)

whereNs,Sg
is the crisp set containing the neighboring sites r of each site s ∈ Sg: Ns,Sg

= {r ∈ S, (s ∈ Sg) ∧ (r ∈ Ns)}.
Its fuzzy counterpart is defined by the following membership degree at each site r ∈ S:

µNs,Sg
(r) = min

(

µSg
(s), vs(r)

)

. (11)
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(a) Ns (s: site of

interest, r: neighbors)

0

(b)

Ňr0
= {s ∈ S, r0 ∈ Ns}

(diamonds)

(c) Ňr (r: site of

interest, s: neighbors)

Figure 3: Transposed neighborhood.

In this expression, the crisp logical operator and (∧) is transcribed by the fuzzy operator min, and the

membership of r to the neighborhood of s is transcribed by the degree vs(r).

According to the fuzzy set theory [29], we define the fuzzy set Ns,Sg
∩ Sg′ of equation (10) by its

membership function given by:

µNs,Sg∩Sg′
(r) = min

[

µNs,Sg
(r), µSg′

(r)
]

. (12)

The fuzzy aura set is defined by analogy with the crisp case. The crisp set union operator
⋃

of

equation (10) is transcribed by the fuzzy operator sup [29] to get the membership degree of the fuzzy

aura set at each site r ∈ S:

µOS
g′

(Sg)(r) = sup
s∈S

(

µNs,Sg∩Sg′
(r)
)

(12)
= sup

s∈S

{

min
[

µNs,Sg
(r), µSg′

(r)
]}

= min

{

sup
s∈S

[

µNs,Sg
(r)
]

, µSg′
(r)

}

(13)

Inserting the definition of µNs,Sg
(r) from equation (11) provides equation (9).

3.2.2. Illustrative example

To illustrate the computation of fuzzy aura sets according to equation (9), let us consider the

neighborhood function vs(r) defined identically at any site s as the crisp neighborhoodNs of figure 1(b)

recalled in figure 3(a):

vs(r) =
{

1 if (‖r− s‖1 ≤ 1) ∧ (r− s 6= (0, 1)⊺),
0 otherwise. (14)

At each site r, the sites s that satisfy vs(r) = 1 belong to the neighborhood defined by the transposition

of Ns, i.e., the neighborhood (usually denoted as Ňr) reflected about the site of interest r. This is

illustrated in figure 3(b) for a site r0 (the sites s of which r0 is a neighbor being shown as diamonds),

and generalized to any site r in figure 3(c).
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0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

0 0 0.5 1 0 0 0.5 1

(a) Membership function µS5
(b) sup

s∈S

[

min
(

µS5
(s), vs(r)

)]

(c) Membership function µS0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0.5 0 0

(d) Membership function µOS0
(S5) (e) Membership function µS3

(f) Membership function µOS3
(S5)

Figure 4: Examples of fuzzy aura sets OS0
(S5) ((a)–(d)) and OS3

(S5) ((e)–(f)) computed on image Id of figure 2(b) with the

neighborhood function vs(r) defined by equation (14). See text for box and diamond captions.
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Figure 4 shows two examples of fuzzy aura sets computed on the degraded synthetic texture image

Id of figure 2(b) with the above neighborhood function. Figures 4(a)–4(d) illustrate the computation

of Os0(S5) as first example. Figures 4(a) and 4(c) show the membership degrees µS5
(s) and µS0

(s)

of each site s to the fuzzy sets S5 and S0. They are defined according to equations (7) and (8) of

the triangular membership function with α = 2. Equation (13) states that the membership degree

of Os0(S5) at each site r is the minimum between µS0
(r) and sup

s∈S

[

µNs,S5
(r)
]

. Figure 4(b) shows

sup
s∈S

[

µNs,S5
(r)
]

= sup
s∈S

[min (µS5
(s), vs(r))] for all r ∈ S. For four sample sites r shown as boxes in

figure 4(a), the three sites s belonging to Ňr are shown as diamonds. At each site r, the maximal

of these three values is retained as sup
s∈S

[min (µS5
(s), vs(r))] (simplified as sup

s∈Ňr

[µS5
(s)] since vs(r) is

binary), which provides the values of figure 4(b). Note that vs(r) is binary for simplicity purposes in

this example but may more generally take any real value between 0 and 1. At last, figure 4(d) gives the

membership function of the fuzzy aura set OS0
(S5) computed as the site-wise minimum of figures 4(b)

and 4(c) (see equation (9)). The same four sample sites are shown as boxes in all figures to be easily

located. This example shows that the membership degrees of sites whose gray levels are different from

0 and 5 (here, 1) can be non-zero in the fuzzy aura set OS0
(S5).

Figures 4(e)–4(f) illustrate the computation of Os3(S5) as second example. Figure 4(e) shows that

the membership function µS3
is not identically zero even if the gray level 3 is absent from the image,

allowing S3 to have a non-empty intersection with another fuzzy set. For instance, figure 4(f) shows

that the fuzzy aura set OS3
(S5) is either not identically zero. This example illustrates that gray levels

absent from the image (but close to existing ones) can contribute to a fuzzy aura set, which was not

the case for crisp sets.

3.2.3. Morphological formulation of a fuzzy aura set

As in the crisp case (see equation (2)), when the neighborhood is defined identically at any site

s, the fuzzy aura set can also be defined using a morphological dilation. In the framework of fuzzy

mathematical morphology, the structuring element is a fuzzy set defined by its membership function

v known as the structuring function. The most classical definition of the dilation of a fuzzy set Sg by

v is at each site s ∈ S [30]:

D2v(µSg
)(s) = sup

r∈S

[

min
(

µSg
(r), v(r− s)

)]

.

Here, the structuring function v depends on the translation vector r − s and corresponds to the

neighborhood function vs(r) provided that the latter is spatially invariant. The fuzzy aura set can
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then be defined by transcribing the crisp morphological formulation (2) as:

µOS
g′

(Sg)(s) = min

{

sup
r∈S

[

min
(

µSg
(r), vs(r)

)]

, µSg′
(s)

}

.

Swapping variables r and s we get:

µOS
g′

(Sg)(r) = min

{

sup
s∈S

[

min
(

µSg
(s), vr(s)

)]

, µSg′
(r)

}

.

This morphological definition of a fuzzy aura set is fully consistent with equation (9) provided that

vr(s) identifies to vs(r), i.e., that the neighborhood function is symmetric and spatially invariant.

3.3. Fuzzy aura measures and matrices

To characterize the spatial repartition of gray levels, we deduce two fuzzy aura measures of a fuzzy

set Sg with respect to a fuzzy set Sg′ from their crisp counterparts (see section 2.2).

3.3.1. Fuzzy local-count aura measure

Definition 5. The fuzzy local-count aura measure m̃l(g, g
′) is defined as:

m̃l(g, g
′) =

∑

r∈S

∑

s∈S

min
{

min
[

µSg
(s), vs(r)

]

, µSg′
(r)
}

. (15)

Note that in the case of a binary neighborhood function, each pair of sites (r, s) for which vs(r) = 1

contributes to m̃l(g, g
′) by adding the minimum between µSg

(s) and µSg′
(r).

Justification. Following the definition of Ns,Sg
(see equation (10)), the crisp local-count aura mea-

sure of Sg with respect to Sg′ given by equation (3) can be rewritten as ml(g, g
′) =

∑

s∈S

∣

∣Ns,Sg
∩ Sg′

∣

∣.

Given that the cardinal of a fuzzy set S is |S| = ∑

r∈S

µS(r) [29], the fuzzy local-count aura measure of

the fuzzy gray-level set Sg with respect to Sg′ is defined by analogy with the crisp case as:

m̃l(g, g
′) =

∑

s∈S

∑

r∈S

µNs,Sg∩Sg′
(r) . (16)

The membership degree µNs,Sg∩Sg′
(r) is deduced from equations (11) and (12) as:

µNs,Sg∩Sg′
(r) = min

{

min
[

µSg
(s), vs(r)

]

, µSg′
(r)
}

. (17)

Inserting this expression into (16) yields equation (15) of the fuzzy local-count aura measure.

3.3.2. Fuzzy cardinal aura measure

Definition 6. The fuzzy cardinal aura measure m̃c(g, g
′) is exactly defined as in the crisp case (see

equation (5)) and directly follows from equation (9):

m̃c(g, g
′) =

∑

r∈S

min

{

sup
s∈S

[

min
(

µSg
(s), vs(r)

)]

, µSg′
(r)

}

, (18)
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given that m̃c(g, g
′) =

∣

∣

∣OSg′
(Sg)

∣

∣

∣ =
∑

r∈S
µOS

g′
(Sg)(r).

Note that this definition differs from that of ml (see equation (15)) because it uses a sup over s

instead of a sum. In the case of a binary neighborhood function, for each site r we look for the sites s of

which r is a neighbor (vs(r) = 1) and determine the maximal value of µSg
(s) among them. Then, the

site r contributes to mc(g, g
′) by the minimum between this maximal value and its own membership

degree µSg′
(r) to Sg′ .

In the examples of figure 4, the fuzzy local-count aura measures are m̃l(5, 0) = 12 and m̃l(5, 3) = 15.

The fuzzy cardinal aura measures are easier to compute by hand from figures 4(d) and 4(f), and

evaluate to m̃c(5, 0) =
∑

r∈S
µOS0

(S5)(r) = 12 and m̃c(5, 3) = 8. As in the crisp case, these measures

satisfy m̃l(g, g
′) ≥ m̃c(g, g

′) (see proof in appendix A).

3.3.3. Fuzzy gray-level aura matrices

Following the crisp scheme, we define a fuzzy aura matrix as a representation of the fuzzy aura

measures for all the pairs of fuzzy sets in the lattice given by the gray level pairs (g, g′). However, we

only consider some of the q gray levels on which the image is quantized, namely the set G of p levels

such that p ≤ q. The latter are the crisp counterparts of the retained fuzzy numbers, respectively

denoted as g and g̃ in equation (7). This allows us to reduce the size of FGLAMs used as texture

descriptors.

Definition 7. The local-count FGLAM (FGLAMl), denoted as M̃l, is the p × p real matrix defined

by M̃l = [m̃l(g, g
′)], (g, g′) ∈ G2.

Note that as in the crisp case (see section 2.2.1), when the neighborhood function vs(r) is binary

and equals 1 for a single neighbor only, a FGLAMl is identical to a fuzzy GLCM (FGLCM) (see proof

in appendix B.1). More generally, for a neighborhood composed of n neighbors, a FGLAMl can be

written as a sum of n “basic” local-count FGLAMs provided that the neighborhood function is binary

and only depends on r− s (see proof in appendix B.2).

Definition 8. The cardinal FGLAM (FGLAMc), denoted as M̃c, is the p× p real matrix defined by

M̃c = [m̃c(g, g
′)], (g, g′) ∈ G2.

The FGLAMs of the texture image Io and the degraded texture image Id shown in figure 2, built

with the neighborhood function of equation (14), are for each fuzzy aura measure:

M̃l[Io] =











60 30 0 0 12 24
30 30 0 0 12 12
0 0 0 0 0 0
0 0 0 0 0 0
12 12 0 0 30 30
24 12 0 0 30 60











and M̃l[Id] =











48.5 34 7.5 8 20 12
34 33.5 7.5 8 12 16
7.5 7.5 3.5 0 4 4
8 8 0 7 15 15

20 12 4 15 37 38
12 16 4 15 38 37











,
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and:

M̃c[Io] =











32 16 0 0 12 24
16 16 0 0 12 12
0 0 0 0 0 0
0 0 0 0 0 0
12 12 0 0 16 16
24 12 0 0 16 32











and M̃c[Id] =











27.5 20 4 8 20 12
20 19.5 4 8 12 16
7.5 7.5 3.5 0 4 4
8 8 0 7 15 15

20 12 4 8 23 24
12 16 4 8 24 23











.

We see that some cells of these FGLAMs are non-zero although the corresponding levels are absent

from the image, which was not the case in their crisp counterparts. For instance, M̃l[Id](3, 0) is 8 even

if no site of Id has the level 3, whereas Ml[Id](3, 0) equals 0 (see section 2.3). This is because when a

gray level g is absent from the image, the crisp set Sg is empty and any co-occurrence with this level

is zero. But the fuzzy set Sg may be non-empty, as already noticed for S3 in figure 4(e), allowing it

(or Ns,Sg
) to have a non-empty intersection with another fuzzy set.

3.3.4. FGLAM-based similarity measure

Like GLAMs, FGLAMs can be regarded as joint probability density functions provided they are

normalized. Therefore, any of the measures considered by Rubner et al. [31] to compare density

functions can be used as FGLAM-based similarity measure. Here, we retain the intersection [32]

between FGLAMs that is one of the simplest similarity measures. Note that we have also tested other

measures like the Jeffrey divergence, but without significant changes in classification results.

The similarity measure between two images I1 and I2 is given by the intersection between their

normalized FGLAMs, which expresses as:

Inter
(

M̃ [I1], M̃ [I2]
)

=
∑

(g,g′)∈G2

min











M̃ [I1](g, g
′)

∑

(a,a′)∈G2

M̃ [I1](a, a
′)
,

M̃ [I2](g, g
′)

∑

(a,a′)∈G2

M̃ [I2](a, a
′)











. (19)

When the two images share a similar spatial arrangement of gray levels, their similarity value is close

to 1. Although this does not necessarily mean that the two images contain the same texture, we

assume so. On the other hand, a similarity measure value close to 0 means that the two textures are

significantly different.

The similarity between the two example texture images Io and Id is evaluated from their FGLAMs

(see previous section) as Inter
(

M̃l[Io], M̃l[Id]
)

= 0.726 and Inter
(

M̃c[Io], M̃c[Id]
)

= 0.695. These

values are much higher than those measured between the normalized GLAMs (0.304 and 0.240), which

suggests that FGLAMs are less affected by image degradation than GLAMs.

3.3.5. Discussion

The main contribution of fuzzy aura is a formalization of the relationships between neighboring sites

thanks to the neighborhood function vs(r) (see equations (9), (15) and (18)). This function may have
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any support size and shape, and may take any real value between 0 and 1. Like classical neighborhood-

based approaches, we have considered in all examples that this function is spatially invariant. Under

this condition, we have shown that the fuzzy aura set can be reformulated in fuzzy morphological

terms when the neighborhood function is symmetric, and that the fuzzy local-count aura matrix can

be considered as a generalization of a fuzzy co-occurrence matrix when the neighborhood function is

binary.

However, designing an appropriate function vs(r) for texture characterization is not easy because

the fuzzy aura formalism is based on the comparison between the membership degrees to different

fuzzy sets (namely, the membership degree vs(r) of any site r to the neighborhood of a specific site s,

and the membership degree µSg
(s) of the site s to a fuzzy gray-level set Sg). To simplify its design, the

neighborhood function vs(r) is chosen binary in order to either fully or not at all take the contribution

of each neighbor to the aura measure into account. Specifically, setting vs(r) = 0 in equation (9)

excludes the neighbor from µOS
g′

(Sg), while vs(r) = 1 allows it to contribute to the fuzzy aura set

through the membership degree of s to Sg. The contribution of neighbors of a site to the fuzzy aura

measures hence only depends on membership degrees to fuzzy gray-level sets, which is more easy to

apprehend.

We propose the following binary neighborhood function:

vs(r) =
{

1 if r ∈ Ns,
0 otherwise, (20)

Ns being the crisp neighborhood centered at the site s. The fuzzy aura measures defined by equa-

tions (15) and (18) then boil down to:

m̃l(g, g
′) =

∑

s∈S

∑

r∈Ns

min
(

µSg
(s), µSg′

(r)
)

(21)

and

m̃c(g, g
′) =

∑

r∈S

min

(

sup
s∈Ňr

(

µSg
(s)
)

, µSg′
(r)

)

. (22)

Note that the computation of m̃l(g, g
′) is based on the neighborhood Ns, whereas that of m̃c(g, g

′) is

based on the transposed neighborhood Ňr (see figure 3).

As mentioned before, the above examples use a neighborhood function vs(r) that is defined identi-

cally at any site s for better clarity. However, equations (9), (15) and (18) assume no such restriction

about the spatial invariance of vs(r). We now propose to consider a binary neighborhood function that

is specific to each site, i.e., whose support size and shape can be different for each site.

4. Spatially-variant neighborhood for CFA images

In this section, we give a quick insight into when a spatially-variant neighborhood is useful and how

it can be designed to build the FGLAM of an image. For this purpose, we focus on a neighborhood
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Figure 5: Spatially-variant neighborhood Ṅs ((b)–(d)) for the CFA image (a) (s: site of interest, r: neighbors, distance

parameter: d = 2).

dedicated to raw image description.

4.1. Spatially-variant neighborhood

To explicitly express the dependency of the neighborhood function vs(r) on the site s while preserv-

ing notation consistency and compactness, we denote its spatially-variant version as v̇
s
(r) rather than

vs(r, s). Given that a binary neighborhood function is considered, we propose the following design:

v̇
s
(r) =

{

1 if r ∈ Ṅs,
0 otherwise,

(23)

where Ṅs is the neighborhood considered at s and is specific to this site.

In this case, the fuzzy local-count aura measure of equation (15) is expressed just as in equation (21)

as:

m̃l(g, g
′) =

∑

s∈S

∑

r∈Ṅs

min
(

µSg
(s), µSg′

(r)
)

, (24)

but the fuzzy cardinal aura measure of equation (18) becomes:

m̃c(g, g
′) =

∑

r∈S

min

(

sup
s∈Ẋr

(

µSg
(s)
)

, µSg′
(r)

)

. (25)

Here, Ẋr = {x ∈ S, r ∈ Ṅx} is the set of sites x whose own neighborhood Ṅx includes the site r. Note

that Ẋr is not a transposed neighborhood as Ňr in equation (21). Indeed, since the neighborhood

function is specific to each site, the reciprocity of neighboring relationships between two sites is not

guaranteed. In other words, when a site r belongs to the neighborhood Ṅs of a site s, we cannot state

that s belongs to the transposed neighborhood ˇ̇Nr of r as in the case of a spatially-invariant neigh-

borhood function (see section 3.2.2). Thus, the principle of the transposed neighborhood illustrated

in figure 3 does not apply when the neighborhood function is spatially variant.

16



4.2. Neighborhood for CFA images

Let us now consider an image analysis problem that highlights the usefulness of a spatially-variant

neighborhood. Single-sensor color cameras deliver raw images, also known as color filter array (CFA)

images, in which a single color component k ∈ {R,G,B} is associated to each site according to its

spatial coordinates [33]. The CFA image ICFA shown in figure 5(a) stems from the widely-used Bayer

CFA. It contains half of sites associated with the G component arranged in a quincunx lattice and

a quarter of sites associated with the R or B component arranged in a regular lattice. Each color

component k in ICFA is then defined on its own sublattice Sk
CFA ⊂ S (see figures 5(b)–(d)).

To classify texture images acquired by a single-sensor color camera, one usually estimates the two

color components missing at each site to form the color images. Losson et al. [33] show that this

demosaicing step degrades the texture representation in the images and propose to extract six crisp

chromatic co-occurrence matrices directly from CFA images. We follow the same line here but use a

single fuzzy GLAM to characterize a CFA image.

For this purpose, we examine each sublattice Sk
CFA separately. To ensure that a site of interest

s and its neighbors r are associated to the same color component, the considered neighborhood is

therefore specifically designed according to the color component available at s. We propose to define

it as:

ṄCFA,s =







NR
CFA,s if s ∈ SR

CFA,

NG
CFA,s if s ∈ SG

CFA,

NB
CFA,s if s ∈ SB

CFA,
(26)

where the neighborhood N k
CFA,s for the color component k is defined identically at any site s ∈ Sk

CFA

as N k
CFA,s =

{

r ∈ Sk
CFA, (d− 1 ≤ ‖r− s‖∞ ≤ d) ∧ (θ mod π

4 = 0)
}

(see figures 5(b)–(d)). Here, d is

a distance parameter and θ denotes the angle between the horizontal unit vector and r − s. The

considered neighbors are then:

• the 8 sites at infinity norm distance d from s along the four main directions of the image plane

(horizontal and vertical directions, and the two diagonals), when R or B is the color component

available at s (see figures 5(b) and 5(d));

• the 12 sites given as the previous 8 sites plus the 4 ones at distance d− 1 from s along the two

diagonals, when G is available at s (see figure 5(c)).

This allows us to define a spatially-variant neighborhood function (see equations (23) and (26)) suited

to describe any CFA image by a single FGLAM. More explicitely, the local-count FGLAM of a CFA

image gathers all the fuzzy local-count aura measures adapted from equation (24) as m̃CFA,l(g, g
′) =

∑

k∈{R,G,B}

∑

s∈Sk
CFA

∑

r∈ṄCFA,s

min
(

µSg
(s), µSg′

(r)
)

, and similarly for the cardinal FGLAM from equa-

tion (25).
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The interest of such an approach for texture classification from CFA images is further investigated

by experimental tests in the next section.

5. Experiments and results

In this section, we first quickly recall the parameters required to characterize a texture by the

proposed approach and we detail how they are set up. Then we describe the used classification scheme

and datasets. We finally present the classification results and a discussion follows.

5.1. Texture characterization

To characterize a texture by a FGLAM, we have to set several parameters. The first one is the

number p of fuzzy numbers g̃ that determine the size p × p of the FGLAM. The second parameter is

the membership function µg̃ that, at each site s of the image, defines the membership degree µg̃ (I(s))

to any fuzzy number g̃ according to the site’s gray level I(s). At last, fuzzy aura measures are defined

by the neighborhood function that models the spatial interactions between the sites.

5.1.1. Number of fuzzy numbers

Among the q gray levels given by the image bit depth, we retain p numbers that are the crisp

counterparts of the considered fuzzy numbers. More precisely, we consider the p numbers equally

spaced between 0 and q−1 as the set G. This equivalently defines p disjoint intervals [0, w−1], [w, 2w−
1], . . . , [(p− 1)w, q − 1] centered at these numbers, where w = q/p is the interval width. As for q, p is

usually a power of 2, so that w is also an integer and a power of 2. The numbers in G are the central

values of these intervals (rounded to the ceiling integers), namely G =
{

⌈w−1
2 ⌉, ⌈ 3w−1

2 ⌉, . . . , ⌈q − w+1
2 ⌉
}

.

We assess the classification accuracy achieved by FGLAMs with very low numbers of cells in order to

evaluate how their memory cost can be reduced while preserving their relevance as texture descriptors.

In practice, as the number q of gray levels is equal to 256, we set the number p of intervals to 4, 8, and

16. The largest descriptors have then the same size (p2 = 256) as Local Binary Patterns (LBPs) that

are one of the most efficient texture features [34]. Another motivation to retain low values of p is that

the difference between crisp and fuzzy aura increases when p decreases, allowing us to examine the

difference between crisp and fuzzy texture features. When p decreases indeed, the interval associated to

each fuzzy number is wider (w = q/p) and the number of possible fuzzy membership degrees µg̃(I(s))

increases.

5.1.2. Membership functions

For each number g ∈ G, the membership function µg̃ : [0, q − 1] → [0, 1] defines the associated

fuzzy number g̃. This membership function should be maximal at g and symmetric about g, but may
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Figure 6: Membership functions µg̃, g ∈ G, for p = 4 intervals when q = 256.

be of any type and span. Figure 6 shows the three types of membership functions considered in our

experiments: either crisp, Gaussian, or triangular. The latter two are defined by equations (6) with

α = w

2
√

2 ln(2)
and (7) with α = w. They are designed to ensure that, for each interval centered at g,

µg̃(I(s)) equals 0.5 at the interval bounds, i.e., for I(s) = g ± w
2 .

5.1.3. Neighborhood functions

When the neighborhood function is binary and invariant, equations (21) and (22) show that

FGLAMs depend on the neighborhood Ns defined identically at any site s. We have also proposed

to compute FGLAMs from a spatially-variant neighborhood Ṅs specifically defined at each site s (see

equations (24) and (25)). Ṅs may depend on several parameters, like the distance between s and its

neighbor r, the difference between their levels or between their membership degrees to fuzzy numbers,

or even a combination of these parameters.

For our experimental tests, we define the following spatially-invariant or site-specific neighborhood

functions:

• v (see equation (20)) that is based on the spatially-invariant neighborhood made of the 8 sites

at distance d from s along the four main directions of the image plane (horizontal and vertical

directions, and the two diagonals): Ns =
{

r ∈ S, (‖r− s‖∞ = d) ∧
(

θ mod π
4 = 0

)}

.

• v̇µ (see equation (23)) that is based on the site-specific neighborhood made of only some of the

latter 8 sites according to the rule Ṅµ
s

=
{

r ∈ S, (r ∈ Ns) ∧
(

µSg
(s) ≥ µSg′

(r)
)}

. Among the

8 neighbors in Ns, we retain those whose membership degree to Sg′ is lower than that of s to

Sg, such that Ṅµ
s

is both specific to s and to the considered FGLAM cell (g, g′). The (strong)

assumption for the final condition is that the membership degrees of s to Sg and of r to Sg′

remain in the same order when the gray levels change according to acquisition conditions. This
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is only true in the gray level intervals where the respective membership functions µg̃ and µg̃′ are

monotonic.

• v̇CFA that is used to represent CFA images and is based on the site-specific neighborhood ṄCFA,s

of equation (26).

• v̇µCFA that is used to represent CFA images and is based on the site-specific neighborhood made

of only some of the latter sites according to same final condition on the membership degrees as

in Ṅµ
s
: Ṅµ

CFA,s =
{

r ∈ S,
(

r ∈ ṄCFA,s

)

∧
(

µSg
(s) ≥ µSg′

(r)
)}

.

5.2. Texture classification

5.2.1. Global scheme and texture datasets

Achieving supervised texture classification is to retrieve, among a set of train images grouped into

texture classes, those that represent the same texture as a given test image. This matching scheme

evaluates the similarity between the test image and each train image by a pairwise intersection between

their respective descriptors according to equation (19). The same scheme also holds to compare two

CFA images but for two color images, the similarity is the mean intersection of their three marginal

FGLAMs M̃k computed on each color component k = R,G,B. The train images are then ranked

with respect to their similarity to the test image, which provides the class of texture to which the

test image belongs. We simply retain the class of the most similar train image according to the one-

nearest-neighbor (1NN) scheme, as it is usually done to assess the classification performance of new

texture features [4, 32, 33].

We perform extensive classification tests on Outex texture datasets [35], that are well known and

widely used as benchmarks in the literature. Outex contains both gray-level and color images of a

very large number of surface textures acquired with a 3-CCD camera under controlled conditions (see

figure 7). However, we have found that the downloadable raster images of gray-level datasets provided

biased results because of an intensity normalization. We have therefore built several new test sets from

the original RGB images and made them available at http://lagis-vi.univ-lille1.fr/datasets/outex.php.

Outex-TC-00020–00023 (concisely denoted below as TC-20–23) are gray-level datasets generated from

the same 68 color textures as in Outex-TC-00013 by using the intensity formula given in Outex de-

scription: I = 0.299IR + 0.587IG + 0.114IB. Each dataset is characterized by a specific variation of

acquisition conditions (see below), and Outex-TC-00030–00033 (TC-30–33) are the color counterparts.

Each dataset contains 68 classes made up of 40 images (or 160 images for TC-20 and -30) of size

128× 128 pixels whose intensities or color components are represented with q = 256 levels. To test the

behavior of our descriptors against different degradations of the observed textures, we follow Outex’s

hold-out methodology and divide each dataset into:
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Figure 7: Examples of Outex textures from all the datasets used in our experiments. Top row: images of different classes

(samples from TC-30–33 train images). Middle row: TC-30–33 train image of class “canvas023” acquired at 100 dpi

under an incandescent light (left) and test images of the same class with different variations (from left to right: rotation

angles of 10◦ and 45◦ (TC-30), 120 dpi resolution (TC-31), additive Gaussian noise with σ = 0.5 (TC-32), Gaussian blur

with ρ = 0.5 (TC-33). Bottom row: gray-level counterparts (TC-20–23).

• the train subset that contains the same 68× 20 = 1, 360 images (either gray-level or color ones)

for all the ten datasets. These images represent unrotated textures acquired under a 2, 856K

incandescent light at a resolution of 100 dpi;

• the test subset, whose images represent the same textures as the train subset but acquired under

varying conditions (see figure 7):

– TC-20 (gray-level) and -30 (color) contain 10, 880 test images rotated by 8 different angles

(5, 10, 15, 30, 45, 60, 75, and 90 degrees);

– TC-21 and -31 contain 1, 360 test images acquired at a resolution of 120 dpi;

– TC-22 and -32 contain 1, 360 test images corrupted by an additive Gaussian noise with a

standard deviation σ = 5;

– TC-23 and -33 contain 1, 360 test images blurred by a Gaussian filter with a radius of decay

(standard deviation of the filter) ρ = 0.5;

We also use the original Outex-TC-00013 (TC-13) color dataset and its gray-level version (TC-13-l),

for which both the train and test subsets are made of half of the images.

The computation scheme of FGLAMs for gray-level, color, and CFA test images is outlined in

figure 8. The computation of FGLAMs from train images follow the same outline but without any

degradation. Because CFA images are unavailable in Outex, we simulate them from the original
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Outex original color
image I

Rotation (TC-20, TC-30)

Resolution (TC-21, TC-31)

Noise (TC-22, TC-32)

Blurring (TC-23, TC-33)

Degraded color

image Itest

Bayer CFA0.299IR + 0.587IG + 0.114IB

Gray-level

image Itest
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ItestCFA

v or v̇µ v or v̇µ v̇CFA or v̇µCFA

M̃ [Itest] M̃k
[

Itest
]

k = R,G,B

M̃CFA [ItestCFA]
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formation by

degradation

Intensity

computation or

CFA sampling

FGLAMs
computation

Figure 8: Outline of the computation of FGLAMs for different types of test images.

full-color images (train subset) or their degraded versions (test subset) by sampling a single color

component at each pixel according to the Bayer CFA arrangement shown in figure 5(a).

5.2.2. Classification results

Tables 1–3 show the correct classification rates of the test images in all datasets for two values

of the distance parameter d. The considered datasets are shown as main column headers and the

secondary column headers contain the number p of intervals associated to the fuzzy numbers. The

row headers contain the major characteristics of the tested approaches. The two main row headers

indicate the proposed FGLAMs (FGLAMl and FGLAMc) to compare their respective classification

performances. For each FGLAM, three membership functions to the fuzzy numbers (crisp, Gaussian

and triangular) are tested to assess the improvement brought by the fuzzy approach. The deepest row

headers contain the two neighborhood functions considered for each FGLAM and a given membership

function, according to the image type: FGLAMs of gray-level and of color images are computed with

either v or v̇µ to assess the interest of neighborhood variability, while FGLAMs of CFA images use

either v̇CFA or v̇µCFA to assess the interest of the membership-based neighbor selection (Ṅµ
CFA,s)

in a spatially-variant neighborhood (ṄCFA,s). Note that we compute crisp FGLAMs only with the

neighborhood function v (or v̇CFA) to stick with the crisp framework (recall that v̇µ and v̇µCFA use

a neighbor selection based on membership degrees to fuzzy numbers). The values written in bold
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Table 1: Correct classification rates (%) on Outex gray-level datasets.

(a) d = 2

Membership Neighborhood TC-13-l TC-20 TC-21 TC-22 TC-23

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v 46.03 58.97 76.62 47.47 61.96 79.33 45.88 59.78 78.82 38.68 46.99 54.85 49.04 67.57 89.93

Gaussian
v 64.71 68.82 73.38 65.00 70.97 75.79 66.69 69.63 74.78 62.57 62.87 64.12 89.85 92.13 93.75
v̇µ 69.56 71.76 75.59 70.53 73.93 77.69 71.18 72.79 75.74 60.00 63.97 65.07 89.56 93.01 94.41

Triangular
v 59.56 70.88 78.53 57.79 71.40 79.84 56.76 69.93 78.01 57.65 64.41 61.18 85.07 90.81 95.22
v̇µ 68.38 73.68 79.41 68.34 75.18 80.88 67.21 74.04 78.97 64.41 63.97 60.29 89.71 93.60 95.66

(F
)G

L
A
M

c Crisp v 48.24 63.09 77.94 49.17 65.04 81.34 48.97 65.37 79.41 41.32 51.03 56.40 52.35 68.16 90.74

Gaussian
v 70.15 73.68 76.91 70.27 75.00 78.80 69.78 75.96 77.35 54.34 56.69 58.60 86.84 88.24 90.37
v̇µ 74.71 76.18 78.24 75.29 77.99 80.03 76.69 78.46 77.79 52.13 54.56 57.72 85.29 89.12 91.76

Triangular
v 64.85 75.44 79.71 65.70 75.47 82.16 65.44 74.49 80.00 54.34 55.15 57.35 80.74 85.66 91.03
v̇µ 72.50 76.76 80.15 73.57 78.61 82.51 75.37 76.47 80.07 52.21 53.31 56.69 82.65 87.06 92.43

(b) d = 4

Membership Neighborhood TC-13-l TC-20 TC-21 TC-22 TC-23

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v 38.09 56.62 75.15 40.64 56.99 77.10 37.65 56.62 74.71 43.53 53.01 61.03 48.60 68.60 91.69

Gaussian
v 63.82 67.35 71.62 63.30 69.09 74.19 63.24 67.65 71.10 63.01 64.49 64.71 91.47 92.50 95.00
v̇µ 64.41 69.71 73.82 66.66 71.43 76.02 67.21 67.94 72.94 60.88 64.93 64.12 89.78 93.16 94.78

Triangular
v 59.12 70.15 76.62 56.31 69.90 78.58 53.75 67.50 76.18 62.28 65.00 61.32 89.19 92.57 95.88

v̇µ 66.32 71.32 77.79 66.54 73.31 79.65 64.56 70.37 77.35 64.78 64.63 62.35 91.10 94.63 95.66

(F
)G

L
A
M

c Crisp v 45.29 61.62 77.79 43.94 61.00 79.36 45.07 60.29 78.09 47.13 53.46 59.85 54.71 71.47 92.72

Gaussian
v 72.21 73.82 77.21 70.20 74.54 78.19 69.34 74.78 75.96 58.53 59.04 60.37 88.90 90.07 92.50
v̇µ 73.97 76.32 77.79 73.02 76.37 78.72 71.40 75.29 75.74 58.68 57.57 58.90 88.90 91.10 92.79

Triangular
v 66.32 75.00 78.97 65.03 75.03 81.19 62.43 73.46 79.71 58.31 56.40 58.75 84.93 88.68 93.16
v̇µ 71.62 75.44 80.00 71.63 76.77 81.21 69.93 75.22 78.68 59.04 54.85 58.16 86.25 90.37 94.12

Table 2: Correct classification rates (%) on Outex color datasets.

(a) d = 2

Membership Neighborhood TC-13 TC-30 TC-31 TC-32 TC-33

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v 80.59 87.94 90.88 82.56 89.67 92.89 82.72 90.29 93.38 76.18 79.19 80.74 86.25 94.19 97.79

Gaussian
v 88.38 89.56 90.44 87.94 90.24 91.68 89.93 91.69 93.16 92.21 91.91 89.85 98.97 97.94 97.94
v̇µ 89.56 90.59 90.15 89.20 91.00 92.07 91.18 93.01 93.31 86.03 87.65 88.09 97.65 98.46 98.09

Triangular
v 88.09 89.56 91.18 87.39 91.17 92.90 89.34 93.16 93.16 94.12 89.56 86.99 97.13 97.72 99.12
v̇µ 89.12 90.44 91.18 89.68 92.06 93.08 91.03 93.75 93.24 92.57 89.26 85.51 97.72 98.46 99.34

(F
)G

L
A
M

c Crisp v 83.09 88.82 91.62 85.02 91.15 93.35 85.59 91.47 94.41 75.29 77.13 80.59 86.62 92.06 96.40

Gaussian
v 89.85 90.15 91.47 89.72 91.11 92.11 91.69 92.65 93.60 86.03 86.54 88.31 97.28 95.66 95.96
v̇µ 90.29 90.44 91.18 90.49 91.58 92.34 91.54 93.16 93.90 83.38 82.79 84.12 95.00 95.51 96.25

Triangular
v 89.26 90.59 91.32 90.04 91.94 93.13 91.03 93.53 93.38 84.26 81.18 82.87 95.44 94.85 96.32
v̇µ 89.71 90.88 91.18 91.08 92.15 93.21 91.76 93.53 93.68 82.21 79.04 81.47 94.56 95.15 97.06

(b) d = 4

Membership Neighborhood TC-13 TC-30 TC-31 TC-32 TC-33

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v 78.53 87.94 90.59 80.97 89.09 92.74 80.96 90.22 93.16 78.09 80.96 82.94 87.21 95.07 97.94

Gaussian
v 87.79 88.82 89.85 87.85 89.96 91.39 89.71 90.29 91.84 91.69 91.69 89.56 99.12 98.16 98.75
v̇µ 88.09 89.26 90.44 89.06 90.97 91.87 89.71 91.10 92.50 86.84 87.43 87.65 97.65 98.90 98.97

Triangular
v 87.35 89.41 90.74 87.56 91.21 92.59 88.46 92.06 93.31 94.78 89.34 87.21 97.65 98.75 99.49
v̇µ 88.97 89.71 91.32 89.54 91.71 92.93 89.04 92.13 93.46 91.03 89.34 86.10 97.87 99.49 99.56

(F
)G

L
A
M

c Crisp v 80.74 87.06 90.88 82.99 90.51 93.19 83.01 91.32 93.82 77.13 78.09 82.65 86.62 92.57 98.31

Gaussian
v 90.15 90.00 90.88 89.60 91.21 92.04 90.88 92.72 93.75 87.57 87.94 88.60 97.35 96.47 97.28
v̇µ 90.29 90.15 90.44 90.22 91.49 92.26 91.84 93.01 93.90 85.96 86.47 86.32 96.47 97.06 97.50

Triangular
v 88.09 90.15 91.32 89.88 91.90 92.90 91.69 93.46 93.68 86.84 84.71 84.71 95.81 96.32 98.01
v̇µ 89.56 90.29 90.44 90.75 92.10 93.06 91.99 93.75 93.75 84.78 82.50 83.97 95.59 97.43 98.68
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Table 3: Correct classification rates (%) on CFA images of Outex color datasets.

(a) d = 2

Membership Neighborhood TC-13 TC-30 TC-31 TC-32 TC-33

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v̇CFA 62.94 77.94 86.76 60.56 76.86 88.05 58.60 77.72 85.51 42.87 53.68 55.44 59.49 79.85 92.21

Gaussian
v̇CFA 75.44 80.74 83.82 72.41 79.84 84.01 73.68 81.32 84.12 73.82 76.91 77.50 91.91 93.82 94.26
v̇µCFA 79.12 81.03 84.71 77.39 82.15 85.70 77.79 83.53 86.84 68.53 76.10 77.13 90.37 93.68 94.26

Triangular
v̇CFA 71.76 81.32 86.76 69.38 82.79 87.64 68.75 82.21 86.91 66.99 74.56 71.62 87.72 92.79 95.15
v̇µCFA 78.53 82.79 87.06 77.48 84.74 88.70 78.24 85.00 88.38 73.75 74.04 68.75 91.54 92.57 95.81

(F
)G

L
A
M

c Crisp v̇CFA 70.59 83.68 89.85 68.29 82.85 89.78 65.59 83.09 87.79 48.53 60.66 64.49 66.54 81.47 91.99

Gaussian
v̇CFA 80.29 84.56 87.21 78.35 83.45 86.35 78.31 84.26 86.25 64.93 69.78 74.26 90.44 91.25 91.54
v̇µCFA 82.94 85.59 87.35 81.41 85.22 87.41 81.62 85.29 87.35 55.88 64.85 69.49 86.03 90.22 92.28

Triangular
v̇CFA 79.85 85.88 88.97 79.26 86.40 89.09 79.56 85.15 88.31 61.32 65.81 67.57 86.84 89.12 92.28
v̇µCFA 82.94 86.62 88.82 81.68 87.22 89.18 81.32 85.96 88.31 55.00 60.88 65.96 84.49 88.82 92.79

(b) d = 4

Membership Neighborhood TC-13 TC-30 TC-31 TC-32 TC-33

function function p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

(F
)G

L
A
M

l Crisp v̇CFA 58.53 77.65 86.76 58.66 76.39 88.24 58.46 76.47 86.10 55.37 65.59 68.01 65.66 83.97 94.93

Gaussian
v̇CFA 74.26 80.44 84.56 72.42 79.81 84.35 73.16 80.07 84.04 76.76 78.31 79.34 93.31 93.53 95.15
v̇µCFA 77.06 80.00 84.56 75.72 82.06 85.74 77.35 81.91 85.22 73.46 78.90 77.13 91.25 94.26 95.59

Triangular
v̇CFA 71.76 81.91 86.18 70.51 82.95 87.62 69.41 82.65 86.99 72.65 77.57 75.44 89.85 93.38 96.25
v̇µCFA 77.21 82.79 87.35 76.23 84.67 88.65 75.37 83.75 88.53 76.91 76.62 73.53 91.40 94.56 97.50

(F
)G

L
A
M

c Crisp v̇CFA 68.38 81.91 89.85 65.85 81.76 89.68 64.71 82.57 90.22 58.53 67.43 70.59 71.03 82.87 95.15

Gaussian
v̇CFA 81.76 85.15 87.50 78.75 83.87 86.80 79.49 84.63 87.35 70.66 73.97 77.50 91.47 91.99 93.68
v̇µCFA 82.21 86.62 88.24 80.74 85.08 87.60 80.37 86.25 88.46 69.26 70.88 74.19 89.34 91.69 93.46

Triangular
v̇CFA 79.56 87.94 89.56 79.56 86.83 89.53 79.12 85.88 89.56 68.53 69.26 72.79 88.38 91.84 94.63
v̇µCFA 82.35 87.65 89.26 81.38 87.29 89.45 81.40 86.69 89.85 66.25 68.16 70.74 87.43 91.99 95.07

Table 4: Comparison of the approaches for the same cases as in (a) and (b) of tables 1–3: d ∈ {2, 4} and p ∈ {4, 8, 16}

P
P
P
P
P
P
P
P
P
P
P
P
P

Compared
approaches

Dataset Gray-level Color CFA
Total

Number of cases in

TC-13-l TC-20 TC-21 TC-22 TC-23 TC-13 TC-30 TC-31 TC-32 TC-33 TC-13 TC-30 TC-31 TC-32 TC-33 dataset total

FGLAMc > FGLAMl 30 30 30 5 6 25 30 29 0 2 30 30 29 6 4 286 30 450

with v or v̇CFA 18 18 18 5 6 17 18 18 0 2 18 18 18 6 4 184 18 270

with v̇µ or v̇µCFA 12 12 12 0 0 8 12 11 0 0 12 12 11 0 0 102 12 180

FGLAM > GLAM 20 20 19 23 22 19 16 17 24 20 16 16 19 24 21 296 24 360

Gaussian > Crisp 8 8 8 12 10 8 7 8 12 10 8 8 8 12 10 137 12 180

Triangular > Crisp 12 12 11 11 12 11 9 9 12 10 8 8 11 12 11 159 12 180

v̇µ > v 24 24 22 8 18 18 24 21 0 17 176 24 240

v̇µCFA > v̇CFA 19 23 23 3 11 79 24 120

Triangular > Gaussian 16 16 11 6 13 12 22 13 6 13 18 22 19 2 12 201 24 360
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face indicate which pair of membership and neighborhood functions provides the best classification

accuracy for each value of p, each type of FGLAM, and each dataset.

A cell-wise comparison of tables 1–3 shows that the classification results obtained with gray-level

images (see table 1) are lower than those obtained with color images (see table 2), and CFA images

provide intermediate results4 (see table 3). This was expected because taking the color information

into account generally increases the texture classification performance [4]. CFA images also carry color

information due to their underlying color pattern, but the spatial definition of each color component

k is twice (k = G) or four times (k = R,B) lower than that of the corresponding full-color images.

Note that the two values of the distance parameter d generally provide close results, and that none of

them overall exhibits a clear advantage.

We propose to examine these tables to answer three questions: Is the new cardinal aura measure

interesting with regard to the original local-count one? Does the fuzzy aura measure provide better

results than the crisp one? Does the neighborhood spatial adaptivity bring any improvement? We

hence interpret the results in tables 1–3 according to three general comparisons that are summarized

in table 4:

• Cardinal vs. local-count fuzzy aura measure (FGLAMc vs. FGLAMl): the accuracy provided by

the FGLAMc is higher than that provided by the FGLAMl computed with the same parameters

(“FGLAMc > FGLAMl” in table 4) in 286 out of the 450 cases (63.6%). This global result

splits up according to the neighborhood function as 184 out of the 270 cases (68.1%) with v or

v̇CFA, and in 102 out of the 180 cases (56.7%) with v̇µ or v̇µCFA. We conclude that the aura set

cardinal generally better characterizes the textures than the aura measure proposed by Elfadel

and Picard, notably with spatially-invariant neighborhoods and almost only for the datasets

whose test images undergo no acquisition condition variations (TC-13-l, TC-13) or variations in

rotation (TC-20, TC-30) or scale (TC-21, TC-31).

• Crisp vs. fuzzy approach (GLAM vs. FGLAM): when the same neighborhood function v (or

v̇CFA) is used at each site, we can compare the classification performance of the crisp and

fuzzy (Gaussian or triangular) membership functions. Over all datasets, a better classification

accuracy is obtained by a fuzzy GLAM (“FGLAM > GLAM” in table 4) in 296 out of the 360

cases (82.2%). Such superiority holds for all image types and all degradations. In addition, the

FGLAMs computed with a Gaussian membership function yield better results than GLAMs in

137 out of the 180 cases (76.1%), and in 159 cases (88.3%) when the triangular membership

function is used. These results show that representing the gray-level sets by fuzzy sets improves

4Except for 3 cases out of 300, for which gray-level accuracies are slightly higher than CFA ones, all being above 94%.
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the classification performances because small local variations of the gray levels are better taken

into account.

For the TC-13-l dataset, FGLAMs provide 23.2% better classification rates on average than

crisp matrices when p = 4, but only 12.8% average better rates when p = 8 and 0.4% when

p = 16. These average differences reach 36.3%, 16.0% and 2.2% for TC-23 dataset. The same

trend can be observed for all the other datasets, and is particularly outstanding with gray-level

and CFA images. Over all the datasets, a fuzzy matrix provides better results than the crisp one

in all but one case5 when p = 4 or 8, but in only about half of the cases when p = 16. When p

increases indeed, the width w of the interval associated to each fuzzy number decreases, as well

as its number of possible membership degrees. The classification results therefore confirm that

the larger the number of intervals, the more FGLAMs are similar to GLAMs.

• Spatially-invariant vs. site-specific neighborhood function (v vs. v̇µ): in 176 out of the 240 cases

(73.3%), FGLAMs provide higher accuracy when computed with the site-specific neighborhood

function v̇µ than when computed with the spatially-invariant neighborhood function v (“v̇µ > v”

in table 4). Except for noisy images (TC-22, TC-32), the neighborhood adaptivity based on

membership degrees to fuzzy level sets is therefore an interesting approach to describe textures.

The same result holds to a lesser extent for CFA images, for which the location- and membership-

based adaptive neighborhood function v̇µCFA provides better results than the sole location-based

one v̇CFA in 79 out of the 120 cases (65.8%).

Let us also recall that local-count FGLAMs can be considered as FGLCMs when the neigh-

borhood function is binary and spatially-invariant, as reported in section 3.3.3. To assess the

performance of each approach, we pairwise compare the classification rates obtained for v and

v̇µ neighborhood functions for the sole FGLAMl descriptor, for each combination of the other

parameters (each value of p and d, and either Gaussian or triangular membership function). Ta-

bles 1–3 show that v̇µ provides better classification rates than v in 137 of the 180 cases (76.1%).

This result confirms the benefit of the aura approach with regard to the co-occurrence one in the

fuzzy framework because the fuzzy aura copes with spatially-variant neighborhoods.

Note at last that the triangular membership function provides better results than the Gaussian one

in 201 out of the 360 cases (55.8%) (see bottom row of table 4). Hence, we retain it in the discussion

below together with the spatially-variant neighborhood function v̇µ.

5TC-30 color dataset, d = 2, p = 8, FGLAMc
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5.3. Discussion

5.3.1. Comparison with LBP-like operators

The performance of FGLAMs in texture classification can be compared with that of other classical

texture descriptors. Among them, LBP histograms are known to be particularly powerful features

because LBPs are invariant to any monotonic transformation of the gray levels and they are com-

puted efficiently [34, 36]. They have been extended into many variants that exhibit extra interesting

properties like rotational invariance or multi-scale/temporal dimension/color handling.

In [37], Guo et al. investigate the discriminative power of the classical LBP based on the sign (S) com-

ponent, and propose to complete it with the center gray level (C) and the magnitude (M) components

to form a so-called Completed LBP (CLBP). These three components can be considered separately or

combined pairwise in either a joint or a concatenated histogram. This provides descriptors of various

sizes, depending on whether the three components are taken separately, or jointly, or else hybridly

(the joint histogram of two components is concatenated with that of the third one). Joint histograms

are often prohibitively large, unless uniform patterns6 (denoted by the u2 superscript) are considered

for the S and M components. Moreover, texture rotation can be effectively handled by the rotation-

invariant versions (superscripted as ri) of the components. The authors of [37] test various CLBP

component combinations and other texture features, and show that the 3D joint histogram denoted as

CLBP Sriu2
P,R /M riu2

P,R /C yields the best classification results among all the tested descriptors.

We compare the results of FGLAMs whose size is l = p2 with various CLBP descriptors of similar

sizes given by the number P of neighbors (uniform patterns can take P + 2 distinct values) and the

combination of components (either the sum or the product of the component sizes, depending on

whether they are concatenated or considered jointly). Specifically, for each value of d ∈ {2, 4} and

of p ∈ {4, 8, 16}, the better among FGLAMl (Ml) and FGLAMc (Mc) descriptors computed with the

triangular membership function and the spatially-variant neighborhood function v̇µ is compared to the

best CLBP descriptor of similar size l computed with the same number of neighbors P = 8 and the

same distance R = d according to:

• for p = 4, Ml and Mc (l = 16) vs. CLBP Sriu2
8,d (l = 10), CLBP M riu2

8,d (l = 10), and

CLBP Sriu2
8,d M riu2

8,d (l = 20);

• for p = 8, Ml and Mc (l = 64) vs. CLBP Sriu2
8,d M riu2

8,d /C (l = 30), CLBP M riu2
8,d Sriu2

8,d /C

(l = 30), and CLBP Sriu2
8,d /M riu2

8,d (l = 100);

6“Uniform” LBPs refer to the patterns for which the number of bitwise 0/1 changes in the circular binary presentation

of the P neighbors is 2 or less.
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Table 5: Classification performance of FGLAMs vs. other descriptors. FGLAMs are computed with a triangular

membership function and the spatially-variant neighborhood function v̇µ, and all descriptors use a 8-neighborhood at

distance d.

(a) FGLAMs vs. LBPs on Outex gray-level datasets (associated variations are recalled in parentheses)

d
Descriptor TC-13-l TC-20 (rotation) TC-21 (resolution) TC-22 (noise) TC-23 (blur)

type p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

2
FGLAM

72.50 76.76 80.15 73.57 78.61 82.51 75.37 76.47 80.07 64.41 63.97 60.29 89.71 93.60 95.66
Mc Mc Mc Mc Mc Mc Mc Mc Mc Ml Ml Ml Ml Ml Ml

LBP
74.71 81.91 83.38 69.10 55.49 85.78 56.47 90.51 82.35 19.34 33.68 19.34 49.26 98.97 93.75
S M S/M S/M/C S S/M S/M/C S M S/M S S S/M S S M S/M S

4
FGLAM

71.62 75.44 80.00 71.63 76.77 81.21 69.93 75.22 78.68 64.78 64.63 62.35 91.10 94.63 95.66
Mc Mc Mc Mc Mc Mc Mc Mc Mc Ml Ml Ml Ml Ml Ml

LBP
71.62 76.91 76.91 72.96 53.55 79.48 60.59 93.24 78.16 27.50 56.62 49.12 70.07 100.00 100.00
S M S/M S/M/C S M S/M S/M/C S M S/M S S M S/M S S M S/M S

(b) FGLAMs vs. LBPs on Outex color datasets

d
Descriptor TC-13 TC-30 (rotation) TC-31 (resolution) TC-32 (noise) TC-33 (blur)

type p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16 p=4 p=8 p=16

2
FGLAM

89.71 90.88 91.18 91.08 92.15 93.21 91.76 93.75 93.68 92.57 89.26 85.51 97.72 98.46 99.34
Mc Mc Mc=Ml Mc Mc Mc Mc Ml Mc Ml Ml Ml Ml Ml Ml

LBP
85.59 87.94 86.62 86.44 89.06 90.71 67.50 92.79 86.99 23.16 37.87 23.16 49.93 99.49 87.43
S M M S/C S/M/C S M M S/C S/M/C S M S/M S S S/M S S M S/M S

4
FGLAM

89.56 90.29 91.32 90.75 92.10 93.06 91.99 93.75 93.75 91.03 89.34 86.10 97.87 99.49 99.56
Mc Mc Ml Mc Mc Mc Mc Mc Mc Ml Ml Ml Ml Ml Ml

LBP
83.24 86.18 81.62 82.67 82.59 84.71 71.25 94.71 81.76 34.93 62.06 52.94 77.50 99.93 99.26
S M M S/C S S M M S/C S/M/C S M S/M S S M S/M S S M S/M S

(c) FGLAMs (p = 16) vs. FLBPs and LFPs on gray-level and color datasets (Histogram: see

section 5.3.3)

d Descriptor TC-13-l TC-20 TC-21 TC-22 TC-23 TC-13 TC-30 TC-31 TC-32 TC-33

2

FGLAMl 79.41 80.88 78.97 60.29 95.66 91.18 93.08 93.24 85.51 99.34
FGLAMc 80.15 82.51 80.07 56.69 92.43 91.18 93.21 93.68 81.47 97.06
FLBP 83.68 48.89 84.41 19.49 93.68 88.38 52.63 87.72 23.01 94.41
LFP 71.32 73.69 65.74 14.12 61.99 84.85 85.34 78.09 17.57 17.57

4
FGLAMl 77.79 79.65 77.35 62.35 95.66 91.32 92.93 93.46 86.10 99.56
FGLAMc 80.00 81.21 78.68 58.16 94.12 90.44 93.06 93.75 83.97 98.68
FLBP 79.41 45.62 83.16 50.66 100.00 83.97 49.47 85.96 55.37 100.00
LFP 72.79 72.68 65.22 29.19 85.88 82.06 83.21 75.96 36.84 36.84

n/a Histogram 76.03 77.89 73.16 50.37 93.82 91.76 92.81 93.16 76.91 99.19

• for p = 16, Ml and Mc (l = 256) vs. CLBP S8,d (l = 256), CLBP M8,d (l = 256), and

CLBP Sriu2
P,R /M riu2

P,R /C (l = 200).

Tables 5(a) and 5(b) show the classification results achieved on the ten gray-level and color Outex

datasets by FGLAMs and LBP-based descriptors according to their sizes. For each given dataset, p

and d values, the boldface result is the better one among the two families of descriptors, and the best

descriptor in each family (either the cardinal or local-count FGLAM, and either of the three tested

CLBP descriptors) is written below its result. Note that sub- and superscripts of CLBP descriptors

are dropped in these tables to alleviate notations, and that their results slightly differ from those

in [37] because we use the intersection instead of the χ2 distance to measure the similarity between

two histograms.

FGLAMs perform strictly better than CLBP descriptors in 17 out of the 30 cases (56.6%) for gray-

level datasets and more remarkably in 27 out of the 30 cases (90.0%) for color ones. FGLAMs noticeably

outperform CLBPs on the dataset TC-22 degraded by noise, to which LBPs are poorly robust, and for
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very small descriptors (p = 4). FGLAMs also compare favorably with rotation-invariant CLBPs on

the dataset TC-20, which shows that FGLAMs inherently handle rotation variations quite well.

5.3.2. Comparison with other fuzzy texture descriptors

We also compare the performances reached by FGLAMs with those provided by other fuzzy texture

descriptors. The Fuzzy LBPs (FLBPs) proposed by Keramidas et al. [19] make each pixel’s neighbor-

hood partly contribute to several bins of the LBP histogram. The Local Fuzzy Patterns (LFPs) of

Vieira et al. [38] represent each pixel’s neighborhood as a fuzzy set defined by the membership degree of

neighboring pixels to the central value. The sigmoid is used as membership function, which generalizes

the step function of “crisp” LBPs. We test these two approaches on the Outex gray-level and color

datasets with the optimal parameters given by their authors, but with the 1NN classification scheme

as before. In order to obtain an equal size of 256 for FLBP and LFP histograms and for FGLAMs so

that these three descriptors are fairly compared, we compute FGLAMs by setting p = 16 and FLBPs

with a 8-neighborhood instead of the full 3 × 3 neighborhood of [19]. Table 5(c) shows that LFPs

are somewhat robust to rotation but are in general of minor interest. FLBP is a far more robust

descriptor that notably shows superiority with regard to FGLAMs when the image resolution changes.

However, FGLAMs perform better on color images. At last, we compare FGLAM performance with

that of the Fuzzy Co-occurrence Matrices (FzCMs) developed by Munklang et al. [23]. This approach

uses the fuzzy C-means algorithm to quantize the gray levels, then builds eight fuzzy GLCMs for each

main direction of the image plane, and extracts the average and standard deviations of four Haralick’s

features from these matrices. For a fair comparison with results in [23], we implement the classifi-

cation scheme based on the one-versus-all strategy of a multi-class Support Vector Machine (SVM)

with σ = 0.25 in the radial basis function kernel and ǫ = 10−3 as termination criterion tolerance, and

we similarly validate the classification thanks to a 10-fold cross validation. We compare the texture

classification results on the (challenging) UIUC dataset that contains 25 texture classes of 40 gray-level

images [39]. Because the best classification accuracy of FzCMs (77.0%) is reached with 64-dimensional

feature vectors [23], we compute FGLAMs of size 64 by setting p = 8. As FGLAMc and FGLMl

provide accuracies of 82.7% and 79.9%, FGLAMs outperform FzCMs with a SVM classifier.

5.3.3. Descriptor complexity

We simply assess the complexity of the proposed descriptors by their processing requirements.

Table 6 displays the processing times required to compute a FGLAM from a gray-level image by

ImageJ plugins [40] implemented on a 2.6 GHz machine with 8 GB of RAM. It shows that the processing

time nearly linearly depends on the number p of fuzzy numbers. Furthermore, the processing times

required by FGLAMl and FGLAMc are similar, as those needed by site-specific and spatially-invariant
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Table 6: Processing times required to FGLAMs from a gray-level image of size 128 × 128 pixels (averages over 100

images of TC-20 dataset).

Membership Neighborhood Processing time (ms)
function function p = 4 p = 8 p = 16

(F
)G

L
A
M

l Crisp v 23 41 76

Gaussian
v 98 212 419
v̇µ 100 218 430

Triangular
v 42 78 150
v̇µ 44 84 159

(F
)G

L
A
M

c Crisp v 25 46 91

Gaussian
v 114 247 492
v̇µ 118 254 503

Triangular
v 49 90 177
v̇µ 52 95 185

neighborhood functions. At last, fuzzy FGLAMs are more time-consuming than crisp ones notably

when the Gaussian membership function is used. Besides, additional classification results for larger

values of p than in table 1 confirm that FGLAMs get similar to GLAMs as p increases. Since our

fuzzy descriptors bring almost no improvement with regard to crisp GLAMs when p > 16 and require

at least twice longer processing times, our approach is first and foremost interesting to compute very

compact descriptors with a high discriminative power.

These relatively long processing times lead us to have a quick look back to very basic descriptors

like histograms of luminance or RGB color components. Their classification performances are reported

in the last row of table 5(c) and can be fairly compared with those of FGLAMs because all descriptors

have the same size (p2 = 256 for gray-level histograms and 3 × p2 = 768 for the three marginal RGB

histograms). Histogram results are written in bold face when they outperform all other descriptors,

which never occurs except for TC-13 color dataset as also reported in [32]. FGLAMs could hence be

primarily interesting for color texture classification (with respect to a simple histogram) when the test

subset is acquired under different conditions from the train subset. It is worth to investigate whether

this also occurs on another database. Bianconi and Fernández point out that Outex is unfortunately

the sole color texture database that comes with predefined test suites of training and test subsets [41].

We resort to the USPtex color texture dataset [42] (191 classes and 12 images by class acquired under

the same conditions) with the same classification scheme (1-NN classifier and hold-out methodology)

to further compare FGLAMs with histograms. The results (not shown here) are that the FGLAMc

descriptor computed with v̇µ always outperforms the marginal RGB histogram of the same size, by

more than 10% when p = 16. This confirms the benefit of our descriptors for texture classification,

though it is less outstanding on color images than on gray-level and CFA ones.

6. Conclusion and future work

In this paper, we have extended the concept of aura set and the associated aura measure in several

ways and we have experimentally shown the benefit of these contributions for texture classification on
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fifteen benchmark datasets of gray-level, color, and CFA images. We have first proposed a new aura

measure based on the cardinal of the aura set that improves classification results on several datasets

with regard to the original local-count aura measure. Second, we have adapted the aura concept to

the fuzzy framework and demonstrated that fuzzy aura matrices generalize co-occurrence matrices.

We have shown by extensive experiments that FGLAMs better characterize texture images than crisp

matrices, than other powerful descriptors of similar sizes based on local binary patterns, and than other

fuzzy descriptors in the literature. The proposed fuzzy measures of the aura set have been derived

from their crisp counterparts but could be defined in other ways. Several definitions notably exist for

the cardinality of fuzzy sets [43], and the fuzzy cardinal aura measure could take advantage of them.

Last but not least, we have detailed how the aura formalism provides an elegant way to deal

with spatially-variant neighborhoods, as illustrated on CFA images. In this paper, we have used

crisp neighborhoods (defined by a binary neighborhood function) that are simple but already provide

promising results for texture classification tasks. In order to make neighborhood functions adapt to

gray levels, we have retained a criterion based on the membership degrees of sites to gray-level sets,

thus taking advantage of the fuzzy representation of neighborhood relationships. The definition of

neighborhood functions should be investigated further than binary functions and than the empirical

criterion of neighborhood adaptivity based on the membership degrees to fuzzy level sets. The design

of more sophisticated functions and their adequacy to other purposes like texture segmentation is an

open problem.

Appendix

A. Proof of m̃l(g, g
′) ≥ m̃c(g, g

′)

Let fr(s) = min
[

min
(

µSg
(s), vs(r)

)

, µSg′
(r)
]

be a function of s ∈ S for a given r ∈ S. Then,

the aura measures of equations (15) and (18) is rewritten as m̃l(g, g
′) =

∑

r∈S

∑

s∈S

fr(s) and m̃c(g, g
′) =

∑

r∈S

sup
s∈S

fr(s), 0 ≤ g, g′ ≤ q−1. Because membership and neighborhood functions are positive, fr(s) ≥ 0

for all s. Therefore
∑

s∈S

fr(s) ≥ sup
s∈S

fr(s), hence m̃l(g, g
′) ≥ m̃c(g, g

′).

B. FGLAMl as a FGLCM

B.1. Case of a single-site crisp neighborhood

A fuzzy GLCM (FGLCM) [20, 22] is a p × p matrix C̃ =
[

c̃t(g, g′)
]

whose element (g, g′) is the

number of pairs of sites with gray levels “around the level g” and “around the level g′” separated by

a translation vector t. In other words, it gives the number of occurrences for a pair of fuzzy numbers
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g̃ and g̃′ as:

c̃t(g, g′) =
∑

s∈S

min {µg̃ (I(s)) , µg̃′ (I(s+ t))} . (27)

In that case, the neighborhood can be considered as a crisp singleton and defined by the following

binary neighborhood function:

vt
s
(r) =

{

1 if r = s+ t,
0 otherwise, (28)

Then, the local-count fuzzy aura measure is rewritten as:

m̃l(g, g
′)

(15)
=
∑

s∈S

∑

r∈S

min
{

min
[

µSg
(s), vt

s
(r)
]

, µSg′
(r)
}

(28)
=
∑

s∈S

min
{

µSg
(s), µSg′

(s+ t)
}

(8)
=
∑

s∈S

min {µg̃(I(s)), µg̃′ (I(s+ t))}

(27)
= c̃t(g, g′) .

Since this holds for any gray levels g and g′, the local-count FGLAM is identical to the FGLCM

(M̃l ≡ C̃) when the neighborhood function is binary and equals 1 for a single neighbor only.

B.2. Case of a multi-site crisp neighborhood

More generally, the neighborhood used to compute FGLAMs can be composed of several neighbors.

As in the crisp case (see equation (4)), a FGLAMl can then be written as a sum of n “basic” local-count

FGLAMs provided that the neighborhood function is a binary and only depends on r− s:

m̃l(g, g
′) =

n
∑

i=1

c̃ti(g, g′) . (29)

Justification. Let the neighborhood be Ns =
⋃n

i=1 N ti
s
, where N ti

s
is the basic neighborhood made

of the single neighbor given by its translation ti from s and defined by the neighborhood function

vti
s
(r). The neighborhood Ns is then described by its neighborhood function vs(r) = sup

i

(

vti
s
(r)
)

=

max
(

vt1
s
(r), · · · , vtn

s
(r)
)

, and the fuzzy local-count aura measure of equation (15) is rewritten as:

m̃l(g, g
′) =

∑

s∈S

∑

r∈S

min
{

min
[

µSg
(s),max(vt1

s
(r), · · · , vtn

s
(r)
]

, µSg′
(r)
}

By using the properties of the min and max operators, the latter equation becomes:
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m̃l(g, g
′) =

∑

s∈S

∑

r∈S

min
{

max
[

min
(

µSg
(s), vt1

s
(r)
)

, · · · ,min
(

µSg
(s), vtn

s
(r)
)]

, µSg′
(r)
}

=
∑

s∈S

∑

r∈S

max
{

min
[

min
(

µSg
(s), vt1

s
(r)
)

, µSg′
(r)
]

, · · · ,min
[

min
(

µSg
(s), vtn

s
(r)
)

, µSg′
(r)
]}

(12)
=
∑

s∈S

∑

r∈S

max

{

min

[

µ
N

t1

s,Sg

, µSg′
(r)

]

, · · · ,min
[

µN tn
s,Sg

, µSg′
(r)
]

}

=
∑

s∈S

∑

r∈S

max

{

µ
N

t1

s,Sg
∩Sg′

, · · · , µN tn
s,Sg

∩Sg′

}

=
∑

s∈S

∑

r∈S

µ⋃
n
i=1

(N
ti
s,Sg

∩Sg′ )
(r) . (30)

The cardinal of a union of fuzzy sets Ai is expressed as:

∑

r∈S

µ(
⋃

n
i=1

Ai)(r) =

n
∑

i=1

∑

r∈S

µAi
(r)−

∑

1≤i1<i2≤n

∑

r∈S

µ(Ai1
∩Ai2

) + . . .

+ (−1)k+1
∑

1≤i1<i2<...<ik≤n

∑

r∈S

µ(Ai1
∩Ai2

∩...∩Aik
)(r) + . . .

+ (−1)n+1
∑

r∈S

µ(A1∩A2∩...∩An)(r)

Because the basic neighborhoods N ti
s

do not overlap, the fuzzy sets N ti

s,Sg
∩ Sg′ are disjoint for i =

1, 2, . . . , n. Hence, for all (i1, i2) ∈ {1, 2, . . . , n}2, i1 6= i2,
∑

r∈S

µ
(N

ti1
s,Sg

∩Sg′ )∩(N
ti2
s,Sg

∩Sg′)
(r) = 0, and the

cardinal of the union of fuzzy set intersections in equation (30) becomes
∑

r∈S

µ⋃
n
i=1

(N
ti
s,Sg

∩Sg′)
(r) =

n
∑

i=1

∑

r∈S

µ
N

ti
s,Sg

∩Sg′
(r). Therefore, equation (30) takes the form m̃l(g, g

′) =
∑

s∈S

n
∑

i=1

∑

r∈S

µ
N

ti
s,Sg

∩Sg′
(r)

which, by swapping the first sums and by using equation (17), can be rewritten as:

m̃l(g, g
′) =

n
∑

i=1

∑

s∈S

∑

r∈S

min
[

min
(

µSg
(s), vti

s
(r)
)

, µSg′
(r)
]

.

By setting c̃ti(g, g′) =
∑

s∈S

∑

r∈S

min
[

min
(

µSg
(s), vti

s
(r)
)

, µSg′
(r)
]

, we get equation (29).

We conclude that a FGLAMl is identical to an “extended” FGLCM computed with a neighborhood

given by a set of translation vectors. However, this is no longer true if the neighborhood function v

is not binary or/and actually depends on r and s because the neighborhood used to compute such an

“extended” FGLCM is given by a binary neighborhood function defined identically at each site.
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