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Robust Arbitrary View Gait Recognition based on Parametric 3D Human 
Body Reconstruction and Virtual Posture Synthesis 
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1School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China 
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Abstract: This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 1 

3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried 2 

item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and 3 

simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new 4 

subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 5 

3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are 6 

obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, 7 

virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D 8 

gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve 9 

high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a 10 

significant performance gain in terms of accuracy and robustness. 11 

Keywords: Gait recognition; Human identification; Silhouette; Sparse representation. 12 

1 Introduction 13 

Compared with other physiological biometrics, such as fingerprint, iris and face, gait is difficult to be masked 14 

in natural body movement, whereas the appearance of a perpetrator can be disguised by wearing a hat, a pair of 15 

glasses or even by undergoing a plastic surgery. The advantages of gait recognition, i.e., recognizing subjects 16 

without their cooperation, using low-resolution video and remotely, make it particularly attractive for verification 17 

or identification purpose. Thus gait recognition has great potential, and it could be useful in various applications, 18 

such as surveillance, access control, criminal investigation and other security operations. Several evaluation 19 

systems have been developed for practical applications, e.g., gait biometrics has been used to provide forensic 20 

evidence for identification, and for criminal investigations, e.g., to provide clues for verifications of perpetrators at 21 

crime scenes [1]. In the last decade, several gait databases larger than 100 people defined as large datasets in gait 22 

field have been published, e.g., USF HumanID [2], CASIA [3], SOTON [4] and WOSG [5], and studies have 23 

shown that personal identification could be achieved where the individual and environmental factors are controlled 24 

to some extent. In recent years, larger human gait databases, e.g., OU-ISIR LP with more than 4000 people [6], 25 

have been published to evaluate the upper bound accuracy of gait recognition. It is a challenge to explore a 26 

personal identification system by gait with large population. However, gait recognition can still play a 27 

significant role in identification system, e.g., multiple biometrics could be fused to develop a more reliable 28 

personal identification system where gait recognition is used to scale down the search range for criminals 29 

from large CCTV or surveillance videos. 30 

Gait recognition depends on the effectiveness of the extracted gait features, and the main challenges to 31 

successful recognition are covariates such as variation in view and loose clothing, speed in which the gait is 32 

performed, occlusions and carried items [7]. To address these challenges, this paper proposed an arbitrary view gait 33 

recognition system based on 3-dimensional (3D) human body reconstruction and virtual posture synthesis 34 

(AVGR-BRPS).  AVGR-BRPS uses a 3D statistical parametric model of human body shapes and poses. The 3D 35 
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body shape is derived from a base mesh shape obtained by morphing, and a skeleton is embedded into the target 36 

human subject’s reconstructed body model to form different postures. Body shape and poses are estimated from 37 

clothed human subjects using coarse, incomplete 3D data or 2-dimensional (2D) gait silhouettes. The gait poses 38 

with different carried items are synthesized to enable accurate identification of a subject in realistic scenarios. Since 39 

the human gait is 3D, our gait recognition method is more robust than 2D methods to variation in inclination of the 40 

ground plane, clothing and carried items by restoring the gait extracted from a video sequence into 3D space using 41 

statistical parametric model of human body shape and pose. 42 

The two main approaches to gait recognition are model-based and appearance-based. Our method is based on a 43 

3D gait model that is unlike a 2D skeleton model with numerous degrees of freedom [8], and the 3D voxel model 44 

[9] derived from multi-view silhouette images or point cloud scanning data. Our 3D model is created from 45 

view-invariant shape features (obtained by morphing) and pose features (described by biovision hierarchical data 46 

(BVH)).  The parametric 3D gait model is more accurate than image-based visual hull model and 3D scanning 47 

voxel model due to the shape and pose deformation learned from a database of preprocessed 3D range scans of 48 

different subjects with multiple poses. Due to the skeleton embedded in our 3D human body model, virtual 49 

postures can be synthesized to form an over-complete dictionary of 3D gait dataset.  50 

A gait energy image (GEI), extracted by averaging the silhouettes in a gait period [10], or related energy 51 

images are widely used in appearance-based approaches. The GEI reduces storage space and computation time, 52 

and can achieve high recognition rate when the gait cycle is complete. If the probe gait cycle is incomplete or it is 53 

difficult to compute the gait cycle accurately, the recognition rate decreases significantly. Since the trajectory in a 54 

gait cycle may not always be in a straight line, it is necessary to determine the view for each gait model, and adjust 55 

them to the same view in the straight line. However it is difficult to distinguish the different views in a cycle of 2D 56 

GEI or related energy images, and gait recognition rate decreases if the gaits being compared are not in the similar 57 

trajectory.  58 

In order to address these problems, we introduce self-occlusion optimized simultaneous sparse representation 59 

model based on compressed sensing as follows. Multi-pose 3D gallery gait models constructed from a gait cycle of 60 

multiview gait silhouettes together with virtual synthesized gait models are simultaneously used for the sparse 61 

representation of probe gait model. Subject identification is achieved by combining the hypotheses of all 3D gait 62 

models and the sparse pattern. By constructing an over-complete dictionary of 3D gait and simultaneous sparse 63 

representation model, the simultaneous sparse representation vectors are reconstructed for 3D probe gait models 64 

which has been self-occlusion optimized in a gait cycle. The reconstruction error is used for classification.  65 

The most notable advantages of AVGR-BRPS are: (1) by utilizing clothes-independent 3D human pose and 66 

shape estimation model learned from a database of parametric 3D shapes and simulated clothes, it reconstructs 67 

parametric 3D human body from 2D or 2.5D data to achieve robustness to variation in significant view changes, 68 

heavy or loose clothing variation, difference in carried items, and occlusions, e.g., missing body parts or 69 

segmentation noise; (2) by using carrying-item posture synthesized model, synthesized virtue carrying postures are 70 

used to extend the dictionary of 3D gait which makes AVGR-BRPS more robust and improves its recognition rate; 71 

(3) by constructing an over-complete dictionary of 3D gait database and using self-occlusion optimized 72 

simultaneous sparse representation model, it achieves view-invariant recognition that does not require a complete 73 

gait cycle data and the subject to walk in a similar trajectory. 74 
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The rest of this paper is organized as follows. Section 2 presents the related work. Section 3 presents 75 

AVGR-BRPS. Section 4 presents the experimental results and Section 5 concludes the paper. 76 

2 Related work 77 

Video sequences captured by multiple cameras have been used to create a 3D human skeleton model in [11] 78 

where static parameters and dynamic features are combined to describe gait. Although the model enables 79 

robustness to changes in viewpoints and clothing variation, the recognition method uses multiple cameras and the 80 

initial subject’s pose is extracted manually. The use of recursive Bayesian sampling and pose-viewpoint manifold 81 

for view invariant 3-D gait tracking with a high perspective effect is proposed in [12]. However, its invariant 82 

monocular 3-D human pose tracking must operate in man-made environments and assumes the subject moves on a 83 

known ground plane. The method in [8] uses an articulated human model constructed from 3D volume sequences 84 

to address a viewpoint-free framework. The method in [13] uses an image-based visual hull to construct a 3D gait 85 

model. The method in [14] uses a multi-view synthesizing method based on 2.5D point cloud registration to 86 

generate 3D gait model to achieve view-invariant gait recognition. The accuracy of the above-mentioned 3D 87 

models is limited due to the use of 2D images without depth information or point cloud data captured by 88 

low-resolution 3D scanner with missing data.  89 

Multi-view gait recognition based on view transformation model (VTM) learns projection relationships of 90 

multi-view gaits features by singular value decomposition (SVD). It realizes multi-view gait recognition by 91 

transforming all gait views onto the same view. The VTM method in [15] transforms a probe gait onto the virtue 92 

view that exists in the training database for multi-view gait recognition. The method in [16] uses sparse 93 

regression-based VTM, where regression is used to formulate and model correlated motions among gaits under 94 

different views. In [17] the VTM is constructed using multi-layer perceptron as a regression tool, and a selected 95 

region of interest (ROI) from source view(s) is used to estimate gait from target view. The method in [18] uses an 96 

arbitrary VTM that accurately matches a pair of gait traits from an arbitrary view. The gait recognition is realized 97 

by projecting the 3D gait volume sequences onto the same views of 2D gait silhouette sequences as the target 98 

views. Although VTM related multi-view gait recognition methods demonstrate significant advantage over other 99 

approaches, they require a larger number of training samples to construct a more generic VTM, and better 100 

performance is achieved by learning from more varieties of gait samples. The parameters of the VTM are sensitive 101 

to the training multi-view images. 102 

By extracting view-normalized or view-invariant gait features, several view-invariant gait recognition methods 103 

have been proposed. In [19], gait silhouette features that can represent gait dynamics and reflect the view variation 104 

are extracted, and deterministic learning theory is introduced to achieve view-invariant gait recognition. The 105 

method in [20] uses the 2D trajectories of both feet and head extracted from tracked silhouettes as gait features. It 106 

uses view normalization based on homography transformation to make the walking appears to have been observed 107 

from a fronto-parallel view. However, self-occlusion or significant changes in views significantly affect the 108 

extraction of trajectories, thus making the method less practical for realistic scenarios. The method in [21] uses 109 

view-invariant gait features derived from pose estimation of the joint positions of walking subjects. In [22] 110 

view-normalization is performed in the input gait silhouettes to normalize gaits from arbitrary views by using 111 

corresponding domain transformation obtained via invariant low-rank textures. In [23], the multi-view gait features 112 

are extracted by view-invariant discriminative projection and matched without knowing or estimating the viewing 113 

angles. However, by using linear projection, it is impossible to achieve the ideal performance when the viewing 114 
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angle changes significantly. The method in [24] uses a sparse local discriminant canonical correlation analysis 115 

(CCA) to model the correlation of gait features from cross views, and uses patch distribution feature to classify the 116 

view. Thus, it does not require the gait to be transformed to a virtue view. However, the gait features are less 117 

correlated when the gait views are significantly changed.  118 

Numerous gait recognition methods have been proposed to deal with multiple covariates (e.g., occlusion, 119 

clothing invariant, carrying conditions, speed and incomplete sequences). The method in [25] uses a dynamic 120 

frame difference energy image to reduce the influence of incomplete silhouette caused by occlusion or missing 121 

body parts. To address substantial clothing variation, the method in [26] divides the subject’s body into eight 122 

clothing related sections assigned with different weight for matching. It requires a large-scale gait dataset with 123 

clothing variations for gait training, making it impractical. The method in [27] successfully extracts wavelet based 124 

silhouettes of a subject without carried items or a subject with heavy clothing from infrared thermal images. The 125 

gait entropy image introduced in [28] is designed mainly for mitigating the effect of changes in covariate 126 

conditions that affect gait feature extraction rather than the gait itself. To address the situation where full gait cycle 127 

information is not always available, the method in [29] uses skeleton joint information and fractional gait energy 128 

image for frontal gait recognition. The method in [7] uses view-invariant multiscale gait recognition method 129 

(VI-MGR) to achieve robustness to variation in clothing and presence of a carried item. The method in [30] selects 130 

the most discriminative human body part based on group Lasso of motion to reduce the intra-class variation so as 131 

to improve the recognition performance. In [31], sparse coding multiview hypergraph learning re-ranking 132 

(SCMHLRR) method, integrated sparse coding and multi-view hypergraph learning are explored for recognizing a 133 

pedestrian under uncooperative setting, i.e., carrying factors, walking speed and noise. Most of these methods 134 

address different covariates with limited gait views, mainly using frontal view of the gallery and probe gait 135 

sequences, or the experiments only focus on one condition at a time. They hardly explore the covariate conditions 136 

simultaneously, i.e. factor of views, carrying items and clothes variation together. In fact, it is usually hard for a 2D 137 

training dataset to cover all conditions, especially different carrying and clothes variations that affect the overall 138 

body shape directly.  139 

AVGR-BRPS is proposed to address the above-mentioned gait recognition problems with multiple views and 140 

robustness for different clothing and various carrying conditions. An accurate and unified I-posture 3D parametric 141 

human body model is used to estimate 3D gait model from multi-view 2D gait silhouettes using clothes-independent 142 

3D human pose and shape estimation method. Since a gait period comprises several gait frames, it is time consuming 143 

to estimate the different posture 3D gait models from the initial standard I-posture. In order to overcome this problem, 144 

we also propose an optimized approach for 3D gait model reconstruction based on extended standard gait models in a 145 

gait period. The k-means clustering is used to determine the key standard gait postures. Using the 3D parametric gait 146 

model reconstruction method, different gait models are obtained and are used as galleries in the training process. To 147 

achieve high recognition rate, virtual gait models of postures with different carrying items conditions are synthesized 148 

to create an over-complete 3D gait dictionary, and a self-occlusion optimized simultaneous sparse representation 149 

model is introduced. 150 

3 Proposed method: AVGR-BPRS 151 

3.1 Overview 152 
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A general parametric 3D human model is normally created from 3D scans by combining multi-view body data of 153 

a subject with tight clothing walking past multiple scanners, where the scanners are typically expensive and limited 154 

for fast estimation of the body shape underneath the clothes. Also, the use of multiple sensors in training or 155 

recognition is often not practical. A 2.5D gait voxel model reconstructed by a range sensor like Kinect is used for gait 156 

recognition in [14] in order to overcome the high computational cost of 3D gait modelling. However, 2.5D gait model 157 

cannot address the problems of the lack of robustness to covariates such as heavy or loose clothing, differences in 158 

carried items, etc. In order to overcome these problems, we adopted a unified and clothing-independent parametric 159 

3D modelling method for 3D gait recognition. We estimate both the body shape and posture from motion sequences 160 

of a clothed subject. The overview of AVGR-BPRS is shown in Fig. 1. 161 
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 162 
Figure 1. Overview of AVGR-BPRS. 163 

We use the statistical model of body pose and shape like SCAPE which has been used to accurately identify a 164 

human subject with numerous challenging factors of realistic scenarios [32] to estimate 3D body pose and shape in a 165 

gait cycle using gait silhouettes. In our work, the model is re-trained on a dataset of dense full-body 3D scans, 166 

obtained from the software Makehuman which incorporates 1170 morphings for effective parametric modelling. The 167 

parametric body model in Makehuman is optimized for subdivision surfaces modelling with 15128 vertexes, which is 168 

suitable for gait modelling. We synthesized simulated clothes for all the training bodies in order to learn the clothes 169 

modelling used in the clothes-independent 3D human body reconstruction process. 170 

Following the estimation of the 3D gait model, static shape features such as gender, body height, weight, body fat 171 

scale, body fat percentage, percentage of muscle tissue etc., and dynamic motion features like initial pose of the 172 

skeleton and joints position are encoded separately. By storing these semantic variables, the 3D gait model can be 173 

expressed simply, and by using these estimated high-level semantic variables, body shape morphing can be applied 174 

and appropriate body reconstructed as necessary. The motion capture data format of BVH encodes the dynamic 175 

motion features, such as the position of the root and orientation of joints. The skeleton structure of BVH is shown in 176 

Fig. 2. Embedding the skeleton in the body model enables virtual poses to be synthesized to form an over-complete 177 

dictionary of 3D gait dataset. The self-occlusion optimized simultaneous sparse representation model based on 178 

compressed sensing enables arbitrary view gait recognition that does not require a complete gait cycle data in similar 179 

trajectory. 180 
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 181 
Figure 2. Skeleton structure of BVH. 182 

3.2 3D parametric statistical model of body pose and shape  183 

The automatic generation of realistic 3D human body according to several constraints is important in 3D body 184 

pose recognition, human tracking or 3D gait recognition. In gait applications, the arbitrary view gait recognition 185 

problem has become one of the major issues that must be overcome. The traditional multi-view gait recognition based 186 

on 2D gait silhouettes is not robust to varying practical environments. By lacking the unified and prior knowledge of 187 

human body, the recognition rate decreases dramatically when there is occlusion or missing data in a gait cycle. The 188 

carrying problem has also not been well addressed. Existing methods only focus on mitigating the effect of 189 

changes in covariate conditions that affect gait feature extraction rather than the gait itself. For an example, in order 190 

to improve the gait recognition rate for ball carrying in MoBo dataset only the lower part of the body is used. 3D 191 

gait recognition approaches have been explored to address this problem. However, the 3D gait model used is either 192 

visual hull appearance model or 3D scanning voxel model, which requires either multiple cameras or numerous 193 

multi-images. None of the models embed the human skeleton for motion feature capture or generation of virtual 194 

pose. In this paper we introduce a statistical model of human body pose and shape in our 3D gait model 195 

reconstruction process. The model learns a probability distribution from a 3D human body dataset with varying 196 

shapes and poses.  197 

In [33] a statistical shape model is learned by principal component analysis (PCA) and used to synthesize 198 

individual subjects using a template-based method. The pose of the morphing models is similar to the template. In 199 

[32] a data-driven method is proposed for building a human shape model that spans variation in both subject shape 200 

and pose that encodes the surface relative to an embedded skeleton. In [34] a rotation invariant encoding of 201 

parametric 3D human body is used to create a model with a given posture by training semantically meaningful 202 

regressors. 203 

Publicly available 3D human shape dataset is used in our parametric model of body pose and shape training. The 204 

database of k input scans with s as subject identifier and p as pose is denoted as ,s pS . All model ,s pS are 205 

parameterized by the parameter vector Y consisting of n points 1 ,...,
t t

t nP p p=  and l faces 1 ,...,  t t t
lT t t= . All models 206 

are in full point-to-point correspondence and each model mesh has the same set of points and faces. The 207 

parameterized models are then encoded by the rotation invariant model representation approach in [34] where the 208 

differences between a pair of scans can easily be extracted in training.  209 

First, a parameterized model with a standard posture is selected as a template. Each faces it  in the remaining 210 

pose models is encoded as a transformation i i iU R S= ⋅ , where iR are rotation matrices and iS is stretching 211 

deformation. The encoding is achieved by storing relative rotations between pairs of adjacent faces, i.e., [34] 212 
1

,i j i jR R R−= ⋅ ,                                      (1) 213 
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where i and j are adjacent faces. In the reconstruction process, the rotation of each faces iR is recovered from the 214 

relative rotations ,i jR by solving the sparse linear system 215 

, 0.i j j iR R R⋅ − =                                    (2) 216 

Using the rotation invariant model, body shape and pose are jointly encoded. A 3D parametric statistical model 217 

is then learned based on the ideas in [32] and [34]. The purpose of the training is to learn the pose and shape related 218 

to semantic values such as gender, body height, weight, body fat scale, percentage of muscle tissue or joint angle etc. 219 

Using a regression approach, our system morphs a new subject with some constant semantic constraints. 220 

Denote a set of encoded parametric model [ ]1 =  . . .  iA a a  and discretised semantic values function 221 

[ ]1   . . . T
il l l= . By solving 222 

[ , ]
argmin[1| ]

o s

o
A l
s
⎡ ⎤

−⎢ ⎥
⎣ ⎦

                                    (3) 223 

in the least-squares sense using a non-linear support vector regression, a gradient direction s  and a corresponding 224 

offset o  is obtained [34]. 225 

Using the learned parameters s and o , and setting discretised semantic values l as constant constraints, a new 226 

morphable model is created. The semantic values l  are then separated into two sets: static body shape parameters 227 

such as body height, body weight etc. denoted by 1[ ,..., ]kS β β= and motion posture parameters such as joint angles 228 

denoted by 1[ ,..., ]kψ γ γ= . 229 

3.3 3D parametric statistical models with clothes 230 

The scanned human bodies used for training in publicly available 3D datasets are wearing body-fitting clothes 231 

to reduce the influence of the clothes. However, in gait recognition or other surveillance applications, the subjects 232 

are wearing different clothes, e.g., even heavy or loose clothing. As a result the estimated body shape may be 233 

inaccurate. Current solutions to this problem are learning about likely body shapes using different methods, 234 

especially on the naked body [35, 36, 37]. Existing methods perform well on scans of subjects with body-fitting 235 

clothes, but are poor in estimating body shape and postures from motion sequences of 2D images of subjects with 236 

varying types of clothes. In order to overcome the problem, simulated clothes are synthesized on human body to 237 

predict realistic human body shapes and postures as illustrated in Fig. 3. Two sets of simulated clothes are 238 

introduced on the same body of Fig. 3(a): one set is body-fitting clothes (shirt in Fig. 3(c) and trouser in Fig. 3(e)); 239 

and one set is loose clothes that is 15% larger (shirt in Fig. 3(d) and trouser in Fig.3 (f)). The clothes are deformed 240 

from the same template clothes. They are shown separately to avoid the same body with loose clothes being 241 

perceived as a larger body with tight clothes. 242 

The simulated clothes are predicted for different body shapes parameters S  using our proposed clothes 243 

model. First, a template clothes TC is synthesized manually from our template body shape using the publicly 244 

available software Blender. The template is a parametric model similar to the human body consisting of m points 245 

and L faces 1 ,  ... ,  t t t
LCT ct ct= . Second, using the clothes model, we synthesized all the clothes iC  for each 246 

training human body shape using rotation and stretching deformation for each faces tCT . The deformed faces are 247 

encoded as a transformation i i iCU CR CS= ⋅  related to the corresponding template clothes faces. Third, the 248 

clothes model is then learned using the method similar to the 3D parametric statistical model by solving a 249 
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non-linear support vector regression problem in Eq. (3). In this situation the discretised semantic values are only 250 

the shape parameters and function [ ]1   . . . i
Tl l l S= = . As a result, if the body shape parameter S  is known, the 251 

corresponding clothes mesh model can be predicted and fitted to the body. The kth body with clothes is 252 

denoted by ( , , ( ))k k pY S C Sψ , where 0p = indicate body-fitting clothes and 1p = is loose clothes. 253 

 
 

  

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 3. 3D body template: (a) model; (b) mesh model; (c) with body-fitting clothes; (d) with loose clothes; (e) with body-fitting 254 
clothes; (f) with loose clothes; (g) fat body shape with body-fitting clothes; and (h) with clothes in walk posture. 255 

3.4 3D pose and shape estimation underneath clothes 256 

We use multi-view 2D or 2.5D gallery sequences for 3D pose and shape estimation based on 3D parametric 257 

model of pose and body shape with gait silhouette as constraint. 258 

1) Skeleton based posture and shape estimation  259 

     

(a) (b) (c) (d) (e) 

 
    

(f) (g) (h) (i) (g) 

Figure 4. 3D body template: (a) model skeleton; (b) & (g) model at 0° view; (c) & (h) model at 45° view; (d) & (i) model at 90° 260 
view; and (e) & (g) model silhouette at 90° view; and (f) model simulated clothes. 261 

A symmetric morphable template with standard I-posture in a gait cycle is shown in Fig. 4. A skeleton structure 262 

of BVH is fitted to the template. The standard 3D model is projected onto 2D space at θ  view, and denoted 263 
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by ( , , ( ))pB S C Sθ ψ , where S is body shape parameter, ψ  is joint angle of I-posture and ( )pC S  is clothes 264 

model parameter with S body shape and p type. 265 

      
(a) (b) (c) (d) (e) (f) 

Figure 5.  Multiview gait silhouettes at: (a) 0° view; (b) 36° view; (c) 72° view; (d) 90° view;  (e) 126° view; and (f) at 162° view. 266 

The silhouette contour at θ view is extracted as a set of markers in 2D or 2.5D galleries as shown in Fig.5. They 267 

are denoted by 268 

1( ) ,...,silhouette IZ Extract X z zθ θ θ θ= =                            (4) 269 

where X θ is 2D or 2.5D gallery at θ  view, and I  is the maximum discrete point number. The silhouettes are used 270 

to estimate the shape features, motion features ψ  and clothes type p  using template model by minimizing the 271 

silhouette cost function 272 

{ }
2

[ , , ] 1

argmin ( ( , , ( )) )
I

i
silhouette p i

S p i
Extract B S C S zθθ

ψ θ

ψ
∈Φ =

−∑∑  ,               (5) 273 

whereΦ is a multi-view set, and ( )i
silhouetteExtract ⋅  is the ith silhouette contour marker extracted from projected 274 

template ( , , ( ))pB S C Sθ ψ .   275 

By solving the optimization problem in Eq. (5) the 3D pose and shape are estimated, and the parametric 3D body 276 

without clothes ( , )Y S ψ is reconstructed using features S and ψ . Fig. 6 shows the raw gait images and their 277 

estimated model in 2D plane. 278 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 
Figure 6. Raw gait images and the estimated models with and without clothes in 2D plane: (a), (d) & (g) at 36°view; (b), (e) & (h) at 279 
90°view; (c), (f) & (i) at 126°view; and (j)-(l) the corresponding BVH skeletons. 280 

2) Encoding 3D gait features 281 
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The 3D gait features estimated in Step 1 include static shape features S and motion features ψ such as joint 282 

angles. Since a gait cycle comprises several gait models with different postures, we store all the motion features ψ  283 

in a gait cycle as BVH data. A BVH skeleton data has two parts, a header section that describes the hierarchy and 284 

initial pose of the skeleton, and a data section that contains the motion data. 285 

3) Optimized for 3D gait Pose and Shape Estimation 286 

Using multi-view silhouettes cost function, 3D shape and pose can be reconstructed. However, a problem is 287 

encountered if the pose is significantly different to the initial standard I-posture. In order to solve this problem, a group 288 

of standard 3D gait models with different postures in a gait cycle are constructed. In STS-DM [38], a gait period is 289 

divided into ten phases, and the silhouettes of the ten phases are manually extracted from stance phase to swing phase. 290 

Unlike STS-DM, AVGR-BPRS uses a clustering algorithm to confirm the phases. The 129 silhouettes of 5 subjects 291 

at θ = 90° view in CASIA B data set within a gait sequence are collected as observations. The discrete gait 292 

silhouette contours of the observations are first obtained using Eq. (4), where I is set to 128. The 129n =  293 

observations are denoted by{ }1 2, ,..., nx x x , where each observation is a 128-dimensional real vector. k-means 294 

clustering is used to partition n observations into k clusters in which each observation belongs to the cluster with 295 

the nearest silhouette mean. Setting k classes 21{ , ,...,  }kc c cc=  and ju as jth cluster mean, the problem reduces 296 

to minimizing the within-cluster sum of squares 297 

2

1
argmin .

j j

k

j j
c j x c

x u
= ∈

−∑ ∑                                   (6) 298 

Fig. 7 shows the k-means clustering results in 3D space. The different symbols denote the observations 299 

belonging to different clusters, and the filled circles represent the mean of points in jc . Since the observation data is a 300 

128-dimensional real vector, the multi-dimension data is reduced to 3D space by multidimensional scaling (MDS). 301 

Fig. 8 shows ten mean silhouettes after K-means clustering. 302 
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Figure 7. k-means clustering in 3D space by MDS. 304 

Following k-means clustering, ten silhouettes { }1 , ,...,n kx xX xθ θ θθ = with the minimal distance to their 305 

within-cluster mean are selected as the template objects. CASIA dataset B [3], a large multi-view gait database, is 306 

used for 3D template model construction. There are 124 subjects, and the gait data was captured from 11 views. Three 307 

variations, namely view angle, clothing and carrying condition are separately considered. The subjects at θ = 90° are 308 
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used to estimate the ten phases, since the lateral view of gait contains the most information of gait. The 309 

corresponding gait silhouettes in ten other views associated with the same phases to the template objects are 310 

extracted to construct the multi-view silhouettes set { }X X θ= , where θ ∈Φ  and Φ ={0°, 18°, 36°, 54°, 72°, 311 

90°, 108°, 126°, 144°, 162°, 180°}. The subjects and silhouettes of the corresponding phases in the other 312 

views are manually selected and extracted. The multi-view silhouettes set { }X X θ=  is then used to 313 

reconstruct the 3D parametric template gait models using Eq. (5). 314 
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Figure 8. Ten mean silhouettes after K-means clustering. 316 

 The 3D parametric template models in a gait period with k phase are denoted as ( , )k kY S ψ . ( , )k kB Sθ ψ  317 

are the 2D silhouettes that are projected from the 3D model kY at θ view. They are used for fast 3D gait pose and 318 

shape estimation using Eq. (5). To estimate the most similar k phase from the 3D parametric template models 319 

kY in a gait period of any given gait sequence, we apply silhouette comparison based on weighted 320 

Krawtchouk moments to obtain similarity scores [38], i.e., 321 
2

argmin k n
ROI ROI

n
Rf Tr− ,                                   (7) 322 

where the reference ROI, i.e., k
ROIRf , is the bottom segment of gait silhouette ( , )k kB Sθ ψ , the target ROI, 323 

i.e., ROITr , is set to the same silhouette segments of all frames of a subject’s gait period, and n denotes the 324 

frame number. The frame whose n
ROITr  results in the least squares with the corresponding k

ROIRf  is 325 

extracted as the kth phase and the process continues by comparing the next k
ROIRf  with the remaining n

ROITr  326 

until all ten phases are obtained. The 3D shape feature S and posture features kψ of k phases are then 327 

estimated using the method in Section 3.3 with the corresponding template gait model kY . Using the estimated 328 

parameters S and kψ , the 3D gait models in any gait sequence are reconstructed.  329 

3.5. Carrying-Item Posture Synthesized Model 330 

The 3D gait models are encoded using the shape features S based on morphing which is invariant to views and 331 

the motion features based posture parameters ψ . The identification of subjects is achieved by comparing S and ψ . 332 

Unlike the view-invariant and carrying unrelated shape features S , the posture associated gait motion features ψ  333 

are much sensitive to the carried items and carrying conditions that influence the body skeleton pose, e.g., ball 334 
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carrying makes the hand in a static state which leads to significant change in silhouettes compared to the training 335 

silhouettes without carried items. Existing methods especially the model-free GEI or silhouette-based approaches just 336 

mitigate the effect of changes in carrying conditions that affect gait feature extraction. These methods cannot 337 

estimate the silhouettes that are not in the training dataset, thus reducing the recognition. To address such a problem, 338 

the carrying item posture synthesized model is used to synthesize virtue carrying postures to extend the dictionary 339 

of 3D gaits. 340 

1) Different 3D Carrying BVH Data Extraction  341 

Multiple 3D BVH motion data is collected according to M different sets of carried items. Let ,
,
k n
mA θ  denote the 342 

nth subject silhouette contour vector extracted at θ  view from 2D gait silhouette with mth carried item that 343 

corresponds to the kth phase in a gait period. The 3D parametric gait models are then reconstructed using silhouette 344 

contour vector ,
,
k n
mA θ  using the method in Section 3.3. The BVH motion data of skeleton 1: ,k n

mBVH  based on posture 345 

parameters ,k n
mψ  is then extracted. The mean skeleton based BVH motion data with mth carried item is given by 346 

1: 1: ,

1

1 .
N

k k n
m m

n
BVH BVH

N =

= ∑                                     (8) 347 

The skeletons extracted from different carrying conditions are defined as carrying item or non-standard skeletons. 348 

2) Embedding Carried Item Skeletons to 3D Gait Models  349 

The BVH motion data is skeleton based and it is the representation of the posture parameters. Using the 350 

parametric 3D model reconstruction, the carried items are excluded from the body. The carrying-item skeletons 351 

extracted from different carrying conditions are then embedded to the 3D gait models that represent normal walking. 352 

As a result, the virtual carrying-item gait models are synthesized. Fig. 9 illustrates the process of synthesizing the 353 

virtual gait model from the BVH skeleton data of carrying a ball. Using the proposed method, the virtual 354 

carrying-item gait models can be synthesized from 3D normal-walking models with different body shape and posture 355 

data. 356 

The carried items mostly influence the carrying associated part of the skeleton, and the other skeleton data of the 357 

gait associated with a subject will not be changed. Therefore, the virtual synthetic skeleton comprising carrying data 358 

from carrying-item skeleton and the remaining data from the standard 3D gait skeleton is synthesized first. Since 359 

multiple carrying conditions may lead to different carrying associated parts, these parts could include different bones 360 

and joint angles of the body skeleton, and they are defined as the ROI of carrying item skeleton. For an example in the 361 

ball carrying condition, the ROI may include the bones and joints associated with the upper and lower arm of the two 362 

hands as shown in Fig. 9(f). The ROI from the carrying-item skeleton is denoted as 1: ( )k
mBVH ROI . The other 363 

skeleton data from the normal 3D gait model is denoted by 1: 1
, ( )k
SmBVH ROI − , where S is body shape 364 

parameter. As shown in Fig. 9 (h), the 1ROI − of normal-walking skeleton defines the bones and joints 365 

excluding the ROI associated ones. They are 1: ,k n
mBVH and are used to obtain the synthesized skeleton data 366 

1:
, ( )S
k
mBVH synthesized  as shown in Fig. 9(i). Using S and 1:

,
k
m Sψ extracted from 1:

,
k
m SBVH , the virtual 367 

carrying-item posture synthetic model ,( , )k
k m SY S ψ  is reconstructed, where ,( , )k

k m SB Sθ ψ  is the 2D silhouette 368 

from the 3D model at θ view. The carrying-item posture synthesized model is given by 369 

1, 3( , ) ( , ( ) ( ))k k k
k m S D ROI m SROI
Y S F S f fψ ψ ψ−= U ,                     (9) 370 
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where ( )ROIf ⋅  denotes the function that extracts the ROI data of the carrying item skeleton, and 1 ( )ROI
f − ⋅  denotes 371 

the function that extracts the rest of the skeleton. 3 ( )DF ⋅  is the 3D reconstruction process using S and ,
k
m Sψ . Using 372 

the carrying-item posture synthesized model, virtual gait postures with different carrying conditions that are not 373 

included in the training data set are synthesized using the prior knowledge of carrying items BVH.  374 

      

(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Figure 9. Synthesizing virtual gait model: (a)-(d): multiview gait data with a ball; (e) 3D reconstructed gait model with skeleton 375 

embedded; (f) ROI of carrying-item skeleton; (g) normal-walking 3D gait model with skeleton embedded; (h) 1ROI − of 376 
normal-walking skeleton; (i) synthesized skeleton using (f) and (h); (j) the carrying-item posture synthesized model using (i); (k) 377 
3D gait model with fat body shape; and (l) the carrying-item posture synthesized model using the proposed method. 378 
3.6 Complete 3D parametric template models 379 

In order to conduct fast 3D parametric model reconstruction, a group of normal standard 3D gait models with 380 

different postures in a gait cycle are constructed first. Together with the extended carrying-item posture synthetic 381 

models, the 3D parametric template models are enlarged to enable fast 3D reconstruction under different 382 

conditions. The extended template models are denoted by 3 ,( , )k k
m D T m ST F S ψ= , where T labels the template 383 

parameters. 384 

The multi-view gait data and the corresponding views are the priori knowledge for 3D reconstruction and 385 

multi-view gait training. However, in the recognition process, the gait views θ  and the mth carrying conditions may 386 

be unknown. Thus, the parameters should be detected that correspond to the most similar 3D parametric template 387 

models from the template dataset. To estimate the gait view θ  and the mth carrying condition, the GEIs at θ  view 388 

are computed from the template 3D gait models, i.e., , ,
1

1 K
GEI k
m m

k
B

Kθ θ
=

ϒ = ∑ , where K is the number of gait template 389 

models within a gait period fixed by k-clustering, and ,
k
mB θ  denotes 2D silhouettes from the 3D template model at 390 

θ  view and k phase of a gait period under mth carrying condition. The gait view directions are quantized into L 391 

directions. , l
GEI
m θϒ is defined as the GN dimension vector of GEIs gait feature of mth carrying condition 392 

re-projected onto viewθ . The GEIs gait vectors with L view directions and M carrying conditions are then collected 393 

as training data set. Using the GEIs gait features associated with different carrying conditions, a matrix is constructed 394 

where the rows represent the view directions and the columns indicate the carrying conditions in the training data set 395 

which is decomposed by SVD, i.e., 396 
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1 1 11, ,

1

1, ,

. . .

. . .
. . .

LL L

GEI GEI
M

T M

GEI GEI
M

P

USV v v
P

θ θ θ

θθ θ

⎡ ⎤ϒ ϒ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤Θ = = =⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ϒ ϒ ⎣ ⎦⎣ ⎦

MO M M ,                     (10) 397 

where U is the GLN M× orthogonal matrix, V is the M M× orthogonal matrix, S is theM M× diagonal 398 

matrix composed of singular values
l
Pθ , . 1 ,2, ., . l L= , which is the GN M× submatrix of US , 399 

mv , . 1 ,2, ., . m M= , and M is the M dimensional column vector. The vector v  is an intrinsic feature vector 400 

of the mth carrying condition that is independent of view directions. 
l
Pθ  is the operator factor for carrying 401 

condition and is a projection matrix which is independent of the carrying condition. It projects the intrinsic 402 

vector v  to the feature vector ϒ  for view direction θ, i.e., 403 

, .
l l

GEI m
m P vθ θϒ =                             (11) 404 

Given a probe gait GEIs ,
ˆ

l

GEI
m θϒ  at lθ  view, the carrying condition identity coefficient is 405 

1
,

ˆˆ ( ) .
l l

GEI
mv Pθ θ

−= ϒ                                      (12) 406 

The maximum probability information of identity that is selected to achieve carrying condition is  407 
2 2ˆ ˆ( | ) exp[ / (2 )].mp p v v v σ∞ − −                             (13) 408 

To automatically determine the mth carrying condition of the probe subject, the gait view lθ must be 409 

estimated first. The SGEIs in [38] are introduced for arbitrary gait view estimation. SGEIs are obtained by 410 

cropping the region enclosed between the bottom of the GEIs and up to the anatomical positions of knee, i.e., 411 

0.285H, where H is the height of GEI. SGEI is more effective for view detection than the method CCA [39] 412 

due to its ability to overcome the adverse effect of clothing and carried items based on anthropometric 413 

analysis. However, neither SGEIs based gait view detection method nor the method CCA is suitable for 414 

classifying the front and back views (i.e., at 0° and 180°, respectively) and views close to them (i.e., at 18° 415 

and 162°), as the shape characteristics of a subject remain almost similar in these cases. Also, the degradation 416 

in performance for views 72° and 108° is attributed to the similar shape characteristics with the subjects at 417 

90° [7]. In order to overcome these problems, the silhouette size gradient score is introduced as an additional 418 

constraint for further classification of the estimated gait views. The silhouette size gradient score is defined 419 

as
1

( )
N

size mean
n

Score F n Gθ

=

= ∇ −∑ , where ( )sizeF n  denotes the original gait silhouette size of nth frame in a gait 420 

period, N is total number of gait frames and meanGθ is mean silhouette size gradient of θ  view (estimated 421 

using training data set). The original gait silhouette size is calculated from image pixels. The walking 422 

direction is indicated by [ ]
1

( )
N

size
n

Dir I F n
=

= ∇∑  where [ ]I ⋅  is an indicator that is 1 if gradient is greater than 423 

0 and -1 otherwise. If 0Dir ≥ , the estimated gait view ranges from 0° to 90°, otherwise from 90° to 180°. 424 

This is due to the silhouette increasing in size while the subject walks towards the camera and the silhouette 425 

size gradient is greater than zero. When walking away from the camera, the situation is reversed. By our 426 

proposed method, the gait views can be first estimated using SGEIs and be further determined by 427 

argmin Score
θ

 and walking direction indicator. Using the gait silhouette size gradient and direction indicator, 428 
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0° and 180° that have the same shape characteristics are easily distinguished. 72° and 108° that are attributed 429 

to the similar shape characteristics differ significantly in the walking direction indicators. 430 

3.7. Self-occlusion optimized simultaneous Sparse Representation Model  431 

1) Gait sparse representation  432 

The original goal of sparse approximation is to find a line combination of regressors to represent a 433 

signal vector for compression purpose. Wright et al. [40] exploited the discriminative nature of sparse 434 

representation for classification. They proposed a 2D face recognition method based on sparse representation from 435 

frontal views with varying expression and illumination, as well as occlusion and facial disguise. In sparse 436 

representation, a complete dictionary is necessary in which the elements are chosen to achieve sparse linear 437 

combination. The dictionary is usually constructed from standard bases (e.g., Fourier and Gabor atoms). However, in 438 

face, gait and other image-based recognition, the base elements of an over-complete dictionary are the training 439 

samples.  440 

Given sufficient in training samples of the ith object class 1 2 ,..[ , ]., i

i

m ni i i i
nA γ γ γ ×= ∈ℜ , any probe 441 

sample my∈ℜ from the same class is approximated from the linear combination of the training samples associated 442 

with object i [40], i.e., 443 

1 1 2 2 ...
i i

i i i i i i i
n n iy x x x A xγ γ γ= + + + = ,                        (14) 444 

where
i

i
nx ∈ℜ denotes the weighting coefficient and 1 2 ,...[ , , ]

i

i i i i
nx x x x=  is a vector composed by the 445 

weighting coefficient for each training sample belonging to ith object class. Since the class i is initially unknown 446 

for the probe object, the linear representation of y is redefined in terms of all training samples as 447 

1 2
1 2,..., ,, 0 0..., , ,..., ,...,, ,0 0

i

TK i i i
ny Ax A A A x x x⎡ ⎤⎡ ⎤= = ⎣ ⎦ ⎣ ⎦ ,                (15) 448 

where 1 2 ,..[ ., ], KA A A A= represents the dictionary for the entire training set including the K sub 449 

dictionary KA , and x denotes the sparse description vector whose entries are zero except those associated 450 

with the ith class. To realize the sparse representation of probe y, the sparse vector x  is computed by 451 

solving 452 

1
ˆ argmin

x
x x=  subject to  

2
Ax y ε− ≤ ,                (16) 453 

where 0ε >  is an optional error tolerance. The probe y is classified as ith object class by minimizing the 454 

residual between y and ˆiy , i.e., 455 

2 2
ˆ ˆargmin ( ) argmin i

ii i
i y A x y Axδ= − = − ,                    (17) 456 

where ( ) n
i xδ ∈ℜ is a vector whose only nonzero entries are the entries in x that are associated with ith class. 457 

 458 

 459 

2) Gait recognition based on Self-occlusion Optimized Simultaneous Sparse Representation model.  460 

Fig. 10 shows the gait recognition process based on self-occlusion optimized simultaneous sparse representation 461 

model. First the over-complete dictionary A of 3D gait is constructed with variant-phase 3D gait models. 462 

Variant-phase gait models are reconstructed using the multi-views 2D gait silhouettes corresponding to different 463 

phase in a gait period as in Section 3.3. They are 3D parametric gait models with different postures. 464 
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 465 
Figure 10. Gait recognition process based on simultaneous spare representation model. 466 

According to the theory of sparse representation and compressed sensing, any probe model y can be represented 467 

by the linear combination of the atoms in dictionary if given sufficient training samples. In order to obtain sufficient 468 

training samples, the different virtual 3D gait models with variant-phase are synthesized in multiple carrying 469 

conditions. Together with the normal variant-phase 3D gait models, the over-complete dictionary is constructed.  470 

For the parametric gait model, the unified 3D model is fast reconstructed by morphing using the estimated static 471 

shape features S and motion features ψ . The shape vector S and motion vector ψ  are then combined to form the 472 

3D gait vector { },
i i i

i i i
n n nSγ ψ= , where in denotes the total training samples of ith object with different postures. As a 473 

result, the ith object sub dictionary 1 2 ,...[ , , ]
i

i i i i
nA γ γ γ=  is constructed. The over-complete dictionary for the entire 474 

training set includes the K object class, where each class is composed of 3D normal gait models together with 475 

different carrying condition, and synthesized virtual gait models. It is denoted by 476 
1 2

1 2,..., ,..., ,..[ , ] [ , ].,
i

K i i i K m n
n nA A A A γ γ γ γ ×= = ∈ℜ ,                  (18) 477 

where
1

K

i
i

n n
=

=∑ equals the total training samples. Given any 3D model y in a gait period, it can be sparsely 478 

represented by 0y Ax= , where 0x  denotes the sparse weighting coefficient vector. 479 

 Since a gait period is composed by several gait phases with different postures, it is sufficiently distinct to enable 480 

subject identification using a sufficient number of reconstructed 3D gait models in a period. The multi-phase gait 481 

models are then collected as input data set denoted by 1 2{ , ,..., }MY y y y= , where M is the total number of input 482 

gait models in a gait period. The sparse representation problem is solved by 483 

1 2{ } 1

ˆ{ } argmin
i

M
M

i i ix i
x x=

=

= ∑                            (19) 484 

subject to 
2

1

, 1 .
M

i i
i

y Ax i Mε
=

− ≤ ∀ ≤ ≤∑  485 

In 2D gait recognition, gait silhouettes in a period are usually averaged in various ways to form GEI [10], GFI 486 

[41], CGI [42], DNGR [43] or similar gait energy features for recognition. The averaged gait features are usually 487 

sensitive to the accurate detection of the gait period. If occlusion occurs resulting in only a few gait silhouettes or the 488 

subject deviates significantly from the expected straight trajectory, the recognition rate would decrease significantly. 489 

In order to overcome these problems, Self-Occlusion Optimized Simultaneous Sparse Representation Model 490 
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(SOO-SSRM) is introduced to achieve arbitrary view gait recognition that does not require a complete gait cycle 491 

data or assumes that the subject walks in a similar trajectory. The total numberM of input gait models is not 492 

limited and the simultaneous sparse representation problem is solved by 493 

ˆ argmin
X

X X=                                    (20) 494 

subject to .
F

YW AX ε− ≤ [ ]1 2 ,.., ., MX x x x=  and 
F

⋅  denotes the Frobenius Norm. 495 

1 1,...[ , , ]TMW w w w=  is self-occlusion optimized matrix. 496 

 In the training process for AVGR-BRPS, the 3D body can be well reconstructed due to the use of 497 

multi-view gait images. For multiple input frames, the body shape is optimized and the skeleton structures 498 

are well estimated by overcoming the self-occlusion problems. However, in the recognition step, it is not 499 

practical in real applications to use numerous cameras or multi-view images to reconstruct the body. 500 

However, single view images provide only one-side surface portion of the human body. Using our 501 

clothes-independent 3D body and pose estimation method based on template gait data as prior knowledge, 502 

the gait models can be well reconstructed for gait recognition. In order to further improve the robustness of 503 

the algorithm, a self-occlusion optimized coefficient iwθ  is introduced to optimize the estimated body shape and 504 

posture parameters. θ  denotes the single probe gait view for recognition and it is associated with the partial 505 

occlusion of the body. Only the surface of θ  is available and the other side is self-occlusion.  The optimized 506 

body features are denoted by i
i iy y wθʹ′ = . Using training multi-view gait data, the function of the coefficient iw  507 

is estimated by 508 

argmin
i

i i i

w
wθ θγ γΦ − ,                               (21) 509 

where iγΦ  is the 3D gait model vector estimated using multi-view gait images and Φ  is a multi-view set. i
θγ  510 

denotes the 3D gait model vector using only a single θ  view where θ ∈Φ . 511 

By estimating the sparse representation vector X̂ , the reconstructed residual is given by 512 

2
ˆˆ argmin ( ) argmin ( )i i ii

i r Y Y A Xδ= = − , where iδ  is the characteristic function that selects the coefficients 513 

associated with the ith class. The final classification of multi-input gait model Y is determined by 514 

( ) argmin ( )i iidentity Y r Y=  with the minimized residual. 515 

3) Optimized Strategy for Simultaneous Sparse Representation-based Classification  516 

Since an over-complete dictionary of 3D gait database is constructed in the proposed workflow, when 517 

dealing with a large number of training gait database the search for the minimum reconstructed residual in 518 

sparse representation-based classification could be slow and requires large memory. In order to address these 519 

problems, the carrying condition of the input probe subject is first determined by the method in Section 3.6. 520 

The normal gait database or corresponding virtual synthesized gait database is selected for the next matching 521 

process. Second, in order to reduce the large samples, the 3D body shape vector S  is used to fast index K 522 

(K<M) candidate objects in the selected dictionary that are similar by Euclidean distance. The efficient feature-sign 523 

search algorithm [44] is then used to speed up the sparse coding, which enables larger sparse codes to be 524 

learned. Given a group of input probe 3D models in a gait period that are denoted by { }{ } ( , )
i i i

i i i i
n n ny Sγ ψ= = , 525 
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their sparse coefficients 
i

i
nx  can be exploited in dataset that only includes K candidate models.  526 

4 Experiments 527 

In our proposed gait recognition method, accurate 3D parametric gait model needs to be constructed 528 

from multi-view 2D gait silhouettes. Table 1 shows the most popular multi-view gait datasets (with 3 529 

viewpoints at least) for evaluating gait recognition methods. Multi-view gait data captured by multi-cameras 530 

at similar time with multiple covariate factors are also necessary. These two requirements meant the two 531 

SOTON databases [53,54], OU-ISIR Treadmill C [55], and WOSG [5] are not appropriate. Also the WOSG 532 

dataset was generated using one camera, which is not suitable for 3D model reconstruction. CASIA B [3] 533 

comprises large view variations with 18-degree interval that is also under varied challenging conditions such 534 

as varied clothing (normal or coat), different carried items (backpack or handbag), etc. CMU MoBo database 535 

[49] comprises variations in speed, carrying status and tilt views. In CASIA B data acquisition, 11 cameras 536 

around the left hand side of the subject were used. In MoBo data capture, six cameras evenly distributed 537 

around the subject on the treadmill generated sufficient data for a full 3D reconstruction. These two databases 538 

are thus suitable for evaluating the proposed method. 539 

Table 1 Popular multi-view gait datasets involving at least 3 views. 540 

Gait Database Time Subjects Covariates Views 

CMU MoBo [49] 2001 25 Viewpoint, Speed, Carrying items 6 

SOTON Multimodal 
Database [53] 2011 >300 Viewpoint 12 

SOTON Temporal 
Database [54] 2012 25 Viewpoint, Time difference 12 

CASIA B [3] 2006 124 Viewpoint, Clothing, Carrying items 11 

OU-ISIR Treadmill 
C [55] 2010 200 Viewpoint 25 

WOSG [5] 2013 155 Viewpoint, Illumination 8 

4.1. Experiments on CASIA B dataset 541 

CASIA Dataset B is a multiview gait dataset comprising 124 subjects, and the gait data was captured from 11 542 

views (as illustrated in Fig. 11) in the range [0° 180°] with an interval of 18°. Three variations, namely in view angle, 543 

clothing and carrying condition are separately considered. There are 10 video sequences for each view of a subject: 544 

six sequences for normal walking, i.e., without wearing a coat or carrying a bag; two sequences for walking wearing a 545 

coat; and two sequences for walking with either a knapsack, a satchel or a handbag [3]. The video sequences are 546 

recorded indoor at a rate of 25 frames per second and the resolution of each frame is 320×240. 547 

 548 
Figure 11. CASIA DataSet illustrations. 549 



    19 
 

  

In our experiments, the first four normal-walking sequences with 11 views of all subjects are considered as 550 

gallery. The first set of walking sequences with carrying conditions of 1-10 subjects is considered as carrying items 551 

training gallery. The remaining two normal-walking sequences, two walking sequences wearing a coat and walking 552 

sequences with three variations carrying conditions are considered as the probe. 553 

1) Estimation of gait views with different methods. 554 

Fig. 12 – Fig. 14 show the comparisons of correct view matching rate (CVR) on CASIA B dataset for subjects 555 

walking normally, walking with a bag and walking wearing a coat. Our method based on SGEIs with silhouette 556 

size gradient score achieves the highest CVR for views 0° and 180°, and views close to them (i.e., 18° and 162°). 557 

The CCA [39] method which uses Gaussian process is not suitable for estimating the front and back views (i.e., 0° 558 

and 180°) and has low CVR for 90°. The low CVR for views 0° and 180°, as the shape characteristics of a subject 559 

remain almost the same in these cases, has been greatly improved compared with VI-MGR proposed in [7]. The 560 

silhouette size gradient score as view range constraints for final classification of the estimated gait views is 561 

helpful in improving the CVR. In support of this observation, a confusion matrix for CVR of our method 562 

corresponding to normal walking cases of probe subjects is presented in Table 2. Similar to VI-MGR, only 563 

22 subjects’ SGEIs together with their silhouette size gradient scores are used for correct view matching 564 

while CCA uses 60% of the total subjects as training. The SGEIs based method is more robust than CCA 565 

method. 566 
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 567 
Figure 12. Correct view matching of normal walking. 568 
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 569 
Figure 13. Correct view matching of walking with bag. 570 
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 571 
Figure 14. Correct view matching of walking wearing coat. 572 

Table 2 Confusion matrix for CVR of our method on the normal walking subjects of CASIA B gait dataset. VI-MGR data are 573 
enclosed in parentheses. 574 

View  Estimated view 

 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° 

0° 124(102) 0 0 0 0 0 0 0 0 0 0(22) 
18° 0 120(116) 4(6) 0 0 0 0 0 0(1) 0(1) 0 
36° 0 0 118(109) 6(10) 0(3) 0 0 0(2) 0 0 0 
54° 0 0 2 117（114） 5(7) 0(1) 0 0 0 0 0 
72° 0 0 0 4 116(100) 4(5) 0(5) 0 0 0 0 
90° 0 0 0 0 3(8) 118（110） 3(6) 0 0 0 0 
108° 0 0 0 0 0(6) 4(6) 117(98) 3(4) 0 0 0 
126° 0 0 0 0 0 0 5(10) 117（112） 2 0 0 
144° 0 0 0 0 0 0 0 3(9) 116（103） 5(12) 0 
162° 0 0 0(4) 0 0 0 0 0(2) 6(8) 118(110) 0 
180° 0(22) 0 0 0 0 0 0 0 0 0 124(102) 

2) Multi-view gait recognition in various conditions 575 

In order to evaluate the robustness of our AVGR-BPRS in various conditions under multi-views, we compare our 576 

method with VI-MGR [7], CCA [39], RLTDA [45], GEI-SVD [46], Robust VTM [47] using CASIA Dataset B. Fig. 577 

15 and Fig. 16 show the rank-1 recognition rates of AVGR-BPRS and VI-MGR for walking subjects with a bag and 578 

wearing a coat in views from 0° to 180°. For CCA method the view angles are 36°, 54°, 90°, 108°, 126° and 144° for 579 

subjects carrying a bag and wearing a coat using GFI as a gait signature. 580 
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 582 
Figure 15. Rank-1 recognition rates of AVGR-BPRS, VI-MGR and CCA on walking subjects with a bag. 583 
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 584 
Figure 16. Rank-1 recognition rates of AVGR-BPRS, VI-MGR and CCA on walking subjects wearing a coat. 585 

 Table 3 shows the rank-1 recognition rate of AVGR-BPRS, method [30], RLTDA, GEI-SVD and Robust VTM 586 

on CASIA B gait dataset with 54°, 90°and 126° views. Among these methods, the known probe gait feature from one 587 

view angle is transformed into the most similarity gallery view using a VTM for similarity matching. We removed all 588 

the 2D silhouettes at probe view in the 3D reconstructed process. This is because, in VTM based methods, the chosen 589 

probe viewing angle must be excluded from the other gallery viewing angles that are used for training in order to 590 

evaluate the robustness of view transform model. The multi-view gait silhouettes not at probe view are used for 591 

training. 592 

Table 3 Rank-1 recognition rates of AVGR-BPRS, RLTDA, GEI-SVD and Robust VTM on CASIA B gait dataset. 593 
Probe Our Method Method [30] RLTDA GEI-SVD Robust VTM 

Bag Coat Bag Coat Bag Coat Bag Coat Bag Coat 
54° 90 92 76.4 87.9 80.8 69.4 31.4 17.7 40.7 35.4 
90° 92 93 73.7 91.1 76.5 72.1 32.1 29.0 58.2 50.3 

126° 91 92 76.9 86.2 72.3 64.6 44.1 34.6 59.4 61.3 

 594 

AVGR-BPRS outperforms all the existing methods and the most obvious reason is illustrated in Fig. 17, which 595 

shows that AVGR-BPRS is robust and less sensitive to various carrying conditions including wearing a coat and 596 

carrying a bag. The parametric 3D model of the human gait is useful for view-invariant gait recognition by using prior 597 

knowledge of human body as constraint. The bag not belonging to the body is removed in the 3D morphing process. 598 

However, in some cases, the bag could influence the body reconstruction. Fig. 17(g) shows that without using 599 

carrying-item posture synthesized model the reconstruction of the left hand is affected by the bag silhouette. Fig. 17(h) 600 

shows the correct 3D morphing result using carrying-item posture synthesized model. 601 

Fig. 15 shows that the existing methods achieve high gait recognition rates when the views are similar to 0° and 602 

180°, and achieve low rates when the views are closer to 90°. This is because the gait silhouettes with a bag at 90° 603 

provide the most information of the carrying conditions. By using combined multi-view gait silhouettes for 3D 604 

parametric model reconstruction in AVGR-PBRS significantly reduces the influence of the carrying conditions 605 

compared with situations just using disturbed gait silhouettes for recognition. 606 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 17. 3D body reconstruction: (a) normal walk; (b) walk wearing a coat; (c) walk with a bag; (d) contour difference between 607 
(a) and (b); (e) contour difference between (a) and (c); (f) reconstruction from (b); (g) reconstruction from (c) without using 608 
carrying-item posture synthesized model; and (h) reconstruction from (c) using carrying-item posture synthesized model. 609 

 610 

Table 3 shows that the existing methods based on VTM or view-independent models have low recognition rates 611 

in various carrying conditions. It indicates that the VTM or view-independent models trained by normal gait dataset 612 

are not robust to clothing and carrying conditions when the viewing angle is changed. 613 

Additional experiments were conducted to show the advantages of our method. Table 4 illustrates the rank-1 614 

recognition rate of AVGR-BPRS on CASIA B gait dataset with different size of training views. Note that 615 

AVGR-BPRS can realize multi-view gait recognition just using one view gait dataset for training. However a larger 616 

number of training samples with various carrying conditions and view angles will contribute to a more accurate 617 

reconstructed 3D parametric gait models and an over-complete dictionary of 3D gaits, leading to even better 618 

performance in arbitrary view gait recognition under various conditions. Table 4 shows that where the probe views 619 

are included in the training gallery views, the recognition rate is higher. This is why better recognition rates are 620 

obtained for 90 and 162 degree in condition C than in B. 621 

Table 4 Rank-1 recognition rate of the AVGR-BPRS on CASIA B gait dataset with different views for training. A: training with 622 
11 views from 0° to 180°; B: training with 6 views including 0°, 36°, 72°, 108°, 144° and 180°; and C: training with 3 623 
views including 18° ,90° and 162°. 624 

View      Recognition rate (%) 

 
Normal walking Walking with a bag Walking wearing a coat 

A B C A B C A B C 
18° 99 93 92 92 90 90 89 84 84 
36° 100 98 90 91 90 88 90 88 81 
54° 98 92 86 90 89 85 92 85 80 
72° 99 95 91 91 90 86 90 87 82 
90° 100 94 95 92 88 91 93 86 90 

108° 100 96 92 92 91 88 91 88 81 
126° 98 93 88 91 90 84 92 85 80 
144° 99 97 90 93 92 86 91 87 83 
162° 98 92 93 95 90 90 89 85 86 

 625 
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 626 
Figure 18. Rank-1 recognition rates of AVGR-BPRS, GEIs and GFI for walking normally in 90° view with random number of 627 
probe frames. 628 

3) Gait recognition with random number of probe frames 629 

Fig. 18 shows the rank-1 recognition rates of AVGR-BPRS, GEIs [10] and GFI [41] for walking normally at 630 

90° view with random number of probe frames. Most existing methods of gait recognition assume that the gait cycle 631 

is well estimated and the complete gait cycle frames are collected. However, the gait cycle is sometimes not so easy to 632 

obtain especially in occlusion conditions or key pose gait frames are missing. In those cases, the limited gait frames 633 

are used for recognition. Most existing methods especially those based on averaged silhouettes as features (e.g., GEI, 634 

GFI, PEI [48]) have unsatisfactory performances due to the lack of a complete cycle gait silhouettes. Using 635 

simultaneous sparse representation model enables AVGR to achieve the high recognition rate compared with existing 636 

methods. Unlike the statistical approaches, the 3D model-based gait recognition is robust when facing such 637 

conditions. 638 

4) Computational Complexity 639 

Sparse representation-based classification stage is the time-consuming part of gait recognition with 640 

virtual synthesized over-complete gait dataset. Thus, we discuss the computational complexity of the spare 641 

representation coding and the minimum reconstructed residual search involved in the proposed method. The 642 

time complexity of original method is ( )O MInV  if 3D down-sampled vertices are used directly as features 643 

prior to the optimized strategy. M is the number of the virtual synthesized dataset with different carried item 644 

posture, I denotes the number of total class, n  is the total training samples in a gait period with different 645 

carrying-item postures and V  is the vertices number of 3D gait mesh model. The time complexity of our 646 

optimized method is ( )O KnL , where K (K<M) indicates the candidate objects selected from total M objects in 647 

dictionary, L defines the length of the 3D gait encoding feature { },Sγ ψ= , which is constructed by 648 

discretised semantic values of body shape S  and posture parametric of BVH. Table 5 shows the typical 649 

running time of sparse representation based classification stage on a PC with an Intel Core 2.93GHz CPU 650 

and 2GB RAM. In Table 5, K is 20% size of I  and M is set to three with one normal gait dataset and two 651 

virtual synthesized gait datasets, i.e., bag carrying and ball carrying. The running time in our sparse 652 

representation based classification might be slower than the 2D based multi-view gait recognition. This is 653 

because unlike the GEI or similar method that average silhouettes across a gait cycle to represent gait 654 

features, our method reconstructs each 3D model across a gait cycle and search the minimum reconstructed 655 

sparse representation residual for classification in an over-complete dictionary with virtual synthesized gait 656 
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datasets. However, our method is more robust to achieve higher view-invariant recognition with random number 657 

of probe frames and the subjects do not need to walk in a similar trajectory. It shows the potential in real-world 658 

applications. 659 

Table 5 Typical running time of sparse representation-based classification stage. 660 

Classification methods Complexity Average time(seconds) 

Optimized strategy method ( )O KnL  8.2 

Original method ( )O MInV  122.6 

4.2. Experiments on CMU Motion of Body (MoBo) Database 661 

The CMU MoBo database [49] consists of six sequences of 25 subjects (23 males, 2 females) walking on a 662 

treadmill. The 3 CCD progressive scan images have a resolution of 640×480. Each subject is recorded performing 663 

four different types of walking: slow walk, fast walk, inclined walk, and slow walk holding a ball (to inhibit arm 664 

swing). Each sequence is 11 seconds long and recorded at 30 frames per second. 665 

Nine experiments were performed with steps as shown in Table 6 for robust test. Since the dataset is not too 666 

large, existing methods show high recognition rates when gallery and probe sets are either the same or have small 667 

shape variation (train with S and test with S, or train with B and test with B) [48]. In order to evaluate our proposed 668 

method for robustness, experiments are chosen with gallery and probe sets under various conditions. Since our virtual 669 

model synthesized model needs a template for carrying BVH data extraction, one sequence with ball as illustrated in 670 

Fig. 19 is chosen as the gallery and other walk sequences with ball as the probe set. 671 

Table 6 Nine experiments on CMU MoBo gait dataset (in lateral view). 672 

Experiment Gallery set Probe set 

S vs. F Slow walk Fast walk 
S vs. B Slow walk Ball walk 
S vs. I Slow walk inclined walk 
F vs. S Fast walk Slow walk 
F vs. B Fast walk Ball walk 
F vs. I Fast walk Inclined walk 
I vs. S Inclined walk Slow walk 
I vs. F Inclined walk Fast walk 
I vs. B Inclined walk Ball walk 

 673 

      

      
(a) 0° (b) 45° (c) 90° (d) 180° (e)225° (f) 315° 

Figure 19. Top row: gait silhoutttes and bottom row: Results of carried item models. 674 
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The approaches of STM-SPP [50], WBP [51], SGRVDL [52], Mehtod [19] and PEI [48] evaluated under varied 675 

challenging conditions using CMU MoBo database are chosen for performance comparison. Table 7 shows that our 676 

AVGR-BPRS outperforms the other methods especially for ball carrying condition and inclined walk. Results of the 677 

experiments that are not presented in the original papers have been left blank in the table. The existing methods show 678 

high recognition results when the gait silhouettes have small shape changes (e.g., S vs. F, F vs. S scenarios). However, 679 

most approaches are not robust enough to appearance changes (e.g., F vs. B, I vs. B scenarios) due to the shortage of 680 

2D gait silhouette based methods. The 2D gait silhouettes could be influenced easily by variant carrying conditions. In 681 

contrast, the performance of our 3D gait model based algorithm shows satisfactory classification results across all 682 

types of gallery/probe conditions. 683 

There are several reasons why our AVGR-BPRS achieves significantly better performance. The first is that our 684 

reconstructed 3D models are based on unified parametric body model and multi-view 2D gait silhouettes.  It makes 685 

our method more efficient dealing with appearance changes and wearing conditions. The second is the use of 686 

carrying-items posture synthesized model. The virtual 3D gait models that are not in the training dataset are 687 

synthesized using prior BVH data. The last is that 3D parametric model is less sensitive to inclined silhouettes. This is 688 

because the 3D models can be manipulated around X-Y-Z axes to fit any changes in hierarchy and initial pose of the 689 

body whereas the 2D silhouettes cannot. As the hierarchy and initial pose of the skeleton are included in the motion 690 

features ψ , the inclined conditions are considered in 3D pose estimated steps. The above advantages make our 691 

proposed method especially suitable for surveillance applications where various wearing and carrying conditions 692 

influence the appearance based gait silhouettes.  693 

Table 7 Recognition results on Mobo data set using different methods. 694 

Experiment STM-SPP WBP SGRVDL Method [19] PEI Our Method 

S vs. F 94% 92% 96% 92% 100% 96% 
S vs. B 93% 73% 87% - 92% 94% 
S vs. I - - - - 60% 88% 
F vs. S 91% 92% 92% 92% 88% 92% 
F vs. B 84% 61% 88% - 60% 93% 
F vs. I - - - - 72% 88% 
I vs. S - - - - 76% 91% 
I vs. F - - - - 80% 88% 
I vs. B - - - - 48% 86% 
B vs. S 82% 75% 87% - 92% 92% 
B vs. F 82% 63% 88% - 84% 91% 
B vs. I - - - - 76% 86% 

5 Conclusions 695 

In this paper, a novel 3D model-based arbitrary view gait recognition method, AVGR-BPRS, is proposed. 696 

AVGR-BPRS is robust to variations in speed, inclined plane, clothing and presence of a carried item, which might be 697 

encountered in real scenarios. The experimental results show that AVGR-BPRS is more effective than existing 698 

multi-view gait recognition approaches in the case of multiple covariates (e.g., with a coat, carrying a bag, walk with 699 

a ball, and walk inclined).  700 

AVGR-BPRS that is based on clothes-independent 3D statistical human body model generated from multiview 701 

2D gait silhouettes achieves high performance rate with limited training gait views. It achieves arbitrary view gait 702 

recognition without any camera calibration. Using the proposed carrying-item posture synthesized model, different 703 



    26 
 

  

virtual gait models are obtained by embedding the extracted carrying-item skeleton BVH data into the standard 704 

training 3D gait models. This greatly affects the 3D gait itself rather than mitigating the effect of changes in covariate 705 

conditions that affect gait feature extraction in existing 2D methods. The self-occlusion optimized simultaneous sparse 706 

representation model provides a new approach for achieving arbitrary view gait recognition that does not require a 707 

complete gait cycle data or assumes that the subject walks in a similar trajectory.  708 
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