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Abstract

Incorporating models of human perception into the process of scene interpre-

tation and object recognition in visual content is a strong trend in computer

vision. In this paper we tackle the modeling of visual perception via automatic

visual saliency maps for object recognition. Visual saliency represents an ef-

ficient way to drive the scene analysis towards particular areas considered ‘of

interest’ for a viewer and an efficient alternative to computationally intensive

sliding window methods for object recognition. Using saliency maps, we consider

biologically-inspired independent paths of central and peripheral vision and ap-

ply them to fundamental steps of the so-called Bag-of-Words (BoW) paradigm,

such as features sampling, pooling and encoding. Our proposal has been evalu-

ated addressing the challenging task of active object recognition, and the results

show that our method not only improves the baselines, but also achieves state-

of-the-art performance in various datasets at very competitive computational

times.

Keywords: Perceptual modeling, Visual Saliency, Active Object recognition,

foveal and peripheral pathways

1. Introduction

Object recognition is a very active research field for the computer vision

community. For such a task, the Bag-of-Words (BoW) model [1, 2] is still one
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of the most prevalent approaches due to its simplicity. However, its performance

is greatly limited in case of occlusions or small objects in cluttered backgrounds.

In contrast, sliding window methods have turned out to be more robust against

these problems. They perform a window-based scanning process that searches

for objects in several locations and scales in the image, thus addressing both

the detection and accurate localization of objects even when they are small.

Examples of these methods can be found in the literature for detecting faces

[3], pedestrians [4], more generic objects [5], and even mixed with the BoW [6].

Nevertheless, these methods still suffer from several drawbacks: a) although

efficient implementations exist, the computational complexity due to the com-

putation of features within each candidate window, and the evaluation of the

objective function cannot be neglected; b) they require a strong human effort

to manually annotate bounding boxes in the training data; c) an exhaustive

scanning might cause more false detections; or d) unless explicitly incorporated,

context information around the object that might become a valuable cue of its

presence is usually discarded.

Alternatively, modeling the selective process of human perception of visual

scenes represents an efficient way to drive the scene analysis towards particular

areas considered ‘of interest’ or ‘salient’. This is why it has become a very active

trend in computer vision [7]. Due to the use of saliency maps, the search for ob-

jects in images is more focused, thus improving the recognition performance and

additionally reducing the computational burden. Even more, saliency methods

can be naturally applied to both BoW [8] and sliding window approaches [9, 10].

Models of visual attention, such as the one proposed by Itti et al. [11] or

Harel’s graph implementation [12] are frequently used in literature for comput-

ing saliency maps. Various authors have shown how driving the processing to

those particular areas with high values in the saliency maps improves the system

performance in various computer vision tasks, such as image retrieval [13], ob-

ject recognition [14, 15], object tracking [16, 17], or action recognition [18, 19].

However, although much fundamental work has been done to generate good

representations of visual saliency from still images or video content, their ap-
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plication to object recognition has not been yet explored in-depth. Indeed, it is

still commonly restricted to a pre-processing stage that filters out non-relevant

areas from the process [8].

In this paper, therefore, we provide a systematic study of the application of

saliency to the challenging task of active object recognition. In a given scene,

active objects are those objects which are interacted (manipulated, observed)

by the users and, therefore, play a key role to understand the semantics of the

scene. Furthermore, we claim that, in many scenarios in which humans perform

activities by manipulating objects, an action can be effectively defined as a

sequence of ‘active’ objects [20]. Hence, we do not aim to detect every object in

the scene, but only those ones considered as active. This problem fits well with

the nature of saliency since it aims to drive the recognition process to the areas

of interest in the image, therefore preventing from the detection of non-active

objects that belong to the background of the scene.

Our saliency-based approach aims to model the retina in the Human Vi-

sual System (HVS), and consider biologically-inspired independent foveal and

peripheral visual paths. By plugging our contributions in the BoW paradigm,

we investigate how visual attention modeling can be applied to various steps in

the processing pipeline. To the best of our knowledge, this is the first in-depth

study about the application of visual saliency to object recognition with BoW

approach at several stages, as: i) we extend the state-of-the-art on Saliency-

sensitive non-uniform feature sampling in a new Saliency-sensitive variable-

resolution feature space, ii) we introduce a completely new Saliency-Sensitive

Coding of features and use the iii) Saliency-based feature pooling which has

been shown to be efficient in referenced research [20, 13].

The benefits of our approach are multiple: i) the computation of saliency

maps is category-independent and a common step for any object detector, ii)

compared to sliding window methods, by looking at the salient area we can

avoid much of the computational overhead caused by an exhaustive scanning

process, iii) our automatic saliency maps not only focus on the object of interest

of a scene but usually contain some context around the object, iv) an object
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recognition method working with saliency maps does not need ground-truth

bounding boxes for training, which dramatically reduces the human resources

devoted to the database annotation. In contrast, a known limitation of the use

of saliency is that, as it focuses on the objects/area of interest of the scene, it

may prevent systems from detecting those objects located outside these areas

and that belong to the background of the scene.

In order to assess these benefits, we have selected an experimental bench-

mark composed of both video and image datasets containing scenes in which

just a few objects are considered and have been manually labeled as active.

The video datasets are 1st-person camera view (egocentric videos), which have

recently gained a lot of attention due to the emerging end-user applications in-

volving the use of wearable cameras in scenarios such as robotics, telemedicine or

life-logging [21]. Furthermore, as this kind of content fits well with the problem

being addressed, we can find previous works in the literature that have previ-

ously applied visual saliency to egocentric video analysis [22, 8, 23, 24]. On the

contrary, the image datasets are 3rd-person camera view and demonstrates that

our method is not restricted to egocentric contents.

The remainder of the paper is organized as follows: in section 2 we discuss

the work related to the application of perceptual modeling to computer vision

and, particularly, to object recognition. Next, in section 3, and just for the sake

of completeness, we provide a brief description of the method used to compute

saliency in video. Section 4 describes in detail our saliency-based approach for

active object recognition. In section 5 an in-depth evaluation is provided that

assesses our model under the various scenarios, and compares it to other state-

of-the-art approaches. Finally, section 6 summarizes our conclusions and gives

perspectives.

2. Related Work in Saliency-based Object Recognition

Modeling visual perception in the problem of object recognition consists

in the automatic prediction of the areas in the scene which, by their spatial,
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luminance, color and motion properties, would attract human gaze [12]. This

is the so-called “bottom-up” visual attention prediction. The rationale of using

such low-level prediction is in the hypothesis that objects are characterized by

peculiarities in these description channels. There exist different predictors for

visual attention: e.g. those that predict the dynamics, that is saccadic motion

[25], or those which focus on fixations [26]. Furthermore, the predicted visual

attention is often expressed in the form of “saliency maps” [11, 8].

In any case, this paper does not focus on the particular method to compute

saliency but, alternatively, studies how this valuable information can be plugged

into an object recognition pipeline. In general, previous approaches tackling this

problem can be broadly divided into three categories: methods using binary

segmentation masks, saliency-based pooling, and saliency-based sampling.

Traditionally, most works have relied on binary saliency maps, also known

as foreground masks, as a way to delimit the particular area of the image to

be processed. This is the case of [27], where object matching is improved by

filtering out the local descriptors located in non-salient areas, or the more recent

proposal [8], where the authors incorporated foreground masks to the BoW

paradigm by restricting the detection of local features to particular salient areas

of the image. A similar approach is followed in [22], where a method for object

recognition in egocentric video firstly identifies foreground areas in each frame,

and consequently detects and labels regions associated with the hands and the

object being manipulated.

Following the second strategy, the works in [13, 15] substitute these binary

masks by a soft-pooling scheme over real-valued saliency maps. In particular,

both works build over the BoW paradigm, and consider the continuous values

of a saliency map to weigh the contribution of each visual word. In addition, in

[13] two complementary image signatures are considered: one associated with

the foreground, and another modeling the background. These signatures enable

foreground and background-based object recognition, or even combined recogni-

tion in which both the object of interest and the context are considered. In [14],

a discriminative approach for pooling visual features is proposed that integrates
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within a unified framework the computation of saliency maps and the learning

of SVM-based classifiers. In this case, saliency maps are category-dependent

functions that learn the spatial distribution of visual words associated with par-

ticular object categories. This approach has been successfully applied to various

computer vision tasks, such as action recognition or scene classification.

Concerning the third category of methods, other works have used saliency

to perform non-uniform sampling of local features in images, so that more in-

formation is gathered on those areas considered as salient. In [28] the authors

propose a classification method based on the use of decision trees over randomly

sampled square patches of different sizes. To improve this random sampling pro-

cess, category-specific saliency maps store the most likely locations and scales

of positive patches of each class. The works in [18] and [19] also explore the

same idea in the BoW paradigm, so that local descriptors are computed over

regions randomly sampled using saliency maps. Finally, [9] and [10] are yet

other examples of this kind of approach, where saliency maps drive the search

process of sliding-window object detectors, thus drastically reducing the number

of windows being evaluated. Finally, there exist other approaches that follow

the so-called “fixation point strategy”, whereby they sequentially analyze a set

of image representations or ‘glimpses’ from each visual fixation a human would

perform on a scene. This is the case of [29], where a Boltzmann Machine inte-

grates the information of several glimpses and locations of several fixations of

an object.

3. Visual Saliency for Object Recognition in Video

The variety of bottom-up visual saliency models available nowadays is very

rich [7]. Nevertheless, one cannot speak about a universal model: whereas for

video content the model has to take into account the response of HVS on motion

singularities, in stills, the models on the basis of contrast and orientation have

proved to be efficient. Here, for the sake of completeness, we briefly introduce

the model of visual attention that we have used for the video experiments.
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Figure 1: Three examples of visual saliency maps: from left to right, original frame, spatial,

temporal, geometric and fused spatio-temporal-geometric saliency.

However, it is worth noting that our proposal does not depend on the particular

saliency method and could be easily applied together with other alternatives,

such as classical bottom-up methods [11, 12], or top-down attention models

which are trained from human fixations, as the one proposed in [19].

We aim to model the focus of attention by means of a pixel-based saliency

map on the whole video frame. Then, this map is used to guide the features

selection and pooling processes in the BoW approach to generate perceptually

significant features. Hence our saliency model responds to these requirements as

confirmed by previous psychovisual experiments in [30]. Our method considers

three sources of information, namely: a) Spatial saliency, with the method

described in [31, 32]; b) Temporal saliency, associated to the residual motion

once the camera motion is estimated, parametrized and compensated [33]; and c)

Geometric saliency, which follows a previously confirmed hypothesis on general

purpose video: the so-called center bias hypothesis, that is the attraction of

human gaze to the geometrical center of an image [31] and is computed as

2D Gaussian located at the screen center as in [30]. This saliency is specially

tailored for egocentric video content, as it approximately models the gaze of the

subject wearing the camera and interacting with the scene.

Once all the individual saliency maps are computed, a weighted linear fusion

is performed to generate a unified spatio-temporal-geometric saliency map S(i),
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that is then normalized to the interval [0, 1]. Fig. 1 contains three visual

examples in which a particular information channel is of special importance, and

shows how our unified saliency maps successfully cover the object of interest in

the frame. The interested reader is referred to the supplementary material for

a detailed description of the approach.

4. A saliency-based approach for active object recognition

In this section we will describe our approach for active object recognition

using saliency. As shown in Figure 2(a), we take the BoW paradigm as our

baseline, and propose to improve its spatial precision using saliency maps.

Our baseline implementation of the BoW is briefly described as follows: for

each frame/image, we extract a set of N local descriptors using a dense grid

of overlapped circular patches. Based on several experiments, we have set the

radius of the circular patches to 25px, and the step size between each local patch

to 6px. Next, each local patch n = 1..N is described using a 64-dimensional

SURF descriptor xn [34], which has shown similar performances to the SIFT

descriptor [35] in our experiments. Each descriptor xn is then assigned to the

most similar word bk, k = 1..K in a visual vocabulary by following a vector-

quantization process. The visual vocabulary B, computed using a k-means

algorithm over a large set of descriptors in the training dataset (we use about

1M descriptors), has a size of K visual words. The vector-quantization process

allows the generation of image signatures as L1-normalized histograms H of

word occurrences. Finally, to detect the presence of a category in the image, we

use an SVM with a nonlinear χ2 kernel, which has shown good performances

working with normalized histograms [36].

In parallel, our system generates a saliency map S of the frame which is

used to model two differentiated pathways found in retinal vision: foveal or

central vision, and peripheral vision. It is known that, due to the varying

morphology of neurons in the retina, the human eye simultaneously allows for

a high-resolution and detailed perception in the visual field associated with the
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(a) (b)

Figure 2: Processing pipeline for saliency-based object recognition in first-person camera

videos. a) A general view of the pipeline, where the three modules that incorporate saliency

are surrounded with red dotted lines. b) Detail of the module ‘’Saliency-based Non-uniform

Sampling and Variable Spatial Resolution”, where fixed-size circular patches are sampled over

an image pyramid based on saliency values.

fovea, and a low-resolution one in the peripheral visual field [37]. Furthermore,

the human perception of a scene is based on information acquired during periods

of relative gaze stability known as fixations [38]. For each fixation, a well-defined

location of the image corresponds to the fovea location, whereas the rest of the

image is associated with the peripheral visual field. Consequently, given the

saliency map of an image, our system models both pathways at various stages

of the processing pipeline (denoted with red dotted lines in Fig. 2(a)).

In the following sections, we will describe each processing module using

saliency. It is worth noting that our objective is to improve system perfor-

mance, while keeping the computational burden of the final solution as bounded

as possible. Hence, an important requirement is that the enhancement in the

performance is not achieved at the expense of a dramatic increase in the com-

putational time.
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4.1. Feature Computation by Saliency-based Non-Uniform Sampling in a Variable-

Resolution space

In this section we describe our approach towards the emulation of visual

fields through the Non-Uniform Sampling of features at Variable Spatial Reso-

lutions (NUS+VSR). As already mentioned, due to the varying morphology of

neurons in the human retina, it simultaneously enables a high-resolution detailed

perception in the visual field associated with the fovea, and a low-resolution one

in the peripheral visual field [37]. This leads to a non-uniform spatial resolution

image analysis, commonly known as foveation [39].

Our approach combines space-variant sampling [18] and multi-resolution im-

age foveation [40] to model these two differentiated pathways. The NUS+VSR

approach is depicted in Fig. 2(b). We implement the non-uniform sampling as

a pruning process that considers and initial set of features, and then filters out

many of them depending on their saliency value. Hence, the first step of our

approach is to define a grid of circular local patches of radius r which is more

dense than the one of the baseline BoW (we use here a step size of 3px, whereas

in BoW it was 6px). Let us note that this step just involves the definition of

the grid (which is not costly at all) and that the computation of the descrip-

tors (which requires an important computational burden) is just made after the

pruning process is finished.

In order to simplify the model description, we split it into its constituent

elements: variable spatial resolution and non-uniform sampling.

4.1.1. Variable Spatial Resolution (VSR)

In order to provide a multi-resolution analysis of an input image, we first dis-

cretize the resolution space by generating a multi-scale Gaussian image pyramid

of L levels. Lower levels are meant to represent foveal vision whereas upper ones

model peripheral vision. As shown in Fig. 2(b), we define the scale resolution

factor ρ that stands for the ratio between the widths of two contiguous images

in the pyramid Wl = Wl−1

ρ , where l denotes the level in the pyramid.
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Then, using values in the saliency map, we can compute the saliency value

of each local circular patch n as:

sn = max
m∈Ωn

(S(m)) (1)

where S(m) has been already defined Sec. 3 and Ωn stands for the pixels within

the local patch n. We have found that max pooling here is more efficient for the

target recognition task than mean pooling. Hence, depending on this value sn ∈

[0, 1], we assign each local patch to a particular level of the pyramid. In our case,

this is done by a simple linear quantization (Q(s) in Fig. 2(b)) that uniformly

splits the resolution space into equally sized segments. Intuitively, based on

the saliency value, we are modeling the foveal visual field as a high-resolution

pathway that pays attention to small image details, whereas the peripheral

vision path acquires information at a lower resolution, thus focusing on coarse

visual patterns.

Let us note that we do not change the scale of the local regions (defined

by the radius r in Fig. 2(b)); alternatively, we decrease the size of the im-

age in each level so that the relative size of the local regions increases with

the level l. Indeed, the spatial location of each local patch in the initial grid

is also adapted to the dimensions of the selected image of the pyramid. Our

approach therefore discretizes the resolution space, which differs from previous

works towards foveated video displays [39, 40], where continuous-resolution im-

age representations (foveated images) were generated by interpolating previously

computed discrete-resolution image representations. Although a continuous res-

olution space might seem appealing for our problem, its implementation leads

to two problems which discourage its application: first, using interpolation be-

tween images at various resolutions and generating a foveated image based on

the saliency map will lead to local regions containing pixels at various resolu-

tions. This would produce the undesirable scenario in which local descriptors

are computed over areas with non-uniform resolution. Indeed, it could be seen

as a retinal visual cell working at variable resolution in its visual field, which

does not coincide with our objective of modeling various visual cells, each of
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them working at a specific spatial resolution. In addition, computing image

interpolations on-the-fly, ensuring that all pixels in a local patch correspond

to the same resolution, would solve this issue at the expense of an important

increase in the computational burden. As we will show in the experimental

section, increasing the number of levels L (which, if we keep the resolution of

the last level as a constant, would tend to a continuous resolution space if L is

large enough) does not notably improve classification results.

4.1.2. Non-uniform Sampling (NUS)

In this section we introduce the pruning process that filters out non-relevant

visual information in order to provide more compact image representations fo-

cusing on areas of high saliency.

We follow a similar approach to [18], in which a Weibull cumulative dis-

tribution was proposed to perform random sampling based on saliency values.

In particular, defining a random variable S associated with visual saliency, the

Weibull cumulative density function obeys:

FS(s) = P (S ≤ s) = 1 − e−(s/λ)κ (2)

where κ is called the shape parameter and λ the scale parameter. Hence, for

each n-th local region with a particular value sn we randomly decide if it is

pruned or not based on the value of FS(sn).

Intuitively, the shape parameter κ controls the influence of the saliency value

on the pruning process. Whereas low values of κ give less influence to the

saliency value (both salient and non-salient areas have similar opportunities to

survive the pruning process), high values will prune almost all the non-salient

local regions in the final image representation. Furthermore, for a given κ value,

the scale parameter λ controls the total amount of local regions being pruned.

We aim at improving classification results while avoiding any additional

processing burden. Hence, in order to produce almost the same number of vi-

sual descriptors as in the uniform case, we have designed the following random

sampling procedure. Let us consider a desired number of patches N , that corre-
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sponds with the number of processed patches in the baseline BoW (no saliency).

Since we are following a pruning process, our initial dense grid will produce a

large enough set of N0 points so that N0 >> N . Then, we will set a value for the

shape parameter κ in the Weibull distribution and, in order to keep the compu-

tational complexity constant, we will automatically calculate the corresponding

λ value producing a final number of points N̂ ∼ N .

For that end, let us consider N̂ as a random variable and therefore compute

its expected value as:

E[N̂ ] =

N0
∑

n=1

1 · FS(sn) = N0 −

N0
∑

n=1

e−(sn/λ)
κ

(3)

where we have considered that the probability of a patch n being included in

the final image representation is the value of the Weibull cumulative density

function FS(sn) on the saliency of the patch sn.

Unfortunately, from eq. (3) it is not possible to obtain an analytic optimal

value of λ that makes E[N̂ ] = N . However, since xn = − (sn/λ)
κ

is a real

value, we know that exn is a convex function over xn, which allows us to apply

Jensen’s inequality to obtain an upper bound of eq. (3) as:

E[N̂ ] ≤ N0

(

1 − e
−

1

N0

∑N0

n=1
(sn/λ)

κ
)

(4)

That is, we can obtain an upper bound of the number of points being processed,

which allows us to successfully keep the computational complexity bounded for

each value of κ. Working out λ in eq. (4) gives a final expression for λ:

λ =





E[sκ]

ln
(

N0

N0−N

)





1/κ

(5)

where E[sκ] = 1
N0

∑

n s
κ
n. The upper bound in (4) is tight when the values

(sn/λ)κ are very similar for every n. This means that we get better approxi-

mations N̂ ∼ N when κ is small than when it is very large (where we might

get N̂ < N). As we will show in the experimental section, where we will cross-

validate the value of κ, the influence of the approximation on the results is

negligible and, in fact, better results are achieved for high values of κ.
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4.2. Saliency-based Pooling (SP)

This section corresponds with the stage in the pipeline that generates the

image signatures using saliency. In the traditional BoW approach [2], the image

signature H is the statistical distribution of the image descriptors according

to the visual codebook. This is made by first assigning each local descriptor

to a visual word in the vocabulary, and then computing a histogram of word

occurrences by counting the times that a visual word appears in an image.

In our Saliency-based Pooling, we use saliency to weigh the selected features,

giving place to a sort of soft-assignment based on saliency maps. In particular,

the contribution of each image descriptor is defined by the weight sn in eq.

(1). In other words, descriptors over salient areas will get more weight in the

image signature than descriptors over non-salient areas. Therefore, the image

signature can be computed as follows:

Hk =
N
∑

n=1

snαnk (6)

where Hk represents the k-th bin of a histogram, and αnk is an index variable

so that αnk = 1 for the visual word in the vocabulary associated with the n-th

descriptor in the image and αnk = 0 for the rest.

Finally, the histogram H is L1-normalized. This method of saliency weight-

ing is similar to the spatial weighting proposed in [41] but, in our case, the

weights are not learned from data as, in contrast, are directly derived from

saliency, therefore being category-independent.

Furthermore, an extension of the basic saliency-pooling has been explored

in [13], where the authors considered two independent signatures, foreground

and background ones, which were defined using a soft fuzzy approach based on

saliency. This method can be directly plugged into our perceptual approach

modeling our two pathways in retinal vision. Hence, the image signature would

be a concatenation of two histograms [Hf , Hp]:

Hf =

N
∑

n=1

snαnk; Hp =

N
∑

n=1

(1 − sn)αnk (7)
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where Hf stands for the foveal channel, while Hp models the peripheral one.

If we keep the vocabulary length K fixed, it will produce image signatures of

length 2K, with a consequent increase in the computational complexity. Alter-

natively, if we divide the vocabulary length by two and keep the computational

complexity constant (same signature length), we might be losing precision in

the foveal representation with the new reduced vocabulary. To avoid this limi-

tation, in the next section we reformulate our problem as follows: given a total

signature length, and using saliency, we would like to optimally allocate the

respective proportions for the foveal and peripheral channels.

4.3. Saliency-sensitive Coding of features (SC)

This section is devoted to the description of the Saliency-sensitive Coding of

features. As we already mentioned, this work is inspired by previous proposals in

which information belonging to foreground and background is encoded indepen-

dently [13], as well as by the principles of sparse coding [42] and locality coding

[43]. However, we provide a self-organized approach that automatically learns

the optimal vocabularies for each spatial resolution and then assigns each vi-

sual descriptor taking into account both its visual appearance and its associated

saliency value.

To do so, we start by considering the Locality-constrained Linear Coding

(LLC) approach presented in [43] and [44]. In these works, some exponentially-

increasing locality functions were used to provide sparse codes which represented

a particular descriptor using a small subset of visual words from a vocabulary.

In our case, while keeping the sparse requirement, we aim to provide a Saliency-

sensitive Coding (SC) of features. The objective of SC is two-fold: first, we aim

to generate particularized vocabularies for each spatial resolution so that each

descriptor is coded as a linear combination of visual words acquired at close

spatial resolutions; second, we aim to automatically set the optimal number

of words assigned to each spatial resolution, so that more words are used to

represent visually salient image locations and vice versa.

Our problem formulation is as follows: for a given set of N descriptors
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defined by the pair {xn, sn}, where xn ∈ R
D×1 stands for the visual descriptor

and sn is the saliency value associated with the region (see eq. (1)), we define an

over-complete visual vocabulary {B,p}. The matrix B ∈ R
D×K contains the

visual words of the vocabulary, whereas the vector p ∈ R
K×1 defines the retinal

path associated with each visual word. This path is a continuous variable in the

range [0,1] that models a fuzzy membership to the foveal/peripheral pathways, in

which 0 stands for a path completely associated with the peripheral vision (low

spatial resolution) and 1 corresponds to the foveal path (high spatial resolution).

Hence, given a visual descriptor xn computed at a particular spatial resolu-

tion (that depends on its associated saliency), we aim to represent it as a linear

combination of a small set of visual words of the vocabulary, strengthening those

of similar type (similar spatial resolution).

To that end, we formulate the following minimization problem:

min
α,B,p

N
∑

n=1

{

‖xn −Bαn‖
2
2 + λl‖ln ⊙αn‖

2
2 + λt‖tn ⊙αn‖

2
2

}

s.t. 1T
αn = 1 (8)

where αn ∈ R
K×1 represents the vector of weights in the linear combination and

is called the code, ⊙ stands for the Hadamard product (element-wise) between

two vectors, and 1 represents a vector of ones. The first element in eq. (8)

corresponds to the coding error between the original and the reconstructed de-

scriptor. The second element ensures locality by incorporating a locality adaptor

ln ∈ R
K×1 to the problem. This locality adaptor, previously introduced in [43],

stands for the visual distance lnk between the descriptor and each word in the

vocabulary. By using an exponentially-increasing adaptor of the form:

lnk =

√

exp

(

‖xn − bk‖22
σ2
l

)

(9)

we are able to generate sparse codes αn in which just a few αnk associated with

words that are close in the feature space get non-zero values. It is easy to notice

that the lower the parameter σ2
l , the sparser is the resulting code.

Finally, with the third term in eq. (8) we aim to code each descriptor using

words in the vocabulary with similar spatial resolution. Therefore, we introduce
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a new type adaptor tn ∈ R
K×1 that compares the retinal paths of the descriptor

and visual word as:

tnk =

√

exp

(

‖sn − pk‖22
σ2
t

)

(10)

where, again, we have made use of an exponentially-increasing adaptor with its

own parameter σ2
t .

4.3.1. Approximate Inference

Since eq. (8) is independently convex in {α, B,p}, we have followed a co-

ordinate descent - gradient descent approach to find the optimal values. That

is, by iteratively optimizing the functional with respect to each parameter, it is

ensured that the algorithm will converge to a local minimum.

In particular, in order to provide a solution for the coding stage (α), we can

rewrite eq. (8) as:

min
α

N
∑

n=1

α
T
nCnαn + α

T
ndiag(λll

2
n + λtt

2
n)αn + η(1T

αn − 1) (11)

where we have defined a new matrix C ∈ R
KxK , computed as C = (xn1

T −

B)T (xn1
T −B). We have additionally converted the equality constraint over α

into a new term with a Lagrange multiplier η.

Then, by computing the derivative of (11) with respect to αn and setting it

to zero, we can obtain the update equations for the codes αn as:

αn =
α̃n

1T
α̃n

; α̃n = U−11 (12)

with U = 2C + 2diag(λll
2
n + λtt

2
n).

Unfortunately, exact inference becomes impractical when the size K of the

vocabulary increases, as computing the inverse of the matrix U ∈ R
KxK is very

computationally intensive. Hence, we have developed an approximate inference

process as follows: (1) for each descriptor, we consider a reduced vocabulary of

size K̂ << K, containing only those visual words k that minimize the partial

functional λl‖lnk‖
2
2 +λt‖tnk‖

2
2; (2) then, we solve the simplified problem stated

17



in eq. (11) for this reduced vocabulary. In our experiments, a value of K̂ = 100

has shown a good compromise between performance and complexity.

For the pk parameter, we need to solve the following unconstrained convex

optimization problem:

min
p

= λt‖tn ⊙αn‖
2
2 (13)

It is easy to note that setting the derivative of (13) with respect to p equal to

zero leads to a nonlinear equation on p. Hence, we can obtain an optimal value

of p using a Newton-Raphson method that, in the iteration i updates p
(i+1)
k as:

p
(i+1)
k = p

(i)
k +

∑N
n=1 α

2
nk

(

t
(i)
nk

)2 (

sn − p
(i)
k

)

∑N
n=1 α

2
nk

(

t
(i)
nk

)2
(

1 + 2
σ2

t

(

sn − p
(i)
k

)2
) (14)

Finally, since the term associated with the type adaptor does not depend on

B, the dictionary can be updated by following the Newton method proposed in

[44]. The interested reader is referred to that work for the complete derivation

of the B update formulas.

It is worth noting that variables B and p are just learned in the dictionary

building phase and remain fixed during the computation of the image signatures

(when only the α is computed). In addition, let us note that this method shows

various open parameters, namely {σl, λl, σt, λt}. In the experimental section, we

will show the influence of these terms and the optimal values for our problem.

5. Experiments and results

As discussed in the introduction, we aim to solve the problem of ‘active

object recognition’ in visual scenes. For that end, we have selected several

video and image datasets in which, although each frame/image may contain

several of objects, only a few (in most cases one) are considered as ‘active ones’.

In particular, we have used four datasets which will be described in-depth in the

next section: three video datasets (GTEA, ADL, Dem@care) with 1st-person

camera view in which the user recording the scene is interacting with it, and
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a still image dataset (PPMI) with 3rd-person camera view contents, in which

users manipulate musical instruments.

5.1. Scenarios, Datasets and Evaluation Metrics

We consider two different scenarios: constrained and unconstrained.

We call constrained a scenario in which all the subjects perform actions in the

same room and, therefore, interact with the same objects in the same context,

e.g. a hospital scenario in which patients perform several activities. Here,

the limited intra-class variation is only due to natural conditions: occlusions,

lighting, etc. We have used two video datasets to model this scenario: GTEA

and Dem@care.

GTEA is a publicly available dataset for Object Recognition [22] in egocen-

tric video, that contains cap-mounted videos showing 7 types of daily activities,

each performed by 4 different subjects, and comprising 16 categories of manip-

ulated objects.

Dem@acare is a dataset generated under the Dem@care1 research project.

It contains 27 egocentric videos, captured by a shoulder-mounted GoPro camera

with real Alzheimer patients performing various instrumental daily activities in

a controlled hospital environment. This dataset contains 18 categories of active

objects.

In contrast, in an unconstrained scenario the recordings are made at different

locations and users are interacting with different instances of the same object

categories. The intra-class variation here is strong and the amount of training

data is small (just a few instances of each object category). For this scenario,

we have used two datasets: ADL and PPMI.

ADL is a publicly available egocentric video dataset [45], which contains

videos captured by a chest-mounted GoPro camera on users performing various

daily activities at their homes, showing objects from 44 categories. We have

just considered objects labeled as ‘active’ in both training and testing. This

1Dem@acare Project: http://www.demcare.eu/
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dataset was used for two purposes: a) a reduced version was utilized to validate

the free parameters of our proposal. Here a strong temporal sub-sampling was

applied and the data was split into training and test sets with 1464/1251 frames

respectively, ensuring that frames of the same video were not contained in both

sets. And b) for the final evaluation, the 20 videos were divided into 5 sets of

4 videos each, so that a leave-one-out assessment was performed at this subset

level.

The People Playing Musical Instruments (PPMI) dataset [46] contains im-

ages of humans interacting with 12 different musical instruments in two dif-

ferent ways: simply holding or playing the instrument. Therefore, each image

contains an object considered as active: the instrument. In this dataset we aim

to address the problem of fine-grained activity recognition with the set of 24

categories (12 instruments and 2 manipulations) and, as we will describe later

in the manuscript, we have followed the experimental setup of the authors [46],

which slightly differs from the rest of the experiments.

As evaluation metrics, again following the setup of the original authors, mean

Average Precision (mAP) was used for the Dem@acare, ADL and PPMI, and

multiclass accuracy was applied in the GTEA.

We finally isolate the case of PASCAL VOC 2010 dataset [47], as a widely

used for performance comparison in object recognition problem. Generally

speaking it fits to the unconstrained scenario. Nevertheless, we do not follow

the active object scheme and consider all objects present in the scene instead

for the sake of comparison.

5.2. Validation of model parameters

5.2.1. Variable Spatial Resolution and Non-Uniform Sampling

As we have four open parameters in this module, and although they are

not independent, performing a joint fine cross-validation becomes impractical.

Hence, after an initial very coarse parameter selection leading to an initial set

of values, we have sequentially performed various ‘one-at-a-time’ optimizations,

namely:
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Figure 3: Validation of the VSR+NUS parameters in the ADL unconstrained dataset: (a)

radius r of the circular regions, (b) resolution factor ρ, (c) number of levels in the pyramid L,

(d) shape parameter k in the Weibull distribution of the NUS.

1) Radius r of the circular local regions : in Fig. 3(a) we evaluate the influence

of this parameter in two scenarios: with our VSR approach (blue), and (red)

with a basic Dense Sampling approach corresponding to the baseline BoW (red).

Let us list the values of other parameters as: ρ = 2, L = 4 and NUS activated

with k = 5 (Section 4.1.2). Whereas the optimal value for the basic dense grid

was r = 30, for the VSR it was r = 10, as going up in the resolution pyramid

increases the relative size of circular regions with respect to image dimensions.

Furthermore, the better results achieved by the VSR scheme demonstrate its

capacity for removing very fine details and thus focusing on coarser shapes at

upper levels of the pyramid.

2) The maximum scale in VSR: It is easy to notice that, for a given number

of L levels, the sizes of images in the bottom and top levels in the pyramid can

be related as W0

WL−1

= ρL−1. Hence, fixing the rest of the parameters (r = 10,

L = 4 and NUS activated with k = 5), we study the influence of the maximum

scale in VSR by validating the value of ρ. As shown in Fig. 3(b), good results

are obtained in the range ρ ∈ [1.5, 2]. Consequently, we have selected ρ = 1.5,

which leads to maximum scale in VSR expressed by an approximate effective

size WL−1 = 0.3W0.

3) The number of levels in the pyramid L: this parameter controls the degree

of discretization of the resolution space. As discussed in Sec. 4.1, in order to keep

this complexity as bounded as possible, we work with a discretized resolution.

To isolate the influence of L and the maximum scale in VSR, we have fixed
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WL−1 = 0.3W0 as proposed in the previous paragraph; then, for each evaluated

L, we have accordingly set the resolution factor ρ that produces this WL−1 in

the top level of the pyramid. The results provided in Fig. 3(c) demonstrate

that the performance grows until L = 4, when it stabilizes and more continuous

representations of the resolution space do not improve the performance.

4) The shape parameter k of NUS : for each value of k in the NUS module,

we have accordingly computed the scale value λ that produces the desired final

number of points N̂ ∼ N (see Sec. 4.1). The results of this study are presented

in Fig. 3(d). The dependence of the AP with respect to this parameter is

the only one that is neither monotonically increasing nor concave (getting a

clear global maximum). Instead, here we can find how two opposite trends are

preferred: very small and large values of k. This means that it is better to have

classifiers that either look at the whole image, using a large context surrounding

the object (k = 0), or focus on the area of interest (large k). Unlike other

parameters, we have observed that the influence of k strongly differs from one

category to another, which makes the average result more unstable. For some

categories that are highly correlated with their spatial context, small values of

k are preferred, as they draw descriptors in both active and non-active areas. In

contrast, those categories of objects that may appear in many different scenarios

or locations, are better represented with very high values of k. In average, it

seems that the later are dominant in the ADL dataset. This makes high values

of k more interesting (we get an optimal value of k = 5). For these values, the

sampling process is highly unbalanced so that many more points are selected in

high-saliency areas than in low ones.

5.2.2. Saliency Sensitive Coding

Since our Saliency Sensitive Coding is built over LLC [43, 44], we have firstly

set the values for the locality adaptor. As it is not the scope of this paper, we do

not include figures about their influence but simply note that the optimal values

were λl = 0.10, σ2
l = 0.25. On the contrary, we are interested in the study of

the influence of the saliency-based type adaptor in the coding process. Two are
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Figure4:(a)Normalizedhistograms(pdf)ofthepkinthevisualvocabularyforvariousvalues

ofλt.(b)ValidationofλtparameteroftheSCinADLdataset.

theparametersofthisadaptor(Sec.4.3):λt,whichcontrolstheweightofthe

saliencyoverthecodingprocess,andσt,thathandlesthedegreeofnonlinearity

ofthecodingprocesswiththesaliency.

TheinfluenceofthesaliencytypeadaptorisillustratedinFig. 4(a). For

severalvaluesoftheparameterλt,weshowthenormalizedhistogramsofthepk

valuesinthevisualdictionary.Ascanbeseen,whenλtissmall,thevisualpath

ofthevisualwordshaslessinfluenceinthecodingprocesssothatthevaluesof

pktendtothesampleaverageofthedescriptors’saliencysi(histogramswith

asharppeakaroundthissampleaveragesaliencyvalueofdescriptorsinthe

dataset).Incontrast,ifλtishigh,eachwordinthevocabularyisassociated

withaparticularvisualretinalpathand,consequently,withasmallerrangeof

saliencyvalues,thusgivingplacetoamoreuniformhistogram. Notethatwe

presenthereaprocessinwhichthenumberofvisualwordsdevotedtofoveal

andperipheralpathsisautomaticallylearnedfromdata. Furthermore,the

assignmentofadescriptortoaparticularpathisperformedsoftly,anddepends

onthedistancebetweenthesaliencyofthedescriptorsnandthetypevaluepk

ofeachwordinthevocabulary.

InFig.4(b),weshowadditionalresultsofourvalidationoftheλtparameter

foraheuristicallycomputedoptimalσtvalueofσ
2
t=0.1. Wecanseethatthe

bestresultsareachievedforaλt∼0.025,whichleadstoanapproximately

uni-modalpkdistributionsimilartothatoneinblueinFig.4(a). Wewould

liketonotethat,asSCisimplementedjointlywithNUS(withk=5),mostof
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Table 1: A comparison of various configurations of Saliency-based Object Recognition for the

whole (44) and reduced (10) sets of categories in the ADL dataset: Mean AP and p-value of

a paired t-test taking NUS +V SR + SC as reference.

Algorithm/ mAP (p-value) ADL (44 cat) ADL (10 cat)

BoW 13.6 (0.08) 32.8 (0.02)
BoW + GT Masks 16.8 (0.77) 50.4 (0.47)

NUS [18] 13.9 (0.03) 35.1 (0.00)
NUS+VSR 15.1 (0.14) 38.3 (0.20)

SP-F 14.5 (0.06) 39.4 (0.04)
SP-FP (2000) [13] 13.8 (0.11) 35.6 (0.11)
SP-FP (4000) [13] 14.7 (0.25) 38.2 (0.19)
NUS+VSR+SP-F 14.2 (0.01) 37.5 (0.01)

NUS+VSR+LLC [43, 44] 15.3 (0.11) 42.4 (0.35)
NUS+SC 14.4 (0.11) 38.3 (0.12)

NUS+VSR+SC 16.2 44.0

the points are computed in salient areas, that leads to a vocabulary in which

many more words are devoted to the foveal vision than to the peripheral one.

In particular, by manually selecting the point corresponding to the left side of

the large bump in the pk distribution, we have categorized the visual words

into two classes: high saliency (pk is larger than this point), and low saliency

(pk is lower). The resulting proportions are 10% for words corresponding with

peripheral vision and 90% for words corresponding with central vision. Hence,

we can conclude that SC automatically sets the importance of the two retinal

pathways.

5.3. Comparing Saliency Approaches

To assess the influence of each saliency-based stage in the active object recog-

nition problem, we have compared several versions of our approach, namely:

a) Reference methods :

1. BoW : Baseline BoW with a vocabulary size of 4000 visual words.

2. BoW + GT Masks : This approach utilizes (human-annotated) Ground

Truth bounding boxes of the active objects, and filters out the descriptors

associated with local regions located outside the objects of interest.

b) Visual Fields with VSR and NUS :
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1. NUS : BoW with our NUS module described in sec. 4.1.2, that extends

the work in [18].

2. NUS+VSR: We add the VSR module (sec. 4.1.1) to the previous approach.

c) Saliency Pooling Methods :

1. SP-F : BoW + Saliency Pooling considering only the foveal weights as

stated in eq. (6).

2. SP-FP : BoW + Saliency Pooling considering both the contributions to the

foveal and peripheral vision, as stated in eq. (7) and [13]. We have tested

two vocabulary sizes: 2000 words (keeping the length of the image signa-

tures constant), or 4000 (doubling the length of the image signatures).

d) Combined methods :

1. NUS+VSR+SP-F : We add Foveal Saliency Pooling to the NUS+VSR

version of our approach to study the combination of both.

2. NUS+VSR+LLC : As a reference, and in order to evaluate the effect of the

Saliency-based Coding over the system performance, this is a combined

approach using the Locally-constrained Linear Coding (LLC) proposed in

[43, 44] to compute a vocabulary size of 4000 words.

3. NUS+VSR+SC : We substitute the Saliency pooling by our Saliency-

sensitive Coding with a vocabulary size of 4000 words.

4. NUS+SC : As the previous one, but we switched off the VSR module in

order to evaluate its contribution to the system performance.

Results for every method are shown in Table 1. Regarding the methods imple-

menting the VSR+NUS visual fields, we appreciate the positive influence of both

elements in the results: although the NUS already enhances the basic BoW, the

VSR approach yet provides notable improvements to system performance. This

is a consequence of the spatial resolution adaptation to the foveal and peripheral

vision, and raises the need for independent and different scale processing paths

for the objects of interest (active objects) and their surrounding context.
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In parallel, SP also helps to enhance system performance, even if we merely

model the foveal vision (SP-F). The approach in [13], which concurrently models

foveal and peripheral vision obtains varying results depending on the scenario: if

we aim to keep the computational complexity constant and then reduce the vo-

cabulary to half of the size (2000 words), we get a dramatic loss in performance.

This result might be expected as we are adding a new path with peripheral

vision but at the expense of decreasing the precision of foveal vision. Although

we consider that peripheral vision provides useful information, giving the same

weight to both pathways has turned to be inappropriate. Furthermore, the fact

that keeping the vocabulary size constant (image signatures of double length)

improves the performance demonstrates that modeling context is also useful due

to the general correlation between objects and locations.

Finally, the combination of various saliency-aware approaches reveals dis-

parate results. Whereas we have observed that the combination of variable

resolution visual fields and saliency pooling has not improved performances,

saliency coding successfully combines with other saliency-based modules in the

processing pipeline. From our point of view, the rationale behind this is that

the automatic approach of saliency-sensitive coding correctly handles the rela-

tive importance of foveal and peripheral visual pathways, even in the presence

of previous blocks in the processing pipeline (like the visual fields described in

Sec 4.1). This is something that does not occur with Saliency Pooling which,

although by itself provides good performance, when combined with other mod-

ules weighs in excess the foveal with respect to the peripheral path and therefore

cancels the influence of the context in the recognition process. Even more, by

comparing the NUS+VSR+LLC and NUS+VSR+SC alternatives, it is worth

noting how the last term in eq. (8) notably contributes to the system perfor-

mance. Other interesting comparisons, such as the one between NUS+SC and

NUS+VSR+SC, offer coherent results with the previous observations about

VSR.

From these results, in the following we will assess the best performing ap-

proach NUS+VSR+SC in other scenarios, and in comparison with various meth-
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Table 2: A comparison between our method and some state-of-the-art approaches for various

datasets. The p-value of a paired t-test taking ‘Ours’ as reference is included when available.

Constrained Unconstrained
Dataset GTEA Dem@ ADL(44) ADL(10)

Algorithm/Metrics Acc mAP mAP mAP

BoW 35.0 45.3 (0.17) 13.6 (0.08) 32.8 (0.02)
BoW + GT Masks - 54.8 (0.53) 16.8 (0.77) 50.4 (0.47)

DPM [5] - 34.9 (0.01) 15.3 (0.61) 42.4 (0.66)
DPM [5] + obj. [9] - - 13.1 (0.06) 35.9 (0.05)

BoW + SS [10] - - 13.4 (0.08) 36.9 (0.19)
Fathi et al. [22] 35.0 - - -

Ours 45.4 50.9 16.2 44.0

ods that have reported state-of-the-art results in the considered datasets.

5.4. Comparison with the State-of-the-Art

In order to provide a meaningful comparison of our approach with other

methods in the state-of-the art, we have divided this section into two blocks:

experiments with video, and experiments with still images. The rationale behind

is that the sets of reported methods for each kind of data are quite different.

5.4.1. Active object recognition in video

Starting by comparing with the state-of-the-art in egocentric video, in Ta-

ble 2 we include a comparison between our approach (denoted as ‘Ours’), the

reference methods, and some techniques that reported State-of-the-art results

in each dataset: a) the discriminatively-trained Deformable Part Model (DPM)

[5], a sliding window technique that has reported the state-of-the-art results

for the ADL dataset [45]; and b) the object recognition approach designed and

reported by the authors of the GTEA dataset [22]. In addition, for the ADL

dataset, we have also evaluated two methods that combine well-known object

recognition approaches and saliency, namely: c) DPM over bounding boxes pro-

posed in [9] (DPM + obj.), which randomly samples bounding boxes and selects

the most appropriate based on a measure of their objectness (likelihood to con-

tain an object); and d) BoW applied over candidate bounding boxes proposed

by the method described in [10] (BoW + SS), which applies a Selective Search
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(SS) to generate potential candidate locations for objects. In both cases, we

have followed the same setup described in the original papers [9, 10] to develop

the object detector. However, in order to establish a fair comparison with our

method, in BoW + SS we have used the same features (dense SURF features)

of our proposal.

As we can see from the results, our method consistently outperforms any

other automatic approach in every dataset, as well as achieves close perfor-

mance to the hypothetic case in which ground truth masks/bounding boxes are

available (GTEA lacks Ground Truth in all videos so we cannot provide Bow

+ GT results for this dataset). In particular, in the GTEA dataset we achieve

absolute improvements of 10% compared to the best reported approach for this

dataset [22]. The performance of DPM is significantly worse than ours under

the constrained scenario (Dem@care dataset), whereas it gets closer results un-

der the unconstrained one (ADL dataset). The rationale behind this is that the

design of this method is intended to provide good generalizations of the objects’

appearance. This property, although desirable under unconstrained scenarios,

leads to a loss in performance for the detection of particular object instances

(constrained scenario). The very high p-value between DPM and our approach

in the unconstrained scenario means that the improvement of our method is not

consistent through all the categories, and that DPM is the best choice for some

of them (see Fig. 5).

Furthermore, the two state-of-the-art approaches using saliency show lower

performance as they strongly restrict the set of locations and scales to be eval-

uated by the detectors. In particular, the restricted set of candidate windows

in DPM+obj causes non-detections with respect to the full DPM approach,

whereas for the BoW+SS we have found that, although learning object ap-

pearance from accurate ground truth bounding boxes may provide additional

information such as accurate object localization, it is very sensitive to the quality

of the automatically proposed boxes in test images.

In Fig. 5 we also include per-category results in the ADL dataset. Together

with the visual examples in Fig. 6, they yield additional conclusions. In general,
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Figure 5: Detailed per-category results of various approaches in ADL dataset

Figure 6: Some visual examples of the ranking provided by our system. Each column rep-

resents an object category (columns 1-3 Dem@care dataset, columns 4-7 ADL dataset). For

each sample we show the top three ranked results and the first non-relevant ranked image,

including the #Ranking Position - #Number of relevant images.

the results vary significantly from one class to another. The poor results in some

categories can be explained as follows: although the number of image samples

of a class may be high enough (hundreds of thousands), they correspond to a

small set of different object instances (no more than 10-15 different instances

per category). Hence, if a category shows high intra-class variation (e.g. bed,

blanket, container or cloth), it is not possible to obtain good generalizations

with such limited training sets. Although using external databases might seem

appealing, the work in [45] showed how the application of detectors trained in

ImageNet [48] yielded poor results for this particular dataset.

For categories in which the BoW + GT achieves notably better results than
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the automatic approaches, we have observed that some of the errors are found in

images in which the object is present but not considered as active. This partic-

ularly holds for static objects which, although can be manipulated by humans,

are rarely moved (e.g. phone and tap belong to the context in the last row

in Fig. 6). In those cases only the GT bounding boxes guide the recognition

process exactly to the active object, which is hardly achieved by any automatic

saliency method. We have studied the effect of this kind of error by removing

from the evaluation those frames where an object is present but not active and

concluded that it equally affects all compared algorithms. Conversely, if the ob-

ject of interest is very small (e.g. tv remote in Fig. 6, thermostat, tooth brush,

etc.), the GT boxes do not contain enough discriminative information whereas

our automatic saliency-based approach considers both the salient area and its

context, therefore enhancing the detection of the object. Furthermore, we have

also observed that if two objects are jointly used in a task and tend to appear in

the active areas of scenes (e.g. dishes and tap, detergent and washer, etc.), our

method may find more than one active object in a scene. In fact, the proposed

saliency methods may locate multiple unconnected salient areas, each of them

showing an active object (e.g. each hand manipulates a different object).

5.4.2. Active object recognition and fine-grained activity recognition in images

With PPMI we aim to address the problem of fine-grained activity recogni-

tion with the set of 24 categories (12 instruments, considered the active objects,

and 2 kind of manipulations). As already mentioned, for this dataset we have

followed a slightly different experimental setup in order to provide a fair com-

parison with the other approaches reported in the literature. Following the

setup described in the original paper [46], we have used a multi-scale grid with

SIFT features [35] and incorporated a Spatial Pyramid Matching (SPM) with 4

levels and a vocabulary size of 1024 visual words. Due to the multi-scale grid,

the VSR has been removed from our solution (although we still kept the non-

uniform sampling). Furthermore, since we are working with still images, our

spatio-temporal-geometric saliency has been substituted by the spatial method
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Table 3: Results (mAP) on PPMI dataset.

BoW SPM [49] Grouplet [46] R.F. [50] D.S. [14] Ours

22.7 45.3 36.7 47.0 49.4 49.7

Table 4: Comparison of S.T. and M.T. execution times.

Case DPM [5] Proposal w/o SC Proposal w SC

S.T. 60.4s 6.7s 15.1s
M.T. 10.9s 2.6s 6.0s

in [11]. As reported in Table 3, our approach achieves state-of-the-art results in

this dataset. Although not very significantly, our method even outperforms [14],

that learns discriminative spatial saliency maps associated with each category

in the dataset. From our point of view, our results demonstrate that the appli-

cation of our approach is not restricted to egocentric content and can therefore

be applied to the detection of active objects in any kind of scene.

Finally, we would also like to show that the limitations of our method arise

when all the objects in a scene have to be recognized (and not only the active

ones). This is the case of the Pascal VOC 2010 dataset, for which our method

gives an AP = 56.9, approximately ranking in the average of the official sub-

missions.

5.5. A study of the computation time

In Table 4, we show a comparison between the average execution times of

our proposal and the DPM to run one category object-detector in a test frame.

We include results using a single threading (S.T.) and multi-threading (M.T.)

in a 2.10GHz computer with 4 cores and hyper-threading. For our proposal, the

execution time comprises the whole processing pipeline shown in Fig. 2(a). It

is worth noting that some of the computations for the spatial saliency map are

implemented in GPU so they cannot be translated to S.T. case (spatial saliency

takes about 0.05 sec per frame in the GPU). The rest of the calculations are

made with the CPU under the aforementioned circumstances. For the DPM,

we run the implementation in [5], made in Matlab with optimized c routines
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for all the steps in the process that require most of the execution time. Our

approach shows much lower computational times in comparison with DPM. The

rationale behind this is the fact that using the saliency maps, we avoid the heavy

scanning process of a sliding window approach such as the DPM. Furthermore,

Saliency Coding becomes an important source of overhead in the execution time

but, as we have shown in the experimental section, it also achieves a notable

enhancement of the performance.

In our experiments, as we kept constant the number of features (N̂ ∼ N

in Sec. 4.1), the computational complexity of BoW is similar to our method

without SC (in except for the saliency map calculation). However, if the goal

is to decrease the complexity, we could aim to obtain similar performances as

BoW, and consequently strongly reduce the number of feature points and the

computational complexity.

6. Discussion

The application of saliency to computer vision has been traditionally re-

stricted to a pre-processing stage that filters out non-relevant areas of an image.

In this paper, instead, we have proposed perceptual model that incorporates

visual attention to the challenging task of active object recognition in video

and images. To do so, we have modeled independent foveal and peripheral

pathways found in human retina, with particular properties in terms of spatial

location, resolution, or sampling. In particular, we have introduced saliency into

three particular processing modules of the well-known BoW paradigm: a) Visual

Fields with Variable-Resolution and Non Uniform Sampling, b) Saliency-based

Pooling, and c) Saliency-sensitive Coding of features.

In order to assess the performance of our approach, we aim to address to

task of active object recognition in video and images. After discussing the

influence of each module and its parameters, we have shown how our biologically-

inspired saliency-based model helps to enhance current system performance. It

not only achieves notable improvements with respect to the baseline BoW, but
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also provides state-of-the-art results in all the considered egocentric datasets at

very competitive computational times. Furthermore, it avoids human efforts

devoted to bounding-box level database annotation as in both training and test

sets the saliency maps are automatically computed. In addition, experiments

over both 1st-person and 3rd-person camera view have demonstrated that our

method can be applied to various types of content, as long as they contain active

objects. The limitation of our method is revealed in scenarios where all present

objects (active and non-active) have to be identified. In this case our saliency

maps remove important visual information and restrict the performance of our

approach.

In the future, we aim to continue exploring novel ways to introduce percep-

tual modeling into classical pattern recognition problems in computer vision.
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