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a b s t r a c t

Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The
Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a
partitioning around medoids approach. However, one of the greatest disadvantages of this method is its
sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering
method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber's
M-estimators and the Yager's Ordered Weighted Averaging (OWA) operators are used in the method
proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids
method in the experiments performed on synthetic data with different types of outliers. A real appli-
cation of the FcOMdC-ID is also provided.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In many real applications, empirical information represented
by data cannot be expressed in terms of single valued data but in
form of interval-valued data. We can distinguish the following
situations:

� The phenomena cannot be explained by using single-valued
data, i.e. the data are intrinsically interval-valued. Examples are
the concepts of monthly temperature in meteorological stations
or the daily rate of exchange between euro and dollar or euro
and sterling. For example, for daily temperatures or daily
pollution levels registered in different places or for mineral
concentrations of food items, it could be more interesting to
consider the minimum and maximum values registered than
the average ones because they offer more detailed information
about the examined phenomenon taking into account the
variability of the features involved. Data in which each observa-
tion is given as an interval of values—indicated by a minimum
and a maximum—are called interval-valued data. Notice that
the intervals need not pertain to the actually observed maxima
and minima, but could also pertain to, for instance, interquartile
D'Urso),
intervals, or intervals pertaining to the middle 90% of the scores
[44].

� Interval data may occur due to a lack of knowledge, that is when
the true value of a variable is unknown and only an interval of
values including the true value is available. Thus, the available
information is imprecise and therefore cannot be revealed
exactly by single numerical data.

� Interval-valued data may also arise as a result of aggreg-
ating huge databases, which are impossible to analyze in the
original form.

In all these cases, standard statistical methods for single-valued
data (numerical data) are unable to properly take into account the
nature of the empirical information formalized in an interval
manner (interval-valued data).

In the literature, there are many examples of real applications
with interval-valued data. For instance, “researchers often have
only interval data on variables that can, in principle, be measured
more precisely [i.e.] the interval data on wealth in the Health and
Retirement Study (HRS) provide a ready illustration [61]. Let v

denote a person's wealth. Under the HRS questionnaire protocol, a
respondent is asked to report v. If he does not comply, the
respondent is then asked to report if wealth falls within a
sequence of brackets. The HRS thus yields a wealth interval ½v0; v1�
for each respondent. The interval is degenerate when a respondent
provides a point value of wealth, is an informative interval of
positive width when the respondent answers the subsequent
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bracket questions, and is the uninformative interval ½�1; þ1�
otherwise” [76].

In database protection and security intelligence, for protecting
confidential data, e.g. health information of different patients, it is
necessary that statistical programs do not have full access to the
data because otherwise, by computing sufficiently many different
statistics, it is possible to uniquely reconstruct the actual values; in
these cases for preventing this form of happening is useful to
supply the data processing programs not with exact data, but with
an interval of possible values; in environmetrics, we may refer to
the minimum and maximum values registered in the considered
period of pollutant concentration data recorded at various places;
in finance, we may examine the minimum–maximum daily rate of
exchange data between euro-dollar or euro-sterling; in medicine,
we may make reference to minimum and maximum values of the
daily systolic and diastolic pressure, pulse rate, temperature of
patients; in meteorology, we can consider the minimum–max-
imum daily temperature, humidity and wind speed registered in
different places; in chemometrics, we may study the range of
mineral concentrations of food products analyzed at different
times or in different experimental situations and so on.

In the literature, examples of fields in which interval data-
based information is analyzed are: pattern recognition [25], web
[33], telecommunications [31], meteorology [51,71,33], environ-
metrics [7], chemometrics [59,34–36], medicine [3,81,85], physics
[47], education [22,85], economics and finance [45].

From a methodological point of view, interesting contributions
on interval-valued data analysis have been proposed in principal
component analysis [34,25,70], multidimensional scaling [24,47],
regression analysis [76,28,79,80,45], regression trees [71,7], time
series analysis [2,86], discriminant analysis [26,27], self-organizing
maps [31,5,51]; cluster analysis [9,17–20,23,50,52,63].

Recently a great attention is focused on fuzzy clustering of
interval-valued data (see, e.g., [35,36,14,21,33]). In this regard, an
interesting line of research is that of the managing of fuzzy clus-
tering in the presence of outlier interval-valued data, i.e. robust
fuzzy clustering [35,33].

According to Huber [56], a robust method should have the
following properties:

� it should have a reasonably good accuracy at the assumed model;
� small deviations from the model assumptions should impair the

performance only by a small amount;
� larger deviations from the model assumptions should not cause

a catastrophe.

In the literature, in a fuzzy clustering framework for single
valued data, different robust approaches can be considered, i.e.:

� Noise approach: outliers are assigned to the so-called noise
cluster (see, e.g., [11–13,82]).

� Semifuzzy approach: the problem of outliers is avoided by set-
ting a maximum number of clusters that a datum can belong to,
setting membership degrees to zero if a predefined maximal
distance is exceeded, or by defining a minimum threshold for
membership degrees [84].

� Metric approach: metrics with robust properties are incorporated
in the objective functions of the clustering problem; e.g., Lp norm
(0opo1) [53], L1 norm [60,65,72], exponential metric [92].
In the metric approach, we can consider the sub-approach
ordered statistics approach. In this case the concept of weight
functions in robust statistics is related to the concept of member-
ship functions in fuzzy set theory or to possibility distributions in
possibility theory. Different types of robust methods (such as the
M, R, L estimators, and the least median of squares method) can
be adopted [56]. Frigui and Krishnapuram [38] proposed a robust
fuzzy clustering algorithm, termed robust C-prototypes algo-
rithm, based on a generalization of the M-estimator to estimate
the C prototypes and on the application of a loss function ρ to
squared distances to reduce the effect of outliers. Davé and
Krishnapuram [12] discussed the M-estimator and the connection
between robust statistics (i.e. the M-estimator) and fuzzy cluster-
ing. The M-estimator uses a suitable symmetric positive-definite
function (called the robust-loss function) and forms the objective
function by summing the loss over all points. Winkler et al. [91]
proposed a robust fuzzy clustering with polynomial fuzzifier
function in connection with M-estimators in which for each data
point its distances to the prototypes are ordered. In particular,
Leski [72] proposed a robust fuzzy clustering method using the
Vapnik's ε -insensitive estimator in which the fuzzy c-medians
can be obtained as a particular case of the suggested method. In
order to improve the robustness of the fuzzy clustering, Leski [74]
used together the Huber's M-estimators and the Yager's OWA
(Ordered Weighted Averaging) operators [93]. In particular, Leski
[74] combined the fuzzy c-means clustering with the robust
ordered statistics using Huber's M-estimator to develop a new
fuzzy clustering method called as Fuzzy C-Ordered-Means
clustering.

� Trimmed approach: the clustering procedure is applied to the
data remaining after a fixed fraction of outlying data objects are
eliminated (see, e.g., [39–42,67]).

� Possibilistic approach: following the Possibilistic Theory mem-
bership degrees are expressed as degrees of compatibility
(possibility degrees); in this approach, to avoid the problem of
outliers, outliers are included in all clusters with small mem-
bership (see, e.g., [68,69,87,94,83]).

� Evidential approach: new clustering techniques based on the
concept of belief functions [77].

� Influence weighting approach: a suitable weighting system for
objects is used in the clustering process and low weights are
objectively assigned to outliers [64,29].

In a non-single valued data analysis framework—i.e. fuzzy
clustering for imprecise data (fuzzy and interval data)—only some
of the previous methodological approaches have been explored. In
particular, Butkiewicz [4] proposed a transformation of fuzzy data
into crisp data and uses an ordered statistics approach-based clas-
sical robust fuzzy clustering model for single valued data. Hung
and Yang [58] suggested a metric approach-based robust fuzzy
clustering for univariate fuzzy data by considering an exponential
distance. Zarandi et al. [96], suggested an influence weighting
approach-based robust fuzzy clustering model for fuzzy data using
a Wasserstein-type distance. Coppi et al. [10] proposed a possibi-
listic approach-based robust clustering method for multivariate
fuzzy data. D'Urso and De Giovanni [32] proposed robust fuzzy
clustering methods for fuzzy data based on different methodolo-
gical approaches, i.e. based on noise, metric and trimmed approa-
ches. For interval-valued data according to our knowledge only
two robust fuzzy clustering methods have been proposed in the
literature, i.e. the noise approach-based fuzzy clustering proposed
by D'Urso and Giordani [35] and the trimmed approach-based
fuzzy clustering suggested by D'Urso et al. [33].

In this paper, by adopting a Partitioning Around Medoids (PAM)
procedure we propose a fuzzy clustering using Huber's M-
estimators and Yager's OWA (Ordered Weighted Averaging)
operators. The proposed method belongs to the ordered statistics
approach and inherits the advantages connected to PAM clustering
strategy, fuzzy theory and robust methodological approach; i.e.:

� By using a PAM-based clustering approach, each cluster is
represented by an observed object (medoid) and not by a
fictitious object (centroid) (as in the fuzzy c-means clustering),
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which is very appealing and useful in a wide range of applica-
tions. This is very important for the interpretation of the
selected clusters, as well.

� The concept of partial membership underlying the fuzzy
approach appears to be more appealing and flexible than that of
the classical clustering procedures [78,89]; furthermore, the
fuzzy clustering methods have been shown to be computation-
ally more efficient because dramatic changes in the value of
cluster membership are less likely to occur in estimation
procedures [78] and less afflicted by local optima problems
[54]; in addition, the memberships for any given set of respon-
dents indicate whether there is a second-best cluster almost as
good as the best cluster—a result which traditional clustering
models cannot uncover [37].

� Notice that PAM-based fuzzy clustering represents a robustifi-
cation of the fuzzy c-means clustering; however, it provides
only a “timid robustification” of the fuzzy c-means clustering,
because a single outlier still serves to breakdown the clustering
[39]. However, as remarked by Garcia-Escudero et al. [43] the
clustering model based on medoids “resists to the presence of
1 outlier in a remote position, but it breaks down when we
increase to 3 the number of outliers”. For this reason, for
neutralizing the disruptive effects of more outlier interval-
valued data in the clustering process we propose a robust fuzzy
c-medoids clustering method using a strategy based on the
combination of the Huber's M-estimators and the Yager's OWA
(Ordered Weighted Averaging) operators [93].

The paper is organized as follows. In Section 2, we describe the
interval-valued data and a metric for comparing interval-valued
data; successively, we propose a robust fuzzy clustering for
interval-valued data belonging to ordered statistics sub-approach,
by considering simultaneously the Huber's M-estimators and the
Yager's Ordered Weighted Averaging (OWA) operators [93]. In
particular, we combine the fuzzy c-medoids clustering with the
robust ordered statistics using Huber's M-estimator to develop a
new fuzzy clustering method called Fuzzy c-Ordered-Medoids
clustering for interval-valued data (FcOMdC-ID). In Section 3, we
present a simulation study and in Section 4 we apply our method
to a real world case. In Section 5 some remarks conclude the paper.
2. A robust fuzzy clustering method for interval-valued data:
FcOMdC-ID (Fuzzy c-Ordered Medoids Clustering for Interval-
valued Data)

2.1. Interval-valued data

Algebrically an interval valued datum can be formalized as xij
¼ ½xkj; xkj�; k¼ 1;…;N; j¼ 1;…; J where xkj represents the jth
interval-valued variable observed on the kth object; xkj and xkj
denote, respectively, the lower and upper bounds of the interval;
in particular, they represent the minimum and maximum values
Fig. 1. Examples of outlier in
registered for the jth interval valued variable with respect to the
kth object. Each object is represented geometrically by a hyper-
rectangle in Rj having 2J vertices. The 2J vertices correspond to all
the possible (lower bound, upper bound) combinations. In parti-
cular, in RðJ ¼ 1Þ the generic object is represented by a segment; in
R2ðJ ¼ 2Þ, it is represented by a rectangle with 22 ¼ 4 vertices, and
so on [8].

Let us assume J interval-valued variables are observed on N
objects. Then, the data can be stored in the so-called interval-
valued matrix as follows:

X� fxkj ¼ ½xkj; xkj� : k¼ 1;…;N; j¼ 1;…; Jg ð1Þ

where xkj represents the jth interval-valued variable observed on
the kth object and xkj and xkj indicate, respectively, the lower bound
(min) and upper bound (max) of the interval-valued datum xkj.

If we deal with J single valued variables, each object is repre-
sented as a point in the reference space RJ . Instead, in the case of
interval valued data, each object is represented as a hyperrectangle
(in RJ) having 2J vertices (a rectangle with 2J ¼ 4 vertices if J¼2).
Then, the ith row of X refers to the ith object that can be seen as a
hyperrectangle in RJ .

To this purpose, we indicate M as the matrix whose generic
element is the midpoint (center) of the associated interval. In
particular, the midpoint matrix (center matrix) is

M� mkj ¼
xkjþxkj

2
: k¼ 1;…;N; j¼ 1;…; J

( )
; ð2Þ

where mkj is the midpoint (center) of the associated interval value
for k¼ 1;…;N and j¼ 1;…; J.

Furthermore, we define the radius matrix (spread matrix) R of
order ðN � JÞ in the following way:

R� rkj ¼
xkj�xkj

2
: k¼ 1;…;N; j¼ 1;…; J

( )
; ð3Þ

where rkj is the radius (spread) of the associated interval value for
k¼ 1;…;N and j¼ 1;…; J.

Then, we can denote the generic interval-valued datum per-
taining to the kth object with respect to the jth interval-valued
variable as the ordered couple ðmkj; rkjÞ, where mkj denotes the
midpoint (center) and rkj the radius (spread). In this way, the lower
and upper bounds of the interval-valued datum can be obtained as
mkj�rkj and mkjþrkj, respectively.

By considering the previous reformulation of the interval-
valued data, the interval-valued matrix can be reformalized as
follows:

X� xkj ¼ ðmkj; rkjÞ; k¼ 1;…;N; j¼ 1;…; J
� �

: ð4Þ

Notice that as for standard datasets (single valued dataset),
also in the interval case, the data can be corrupted by noise and
outliers. In particular, we can distinguish three possible types of
outlier interval-valued data (see Fig. 1; inlier data¼no outlier
data; [29]):
terval-valued data in R2.
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1. outlier midpoint (center)-inlier radius (spread);
2. inlier center-outlier spreads;
3. outlier center-outlier spreads.

2.2. Interval-valued data pre-processing.

Usually, in classical statistical analysis for single valued data,
data standardization is recommended to prevent the results from
being strongly affected by the measurement scale. Also in interval-
valued data analysis, a suitable data pre-processing, centering,
normalization and standardization is recommended. In the lit-
erature, there are several measures of standardization of interval
data. For instance, de Carvalho et al. [15,18] proposed some
alternative standardization methods for interval data. Guo et al.
[48] proposed a standardization of interval data based on the
empirical descriptive statistics. See, also Billard and Diday [3],
D'Urso and Giordani [35], D'Urso and De Giovanni [31] and D'Urso
et al. [33].

2.3. Distance measures for interval-valued data

In the literature, several distance measures for interval-valued
data have been proposed; see, e.g., Ichino and Yaguchi [59], Gowda
and Ravi [46], de Carvalho and de Souza [16] D'Urso and Giordani
[34], Guru et al. [50] and Kim and Billard [66].

2.3.1. A distance measure based on the midpoint and radius of the
interval data

A distance used for clustering interval-valued data is the dis-
tance measure proposed by D'Urso and Giordani [34] and suc-
cessively adopted by D'Urso and De Giovanni [31] and D'Urso
et al. [33].

In particular, in order to compare two generic objects k0 and k
00

described by J interval-valued variables, we consider all the ver-
tices of the two hyperrectangles pertaining to the objects involved.

Thus, we have the following Euclidean distance measure for
interval-valued data:

Dðxk0 ; xk
00 Þ ¼

X2J
k ¼ 1

J ðmk0 þrk0 � hνÞ�ðmk
00 þrk00 � hνÞJ

2

" #1
2

ð5Þ

in which xk0 ; xk
00 ;mk0 ;mk

00 ; rk0 and rk00 denote, respectively, the k0th
and k

00
th rows of X;M and R, where the symbol * is the Hadamard

product, which is the elementwise product of two matrices (vec-
tors) of the same order. Furthermore, the vectors hν;ν¼ 1;…;2J ,
help us to define every vertex of the hyperrectangle associated to
each object separately. In fact, their elements are equal to 71 in
order to refer exactly to every vertex. The elements of
hν;ν¼ 1;…;2J , are the row of a new matrix, say H, of order ð2J � JÞ.
If J¼3, we get:

H¼

�1 �1 �1
�1 �1 1
�1 1 �1
1 �1 �1
1 1 1
1 1 �1
1 �1 1

�1 1 1

2
66666666666664

3
77777777777775
: ð6Þ

Using the vector h1 (first row of H) we have the vector of the
lower bounds pertaining to the kth object:

xk1 xk2 xk3
� �

¼mkþrk � �1 �1 �1ð Þ ¼mk�rk: ð7Þ
Analogous to (7), by means of h5, we can obtain the vector of
the upper bounds:

xk1 xk2 xk3ð Þ ¼mkþrk � 1 1 1ð Þ ¼mkþrk: ð8Þ
Thus, it can be shown that the Euclidean distance (5) can be

simplified as

Dðxk0 ; xk
00 Þ ¼ 2J Jmk0 �mk

00 J2þ2J Jrk0 �rk00 J
2

h i1
2

� Jmk0 �mk
00 J2þ Jrk0 �rk00 J

2
h i1

2

¼
XJ

j ¼ 1

ðmk0j�mk
00
jÞ
2þðrk0 j�rk00 jÞ

2
h i2

4
3
5

1
2

: ð9Þ

Notice that the distance measure (9) is the same distance used
in de Carvalho et al. [15], which is a special case of the one in de
Carvalho and de Souza [16].

2.3.2. Robust distance measures for interval data
The distance measure recalled in the previous subsection uses a

quadratic loss function (LSQRðeÞ ¼ e2, where the so-called model
residuals are e¼mk0 j�mk

00
j or e¼ rk0j�rk00 j) as a dissimilarity

measure between the interval-valued data and the medoids. The
reason for using this measure is mathematical, that is, for sim-
plicity and low computational burden. However, this approach is
sensitive to noise and outliers. In the literature there are many
proposals of robust loss functions. For example, the Huber's one is
of special interest [56]:

LHUBðeÞ ¼
e2=δ2; ej jrδ;
ej j=δ; ej j4δ;

(
ð10Þ

where δ40 denotes a parameter. Many other robust loss func-
tions may be taken into account:

� LINear (LIN)

LLINðeÞ ¼ jej; ð11Þ

� SIGmoidal (SIG) with parameters α;β40

LSIGðeÞ ¼ 1 1þexp �α ej j�β
� �� �� �

;
� ð12Þ

� LOGarithmic (LOG)

LLOG ðeÞ ¼ log 1þe2
� �

: ð13Þ

For a vector argument e¼ e1; e2;…; eJ
	 


a loss function takes the
form:

L eð Þ ¼
XJ

j ¼ i

L ej
� �

; ð14Þ

2.4. The clustering method

The different robust loss functions are connected to robustness
of the distance measure. Obviously, in this case we consider the
distance between pair of objects (and then not between object and
medoid). Using D xk; ~x ið Þ ¼L mk� ~m i

� �þL rk� ~r i
� �

as a dissim-
ilarity measure between the kth interval-valued datum and the ith
medoid, and additional weighting, the fuzzy c-ordered medoids
criterion function takes the form:

J U; ~X
� �

¼
Xc
i ¼ 1

XN
k ¼ 1

βk uikð ÞλD xk; ~x ið Þ; ð15Þ
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where ~X ¼ ~x1; ~x2;…; ~xc
� �

. The ith medoid is taken from dataset,
i.e., ~x iA x1; x2;…; xNf g. λ is a weighting exponent in ½1;1Þ. This
parameter influences a fuzziness of the clusters. βkA ½0;1� denotes
the typicality of the kth datumwith respect to the clusters; smaller
βk results in a more atypical data. These parameters are derived
based on the ordering of the distances of data from medoids
[74,75].

The set of all possible fuzzy partitions of N vectors into c
clusters is defined by

J gfc ¼ UARc�N 8
1r ir c
1r krN

uikA ½0;1�;
Xc
i ¼ 1

uik ¼ 1;0o
XN
k ¼ 1

uikoN

�����
)
;

(

ð16Þ
The overall assessment of the typicality of the kth datum is

obtained using s-norm S (⋆S) [74]:

8
1rkrN

βk ¼ β1k⋆Sβ2k⋆S⋯⋆Sβck; ð17Þ

which may be linguistically interpreted as the following sentence:
“The kth datum is typical IF AND ONLY IF the kth datum is typical
with respect to the first cluster OR the kth datum is typical with
respect to the second cluster OR ⋯ OR the kth datum is typical
with respect to the cth cluster”. βikA ½0;1� denotes the typicality of
the kth datum with respect to the ith cluster. Instead of s-norm,
the maximum operation is chosen

8
1rkrN

βk ¼ β1k3β2k3⋯3βck: ð18Þ

The necessary conditions for the minimization of (15) with
respect to the elements of the partition matrix can be described as

8
1r krN
1r sr c

usk ¼D xk; ~xsð Þ 1
1� λ

Xc
j ¼ 1

D xk; ~x j
� � 1

1� λ

2
4

3
5:

,
ð19Þ

A local optimal solution with respect to the medoids can be
obtained as follows [33]:

8
1r ir c

~x i ¼ xqi ; ð20Þ

where

qi ¼ arg min
1rℓrN

XN
k ¼ 1

βk uikð ÞλD xk; xℓð Þ: ð21Þ

Let πi : 1;2;…;Nf g- 1;2;…;Nf g be the permutation function for
ith medoid. The rank-ordered dissimilarities between ith medoid
and data satisfy the following conditions:

D xπið1Þ; ~x i
� �

rD xπið2Þ; ~x i
� �

rD xπið3Þ; ~x i
� �

r⋯rD xπiðNÞ; ~x i
� �

: ð22Þ
If βik parameters fulfill βiπið1ÞZβiπið2ÞZ⋯ZβiπiðNÞ, then the

impact of outliers is reduced by down-weighting the respective
dissimilarities. The form of parameters βik may be piecewise-linear
[74,75]

βiπiðnÞ ¼ ðpcN�nÞ=ð2plNÞþ0:5
	 


41
� �

30 ð23Þ
or sigmoidal

βiπiðnÞ ¼ 1 1þexp
2:944
paN

ðn�pcNÞ
� 
� �

;

�
ð24Þ

where 4 and 3 denote min and max operations, respectively. The
functions defined by (23) and (24) are called Piecewise-Linearly-
weighted OWA (PLOWA) and Sigmoidally-weighted OWA (SOWA),
respectively. Both functions are nonincreasing with respect to
argument nAf1;2;…;Ng. For n¼ pcN both functions are equal to
0.5. Parameters pl40 and pa40 influence their slope. In the case
of the piecewise-linear function, for nA ½pcN�plN; pcNþplN� its
value linearly decreases from 1 to 0 [74]. For the sigmoidal func-
tion, a value of 2.944 is chosen to obtain that for nA ½pcN�paN; pc
NþpaN� its value decreases from 0.95 to 0.05 [74]. The following
values: pcA ½0:7;1:0�, pl¼0.1, pa¼0.1 were used. If ordering of
dissimilarities from (22) is not applied, which is equivalent to
using Uniformly weighting function for OWA–UOWA (βiπiðnÞ ¼ 1 for
all i;n), then we call this case as clustering without ordering (or
with no weighting function).

The final form of the proposed Fuzzy c-Ordered-Medoids
Clustering for Interval-valued Data (FcOMdC-ID) can be described

Algorithm FcOMdC-ID

1. Fix cð1ocoNÞ; λA ð1;1Þ. Choose dissimilarity measure. Initi-
alize ~X

ð0Þ 	X, βik ¼ 1 and set the iteration index ℓ¼ 1,
2. Calculate the fuzzy partition matrix UðℓÞ for the ℓth iteration

using (19),
3. Rank-order the dissimilarities between the ith medoid and data

(see (22)) obtaining the permutation function πiðkÞ,
4. Calculate βiπiðkÞ using (23) or (24) or uniform weighting,
5. Update overall typicality parameters βk using (18),
6. Update the medoids for the ℓth iteration ~X

ðℓÞ
using UðℓÞ and (20)

and (21),
7. If k ~Xðℓþ1Þ � ~X

ðℓÞkF4ξ then j’jþ1 and go to Step 2 else stop.

Notice that the fuzziness parameter λ plays an important role
in fuzzy clustering. It should be suitably chosen in advance.
Although 1oλo1, values too close to 1 will result in a partition
with all memberships close to 0 or 1. Excessively large values will
lead to disproportionate overlap with all memberships close to 1=c
[90]. Consequently, neither of these types of λ is recommended [1].
Although there have been some empirical heuristic procedures to
determine the value of λ (e.g., [78,90,32]), there seems to exist no
theoretically justifiable manner of selecting λ. Wang et al. [88] and
Yang et al. [95] suggest λ¼ 2 and Leski [73] uses λ¼ 1:1. Since the
medoid always has membership equal to 1 in the cluster, raising
its membership to the power λ has no effect. Thus, when λ is high,
the mobility of the medoids may be lost [30]. For this reason, a
value between 1 and 1.5 for λ is recommended by Kamdar and
Joshi [62]. For a discussion and a detailed list of references on the
choice of λ see D'Urso and De Giovanni [32].

Notice that, with respect to the clustering methods for interval
data suggested in the literature, our clustering method has dif-
ferent advantages; i.e.:

� Our method vs standard (non fuzzy) clustering methods (e.g., the
de Souza-de Carvalho's method [23] and the de Carvalho et al.'s
method [18]) based on, respectively, adaptive City-block and
Hausdorff distances; de Carvalho-Lechevallier's methods [19,20]
based on, respectively, single Hausdorff and City-block adaptive
distances and adaptive quadratic distances; de Carvalho–de
Souza's method ([21] based on single and adaptive distances):
conversely to standard clustering methods for interval data, our
method inherits all the benefits of the fuzzy approach to cluster
analysis and of the PAM-based clustering approach (see, Section
1); in addition our method is robust to the presence of one or
more outliers in the datasets (see Section 1).

� Our method vs. non-robust fuzzy clustering methods (i.e. the de
Carvalho's method [14] and the de Carvalho–Tenorio's
method [21] based on the k-means algorithm): with respect
to non-robust fuzzy clustering methods proposed in the litera-
ture based on the k-means algorithm our method inherits the
benefits connected to the PAM-based clustering approach (see,
Section 1) and is resistant to the presence of outliers neutraliz-
ing suitably the disruptive effects of possible anomalous data in
the clustering process (see Sections 1 and 2).

� Our method vs robust fuzzy clustering methods (i.e. the D'Urso-
Giordani's method [35]) based on the k-means algorithm and
the noise approach; the D'Urso et al.'s method ([33] based on
the PAM and the trimmed approach): with respect to D'Urso
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et al.'s method [33] our method is more informative on the
intensity of the outliers. In particular, since the D'Urso et al.'s
method is based on the trimmed approach it neutralizes the
outliers and suitably removes them from the clustering process.
Then this method achieves its robustness with respect to
outliers by trimming away a certain fraction of the data objects
and requires the specification of the “trimming ratio”, that is the
percentage of the data objects that has to be trimmed, i.e., the
percentage of objects discarded in the clustering process and,
thus, not considered in the optimization problem [33]. In this
way, the method neutralizes the negative effect of the outliers,
but no additional information about the intensity of the
anomaly (atypicality) of the outliers is provided with respect
to the entire dataset. Conversely, our proposed method neu-
tralizes the disruptive effect of the outliers adopting the PAM
approach and combining the Huber's M-estimators and the
Yager's OWA operators; in this way by means of the typicality
parameters βkA ½0;1� our method provides suitable information
on the atypicality level of the data: if outliers are present in the
dataset, our method tends to give them typicalities very low or
close to 0. Then, typicality is an important means for alleviating
the undesirable effects of outliers. In fact, by means of the
typicality our method tunes suitably the influence of the outlier
interval data in the clustering process. With respect to D'Urso–
Giordani's method [35], our method inherits the benefits con-
nected to the typicality information and to the PAM-based
clustering approach (see Section 1).
3. Simulation study

In all experiments for FcOMdC-ID the weighting exponent λ¼
1:5 was used. The iterations were stopped as soon as the Frobenius
norm of the successive ~X matrices difference was less than 10�4.
All experiments were run in the MATLAB environment. The pur-
pose of this experiment was to investigate the sensitivity to var-
ious types and number of outliers for the traditional FcMdC-ID and
the FcOMdC-ID methods. The two-dimensional (two features
vectors) interval-valued data sets, presented in Fig. 2, consist of
three well-separated groups (each of 25 points), and a varying
number of outliers. For each group interval-valued data were
generated randomly. Both the centers and the spreads were from
Gaussian distribution with mean m and standard deviation s;
N ðm; sÞ. The centers (two features) and the spreads of the three
groups were as follows:

� first group:
centers N ð10;2Þ, N ð10;1Þ and spreads N ð2;0:05Þ, N ð1;0:05Þ,
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Fig. 2. Performance of the FcOMdC-ID method with the SIG loss function for 20
center and spread outliers.
� second group:
centers N ð10;1Þ, N ð�10;2Þ and spreads N ð1;0:05Þ, N ð2;0:05Þ,

� third group:
centers N ð�10;1Þ, N ð�10;1Þ and spreads N ð1;0:05Þ,
N ð1;0:05Þ.

The tested methods were initialized using medoids with cen-
ters 5;0ð Þ, 0;0ð Þ and 3;5ð Þ, and spreads 1;1ð Þ, 1;1ð Þ and 1;1ð Þ,
marked on the figure. For each experiment all outliers are iden-
tical. This is the least favorable case, since if in the place of such
outliers a medoid would be placed, it would cause the greatest
possible reduction criterion function. When outliers are dispersed
reducing the values of the criterion would not be so big. In other
words, ‘force’ attracting prototypes for such outliers is the largest.
Thus, it is a drastic method for the verification of resistance of
clustering methods. The number of outliers varies from 0 (no
outliers) to 25. There are three types of outliers:

� with respect to the centers and spreads: centers ð�10;10Þ and
spreads ð4;3Þ (see Fig. 2),

� with respect to the spreads: centers ð�10;10Þ and spreads ð1;1Þ
(see Fig. 3),

� with respect to the centers: centers ð�10; �10Þ and spreads ð
0:25;9Þ (see Fig. 4).

Fig. 2 illustrates the performance of the FcOMdC-ID method for
20 centers and spreads outliers, and the SIG loss function. In this
figure, we can observe the traces of the medoids centers (lines)
and spreads (boldfaced rectangles) calculated in the successive
iterations. We can see that the medoids terminate near the
expected clusters centers and spreads. Fig. 3 illustrates the per-
formance of the FcOMdC-ID method for 20 spreads outliers and
the SIG loss function. Fig. 4 illustrates the performance of the
FcOMdC-ID method for 20 center outliers and the SIG loss func-
tion. We can notice that despite the outliers type the medoids
terminate near the expected clusters centers.

The effects of the FcMdC and the FcOMdC-ID methods
investigation for varying number of outliers and its type are
presented in Figs. 5–7. For the computed terminal medoids, we
measured the performance of clustering by the Frobenius norm
of the difference between the expected value of centers/spreads
matrix and the terminal medoids matrix. Figs. 5 and 7 show that
for few outliers (from 1 to 4 center or center/spread outliers
type) the terminal medoids determined by all methods are close
to the true centers/spreads. But for a greater number of outliers
the terminal prototypes errors are smaller for FcOMdC-ID than
for the FcMdC method. We can conclude that the best perfor-
mance of the FcOMdC-ID method is obtained for the SIG loss
function.
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Fig. 3. Performance of the FcOMdC-ID method with the SIG loss function for 20
spread outliers.
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Fig. 6 shows that that despite the large number of outliers
(spread outliers type) the terminal medoids determined by all
methods are close to the true centers/spreads. But the best results
were archived for the FcOMdC-ID method with SIG and HUB loss
functions.

Fig. 7 shows that the FcMdC method performance is catastro-
phically deteriorated for 3 outliers. For the FcOMdC-ID method the
terminal medoids determined for all loss functions are close to the
true centers/spreads. The performance is catastrophically dete-
riorated for the number of outliers equals to 18, for the LOG loss
function only. However, even for smaller number of outliers and
for the FcOMdC-ID method with SQR loss function rather serious
increase of errors is visible. In the case of the center outliers, the
best results were archived for the FcOMdC-ID with SIG loss
function.
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Fig. 5. The Frobenius norm of the clusters centers errors for various numbers of center a
FcOMdC-ID with various loss functions are presented in subplots.
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Fig. 4. Performance of the FcOMdC-ID method with the SIG loss function for 20
center outliers.
In all the above experiments, the groups are of the same car-
dinality (equal to 25). When groups have different cardinality
(unbalance data), as it seems, the fewest cardinality determines
the resistance of the method. In order to verify this hypothesis, we
conducted the following experiment. The cardinality of one of the
group (located in the upper right corner of Fig. 2) is reduced from
25 to 12 elements. Other groups remained unchanged. The centers
and spread outliers are added to data. The effects of the FcMdC
and the FcOMdC-ID methods for such data and for varying number
of outliers are presented in Fig. 8. Comparing this figure to the
corresponding experiment on balanced groups cardinality, we see
that the supposition proved true. In fact, the behavior of the
FcOMdC-ID method for individual loss functions is similar, but
scaled. Similar values for errors occur for twice fewer outliers. It is
also noted that for SQR loss function we get similar errors as for
the FcMdC method. As before, the best results were obtained for
LIN, SIG and HUB loss functions.

Another experiment was devoted to checking what are the
effects of the FcOMdC-ID method, when overlapping groups are
present in the data. For this purpose, processed data are shown in
Fig. 2. There have been “move up” about 14 units of the group
located in the bottom right corner, to give data presented gra-
phically in Fig. 9. Other groups remained unchanged. The center
and spread outliers are added to data. The effects of the FcMdC
and FcOMdC-ID methods for such data and for varying number of
outliers are presented in Fig. 10. Comparing this figure to the
corresponding experiment on well separated groups, we see that
in most cases the results are very similar to those obtained for
well-separated groups of data. However, a surprise can be better
performance of the FcMdC method and worse performance of the
FcOMdC-ID method with the LOG loss function.

The next experiment was conducted to compare the developed
method to the trimmed fuzzy c-medoids for interval-valued data
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method (TrFCMd-ID). Experiments were performed as before for
three types of outliers: (1) center and spread outliers, (2) spread
outliers and (3) center outliers. For the TrFCMd-ID method, two
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Fig. 6. The Frobenius norm of the cluster centers errors for various numbers of spread o
with various loss functions are presented in subplots.
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Fig. 7. The Frobenius norm of the cluster centers errors for various numbers of center o
with various loss functions are presented in subplots.
values of the trimming parameter α0 ¼ f0:75;0:95g were used. The
effects of the investigation for varying number of outliers and its
type are presented in Fig. 11. The scales of individual subplots
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Fig. 9. Performance of the FcOMdC-ID method with the SIG loss function for
overlapping groups of data and 20 center and spread outliers.
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correspond to those used in Figs. 5–7, for easy comparison. Taking
these figures into account, several observations can be made. First
of all, it should be noted that, the less value of α0 ¼ 0:75 causes the
method lead to a very small errors for a small number of outliers
(for the center, and the center and spread outliers). However,
when the specified number of outliers is exceeded then errors of
the method grow dramatically. For the spread outliers, behavior of
the TrFCMd-ID and FcOMdC-IDs methods are similar. On the other
hand, greater value α0 ¼ 0:95 causes, the TrFCMd-ID method leads
to errors comparable to the FcOMdC-ID method for SQR function
loss. In conclusion, the experiment shows that for SIG and HUB
loss functions, method FcOMdC-ID leads to smaller errors com-
pared to the TrFCMd-ID method. This is due to the simultaneous
use of two methods to obtain resistant behavior to outliers: the
loss function and the OWA operation.
4. Application: identification of climatic areas

4.1. Temperature data (Guru's data, 2004, 2005)

In this subsection, an application of the proposed algorithm
FcOMdC-ID with various loss functions to real dataset is shown.
We use the minimum and maximum temperature in degree cen-
tigrade (interval temperature data) over 12 months observed in 37
cities. Data are drawn from Guru et al. [50] and Guru and Kiranagi
[49]. The dataset is shown in Table 1. Notice that, with respect to
Guru's dataset, in Table 1 we have added another city (Ojmjakon)
considered in the next application (Section 4.2). The location map
of the 37 cities and Ojmjakon is shown in Fig. 12, while the lati-
tudes and longitudes are reported in Table 2. In the experiments
we consider the number of clusters ranging from 2 to 6, and
parameter of SOWA ordering function pcA 0:7;0:8;0:9;1:0f g. To
obtain the best number of clusters and the value of pc the Fuzzy
Silhouette (FS) is used [6]

FS¼
PN

k ¼ 1 ðurk�uqkÞγskPN
k ¼ 1 ðurk�uqkÞγ

; ð25Þ

where urk;uqk are the first and second largest elements of the kth
column of fuzzy partition matrix U, γ is a weighting coefficient (in
our experiments equals 1.0), and

sk ¼
bk�ak
bk3ak

; ð26Þ

where bk is the minimum of the distances (using dissimilarity D)
of kth datum to all remaining data from other clusters, ak is the
average distance of kth datum to remaining data belonging to its
highest membership cluster.

Tables 3–5 show, for different values of λ (λ¼ 1:5; λ¼ 1:8;
λ¼ 2:0, respectively) the fuzzy silhouette value obtained for cli-
matic dataset using the FcOMdC-ID algorithm for various number
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of clusters, the parameter of the SOWA function and the type of
loss function. Each element of the tables give the greatest value of
FS obtained for 100 independent trials over different random
5 10 15 20 25
0

5

10

15

20

25

Outliers

E
rr

or

FcMdC

5 10
0

5

10

15

20

25

Ou

E
rr

or

FcOMdC

5 10 15 20 25
0

5

10

15

20

25

Outliers

E
rr

or

FcOMdC−ID, SIG

5 10
0

5

10

15

20

25

Ou

E
rr

or

FcOMdC

Fig. 10. The Frobenius norm of the clusters centers errors for various numbers of center
traditional FcMdC and the FcOMdC-ID with various loss functions are presented in sub

5 10 15 20 25
0

5

10

15

20

25

Center and spread outliers

E
rr

or

TrFCMd−ID,α′=0.75

5 10
0

0.2

0.4

0.6

0.8

1

Spread

E
rr

or

TrFCMd−

5 10 15 20 25
0

5

10

15

20

25

Center and spread outliers

E
rr

or

TrFCMd−ID,α′=0.95

5 10
0

0.2

0.4

0.6

0.8

1

Spread

E
rr

or

TrFCMd−

Fig. 11. The Frobenius norm of the cluster center errors for various numbers of outliers in
value and types of outliers is presented in subplots.
choices of initial medoids. The higher the value of FS the better the
assignment of data to the clusters (clusters are more compact and
more well-separated). It should be noted that one should not
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Table 1
City temperature interval dataset.

No. City Jan. Feb. Mar. Apr. May Jun. Jul. Aug Sept Oct Nov Dec.

0 Amsterdam [�4,4] [�5,3] [2,12] [5,15] [7,17] [10,20] [10,20] [12,23] [10,20] [5,15] [1,10] [�1,4]
1 Athens [6,12] [6,12] [8,16] [11,19] [16,25] [19,29] [22,32] [22,32] [19,28] [16,23] [11,18] [8,14]
2 Bahrain [13,19] [14,19] [17,23] [21,27] [25,32] [28,34] [29,36] [30,36] [28,34] [24,31] [20,26] [15,21]
3 Bombay [19,28] [19,28] [22,30] [24,32] [27,33] [26,32] [25,30] [25,30] [24,30] [24,32] [23,32] [20,30]
4 Cairo [8,20] [9,22] [11,25] [14,29] [17,33] [20,35] [22,36] [22,35] [20,33] [18,31] [14,26] [10,20]
5 Calcutta [13,27] [16,29] [21,34] [24,36] [26,36] [26,33] [26,32] [26,32] [26,32] [24,32] [23,32] [20,30]
6 Colombo [22,30] [22,30] [23,31] [24,31] [25,31] [25,30] [25,29] [25,29] [25,30] [24,29] [23,29] [22,30]
7 Copenhagen [�2,2] [�3,2] [�1,5] [3,10] [8,16] [11,20] [14,22] [14,21] [11,18] [7,12] [3,7] [1,4]
8 Dubai [13,23] [14,24] [17,28] [19,31] [22,34] [25,36] [28,39] [28,39] [25,37] [21,34] [17,30] [14,26]
9 Frankfurt [�10,9] [�8,10] [�4,17] [0,24] [3,27] [7,30] [8,32] [8,31] [5,27] [0,22] [�3,14] [�8,10]
10 Geneva [�3,5] [�6,6] [3,9] [7,13] [10,17] [15,17] [16,24] [16,23] [11,19] [6,13] [3,8] [�2,6]
11 Hong Kong [13,17] [12,16] [15,19] [19,23] [22,27] [25,29] [25,30] [25,30] [25,29] [22,27] [18,23] [14,19]
12 Kuala Lumpur [22,31] [23,32] [23,33] [23,33] [23,32] [23,32] [23,31] [23,32] [23,32] [23,31] [23,31] [23,31]
13 Lisbon [8,13] [8,14] [9,16] [11,18] [13,21] [16,24] [17,26] [18,27] [17,24] [14,21] [11,17] [8,14]
14 London [2,6] [2,7] [3,10] [5,13] [8,17] [11,20] [13,22] [13,21] [11,19] [8,14] [5,10] [3,7]
15 Madras [20,30] [20,31] [22,33] [26,35] [28,39] [27,38] [26,36] [26,35] [25,34] [24,32] [22,30] [21,29]
16 Madrid [1,9] [1,12] [3,16] [6,19] [9,24] [13,29] [16,34] [16,33] [13,28] [8,20] [4,14] [1,9]
17 Manila [21,27] [22,27] [24,29] [24,31] [25,31] [25,31] [23,29] [24,28] [25,28] [24,29] [22,28] [22,27]
18 Mauritius [22,28] [22,29] [22,29] [21,28] [19,25] [18,24] [17,23] [17,23] [17,24] [18,25] [19,27] [21,28]
19 Mexico City [6,22] [15,23] [17,25] [18,27] [18,27] [18,27] [18,27] [18,26] [18,26] [16,25] [19,27] [21,28 ]
20 Moscow [�13,�6] [�12,�5] [�8,0] [0,8] [7,18] [11,23] [13,24] [11,22] [6,16] [1,8] [�5,0] [�11,�5]
21 Munich [�6,1] [�5,3] [�2,9] [3,14] [7,18] [10,21] [12,23] [11,23] [8,20] [4,13] [0,7] [�4,3]
22 Nairobi [12,25] [13,26] [14,25] [14,24] [13,22] [12,21] [11,21] [11,21] [11,24] [13,24] [13,23] [13,23]
23 New Delhi [�2,4] [�3,4] [1,9] [6,15] [12,22] [17,27] [21,29] [20,28] [16,24] [11,19] [5,12] [�2,6]
24 New York [�2,4] [�3,4] [1,9] [6,15] [12,22] [17,27] [21,29] [20,28] [16,24] [11,19] [5,12] [�2,6]
25 Paris [1,7] [1,7] [2,12] [5,16] [8,19] [12,22] [14,24] [13,24] [11,21] [7,16] [4,10] [1,6]
26 Rome [4,11] [5,13] [7,16] [10,19] [13,23] [17,18] [20,31] [20,31] [17,27] [13,21] [9,16] [5,12]
27 San Francisco [6,13] [6,14] [7,17] [8,18] [10,19] [11,21] [12,22] [12,22] [12,23] [11,22] [8,18] [6,14]
28 Seoul [0,7] [1,6] [1,8] [6,16] [12,22] [16,25] [18,31] [16,30] [9,28] [3,24] [7,19] [1,8]
29 Singapore [23,30] [23,30] [24,31] [24,31] [24,30] [25,30] [25,30] [25,30] [24,30] [24,30] [24,30] [23,30]
30 Stockholm [�9, �5] [�9,�6] [�4,2] [1,8] [6,15] [11,19] [14,22] [13,20] [9,15] [5,9] [1,4] [�2,2]
31 Sydney [20,30] [20,30] [18,26] [16,23] [12,20] [5,17] [8,16] [9,17] [11,20] [13,22] [16,26] [20,30]
32 Tehran [0,5] [5,8] [10,15] [15,18] [20,25] [28,30] [36,38] [38,40] [29,30] [18,20] [9,12] [�5,0]
33 Tokyo [0,9] [0,10] [3,13] [9,18] [14,23] [18,25] [22,29] [13,31] [20,27] [13,21] [8,16] [2,21]
34 Toronto [�8, �1] [�8,�1] [�4,4] [�2,11] [�8,18] [13,24] [16,27] [16,26] [12,22] [6,14] [�1,17] [�5,1]
35 Vienna [�2,1] [�1,3] [1,8] [5,14] [10,19] [13,22] [15,24] [14,23] [11,19] [7,13] [2,7] [1,3]
36 Zurich [�11,9] [�8,15] [�7,18] [�1,21] [2,27] [6,30] [10,31] [8,25] [5,23] [3,22] [0,19] [�11,8]
37 Ojmjakon [�51,�42] [�48,�36] [�41,�22] [�25,�5] [�6,7] [2,18] [5,21] [1,18] [�4,8] [�21,�10] [�41,�32] [�49,�40]

Fig. 12. Location map for 37 cities (Guru's dataset) and Ojmjakon.
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Table 2
Latitude and longitude for 37 Cities (Guru's dataset) and Ojmjakon.

No: City Latitude Longitude No: City Latitude Longitude

0 Amsterdam 52°300N 4°520E 19 Mexico City 19°240N 991130W
1 Athens 37°590N 23°440E 20 Moscow 55°450N 37°370E
2 Bahrain 26°120N 50°360E 21 Munich 48°080N 11°350E
3 Bombay 18°560N 72°510E 22 Nairobi 1°170S 36°490E
4 Cairo 30°00N 31°770E 23 New Delhi 28°370N 77°130E
5 Calcutta 22°350N 88°210E 24 New York 40°440N 73°550W
6 Colombo 6°00N 79°520E 25 Paris 48°510N 2°200E
7 Copenhagen 55°420N 12°340E 26 Rome 41°520N 12°370E
8 Dubai 25°130N 55°170E 27 San Francisco 37°460N 122°260W
9 Frankfurt 52°210N 14°330E 28 Seoul 37°550N 127°30E
10 Geneva 46°140N 6°40E 29 Singapore 1°220N 103°550E
11 Hong Kong 22°170N 114°80E 30 Stockholm 59°230N 18°000E
12 Kuala Lumpur 3°80N 101°420E 31 Sydney 33°520S 151°120E
13 Lisbon 38°420N 9°50W 32 Tehran 35°400N 51°260E
14 London 51°300N 0°90W 33 Tokyo 35°410N 139°440E
15 Madras 13°50N 80°180E 34 Toronto 43°400N 79°220W
16 Madrid 40°260N 3°420W 35 Vienna 48°130N 16°220E
17 Manila 14°370N 121°00E 36 Zurich 47°220N 8°320E
18 Mauritius 20°370S 57°420E 37 Ojmjakon 63°270N 142°460E

Table 3
Fuzzy silhouette index for various number of clusters, the parameter of the SOWA
function and type of loss function. λ¼ 1:5.

Number of clusters

Method pc 2 3 4 5 6

FcOMdC-ID, SQR 0.7 0.4129 0.3960 0.4182 0.3147 0.2874
0.8 0.4129 0.3960 0.4182 0.3024 0.2451
0.9 0.4129 0.3960 0.4182 0.3053 0.2874
1.0 0.4129 0.3960 0.4182 0.3312 0.3034

FcOMdC-ID,LIN 0.7 0.3172 0.2904 0.2985 0.2661 0.2196
0.8 0.3172 0.2927 0.2985 0.2412 0.2309
0.9 0.3172 0.2904 0.2700 0.2585 0.2486
1.0 0.3172 0.2927 0.2931 0.2535 0.2458

FcOMdC-ID,SIG 0.7 0.3233 0.3017 0.3041 0.2930 0.2702
0.8 0.3233 0.3017 0.3087 0.2844 0.2764
0.9 0.3233 0.3017 0.3041 0.2886 0.2721
1.0 0.3233 0.3017 0.3036 0.2470 0.3009

FcOMdC-ID,HUB 0.7 0.3185 0.2951 0.3016 0.2475 0.2497
0.8 0.3185 0.2951 0.2960 0.2923 0.2589
0.9 0.3185 0.2935 0.3016 0.2480 0.2334
1.0 0.3185 0.2951 0.3016 0.2700 0.2837

FcOMdC-ID,LOG 0.7 0.1948 0.2419 0.2323 0.2281 0.1975
0.8 0.1948 0.2419 0.2422 0.2017 0.2052
0.9 0.1948 0.2419 0.2509 0.2045 0.2126
1.0 0.1948 0.2405 0.2504 0.2130 0.2180

Table 4
Fuzzy silhouette index for various number of clusters, the parameter of the SOWA
function and type of loss function. λ¼ 1:8.

Number of clusters

Method pc 2 3 4 5 6

FcOMdC-ID, SQR 0.7 0.4506 0.4185 0.4432 0.4017 0.3358
0.8 0.4506 0.4185 0.4123 0.3176 0.3650
0.9 0.4506 0.4185 0.5025 0.2836 0.2729
1.0 0.4506 0.4185 0.4471 0.4067 0.3602

FcOMdC-ID,LIN 0.7 0.3409 0.3085 0.3015 0.2424 0.2370
0.8 0.3409 0.3085 0.3099 0.2498 0.2159
0.9 0.3409 0.3086 0.3099 0.2557 0.2362
1.0 0.3409 0.3086 0.2692 0.2892 0.2634

FcOMdC-ID,SIG 0.7 0.3493 0.3244 0.2954 0.2914 0.2804
0.8 0.3493 0.3244 0.3177 0.3258 0.2136
0.9 0.3493 0.3244 0.3228 0.2757 0.2978
1.0 0.3493 0.3236 0.3362 0.2813 0.2322

FcOMdC-ID,HUB 0.7 0.3429 0.3306 0.3006 0.2843 0.2608
0.8 0.3429 0.3281 0.2780 0.2438 0.2324
0.9 0.3429 0.3280 0.2744 0.2492 0.2544
1.0 0.3429 0.3281 0.3101 0.2965 0.2557

FcOMdC-ID,LOG 0.7 0.2079 0.2574 0.2458 0.1911 0.2271
0.8 0.2079 0.2526 0.2564 0.2227 0.2545
0.9 0.2079 0.2574 0.2492 0.2066 0.1929
1.0 0.2079 0.2577 0.2576 0.1974 0.2223
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compare the results obtained for different loss functions because
they use different dissimilarity measure. Analysis of these tables
allow drawing the following conclusions. First, most often we get
the greatest values of the FS for two or four clusters. Second,
impact of parameter pc on the quality of obtained clusters is
minimal. This effect is due to the elastic influence of the ordering
function SOWA to reduce the outliers impact (by its soft down-
weighting) on the result clusters.

From Tables 3–5, we deduce that an optimal partition for our
FcOMdC-ID clustering method is obtained for SIG loss function,
λ¼ 2 and pc¼0.7. The membership degree matrix is shown
in Table 6.

In order to compare the results obtained by our FcOMdC-ID
method vs the results obtained by some methods proposed in
the literature, we also show in Table 6 the membership degree
matrices obtained by the following methods: the partition
obtained by a panel of human experts [50,49], the MSV (Mutual
Similarity Value) agglomerative based clustering [50], the FcMd-
ID (Fuzzy c-Medoids for Interval Data) method [33], the NcFcM-
ID (Fuzzy c-Means for Interval Data) method D'Urso and Gior-
dani [35], the TrFcMd-ID (Trimmed Fuzzy c-Medoids for Interval
Data) method D'Urso et al. [33]. In addition, in order to compare
the different partitions we report in Table 7 the Fuzzy Rand
Index matrix. Notice that, the Fuzzy Rand Index [57] is a fuzzy
extension of the original Rand index based on agreements and
disagreements in two partitions: ω¼ ðaþbþcþdÞ�1ðaþdÞ (a; d
numbers of pairs of units belonging to the same/different clus-
ters in the two partitions; b; c number of pairs of units belonging
to the same clusters in one partition and to different clusters in
the other).



Table 5
Fuzzy silhouette index for various number of clusters, the parameter of the SOWA
function and type of loss function. λ¼ 2:0.

Number of clusters

Method pc 2 3 4 5 6

FcOMdC-ID, SQR 0.7 0.4690 0.4260 0.5115 0.2978 0.3321
0.8 0.4690 0.4244 0.4463 0.3353 0.3282
0.9 0.4690 0.4342 0.4309 0.3722 0.3361
1.0 0.4690 0.4342 0.4340 0.3910 0.3615

FcOMdC-ID,LIN 0.7 0.3499 0.3331 0.3023 0.2587 0.2657
0.8 0.3499 0.3210 0.3397 0.2956 0.2445
0.9 0.3499 0.3329 0.2912 0.2639 0.2469
1.0 0.3499 0.3358 0.3217 0.2607 0.2302

FcOMdC-ID,SIG 0.7 0.3602 0.3530 0.3232 0.3230 0.2619
0.8 0.3602 0.3383 0.3284 0.3118 0.2571
0.9 0.3602 0.3383 0.3438 0.2421 0.2482
1.0 0.3602 0.3502 0.3381 0.2662 0.2747

FcOMdC-ID,HUB 0.7 0.3522 0.3413 0.2894 0.2339 0.2079
0.8 0.3522 0.3413 0.3322 0.2897 0.2565
0.9 0.3522 0.3411 0.3199 0.2368 0.2354
1.0 0.3522 0.3384 0.3100 0.2855 0.2343

FcOMdC-ID,LOG 0.7 0.2193 0.2588 0.2382 0.2107 0.2134
0.8 0.2129 0.2360 0.2678 0.1798 0.1863
0.9 0.2129 0.2648 0.2437 0.2052 0.2089
1.0 0.2129 0.2392 0.2352 0.2114 0.1600
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In the partition obtained by a panel of human experts [50,49]
(see Table 6) the cities belonging to cluster 1 are located in
between 0° and 40° latitudes and the cities which are classified
under cluster 2 are located in between 40° and 60° latitudes.
However, the observers classified some cities (Athens, Lisbon, San
Francisco, Seoul and Tokyo) which are closer to the sea coast and
are located in between the latitudes 0° and 40° as members of
cluster 2, because such cities bear low temperature which is
similar to that of the cities which are located in between 40° and
60° latitudes. The cities nearer to sea coast bear relatively low
temperature because of the cool breeze from the sea coast and also
due to high humidity present in the atmosphere. Mauritius being
the only island (in the considered data set) that is classified as a
member of a singleton cluster and Tehran as a member of the
other singleton because It is characterized by a singular climate
behavior (small fluctuation in temperature; see Fig. 11). The par-
tition obtained through the MSV (Mutual Similarity Value)
agglomerative based clustering [50] is in accordance with the
realistic clusters provided by the panel of human observers. By
applying the FcOMdC-ID method (with the SIG loss function, λ¼ 2
and pc¼0.7) and the other fuzzy clustering methods, i.e. the
timidly robust FcMd-ID method [32] (with λ¼ 2) and the robust
methods NcFcM-ID method [35] (with λ¼ 2 and noise distance δ
equal to

Pc
i ¼ 1

PN
k ¼ 1 D

2
ik=cN, where Dik

2 indicates the squared
Euclidean distance between the kth observations and the ith
centroid) and TrFcMd-ID method [33] (with λ¼ 2 and trimming
parameter α¼ 0), we obtain results consistent with the two
non-singleton clusters indicated by the panel of experts. These
evidences are corroborated by the Fuzzy Rand Index matrix shown
in Table 7. Furthermore, notice that in the Guru's dataset there are
no outliers, i.e. cities with minimum and maximum temperature
that lie an abnormal distance from other minimum and maximum
temperature values. The results obtained by all robust clustering
methods confirm this evidence. In fact, as expected, the obtained
results are consistent with the empirical evidences (data without
outliers) and then show a stable behavior of our robust model and
of the other robust ones in the examined real context.

4.2. Temperature data with outlier (modified Guru's data)

In order to show the performance, effectiveness and robustness
of our clustering method, we contaminate the Guru's dataset with
an outlier, i.e. we consider the monthly minimum and maximum
temperature of a very cold village: Ojmjakon. Ojmjakon is a rural
locality in Ojmjakonsky District of the Sakha Republic, Russia,
located along the Indigirka River, 30 km northwest of Tomtor on
the Kolyma Highway. Ojmjakon is one of the coldest permanently
inhabited locales on the planet. With an extreme subarctic climate,
Ojmjakon is known as one of the candidates for the Northern Pole
of Cold. The ground there is permanently frozen (continuous
permafrost). Although winters in Ojmjakon are long and exces-
sively cold, summers are mild, sometimes with hot, and very hot,
days. The climate is quite dry, but as average monthly tempera-
tures are below freezing for seven months of the year, substantial
evaporation occurs only in summer months. Summers are much
wetter than winters.

The considered monthly minimum and maximum tempera-
tures, the location and the latitude and longitude of Ojmjakon are
shown together to the other cities in Tables 1 and 2 and Fig. 12.

To show the different monthly climatic features of the cities
during the year, in Fig. 13a we represent the violin plots in the
different months for the entire interval dataset for the midpoints
of the interval data.

The violin plot synergistically combines the box plot and the
density trace (or smoothed histogram) into a single display that
reveals structure found within the data [55]. In particular, it
includes a box plot with two slight modifications. First, a circle
replaces the median line which facilitates quick comparisons
when viewing multiple groups. Second, outside points which are
traditionally classified as mild and severe outliers are not identi-
fied by individual symbols. The density trace supplements tradi-
tional summary statistics by graphically showing the distributional
characteristics of batches of data [55]. The density trace is plotted
symmetrically to the left and the right of the (vertical) box plot.
There is no difference in these density traces other than the
direction in which they extend. Adding two density traces gives a
symmetric plot which makes it easier to see the magnitude of the
density. This hybrid of the density trace and the box plot allows
quick and insightful comparison of several distributions [55]. With
the addition of the density trace to the box plot, violin plots pro-
vide a better indication of the shape of the distribution. This
includes showing the existence of clusters in data. The density
trace highlights the peaks, valleys, and bumps in the distribution
[55]. About that, in the application, as we can see below, we select
λ¼ 2 by means of the fuzzy silhouette index (see Fig. 14). This
result is corroborated by the bimodality of the density traces (in
particular in the summer months) of midpoint temperatures
shown in the violin plots in Fig. 13a.

In addition, from the violin plots shown in Fig. 13a we can see
the seasonal pattern of the temperatures, the changes in tem-
perature during the months and clearly identify the presence of an
outlier.

We apply the modified Guru's dataset (Table 1) to our FcOMdC-
ID method (with SIG loss function, λ¼ 2 and pc¼0.7) and other
robust fuzzy clustering methods, i.e. the timidly robust FcMd-ID
method [33] (with λ¼ 2) and the robust methods NcFcM-ID
method [35] (with λ¼ 2 and noise distance δ equal toPc

i ¼ 1
PN

k ¼ 1 D
2
ik=cN, where Dik

2 indicates the squared Euclidean
distance between the kth observations and the ith centroid) and



Table 6
Membership degrees (Guru's dataset).

No. City FcOMdC-ID MSV, panel of human experts FcMd-ID NcFcM-ID TrFcMd-ID

Cluster 1 Cluster 2 (βk) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 1 Cluster 2 Noise cluster Cluster 1 Cluster 2

0 Amsterdam 0.0114 0.9886 0.9999 0 1 0 0 0.0187 0.9813 0.0222 0.8915 0.0863 0.0187 0.9813
1 Athens 0.3094 0.6906 0.9809 0 1 0 0 0.2915 0.7085 0.2635 0.4547 0.2817 0.2915 0.7085
2 Bahrain 0.8974 0.1026 0.9988 1 0 0 0 0.8841 0.1159 0.7688 0.0611 0.1701 0.8841 0.1159
3 Bombay 1.0000 0.0000 1.0000 1 0 0 0 1.0000 0.0000 0.9235 0.0156 0.0609 1.0000 0.0000
4 Cairo 0.7333 0.2667 0.9913 1 0 0 0 0.7265 0.2735 0.6399 0.1295 0.2306 0.7265 0.2735
5 Calcutta 0.9726 0.0274 0.9996 1 0 0 0 0.9677 0.0323 0.8912 0.0235 0.0853 0.9677 0.0323
6 Colombo 0.9944 0.0056 0.9999 1 0 0 0 0.9902 0.0098 0.8842 0.0230 0.0928 0.9902 0.0098
7 Copenaghen 0.0281 0.9719 0.9995 0 1 0 0 0.0265 0.9735 0.0277 0.8566 0.1157 0.0265 0.9735
8 Dubai 0.8909 0.1091 0.9982 1 0 0 0 0.9117 0.0883 0.8072 0.0464 0.1464 0.9117 0.0883
9 Frankfurt 0.0970 0.9030 0.9396 0 1 0 0 0.1083 0.8917 0.0805 0.5996 0.3200 0.1083 0.8917
10 Geneva 0.0237 0.9763 0.9998 0 1 0 0 0.0224 0.9776 0.0203 0.9069 0.0728 0.0224 0.9776
11 Hong Kong 0.8034 0.1966 0.9973 1 0 0 0 0.7537 0.2463 0.6667 0.1210 0.2123 0.7537 0.2463
12 Kuala Lampur 0.9854 0.0146 0.9998 1 0 0 0 0.9837 0.0163 0.8518 0.0281 0.1202 0.9837 0.0163
13 Lisbon 0.1905 0.8095 0.9871 0 1 0 0 0.1867 0.8133 0.1989 0.5518 0.2492 0.1867 0.8133
14 London 0.0053 0.9947 0.9999 0 1 0 0 0.0079 0.9921 0.0216 0.9097 0.0686 0.0079 0.9921
15 Madras 0.9709 0.0291 0.9995 1 0 0 0 0.9755 0.0245 0.8052 0.0347 0.1601 0.9755 0.0245
16 Madrid 0.0958 0.9042 0.9973 0 1 0 0 0.0763 0.9237 0.0717 0.7718 0.1565 0.0763 0.9237
17 Manila 0.9886 0.0114 0.9998 1 0 0 0 0.9864 0.0136 0.9116 0.0189 0.0695 0.9864 0.0136
18 Mauritius 0.8641 0.1359 0.9992 0 0 1 0 0.8597 0.1403 0.6741 0.0831 0.2428 0.8597 0.1403
19 Mexico City 0.6593 0.3407 0.9941 1 0 0 0 0.6859 0.3141 0.6132 0.1519 0.2349 0.6859 0.3141
20 Moscow 0.0771 0.9229 0.9718 0 1 0 0 0.0995 0.9005 0.0612 0.5303 0.4085 0.0995 0.9005
21 Munich 0.0208 0.9792 0.9996 0 1 0 0 0.0289 0.9711 0.0277 0.8489 0.1235 0.0289 0.9711
22 Nairobi 0.4228 0.5772 0.9718 1 0 0 0 0.5065 0.4935 0.3898 0.2463 0.3639 0.5065 0.4935
23 New Deli 0.8213 0.1787 0.9960 1 0 0 0 0.8340 0.1660 0.6561 0.0900 0.2539 0.8340 0.1660
24 New York 0.0546 0.9454 0.9992 0 1 0 0 0.0516 0.9484 0.0332 0.8728 0.0940 0.0516 0.9484
25 Paris 0.0000 1.0000 1.0000 0 1 0 0 0.0000 1.0000 0.0075 0.9701 0.0225 0.0000 1.0000
26 Rome 0.1667 0.8333 0.9941 0 1 0 0 0.1646 0.8354 0.1623 0.6116 0.2261 0.1646 0.8354
27 San Francisco 0.0714 0.9286 0.9988 0 1 0 0 0.0947 0.9053 0.1194 0.6613 0.2193 0.0947 0.9053
28 Seoul 0.0586 0.9414 0.9982 0 1 0 0 0.0662 0.9338 0.0535 0.8092 0.1373 0.0662 0.9338
29 Singapore 0.9926 0.0074 0.9999 1 0 0 0 0.9877 0.0123 0.8621 0.0267 0.1113 0.9877 0.0123
30 Stockholm 0.0732 0.9268 0.9809 0 1 0 0 0.0737 0.9263 0.0540 0.6344 0.3116 0.0737 0.9263
31 Sydney 0.6137 0.3863 0.9871 1 0 0 0 0.5982 0.4018 0.3461 0.1801 0.4738 0.5982 0.4018
32 Tehran 0.3919 0.6081 0.8251 0 0 0 1 0.3658 0.6342 0.2095 0.3152 0.4753 0.3658 0.6342
33 Tokyo 0.1634 0.8366 0.9960 0 1 0 0 0.1301 0.8699 0.1109 0.6883 0.2008 0.1301 0.8699
34 Toronto 0.0641 0.9359 0.9913 0 1 0 0 0.0778 0.9222 0.0547 0.6678 0.2774 0.0778 0.9222
35 Vienna 0.0123 0.9877 0.9998 0 1 0 0 0.0159 0.9841 0.0165 0.9224 0.0611 0.0159 0.9841
36 Zurich 0.1008 0.8992 0.9127 0 1 0 0 0.1134 0.8866 0.0827 0.5836 0.3337 0.1134 0.8866
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Table 7
Fuzzy Rand Index matrix (Guru's dataset).

FcOMdC-ID MSV FcMd-ID NcFcM-ID TrFcMd-ID

FcOMdC-ID 1.0000 0.7830 0.9796 0.9079 0.9796
MSV 0.7830 1.0000 0.7860 0.7302 0.7860
FcMd-ID 0.9796 0.7860 1.0000 0.9129 1.0000
NcFcM-ID 0.9079 0.7302 0.9129 1.0000 0.9129
TrFcMd-ID 0.9796 0.7860 1.0000 0.9129 1.0000
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Fig. 13. Violin plots—midpoints. (a) Whole sample. (b) First cluster. (c) Second
cluster.
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the TrFcMd-ID method [33] (with λ¼ 2 and trimming parameter
α¼ 0:025). All results are shown in Table 8.

As we can see, the fuzzy partitions obtained by means of the
different robust and timidly robust methods are similar, as can also
be seen from the Fuzzy Rand Index matrix (Table 9). In fact, all
methods identify and neutralize in a different manner but
effectively the outlier. In particular, the timid robust FcMd-ID
method neutralizes the negative effects in the clustering process
of the outlier because the structure of the cluster is not altered but
it does not identify clearly the outlier. However, as emphasized by
Garcíia-Escudero et al. [43], the clustering method based on
medoids resists the presence of one outlier in a remote position,
but it breaks down when we increase the number of outliers to
three. The TrFcMd-ID method and the NcFcM-ID method identify
the outlier and neutralize its negative effect, respectively, remov-
ing it from the analyzed dataset and putting the outlier in the
noise cluster. Our method is more informative than the other ones
because by means of the typicality parameter, which represents an
important means for alleviating the undesirable effects of outliers,
we have a measure of the intensity level of the outlier. In parti-
cular, since Ojmjakon presents a very low level of typicality, i.e.
β¼ 0:0119, it is represented in the set of the cities as a village with
very atypical levels of temperatures. Then, our method not only is
able to neutralize and tune suitably the influence of the anomalous
interval data in the clustering process, but it also provides a sui-
table measure of the typicality/atypicality level of the outlier
interval data.

With reference to the results obtained by means of our method,
in Fig. 15 we show the radar plots (zoom stars in the interval data
analysis) for the 2 medoid cities, for the fuzzy cities and for the
outlier city.

As we can see, the prototype (medoid) of the cluster 1,
Colombo, represents the cities (belonging to cluster 1) character-
ized by warm temperatures in all the months of the year, while the
medoid of the cluster 2, Paris, represents a cluster with cities
characterized by temperate climate. The “fuzzy” cities Athens and
Mexico City are warm in summer and cold in the other months;
vice versa for the “fuzzy” cities Nairobi and Sydney that are located
in the opposite hemisphere. The fuzziness of Tehran is connected
to its climatic conditions: it is very cold in winter and very hot in
summer with small month temperature changes. As we can see,
the outlier city, Ojmjakon, is characterized by very cold tempera-
tures. These empirical findings are corroborated by the results
shown in Figs. 13b and c, in which we represent the violin plots for
the midpoint temperatures obtained by considering the cities with
membership degrees to cluster 1 and cluster 2 greater than 0.60
(cut-off¼0.60).
5. Conclusions

The real interval-valued data can contain outliers. Therefore the
clustering methods need to be robust. This paper combines the
fuzzy c-medoids clustering with the robust ordered statistics using
Huber's M-estimator. The developed FcOMdC-ID clustering
method is based on various dissimilarity measures (as squared,
linear, Huber, sigmoidal and logarithmic) and an ordering of
models residuals. The method is introduced as the problem of a
constrained minimization of the criterion function. The necessary
conditions for obtaining local minimum of the criterion function
with respect to the elements of the partition matrix are shown.
The existing fuzzy c-medoids clustering method can be obtained
as special cases of the method developed. The study of the
FcOMdC-ID with the traditional fuzzy c-medoids as the reference
methods is included. These numerical examples show the useful-
ness of the method proposed when applied to clustering data with
different types of outliers.

Furthermore, in order to show the effectiveness of our method
in an empirical context, the FcOMdC-ID method is applied and
compared with other robust fuzzy clustering methods.
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Table 8
Membership degrees (modified Guru's dataset).

No. City FcOMdC-ID FcMd-ID NcFcM-ID TrFcMd-ID

Cluster 1 Cluster 2 (βk) Cluster 1 Cluster 2 Cluster 1 Cluster 2 Noise cluster Cluster 1 Cluster 2

0 Amsterdam 0.0954 0.9046 0.9998 0.0198 0.9802 0.0234 0.9166 0.0599 0.0187 0.9813
1 Athens 0.4025 0.5975 0.9763 0.3061 0.6939 0.3021 0.4906 0.2072 0.2915 0.7085
2 Bahrain 0.7380 0.2620 0.9989 0.8729 0.1271 0.8177 0.0631 0.1192 0.8841 0.1159
3 Bombay 0.9302 0.0698 1.0000 0.9874 0.0126 0.9313 0.0188 0.0499 1.0000 0.0000
4 Cairo 0.6023 0.3977 0.9925 0.7124 0.2876 0.7079 0.1324 0.1597 0.7265 0.2735
5 Calcutta 0.7979 0.2021 0.9995 0.9457 0.0543 0.9106 0.0258 0.0636 0.9677 0.0323
6 Colombo 1.0000 0.0000 0.9999 0.9933 0.0067 0.9004 0.0266 0.0730 0.9902 0.0098
7 Copenaghen 0.1471 0.8529 0.9997 0.0283 0.9717 0.0298 0.8884 0.0818 0.0265 0.9735
8 Dubai 0.7045 0.2955 0.9993 0.8816 0.1184 0.8483 0.0483 0.1033 0.9117 0.0883
9 Frankfurt 0.2423 0.7577 0.9763 0.1099 0.8901 0.0907 0.6722 0.2371 0.1083 0.8917
10 Geneva 0.1351 0.8649 0.9998 0.0238 0.9762 0.0217 0.9272 0.0511 0.0224 0.9776
11 Hong Kong 0.6911 0.3089 0.9976 0.7767 0.2233 0.7318 0.1223 0.1460 0.7537 0.2463
12 Kuala Lampur 0.9232 0.0768 0.9998 0.9798 0.0202 0.8743 0.0322 0.0935 0.9837 0.0163
13 Lisbon 0.3299 0.6701 0.9925 0.2050 0.7950 0.2274 0.5894 0.1832 0.1867 0.8133
14 London 0.0685 0.9315 0.9999 0.0086 0.9914 0.0240 0.9261 0.0499 0.0079 0.9921
15 Madras 0.8329 0.1671 0.9997 0.9563 0.0437 0.8354 0.0398 0.1248 0.9755 0.0245
16 Madrid 0.2399 0.7601 0.9984 0.0799 0.9201 0.0778 0.8118 0.1104 0.0763 0.9237
17 Manila 0.9407 0.0593 0.9999 1.0000 0.0000 0.9245 0.0216 0.0539 0.9864 0.0136
18 Mauritius 0.7504 0.2496 0.9984 0.9046 0.0954 0.7364 0.0882 0.1754 0.8597 0.1403
19 Mexico City 0.5615 0.4385 0.9949 0.7097 0.2903 0.6829 0.1545 0.1626 0.6859 0.3141
20 Moscow 0.2242 0.7758 0.9280 0.1032 0.8968 0.0715 0.6131 0.3154 0.0995 0.9005
21 Munich 0.1264 0.8736 0.9995 0.0305 0.9695 0.0291 0.8855 0.0854 0.0289 0.9711
22 Nairobi 0.4468 0.5532 0.9889 0.5422 0.4578 0.4544 0.2718 0.2738 0.5065 0.4935
23 New Deli 0.6480 0.3520 0.9965 0.7984 0.2016 0.7206 0.0960 0.1834 0.8340 0.1660
24 New York 0.1924 0.8076 0.9993 0.0539 0.9461 0.0350 0.9002 0.0648 0.0516 0.9484
25 Paris 0.0000 1.0000 1.0000 0.0000 1.0000 0.0085 0.9749 0.0166 0.0000 1.0000
26 Rome 0.3077 0.6923 0.9949 0.1748 0.8252 0.1833 0.6521 0.1646 0.1646 0.8354
27 San Francisco 0.2122 0.7878 0.9976 0.1031 0.8969 0.1352 0.7038 0.1610 0.0947 0.9053
28 Seoul 0.1972 0.8028 0.9989 0.0685 0.9315 0.0576 0.8459 0.0965 0.0662 0.9338
29 Singapore 0.9935 0.0065 0.9998 0.9909 0.0091 0.8825 0.0307 0.0869 0.9877 0.0123
30 Stockholm 0.2217 0.7783 0.9838 0.0774 0.9226 0.0611 0.7061 0.2329 0.0737 0.9263
31 Sydney 0.5582 0.4418 0.9838 0.6383 0.3617 0.4151 0.2096 0.3753 0.5982 0.4018
32 Tehran 0.4530 0.5470 0.8559 0.3721 0.6279 0.2526 0.3700 0.3774 0.3658 0.6342
33 Tokyo 0.2982 0.7018 0.9965 0.1352 0.8648 0.1234 0.7315 0.1451 0.1301 0.8699
34 Toronto 0.2059 0.7941 0.9889 0.0808 0.9192 0.0606 0.7367 0.2027 0.0778 0.9222
35 Vienna 0.1011 0.8989 0.9999 0.0171 0.9829 0.0176 0.9396 0.0428 0.0159 0.9841
36 Zurich 0.2462 0.7538 0.9655 0.1148 0.8852 0.0937 0.6575 0.2488 0.1134 0.8866
37 Ojmjakon 0.3874 0.6126 0.0119 0.3118 0.6882 0.0436 0.0918 0.8646 trimmed
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Table 9
Fuzzy Rand Index matrix (modified Guru's dataset).

FcOMdC-ID FcMd-ID NcFcM-ID TrFcMd-ID

FcOMdC-ID 1.0000 0.8722 0.8463 0.8672
FcMd-ID 0.8722 1.0000 0.9127 0.9825
NcFcM-ID 0.8463 0.9127 1.0000 0.9257
TrFcMd-ID 0.8672 0.9825 0.9257 1.0000
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Fig. 15. Radar plots (zoom stars) for medoid, fuzzy and outlier cities.
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