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Abstract 
This paper presents a novel approach towards Indic handwritten word recognition using zone-wise 

information. Because of complex nature due to compound characters, modifiers, overlapping and 

touching, etc., character segmentation and recognition is a tedious job in Indic scripts (e.g. Devanagari, 

Bangla, Gurumukhi, and other similar scripts). To avoid character segmentation in such scripts, HMM-

based sequence modeling has been used earlier in holistic way. This paper proposes an efficient word 

recognition framework by segmenting the handwritten word images horizontally into three zones (upper, 

middle and lower) and recognize the corresponding zones. The main aim of this zone segmentation 

approach  is to reduce the number of distinct component classes compared to the total number of classes in 

Indic scripts. As a result, use of this zone segmentation approach enhances the recognition performance of 

the system. The components in middle zone where characters are mostly touching are recognized using 

HMM.  After the recognition of middle zone, HMM based Viterbi forced alignment is applied to mark the 

left and right boundaries of the characters. Next, the residue components, if any, in upper and lower zones 

in their respective boundary are combined to achieve the final word level recognition. Water reservoir 

feature has been integrated in this framework to improve the zone segmentation and character alignment 

defects while segmentation. A novel sliding window-based feature, called Pyramid Histogram of Oriented 

Gradient (PHOG) is proposed for middle zone recognition. PHOG features has been compared with other 

existing features and found robust in Indic script recognition. An exhaustive experiment is performed on 

two Indic scripts namely, Bangla and Devanagari for the performance evaluation. From the experiment, it 

has been noted that proposed zone-wise recognition improves accuracy with respect to the traditional way 

of Indic word recognition. 
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1. Introduction 
 

Although, the automatic recognition of printed text has achieved a great success rate, the performance 

of handwritten word recognition is not high. Handwritten word recognition has long been an active 

research area because of its vast potential applications. Some of its potential application areas are 

postal automation, bank cheque processing, automatic data entry, etc. The main hindrance behind the 

difficulties of making a handwritten recognition system is the huge variation in writing style and 

complex shapes of characters in words. There are many research works towards handwritten word 

recognition in Roman [1], Japanese/Chinese [2, 3] and Arabic scripts [4]. Although many 

investigations have been made towards the recognition of isolated handwritten characters and digits of 

Indian scripts [5], only a few pieces of work [6, 7] exist towards offline handwritten word recognition 

in Indian scripts.  

 

Devanagari and Bangla are two most popular Indian scripts. Devanagari, script is used to write 

languages such as Sanskrit, Hindi, Nepali, Marathi, and many others. It is used by approximately 400 

million people in northern India and it is the most widely used Indic script. Bangla is the second most 

popular language in India. Languages like Bangla, Assamese and Manipuri languages are written in 

Bangla script. About 200 million people of Eastern India and Bangladesh use Bangla script for 

communication. Also, Devanagari is the third most and Bangla is the fifth most popular language in the 

world [8]. Examples of Bangla and Devanagari handwritten document images are shown in Fig. 1. 

 

 
(a)                                                                          (b) 

Fig.1: Examples of handwritten text document. (a) Bangla, (b) Devanagari 

 

The OCR involving printed Devanagari and Bangla scripts has been addressed in many pieces of 

research work [9, 10, 11]. Although a number of work has been investigated for isolated handwritten 

character and digit recognition in Indian script [5], only a few pieces of work exist towards handwritten 

word recognition in Indian script [6, 7]. Offline recognition of handwritten word of these scripts needs 

lot of research. 

 

Most of the existing works in these two scripts are performed on segmenting the characters from words 

and then recognition. A number of works have been performed for character level segmentation in 

Devanagari [12] and Bangla [6]. It is reported that due to the presence of noise, touching, etc., the 

segmentation of characters from a word may often fail. Often characters may generate disjoint 

character components through preliminary segmentation process. Overlapping and touching characters, 

which frequently occur in Bangla writing style, create more hindrance in segmenting characters of the 

words. 
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In the past decades stochastic approaches such as Hidden Markov Models (HMMs) have been widely 

applied to perform word recognition task [13, 14] because of its effectiveness for modelling 

unconstrained character-string. This is mostly due to their ability to cope with non-linear distortions 

and incomplete information. Mainly two approaches namely segmentation-based approach [15] and 

holistic approach [16] are used for the word recognition purpose. In practice, a HMM can be employed 

to represent a whole word or, alternatively, sub-word units such as characters which can be 

concatenated to form general strings. Though HMMs-based techniques have been successfully used in 

handwriting recognition [17], only a few papers exist for Indian script recognition. One of the reasons 

could be the larger number of character classes in Indic scripts due to modifiers and compound 

characters. 

Only a few pieces of work using HMMs are performed in Devanagari [18] and in Bangla [7] 

handwritten word recognition. Almost all these methods consider holistic approach of recognition as 

word-wise HMM model creation. In these approaches feature extraction was performed from the entire 

word and recognition was performed with the help of lexicon-based holistic word recognition. The 

main drawbacks of these holistic word-based HMMs models are that the recognition process is limited 

to a set of words only. Also, in this method, for each word a large number of training data is needed. 

An unknown word which was not trained by the models will not be recognized using these systems. 

 

To overcome these drawbacks, HMMs are trained on sub-word units, such as characters, which can be 

concatenated to form general strings. Character based HMM models [13] have been successfully used 

for recognition of arbitrary set of words in English/Latin scripts. One of the advantages is that they 

allow recognizing unknown words from training data once the character models are trained. HMMs 

avoid the problem of pre-segmentation of words into characters so that the errors of pre-segmentation 

can be eliminated. Character alignment based techniques for HMM is also studied to reduce the error 

[3]. Note that such approach was not applied for offline word recognition of Indic scripts 

earlier.Though, this character based HMM models are popular in the literature of word recognition, the 

process may not be directly useful in Indic scripts, especially in Devanagari and Bangla. It is due to the 

fact that in such scripts, combination of vowels, modifiers and characters lead to a huge number of 

character classes.  Thus, sufficient data for each combination will be necessary for training the 

respective class models. To reduce such huge number of character classes we propose a zone-wise 

recognition approach where a word is segmented into 3 zones (upper, middle and lower zone). To have 

an idea about such character class reduction, let X, Y and Z be the number of character classes that may 

appear in upper, middle and lower zones, respectively. If we do not use zone-wise recognition then 

number of character classes will be XY+YZ (assuming all characters in the middle zone may be 

associated with all characters of upper and lower zones). Whereas if we use zone-wise segmentation, 

total number of character classes will be X+Y+Z instead of XY+YZ. Thus, there will be a huge 

reduction of characters when X, Y and Z are large. To have an idea, in Bangla we have about 280 

characters (simple and compound together)[10] which may appear in middle zone and 4 modifiers in 

upper zone and 3 modifiers in lower zones. Thus if we do not use zone segmentation, we will have 

ideally 280×4+280×3= 1960 classes, whereas after zone segmentation we will have only 287 classes, 

Thus a reduction of 85.36% can be achieved. Based on this principle, recently we proposed a zone-wise 

recognition approach [19] and showed some preliminary results. This paper is an extension of the 

earlier paper including several additional contributions. The main contributions of this extended paper 

are the following: 1) integration of water reservoir concept for better zone segmentation in a word 

image, 2) efficient PHOG features developed to improve the performance of HMM based middle zone 
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recognition, 3) the proposed framework has been generalized and tested for Bangla and Devanagari 

scripts recognition. 

 

Overall organization of the rest of the paper is as follows. Section 2 describes some important 

properties and challenges in Bangla and Devanagari scripts. In Section 3, we describe the pre-

processing tasks of Indic word images. The word-recognition framework using zone-wise segmentation 

results is explained in Section 4. Here details of zone segmentation, feature extraction and recognition 

approaches are discussed. We demonstrate the performance of the proposed approach in Section 5. 

Finally, conclusions are presented in Section 6. 

 

 

2. Properties of Bangla and Devanagari Scripts 
 

In Devanagari script, a total 49 basic characters exist, out of these 11 are vowels and 38 are consonants. 

The alphabet of the modern Bangla script consists of 11 vowels and 39 consonants. The basic 

characters of Bangla and Devanagari scripts are shown in Fig.2. It can be noted that most of the 

characters in Bangla and Devanagari scripts have a horizontal line (called Matra/Shirorekha) at the 

upper part and a baseline. When two or more characters sit side by side to form a word, these 

horizontal lines generally touch and generate a long line. Characters typically hang from the Matra 

when written. All Indic scripts run left to right, although some combining glyphs appear to the left of 

their base character for display. In both Bangla and Devanagari scripts a vowel following a consonant 

takes a modified shape and placed at the left, right, both left and right, or bottom of the consonant. 

These modified shapes are called modified characters. Examples of modified character are shown in 

Fig.2(i.b) and Fig. 2(ii.b) for Bangla and Devanagari scripts respectively. These modifiers add extra 

difficulty in the character segmentation procedure of Bangla and Devanagari scripts because of their 

topological position. A consonant or a vowel following a consonant sometimes takes a compound 

orthographic shape, which we call as compound character. For details about Bangla and Devanagari 

scripts, we refer [10]. 

 
 

 
(i) 

 
(ii) 

Fig.2:Few examples of vowels, modifiers, consonants and conjuncts in (i) Bangla & (ii) Devanagari Script 
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A Bangla or Devanagari word can be partitioned into three zones. The upper-zone (ZU) denotes the 

portion above the Matra, the middle zone (ZM) covers the portion between Matra and base-line, the 

lower-zone (ZL) is the portion below base-line. Different zones in a Bangla word image are shown in 

Fig.3. 
 

 
Fig.3: Three zones of Bangla script – upper, middle and lower zone separated by Matra and base line 

2.1. Challenges in Bangla/Devanagari Word Recognition 
 

As discussed above, recognition of Bangla and Devanagari script is not similar like Latin script due to 

the variation of character-modifiers presence in 3 zones: upper, middle and lower zones. When the 

consonant character, "ক"(appear only in middle zone)get combined with a vowel, the vowel forms a 

modifier which can appear either in middle zone (like "ক "), or in middle and upper zone (like " ক") 

according to the nature of vowel (as shown in Fig.2). Hence, the combinations of consonants and vowel 

make a large number of possible character combinations. Because of this, traditional HMM-based 

recognition systems (without zone segmentation)have to consider different character units for each 

combination separately, as the basic sliding window feature needs to capture the information in all 

zones for identifying the modifier properly. In Fig.4 (left column), it is graphically shown when a 

Bangla consonant character „ক‟ is combined with 5 different vowels. In our proposed zone-

segmentation based approach (right half of the Fig.4), it is possible to make these complex character 

shapes to model by few simple character units. For example, we can divide the shape  ক into simple 

units ক, , and .Similar is the case for other consonants of Bangla and Devanagari modifiers. 

 

 
Fig.4: example of character units reduction using zone segmentation 
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Also, while writing Bangla/Devanagari characters, they suffer from distortions depending on the 

writing style of the person like other scripts. Often the Matra appears missing in handwritten words 

which also add challenges for developing a generalized recognition system. It is observed that due to 

the presence of noise, touching characters, etc., the segmentation of characters from a word may fail. 

Often characters may generate disjoint character components through preliminary segmentation 

process, which creates problem in recognition tasks. Proper classification and reunification of these 

components using segmentation are not easy to process. Overlapping and touching characters, which 

frequently occur in Bangla/Devanagari writing style, create more hindrance in recognizing characters 

of the words. Another problem is the “Slant and Skew” nature of handwritten word (see Fig.5). Due to 

non-uniform skew and slant in word images the recognition of words become more difficult. As 

mentioned earlier, the “Matra” stays in a horizontal line dividing the upper and mid-section of the 

word, which often fails to be so. Our recognition framework is designed to take care of these issues. 

These are discussed in the following section. 

 
Fig.5: (a) Skewed word. Red lines are the “Matra” and “Base line” respectively which are no longer horizontal. (b) Slanted 
word. Character segmentation lines are not vertical. 
 

3. Preprocessing 
 

To extract the word image from the handwritten document a set of pre-processing tasks are followed. 

The offline document image is first converted into binary image using global histogram-based Otsu 

binarization method. The binary document is segmented into individual text lines using a line 

segmentation algorithm [20]. Here, some seed components of a line are obtained from smoothed text 

regions of document. The upper and lower boundary information of a text line is obtained from 

background regions using morphological functions. Next, foreground seed components and boundary 

information are used to segment the text-lines. Once lines are separated, Run Length Smoothing 

Algorithm (RLSA) [20] is next applied on each text line to get individual words as a component. A 

connected component labeling is applied to find the bounding box of the word patches in the line. 

Next, using the patch mask, the original word is considered from the binary image. The word images 

are next processed for skew and slant corrections. These are discussed in following subsection.  

 

3.1. Skew and Slant Correction 
 

In our framework "Water reservoir" concept has been applied for skew correction of non-horizontal 

words. This idea has been used earlier for various document image analysis techniques such as, script 

identification, line segmentation, etc. in Indian scripts [6, 10, 21]. In this concept, if water is poured 

from a side of a component, the cavity regions of the component where water will be stored are 

considered as reservoirs of the component. Because of touching through head-line in Bangla and 

Devanagari scripts, two consecutive characters in a word create large cavity regions (space) between 

them and hence we get large reservoirs [21] from the cavity regions. Water reservoir concept is not new 

but here we explore its application towards skew detection in Bangla and Devanagari scripts. Details of 

water reservoir and its different properties can be obtained in [21]. 
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To use the concept of water reservoirs stated above to detect skew angle, we obtain the bottom 

reservoirs [21] of the word image (by pouring water from the bottom of the word). Then we filter out 

the reservoirs having lower heights, i.e. less than 3xSw, where Sw is the average stroke width of the 

handwritten word image. Stroke width (Sw) is calculated as statistical mode of the run lengths of the 

word‟s foreground. A word image is, at first, scanned row-wise (horizontally) and then column-wise 

(vertically) to compute foreground pixel‟s run-lengths and their occurrence frequencies. Next, the 

statistical mode value of these run-lengths provides the estimated stroke width (Sw). 

 

The local minima points (depth-points) from the valid reservoirs having heights more than 3xSw are 

determined by traversing the contour. Let, B be the set of all such points. Next, a first order degree 

polynomial (i.e. a straight line) using Linear Regression is computed using points of B. We have noted 

that the slope (θ) of the calculated line provides a quantitative measurement of the skew nature of the 

handwritten word image. Thereafter the image is rotated in opposite direction by θ for skew correction. 

This process is illustrated in Fig.6(a). 

 

The slant angle is next determined and corrected using the vertical projection histogram and Wigner–

Ville distribution [22]. Using this projection histogram analysis, we find the height of the peaks in 

vertical projection analysis at an angle with an interval from -45° to +45° after doing shear transform. 

Next, the angle at which clear peaks and troughs are found is considered as slant angle. This is 

illustrated in Fig.6(b). 

 
(a) 
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(b) 

Fig.6:(a) Skew correction using water reservoir. Water reservoirs are computed and checked for consideration according to 
reservoir height. Next a regression analysis is performed on depth-points of the reservoirs and skew angle is obtained. (b) 
Slant correction was performed using vertical projection analysis. 

4. Proposed Zone-based Word Recognition Approach 

 
In this section we present our zone segmentation based Indic word recognition framework. We have 

used the combination of HMM and SVM based classification for handwritten word recognition. After 

performing the preprocessing tasks, the word image is passed through zone segmentation module. 

Unlike, traditional Indic handwritten word recognition approaches, by segmenting the words into 3 

zones we reduce the number of basic units for character recognition (discussed in Section 2). After 

segmenting into zones, recognition of middle zone components is performed using HMM. Upper and 

lower zone components are recognized using SVM classifier and finally zone wise results are 

combined to get final results. The proposed zone-based recognition system outperforms traditional 

character-wise word recognition approach. We also demonstrate that the refinement in zone-

segmentation improves the recognition performance. The architecture of the system has been shown in 

Fig.7 with a Bangla word example. The details of these steps are discussed briefly in following 

subsections. 

 
Fig.7: Outline of our word recognition framework 



9 

 

4.1. Zone Segmentation 

 
After rectifying the skew and slant defects, the words are segmented into 3 zones: upper, middle and 

lower zones. For this purpose, the Matra in a word is first detected. Due to complex writing, exact 

Matra detection is not easy always. Hence we detect possible regions of Matra. These are explained as 

follows. 

 
4.1.1. Matra Row Detection:In literature of printed word recognition [10], Matra is usually 

determined by projection analysis in horizontal direction and considering the row with highest peak. 

But, due to the free flow nature of handwriting the Matra is rarely a perfect straight line. It is often 

curvy and broken. To determine the estimated location of Matra, we considered three different row 

information for locating the approximated row in the word image. Next, the best one among these three 

is chosen. First row, denoted as R1, is the highest peak determined by projection analysis of the word in 

horizontal direction. Second row, R2, is the row calculated from depth-points of water reservoirs where 

the sum of the squares of the distance between this row and each of the depth-points is minimum.  

The third row, R3 is computed as follows. Since, the upper zone of Devanagari/Bangla script contain 

fewer components than that in the middle zone, the portions below the Matra will be more dense than 

that of above the Matra. Hence, there will be a sharp decline in projection peak in upper half of the 

word while moving from below the Matra to above the Matra. We mark the row where a sharp decline 

in projection is observed as the third estimated location (R3) of Matra. Finally, the Matra row has been 

detected by following rules. These rows are shown in Fig. 8. 

 

 

 

 

 
Where, Th = H/10, is the threshold and H is the height of the word image; H is calculated by taking 

mode of height list taken from top and bottom most pixels of each column of the word image. We have 

noticed that, the location of Matra row has been efficiently detected with this rule in most of the word 

images. 

 

 
(a) 

Approximate headline row= 
R1,  if  | R1- R2| ≤Thor | R1- R3| ≤Th 

R2,  if  | R2- R3| ≤ Th and| R1- R2| >Th and | R1- R3| >Th     ...(1) 

R3,  otherwise 
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(b) 

 
(c) 

Fig.8: An example of Bangla word and corresponding rows for Matra detection. (a) Row R1 is marked along with the 
projection analysis of the word in horizontal direction, (b) Bottom water reservoirs (shaded in gray) are shown. Depth 
points are denoted in green peaks. Row R2, obtained by regression analysis of these peaks is marked in red dotted line. (c) 
Row R3 is marked by black line. 

 
4.1.2. Upper Zone Segmentation: After estimating the Matra row, we create a window of Matra 

region (WM) of height 4xSw keeping the Matra in middle, where Sw is the stroke width (discussed in 

Section 3). It is noted that the curvilinear Matra resides in WM in more than 98% of the words from 

experiment dataset. Next, we extract the skeleton of the word image and find the high curvature points, 

junction points, and end points of the skeleton image (See Fig. 9). These points are marked as „P‟. 

Now, we find the lines between consecutive „P‟s in horizontal direction within WM. If any line-segment 

emerging from point „P‟ and crosses WM, we consider it as a character-portion and hence discard it. 

Only those line-segments between „P‟s which are passed within WM are considered. If more than one 

pixel is found in a single column we consider the upper most pixel. In some words Matra may be 

broken and discontinuous. There, we join the two nearest Matra pixels using standard Bresenham 

algorithm. Next the modifiers in the upper zone are marked by checking the upper portions of Matra. 

 
Fig.9: Examples of Matra and Matra region detection. (a) Red line is the Matra row. Yellow lines specify the Matra region. 
Red squares represent high curvature points, corners and junction points within this frame. Blue line denotes the detected 
Matra. Green line joins the nearest Matra pixels in case of broken Matra. (For better visibility please see the soft copy of the 
PDF version of the paper) 

 
4.1.3. Lower Zone Segmentation: In our earlier approach [19], to detect the modifiers in lower zone, 

we marked the baseline which separated the middle zone from lower zone by observing a sharp decline 

in the busy zone in lower half of the image. This approach may fail sometimes in situation, when the 

baseline that separates the middle zone from the lower zone is difficult to locate. If the letters of the 
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word are irregular in size, or there exist many modifiers in lower zones, then we may not find any sharp 

decline in projection peak between the middle zone and lower zone of the image. To have an idea we 

show an example in Fig. 10 where due to complex writing style, the lower zone detection becomes 

difficult using projection analysis. 

 
Fig.10: Examples of cases where baseline detection may fail to segment the lower zone 

 
To overcome this problem we include a shape matching based algorithm for modifier extraction in this 

paper. To segment the lower zone modifiers, we search for modifiers in lower half of the image by 

shape matching. To do so, we find the touching location of modifier by skeleton analysis and separate 

them from middle zone. If the residue shape components is matched with any of the lower zone 

characters with high matching confidence, that part is separated from middle zone. The flowchart of 

lower zone modifier separation is described in Fig.11. The segmentation is discussed below in details. 

 

 
Fig.11: Modifier segmentation from lower portion of the image 

 

Let M1 be the word image. The skeleton image of M1 is first obtained and the junction and end points in 

skeleton image are detected. Let L1 be the lower half of the image M1. Using connected component 

(CC) analysis in L1, the components which are not connected to M1 are detected as modifiers. 8-

connection connectivity was used in CC analysis. Some of the lower modifiers can be touching to M1. 

To separate these modifiers, the skeleton of the components are traced from lower end points. The 

intuition behind tracing is that usually, all lower modifiers have one end point in lower half of the 

word, and except the modifier  which does not have junction point. In case of , the junction point is 

always a part of a loop. If loop is found, we continue the tracing to detect the next junction point for 

segmentation. If more than one endpoint is found in a column the lowermost of it is considered in 

segmentation analysis. After segmentation, given an image portion, we compute the recognition 

confidence using SVM classifier to obtain the corresponding class label. Details of feature extraction 

and recognition using SVM are given in Section 4.3.2. The probability score is calibrated using Platt 
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scaling from SVM score [23, 24]. Radial Basis Function (RBF) kernel was chosen in SVM for better 

performance.If a component is recognized by the SVM with a high confidence (more than 0.6), we  

consider it as a modifier. If the difference between the top two recognition scores of a component is 

high, it is also considered as a modifier. In Fig. 12, we show an example of lower zone separation from 

a Bangla word image. 

 
                 (a)                                            (b)                                     (c) 
Fig.12: (a) M1 with horizontal line separating the lower half from upper half. (b) Skeleton of L1 with end points marked in 
green and junction points marked in red. (c) Lower zone separated out from word. 
 

4.2. Feature Extraction 
 

The middle zone is the primary portion in Devanagari and Bangla word region where characters are 

often touching with each other. We apply Hidden Markov Model (HMM) based stochastic sequential 

classifier for recognizing the touching components in this zone.  

 

For HMM-based middle zone recognition, we have developed an efficient feature extraction technique 

PHOG using multi-resolution HOG features [25]. To measure its effectiveness we have implemented 4 

different state-of-the-art approaches and compared their performances. In our previous work[19] we 

used the LGH (Local Gradient Histogram) feature for feature extraction. Here, we study other features, 

mainly, profile feature, GABOR feature and G-PHOG feature (combination of Gabor and PHOG) for 

middle zone recognition. These features are briefly described below. 

 

4.2.1. PHOG Feature:  

PHOG[26] is the spatial shape descriptor which gives the feature of the image by spatial layout and 

local shape, comprising of gradient orientation at each pyramid resolution level. To extract the feature 

from each sliding window, we have divided it into cells at several pyramid level. The grid has 

4
N
individual cells at N resolution level (i.e. N=0, 1,2..).Histogram of gradient orientation of each pixel 

is calculated from these individual cells and is quantized into L bins. Each bin indicates a particular 

octant in the angular radian space. 

The concatenation of all feature vectors at each pyramid resolution level provides the final PHOG 

descriptor. L-vector at level zero represents the L-bins of the histogram at that level. At any individual 

level, it hasLx4
N
dimensional feature vector where N is the pyramid resolution level (i.e. N=0, 1, 2….). 

So, the final PHOG descriptor consists of   ∑        
   dimensional feature vector, where K is the 

limiting pyramid level. In our implementation, we have limited the level (N) to2 and we considered 8 

bins (360º/45º) of angular information. So we obtained (1 8) + (4 8) + (16 8) = (8+32+128) = 168 

dimensional feature vector for individual sliding window position (See Fig.13). 

 
4.2.2. LGH Feature: 
LGH feature [27], proposed by Rodriguez and Perronin, was similar to HOG feature [25] for object 

recognition. A sliding window of fixed width is being shifted from left to right of the word image with 

an overlapping between two consecutive frames. Next, feature is computed from each sliding window 

by dividing into 4x4 cells. From each cell, Histogram of Gradient(with 8 bins) is computed and the 

final feature vector is the concatenation of 16 histograms which gives a 128 dimensional feature vector 
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for each sliding window position. The image is smoothed by Gaussian filter before feature extraction 

for better gradient information. 
 
4.2.3. GABOR Feature: 

The GABOR features has been applied successfully in character and word recognition [28].  Here for 

our work Gabor filtering in four orientations (0, 45, 90 and 135) is applied and then we used the 

magnitude as the response for feature extraction. After filtering, the image frame is divided equally into 

12 rows. Next, we concatenate the features in each grid to have 48dimensional Gabor features. 

 

4.2.4. G-PHOG Feature: 

We have also made an experiment with a combination of Gabor and PHOG features called G-PHOG 

feature. The idea of G-PHOG is motivated from the work of [29] where Gabor feature has been 

combined to improve the result. From the experiment using G-PHOG feature, it is noted that the 

efficiency of Gabor feature can be improved by combining it with PHOG descriptor. 

 

 

 

4.2.5. Marti-Bunke Feature: 

The profile feature proposed by [30]used extensively for Latin script recognition, consists of nine 

features computed from foreground pixels in each image column. Three global features are used to 

capture the fraction of foreground pixels, the centre of gravity and the second order moment. 

Remaining six local features comprise of the position of the upper and lower profile, the number of 

foreground to background pixel transitions, the fraction of foreground pixels between the upper and 

lower profiles and the gradient of the upper and lower profile with respect to the previous column, 

which provides dynamic information. 
 

 
Single sliding window position shown with red rectangle 

 

(a) 

 

(b) 
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(c) 

Fig.13: PHOG feature extraction from a Bangla word image where feature vector at each resolution level is concatenated to 
give the final PHOG descriptor. Gaussian smoothing applied and feature vector at (a) 0thpyramid resolution level (b) 1st 
pyramid resolution level and (c) 2nd pyramid resolution level 

 

4.3. Recognition 

 
4.3.1. Middle Zone Recognition using Hidden Markov Model 

 

We extracted each of the above feature descriptors using sliding window and apply HMM for word 

recognition. The feature vector sequence is processed using left-to-right continuous density HMMs 

[30]. One of the important features of HMM is the capability to model sequential dependencies. An 

HMM can be defined by initial state probabilities π , state transition matrix A =[aij], i, j=1,2,…,N, 

where aij denotes  the transition probability from state i to state j and  output probability bj(OK) modeled  

with continuous output probability density function . The density function is written as bj(x), where x 

represents k dimensional feature vector. A separate Gaussian mixture model (GMM) is defined for each 

state of model. Formally, the output probability density of state j is defined as 

  ( )  ∑   

  

   

 (         )         ( ) 

where,   is the number of Gaussians assigned to j. and  (     )denotes a Gaussian with mean   and 

covariance matrix Σ  and     is the weight coefficient of the Gaussian component k of state j. For a 

model λ, if O is an observation sequence O = (  ,  ,..,  ) which is assumed to have been generated by 

a state sequence Q= (Q1, Q2,.,QT), of length T, we calculate the observations probability or likelihood 

as follows: 

 (   |  )   ∑      (  )∏         
 

   (  )            ( )  

 

 

Where   is initial probability of state 1.In the training phase, the transcriptions of the middle zone of 

the word images together with the feature vector sequences are used in order to train the character 

models. The recognition is performed using the Viterbi algorithm. For the HMM implementation, we 

used the HTK toolkit [31].The parameters like, numbers of Gaussian Mixture and state are fixed 

according to validation data. 

 

4.3.2Support Vector Machine (SVM) and Modifier Recognition 

 

The isolated components which were included in upper and lower zones are segmented using 

connected component (CC) analysis and next they are recognized and labelled as text characters. If the 

components are broken, an algorithm due to Roy et al. [32] is applied to join the broken contours in the 

image. Upper zone modifiers like  ,  ,  ,  ,  (for Bangla) and , , , , ,  (for 
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Devanagari) and Lower zone modifiers like  ,  , ,  ,  ,  (for Bangla) and , ,  (for 

Devanagari) are separately considered for classification so that the chances of error can be minimized. 

After resizing the images to 150x150, PHOG feature of vector length 168 is extracted from upper and 

lower zone modifiers. PHOG feature is considered as it provided better result in the experiment. Next, 

Support Vector Machine (SVM) classifier [33] has been used to classify these components.  

     SVM classifier has been chosen here as it has successfully been applied in a wide variety of 

classification problems[33]. Given a training database of M data: {xm| m=1,..,M}, the linear SVM 

classifier is defined as:  

bxxf
j

jj )(  

Where, xj is the set of support vectors and the parameters j and b have been determined by solving a 

quadratic problem. A linear kernel can be used to classify data which have fewer variations. But 

changing the kernel function to Radial Basis Function (RBF)was a better choice in our experiment 

study to classify upper and lower zone modifiers for recognition.LIBSVM toolbox [23] was used for 

SVM based learning. We used grid search technique to optimize the gamma and multiplier parameter 

in the library. In grid-search we started with a coarse value of parameters, and then a finer grid around 

the best parameter values was used.The SVM prediction result is used afterwards to merge with middle 

zone recognition results to form the entire word. 
 

 

4.3.3. Combination of Zone-wise Recognition Results 

 

In this section, the details of the modifier alignment and combination with the middle zone results are 

discussed. For estimating the boundaries of the characters in the middle zone of a word, Viterbi Forced 

Alignment (FA) has been used in the middle-zone of the word. With the embedded training of FA, the 

optimal boundaries of the characters of the middle-zone are found.  After obtaining the character 

boundaries in the middle zone, the respective boundaries are extended in the upper and lower zones to 

associate characters present in upper and lower zones with the middle zones characters. This is one 

hypothesis for characters segmentation and combination of a given word. Similarly, we generate N 

such hypothesis using N-best Viterbi list obtained from middle zone of the word. 

 

The score to generate a hypothesis is calculated based on the recognition results of middle zone. For a 

given word image (X), its score is calculated based on a lexicon (W) of the middle zone characters and 

it is theposterior P(W|X). Using logarithm in Bayes‟ rule we get 

 

    ( |  )      ( | )      ( )      ( ) 
 

From these scores N-best hypothesis are chosen.  Now among these N-best choices, the best hypothesis 

is chosen combining upper and lower zone information discussed as follow. 

 

After computing the zone-wise recognition results (upper and lower zone modifiers are recognized by 

SVM and middle zone characters by HMM of a word (X) and recognized character labels are obtained) 

the labels of upper and lower zones are associated with labels of middle zone. The association of 

character labels can be considered as a path-search problem to find the best matching word where each 

character label will be used only once. In our framework, the association is performed as follows. Let, 
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the recognition labels of middle zone characters be CM_1, CM_2 ... CM_N where N is the number of 

characters obtained in middle zone. Also, let the recognition labels of upper zone characters and lower 

zone characters be CU_1, CU_2,…,CU_N and CL_1, CL_2,...,CL_N respectively (please note that in most of 

the cases, number of upper and lower zone characters will be less than middle zone characters). Let 

these zone-wise character results are obtained and stored in 3 arrays CU[], CL[], and CM[] respectively 

(See Fig.14(b)). A middle zone character (CM_i) generally be associated to its corresponding upper 

(CU_i) and lower zone (CL_i) modifies. After association, ideally the whole word will be WT= C1, C2... 

CN where Ci= F_i(CM_i, CU_i, CL_i),i = 1, 2, 3...N and F_i is an association function of middle zone 

character (CM_i) with CU_i and CL_i. But, due to complex handwriting styles, some upper/lower zone 

modifiers may not appear exactly above and below of their middle zone character (see Fig. 14(a)). To 

handle such situation, a more flexible association rule is proposed here. In this modified association 

rule, a middle zone character (CM_i) is associated not only its exactly upper (CU_i) and lower (CL_i) zone 

modifiers but also CM_i associates with one modifier (CU_i-1), (CU_i) and (CU_i+1) from upper zone and 

one modifier (CL_i-1), (CL_i) and (CL_i+1) from lower zone. Thus our modified association rule of middle 

zone character (CM_i) becomes F_i(CM_i,CU_i,CU_i+1,CU_i-1,CL_i,CL_i+1,CL_i-1). Similarly for each middle 

zone character we find associated upper and lower zone characters and hence associated words are 

obtained. For each word we may have several associated wordsWT
1
, WT

2
,…,WT

S
, where s is total 

number of words formed. Each associated word (WT
j
) is matched with the lexicon (L) and best matched 

associated word is the combined zone-wise result of the word (X). The similarity score in lexicon 

matching is obtained using Levenshtein distance [34]. By Levenshtein distance matching, we find 

errors (characters that are not same) between two sequence of characters. The errors are considered as 

the difference from substitution, insertions, and deletions operation. This string matching algorithm is 

solved using dynamic programming (DP). Thus, we obtain a distance score for each associated word 

along with its word selected from lexicon. The scores are next sorted and the lexicon word with 

minimum score is considered as best result. In Fig.14(b), we illustrate this association process to get 

combined result. Algorithm 1 details the steps of the combination of zone wise results to find the best 

matching result. 

 
(a) 
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(b) 

Fig.14: (a) Upper (Green color) and lower (blue color) modifiers are marked in a Bangla word image. Middle zone 
characters are marked within red box. Note that, these upper and lower modifiers cover more than one character in middle 
zone. (b) Example of character segmentation in middle zone result applied to upper and lower zones for modifier 
separation purpose. After obtaining zone-wise character results CM[], CL[], and CU[], characters in 3 zones are associated to 
form a word. Arrow in green colour denotes the possible association of a middle zone character (2nd character in middle 
zone) with upper and lower zone characters. Next, the associated word is matched with lexicon list to find the best 
matching result. 

  



18 

 

Algorithm 1.Combination of Zone wise results to form a full word 

Require: Recognition of zone wise results. Middle zone results (CM_1, CM_2 ... CM_N) using HMM and 

upper (CU_1, CU_2 ...  CU_N) and lower (CL_1, CL_2 ...CL_N) zone results using SVM. 

Ensure: Full word recognition result 

 

Step 1: Estimate boundaries of middle zone characters (CM_i) using Viterbi Forced Alignment. 

 

Step 2: Extension of the corresponding character boundary of middle zone in upper and lower zone. 

Step 3: Associate each middle zone character with upper and lower zone character to form a word WT
j
. 

The association rule is that, a middle zone character CM_i can associate with any character in upper 

zone from(CU_i,CU_i+1,CU_i-1) and any character in lower zone from (CL_i,CL_i+1,CL_i-1) respectively. 

Note that, each character will be used only once in this association 

 

Step 4: All associated words (WT
j
) are matched with lexicon (L) using Levenshtein distance algorithm 

and a similarity score is obtained corresponding to each wordWT
j
. 

 

Step 5: The lexicon string with minimum distance is considered as the best matching and it is taken as 

the final combined recognition result. 

 

 

Due to complex handwriting variation in Indic script, the Viterbi forced alignment algorithm may not 

always give proper character segmentation in middle zone. To improve the middle zone character 

segmentation, "Water reservoir" [21] is used. To do so, first, the character segmentation points obtained 

by Viterbi algorithm are noted. Next, the bottom reservoirs (as explained in Section 3.1) are computed 

in that word image. The reservoirs having low height are discarded and the deepest points of the rest of 

the reservoirs are found. The character segmentation using Viterbi is next shifted towards the nearest 

water reservoir deepest point. For illustration, we show in Fig. 15 the improvement of character 

segmentation using water reservoir concept. Note that the segmentation lines in blue color in Fig.15(b) 

were not correct using Viterbi algorithm. After using water reservoir, these segmentation errors are 

rectified (shown in Fig.15(d)). 
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Fig. 15.Improvement of character segmentation using Water reservoir approach. (a) Middle zone word image (b) Viterbi 
algorithm based segmentation lines are shown. Here, correct segmentation line is indicated by red and improper 
segmentation is indicated by blue line (c) Deepest points of the bottom water reservoir are indicated by green triangle and 
segmentation lines through these points are marked. (d) Modified character segmentation lines are marked. The incorrect 
lines from Viterbi algorithm are moved to their corresponding nearest deepest points obtained in (b). 

 

5. Experimental Results and its Analysis 

 
For experiment of the handwritten word recognition scheme we collected two sets of data from Bangla 

and Devanagari scripts. For Bangla scripts we collected a total of 17,091 handwritten word samples. 

These words were considered from 60 handwritten document images from individual of different 

professions. Among these word images 11,253images are used for training, and 1,982 word images as 

validation data and rest 3,856 samples are for testing. A list of 1,547 Bangla words is considered in the 

lexicon. For Devanagari script, we have collected a total of 16,128 handwritten word images, out of 

which 10,667word images are used for training, 1,872 word images for validation and rest 3,589 

images are used for testing. Details of the data are shown in Table I. Datasets of both Bangla and 

Devanagari scripts are made available online for further research [36]. We have considered 1,957 

Devanagari words in the lexicon. The distribution of word according to character length is shown in 

Fig.16. It was noted that words having length of 4 characters were largest in both Bangla and 

Devanagari dataset.  
 

Table I: Description of data details with number of word images for experiment evaluation 

 Training Data Validation Data Testing Data Total 

Bangla 11,253 1,982 3,856 17,091 

Devanagari 10,667 1,872 3,589 16,128 
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Fig.16: Percentage of words according to their length 

 

5.1. Middle zone recognition 

After applying the pre-processing in each word images, horizontal zone segmentation was performed to 

segment the word into 3 different zones. The middle zone is next processed using HMM-based 

recognition. Due to zone segmentation, the size of lexicon in middle zone recognition is reduced. We 

obtained 1,518 and 1,894 words in Bangla and Devanagari, respectively. We considered continuous 

density HMMs with diagonal covariance matrices of GMMs in each state. Five different features are 

extracted from the training samples. A number of Gaussian mixtures and state numbers were tested on 

validation data in both Bangla and Devanagari dataset. We noted that with zone segmentation the 

number of character-component class in HMM for Bangla (Devanagari) is reduced from 124 to 42 (116 

to 40) in our dataset. 

 

The stacked column charts in Fig.17 and Fig.18 show the performance using different Gaussian 

Mixture numbers and top N choices in validation data. Token passing algorithm [31] was used in our 

algorithm for computing n-best choices. It is observed that the 32 Gaussian Mixture PHOG feature 

provides the best results achieving up to 92.98% (Bangla) and 94.59% (Devanagari) accuracy with top 

5 choices in validation data. PHOG outperformed the other features in middle zone recognition. The 

nearest LGH feature achieved 91.21% (Bangla) and 92.45% (Devanagari) accuracy. Both PHOG and 

LGH result were obtained with sliding window size of 40x6 and step-size of 3. The performance with 

varying state number is shown in Fig.19 and it is noted that with state number 8 the best result is 

obtained. Since the middle zone recognition results are combined with upper and lower zone modifiers 

to get the final word level, we have analyzed upto top 5 choice results for re-ranking purpose and 

considered all of them with combination of upper and lowers zone modifiers. Performance accuracies 

for different Gaussian and state numbers are shown in tabular format in Table II & Table III. 
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Fig.17: Performance accuracy plotted against Gaussian Mixtures with Top N choices as parameter for LGH, PHOG, GABOR, 
G-PHOG, Marti-Bunke (M-B) feature for Bangla handwriting recognition. 

 

 
Fig.18: Performance accuracy plotted against Gaussian Mixtures with Top N choices as parameter for LGH, PHOG, GABOR, 
G-PHOG, Marti-Bunke(M-B) feature for Devanagari handwriting recognition. 
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Fig.19: Comparison between different state numbers with LGH&PHOG features 

 
 
 
 

Table II: Performance accuracy in tabular format for different Gaussian numbers 

Feature LGH PHOG GABOR 

Bangla 

Gaussian# top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

16 74.26 81.29 83.42 85.58 86.76 76.31 82.99 84.26 86.48 87.15 46.22 54.45 59.68 62.24 67.26 

32 77.09 86.61 88.25 90.35 91.21 78.69 87.89 89.15 91.28 92.98 48.69 58.23 61.03 66.54 70.12 

64 75.11 83.31 86.05 87.22 89.14 77.01 84.69 87.26 88.21 90.08 47.23 56.78 62.14 66.25 69.31 

128 67.29 73.58 75.66 77.85 79.34 68.25 74.69 76.58 78.56 80.25 45.15 50.61 53.22 54.29 62.67 

256 54.67 57.91 61.84 67.01 71.14 55.96 58.15 62.25 68.45 72.69 43.25 48.32 51.31 53.19 60.39 

Devanagari 

Gaussian # top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

16 75.99 82.65 84.31 85.94 87.61 78.69 87.59 88.79 90.25 91.69 47.16 55.15 60.29 63.23 68.18 

32 78.77 87.49 89.17 92.15 92.45 82.69 90.25 92.45 92.78 94.59 49.15 59.18 62.18 67.26 71.36 

64 77.01 83.26 87.29 88.07 90.08 79.2 87.12 89.01 91.36 92.36 47.16 58.02 63.18 67.97 70.02 

128 68.33 74.18 76.54 78.5 79.99 72.26 77.23 79.31 81.3 83.12 46.19 51.39 54.17 55.18 63.18 

256 56.98 57.69 63.12 68.84 73.25 56.12 61.23 66.19 70.02 75.15 46.25 49.29 52.69 54.14 61.19 
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Feature G-PHOG M-B 

Bangla 

Gaussian# top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

16 55.39 72.49 78.34 81.29 83.67 41.19 49.39 55.24 57.59 61.31 

32 65.69 76.23 81.01 85.25 89.22 44.62 52.87 59.36 62.37 65.36 

64 63.99 76.21 81.17 85.9 88.77 43.28 49.27 55.81 57.07 60.91 

128 56.26 61.78 67.21 70.58 73.66 41.14 48.54 54.87 56.36 60.87 

256 52.22 60.69 65.39 66.12 70.21 39.31 46.26 53.14 55.39 59.64 

Devanagari 

Gaussian # top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

16 56.89 73.15 79.26 82.69 84.12 45.25 50.42 56.39 58.01 61.94 

32 66.18 77.15 82.69 86.15 90.02 48.26 52.67 59.99 63.29 65.78 

64 64.18 77.15 82.69 86.15 89.15 45.01 50.29 56.36 59.21 60.99 

128 57.14 62.19 68.17 71.69 74.15 43.21 48.91 54.89 56.97 61.19 

256 52.99 61.05 66.18 67.17 71.09 41.36 48.05 54.17 55.3 60.15 

 

After adjusting the parameters of HMM using validation data, we tested the features in test data. 

Results in test dataset using different features are detailed in Table IV. The qualitative recognition 

results of middle zone using five features for both scripts are shown in Fig.20. Note that, few word 

images are not recognized by some features. Some examples of middle zone recognition results with 

PHOG feature taking top N choices are shown in Fig.21. These choices are next refined with upper and 

lower zone modifiers to obtain the correct results. The recognition accuracy using PHOG features 

according to word length is shown in Table V. It is noticed that when the number of characters in word 

increases the recognition accuracy improves. Fig. 22 shows the recognition performance of character 

and words in HMM-based middle zone recognition. 
Table III: Performance accuracy in tabular format for different state numbers. 

 Bangla Devanagari 

LGH 

State # top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

6 69.58 76.25 77.59 82.36 83.69 70.28 77.14 78.48 83.69 84.19 

7 74.36 81.59 83.29 87.28 88.36 75.18 81.48 84.26 88.47 89.65 

8 77.09 86.61 88.25 90.35 91.21 78.77 87.49 89.17 92.15 92.45 

9 75.34 82.14 84.57 87.99 89.69 76.18 83.69 84.88 88.92 89.69 

 Bangla Devanagari 

PHOG 

State # top 1 top 2 top 3 top 4 top 5 top 1 top 2 top 3 top 4 top 5 

6 70.29 77.69 79.58 83.91 84.29 71.36 78.39 80.19 84.39 86.36 

7 75.36 82.15 83.99 88.17 89.59 76.98 83.67 84.78 89.65 90.69 

8 78.69 87.89 89.15 91.28 92.98 82.69 90.25 92.45 92.78 94.59 

9 75.97 83.64 85.45 88.47 90.21 77.24 85.25 86.69 90.14 91.39 
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(a) 

 

 
(b) 

Fig.20: Few examples of middle zone recognition results using different features indicating correct (by tick) and incorrect 
(by cross) labels for (a) Bangla and (b) Devanagari scripts. 

 
(a) 
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(b) 

Fig.21. Recognition results of middle zone components of (a) Bangla and (b) Devanagari scripts considering Top N (=5) 
choices 

 
Table IV: Middle zone recognition result with different features. Top 1 and Top 5 choices are shown here. 

Script Feature Top-1 Top-5 

 

 

Bangla 

LGH 77.21 91.07 

PHOG 79.17 92.89 

G-PHOG 65.34 88.71 

GABOR 48.21 70.23 

Marti-Bunke 45.25 64.72 

 

 

Devanagari 

LGH 79.29 92.61 

PHOG 82.11 94.51 

G-PHOG 66.27 89.62 

GABOR 48.47 71.82 

Marti-Bunke 47.51 65.87 

 
Table V: Middle zone recognition result with word image of different length 

Script 
Accuracy with word length 

2 3 4 5 6 7 

Bangla 71.19 76.31 79.36 81.25 85.21 93.14 

Devanagari 74.65 78.19 84.21 86.78 89.79 95.45 

 

 
Fig.22: Recognition performance of word and character level in middle zoned word image 
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5.2. Upper and Lower Zone Recognition Results 

For modifier recognition, we have collected a total of 1,723 upper zone modifiers and 1,437 lower zone 

modifiers from the training dataset for Bangla and a total of 1,656 upper zone modifiers and 1,351 

lower zone modifiers for Devanagari script. To check the performance we have considered 500 

modifiers for testing in each of these zones. Details of the data and performance analysis are shown in 

Table VI. The qualitative results using SVM are shown in Fig.23. 

 
Table VI: SVM classification result of the upper & lower zone modifiers 

Script Modifiers 
Training 

data 

Testing 

data 

Accuracy (%) 

Top 1 Top 2 

Bangla 
Upper zone 1,223 500 87.66 97.23 

Lower zone 937 500 84.07 95.15 

Devanagari 
Upper zone 1,156 500 85.95 96.52 

Lower zone 851 500 91.94 98.14 

 
(a)                                                                (b) 

Fig.23: Some examples of modifier classification by SVM with indication of correct (by tick) & incorrect (by cross) one. 

 

5.3. Full Word Recognition Result Combining Zone-wise Results 

After getting zone-wise results from three zones, they are combined to form the full word. The 

combination is performed according to the mapping function F as discussed in Section 4.2.3. The 

mapping function F is used to join middle zone components with its counter-part from upper and lower 

zones using Ci=F(CM_i,CU_i,CU_i+1,CU_i-1,CL_i,CL_i+1,CL_i-1). Next, the lexicon of full word is searched 

using Levenshtein distance to provide the best result for the given component lists. Some examples of 

full word recognition results are shown in Fig.24. It is to be noted that these words have different skew 

and slant angles. Also, the upper and lower modifiers make the word recognition difficult. With our 

proposed system these words are recognized perfectly. The details of recognition performance at full 

word level are shown in Table VII. In Bangla we have achieved accuracy of 83.39% and 92.89% with 

top 1 and top 5 choices, respectively.84.24% and 94.51% accuracy with top 1 and top 5 choices has 

been achieved in Devanagari script. Table VIII details the improvement in each step using proposed 

approach of word recognition. 

 
(a) 

 
(b) 

Fig.24: Qualitative results of full word recognition (a) Bangla, (b) Devanagari 
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Table VII: Accuracy of full word recognition using PHOG feature in middle zone 

Script 
Recognition Accuracy 

Top 1 Top 2 Top 3 Top 4 Top 5 

Bangla 83.39 87.75 89.67 91.41 92.89 

Devanagari 84.24 89.14 91.47 92.18 94.51 

 
Table VIII: Comparative study of successive improvement of full word recognition accuracy with implementation of newly 
proposed method (Here ΔIUZ is improvement in upper zone segmentation using Water Reservoir principle, ΔILZ is 
improvement in lower zone segmentation using Shape matching algorithm, ΔIC is improvement by combination of zone 
results using Refined character alignment.) 
 

 

 

 

 

 

 

 

 

5.4. Zone Segmentation Analysis  

 

To understand the effectiveness of our zone segmentation strategies for complex writing styles, we 

have categorized the results of middle zone segmentation into three types, representing progressively 

errors in segmentation. InType-1, the zone segmentation is proper, Type-2 contains upto 10% errors, 

and finally in Type-3, when more than 10% of segmentation errors occur. Some images of different 

types are provided in Fig.25. Table IX shows the zone separation performance according to 3 different 

Types. We noticed that, Type-2 includes small segmentation errors in middle zone (e.g., a part of 

headline is missed, a small portion of upper/lower modifier is not segmented properly, etc.). We noted 

that these small errors do not affect much in our character recognition using SVM and HMM. Most of 

these words affecting with Type-2 error are recognized properly. In Type-3, if the middle zone 

recognition is not correct in first choice, we obtained correct recognition result in one of the N-best 

hypotheses. Next, when the middle zone characters are associated with upper and lower zone 

modifiers, we obtained better results.  

 

It is to be noted that zone segmentation in Devanagari script was performed better using proposed 

approach. Presence of „Matra‟ is more horizontally straight in Devanagari script than Bangla script. 

Hence, zone segmentation of Devanagari script provided better accuracy than Bangla script. 

 

 
Fig.25: Some examples of zone segmentation using proposed approach from Type1, 2 and 3. 

 
Table IX: Zone segmentation performance using proposed approach. 

Script Type-1 Type-2 Type-3 

Bangla 64.84% 26.14% 9.02% 

Devanagari 82.92% 14.18% 2.90 % 

Method 
Bangla Devanagari 

Top -1 Top -5 Top-1 Top-5 

Zone Segmentation Approach [35] 80.21 90.87 81.31 91.94 

Zone Segmentation Approach + ΔIUZ 81.77  91.25  82.64 93.11 

Zone Segmentation Approach + ΔIUZ +  ΔILZ  82.89 92.34  83.78 94.05 

Zone Segmentation Approach + ΔIUZ +  ΔILZ+  ΔIC 83.39 92.82 84.24 94.51 
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Most of the segmentation errors in our approach are due to following. (a) The Matra detection 

approach may sometimes fail when R1 and R2 satisfy the Matra detection criteria but none of them 

provide the correct guess of the approximate headline row. This happens only when Matra is 

completely omitted while writing and the Matra rows are detected wrong (see Fig.26(a)).(b) The 

segmentation oflower zone modifiers is not perfect always. The lower zone modifier such as  are 

sometimes mistakenly identified in the lower part of letter (see Fig.26(b)). (c) Some of the word images 

are very difficult to understand even manually. Due to cursive writings a part of the character is 

overlapped with other characters and hence our system could not recognize them (see Fig.26(c)). 

 
(a) 

 
(b) 

 
(c) 

Fig.26:(a) Red line depicts the R1 shown alongside with horizontal projection profile of the word.Green line denotes R2that 

is found using water resevoir concept.(b) Lower part of a letter is mistakenly identified as  modifier. (c) Error in 
recognition due to too much bad handwriting. 
 

5.5. Comparison of results  

 

We have compared our result with the traditional full word recognition without using any zone 

segmentation.  Fig. 27 shows the performance comparison when we applied without-zone segmentation 

based approach in our dataset. Sliding window features extracted using PHOG has been applied into 

HMM for recognition. The parameters are tuned to obtain the best results from the dataset. We 

obtained maximum43.21% (Bangla) and 42.65% (Devanagari) accuracy without zone segmentation. 

Whereas with our zone segmentation-based system we obtained 83.39% and 84.24% accuracy in 

Bangla and Devanagari, respectively. Thus, the effectiveness of our proposed zone segmentation-based 

approach can easily be justified. To compare with other systems, some results from existing systems 

are mentioned here. Though these results are not directly comparable as they are tested in different 

datasets we report some of them to have an idea. Shaw et al.[18] used combination of features for 

Devanagari word recognition using SVM based holistic approach. 81.14% and 84.02% accuracies were 

obtained with 100 and 50 word class problems respectively. Pal et al.[6] used Modified Quadratic 

Discriminant Function (MQDF) classifier based dynamic programming for Indic city name recognition. 

They obtained 94.08% and 90.16% accuracies in Bangla and Devanagari scripts with 84 and 117 words 

respectively. 

 

Fig.28 compares the recognition results with our earlier approach [19] where zone segmentation 

approach used was not robust. In this present system, using „Shape Matching' algorithm the 
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segmentation of lower zone has been improved. Some qualitative results are shown in Fig.29. In Fig 

29(b), we show zone segmentation results using method [19] which includes some artefacts in middle 

zone. Whereas, with proposed method, the middle zone segmentation is improved (See Fig.29(c). 
 

 
Fig.27: Comparison of full word recognition result using zone-segmentation and with-out Zone-Segmentation 

 

 
Fig.28:  Comparison of middle zone recognition result(Bangla) for two methods implemented for lower zone segmentation. 
Method 1 is due to the work of [19] and method 2 is the proposed system in this paper. 

 

 
Fig.29: a. Example of a word image, b. Zone segmentation using previous method [21] shows some artefacts in Middle 
zone. c. Zone segmentation using proposed method corrects such error and improved the recognition.  
 

5.6. Influence of Lexicon-Size in Recognition 

 

Finally, an evaluation of the word recognition system was carried out on different lexicon sizes such as 

1K, 2K, and 5K. The words in lexicon are collected from different sources like newspaper, online web-

pages, etc. Table X details the recognition results of full words in both scripts. The numbers of unique 

words in our dataset are 1547 and 1957 for Bangla and Devanagari. Please note that, with increasing 

the lexicon size, the recognition performance gets reduced. With 5k lexicon size we achieved 70.47% 

and 71.30% accuracy in Bangla and Devanagari, respectively.Some examples of sentence recognition 

in Bangla and Devanagari scripts are shown in Fig.30. It is to be noted that the proposed system were 

able to recognize most of the words in each sentences. 
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Table X: Full word recognition results with different lexicon size (1K, 2K, 5K) 

Script 
1K 2K 5K 

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 

Bangla 85.49 94.21 83.19 92.45 70.47 75.15 

Devanagari 86.14 94.95 84.04 94.47 71.30 77.19 

 

 

 
(a) 

 
(b) 

Fig.30: Full sentence recognition result (a) Bangla (b) Devanagari (wrong recognition is indicated by red mark) 

 

5.7. Experiment with Noisy Images 

 
We have tested our approach with the words added with synthetic noises. The words are degraded with 

Gaussian noise of different noise levels (10%, 20% and 30%). For recognition of noisy words, our 

approach is as follows. In the Binarized word image we apply a Gaussian smoothing technique to 

remove some of the noises. Next, an algorithm due to Roy et al. [32] is applied to join the broken 

contours in the image. If there is a small broken part in the component this algorithm can join the 

broken part and our proposed method work well. To get an idea of such word recognition results, some 

word images and corresponding results are shown in Fig.31. Here, the word images are added with 

20% Gaussian noise. Quantitative results with noisy images obtained by10%,20%,30% Gaussian noise 

are shown in Fig.32.The performance dropped by approximately 9% for 20% noise in both datasets. 
 

 
Fig.31:Middle zone of word images corresponding results are shown. The images were added with Gaussian noises. 
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Fig.32:  Comparison of full word recognition result for normal and noisy images. 

 

6. Conclusion 
 

In this paper, we have proposed a novel approach of Indic handwritten word recognition. A complete 

architecture is provided to use HMM-based segmentation free technique for efficient recognition. The 

proposed system segments a word into 3 zones and zone-wise recognize is made. As the proposed 

approach segments the zones of words, the training data entailed for character modelling is very less. 

Combining PHOG feature with HMM followed by segmentation helps to recognize the words in zone-

wise. Since, the modifiers in upper and lower zones are distinct; SVM classifier is used for the 

identification of the modifiers of these two zones.  Middle zone is recognized by HMM. Finally, zone-

wise results are combined together to obtain the final word recognition rate.  Different experiments are 

conducted to evaluate the efficiency and effectiveness of the proposed method. Our experiments have 

shown that zone based segmentation does have stronger recognition capability. So proper “zone 

segmentation” plays an important role to reduce the number of possible combination in character set. 

To conclude, we observe that zone-wise recognition is very important in Bangla/Devanagari scripts and 

such zone-wise idea could offer new insights into several other similar type scripts like Assamese, 

Gurumukhi etc. 
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