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Abstract

In this paper, we propose a novel hypergraph based method (called HF) to fit

and segment multi-structural data. The proposed HF formulates the geomet-

ric model fitting problem as a hypergraph partition problem based on a novel

hypergraph model. In the hypergraph model, vertices represent data points

and hyperedges denote model hypotheses. The hypergraph, with large and

“data-determined” degrees of hyperedges, can express the complex relationships

between model hypotheses and data points. In addition, we develop a robust

hypergraph partition algorithm to detect sub-hypergraphs for model fitting. HF

can effectively and efficiently estimate the number of, and the parameters of,

model instances in multi-structural data heavily corrupted with outliers simul-

taneously. Experimental results show the advantages of the proposed method

over previous methods on both synthetic data and real images.

Keywords: Hypergraph modelling, Geometric model fitting, Hypergraph

partition

1. Introduction

Many computer vision tasks (such as optical flow calculation, motion seg-

mentation, homography or fundamental matrix estimation) use robust statisti-

cal methods. To illustrate the problem addressed in this paper, we first consider
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Figure 1: An example of the problem we addressed in this paper.

a standard line fitting problem. As shown in Fig. 1, we deal with data with an

unknown number of model instances (lines) and unknown ratios of inliers and

outliers. We adopt the paradigm that these “structures” (i.e., lines) can be esti-

mated by a robust fitting method. Of course, the “structures” are not restricted

to lines. We can also consider as “structures”: homographies, fundamental ma-

trixes, etc.

A number of robust fitting methods [1–4] have been proposed in recent years.

The main steps of these robust fitting methods include: (1) Generate putative

hypotheses; (2) Verify these hypotheses according to a robust criterion; (3)

Output the estimated model parameters corresponding to the best verified hy-

pothesis [5]. One of the most popular robust methods is RANSAC [6], which

can deal with a large number of outliers effectively. However, RANSAC is

originally designed to fit data involving a single model and it requires a user-

specified threshold to dichotomize inliers from outliers. Some other methods

have been proposed to enhance RANSAC, e.g., LO-RANSAC [7], PROSAC [8],

Cov-RANSAC [9], and QDEGSAC [10]. In addition, we note that some recently

proposed robust fitting methods (such as J-linkage [11], KF [12], PEARL [2],

AKSWH [13] and T-linkage [14]) claim that they are able to robustly fit models

under severe noise. These fitting methods have their own advantages, but the

fitting results are still far from being perfect for many real-world problems, due

to the limitations of speed or accuracy.
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Recently, hypergraphs have been introduced to solve some computer vision

tasks, e.g., [15–19]. A hypergraph contains higher order similarities instead of

pairwise similarities, which can be beneficial to overcome the above-mentioned

limitations. In the hypergraph, each vertex represents a data point and each

hyperedge connects a small group of vertices. Parag and Elgammal [15] proposed

an effective data point labeling method in which the data point labeling problem

is equivalent to the hypergraph labeling problem. Liu and Yan [17] proposed

to use a random consensus graph to efficiently fit structures in data. Ochs and

Brox [18] developed a method based on spectral clustering on hypergraphs for

motion segmentation. Jain and Govindu [16] extended higher-order clustering

to plane segmentation using hypergraphs for RGBD data.

However, the previous hypergraph based works [15–18] only consider the

smallest justified degrees of hyperedges (for a hyperedge, its degree is defined as

the number of vertices connected by the hyperedge) in a uniform hypergraph.

That is, the hyperedges of a hypergraph in these works only connect a small

number of vertices. Using large degrees of hyperedges can yield better clustering

accuracy because it can gather more information of the relationships between

vertices; which has been demonstrated by the theoretical analysis and compre-

hensive experiments in [19]. From this aspect, the largest possible degrees (i.e.,

all vertices that represents inlier data points belonging to the same structure

are connected by the same hyperedge) would be the best. But there are two po-

tential problems: (i) Complexity might be an issue; (ii) Determining all inliers

can be difficult. In this paper, we show that a tractable method can be devised.

Obviously, since the number of inliers associated to each structure is different,

the degree of each hyperedge is varying. Therefore, we devise a scheme having

the following features: the degree of a hyperedge is “data-driven” (hence, vary-

ing), and much larger (as close as possible to include all inliers) than the one

used in the previous hypergraph based works [15–19].

In this paper, we propose a robust hypergraph based fitting method (called

HF), which formulates geometric model fitting as a hypergraph partition prob-

lem, to fit and segment multi-structural data with outliers. In the hypergraph,
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v1 1 0 0

v2 1 1 0

v3 0 1 0

v4 0 1 1

v5 0 0 1

v6 0 0 1
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v8 1 0 0
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Figure 2: An example of hypergraph modelling. (a) A set of data points V =

{v1, v2, v3, . . . , v8} and a set of model hypotheses E = {e1, e2, e3}. The entry (vi, ej) is

set to 1 if vi is an inlier data point of the model hypothesis ej , and 0 otherwise. (b) A hyper-

graph that expresses the complex relationships between model hypotheses and data points.

The hypergraph includes 3 hyperedges {e1, e2, e3} and 8 vertices {v1, v2, v3, . . . , v8} which are

respectively shown in rectangles and circles in (b).

each vertex represents a data point and each hyperedge denotes a model hypoth-

esis. HF can decide an appropriate degree of hyperedges in a simple and effective

way for each hypergraph. More specifically, HF generates a set of potential hy-

peredges for a hypergraph, and expands these hyperedges as close as possible

to the largest justified degrees using an inlier scale estimate, where the largest

justified degree of a hyperedge is the number of the inlier data points belonging

to the corresponding model hypothesis. Once a hyperedge is generated, HF can

obtain the inlier data points belonging to the corresponding model hypothesis.

Thus this hypergraph can effectively express the complex relationships between

model hypotheses and data points, as shown in Fig. 2. To reduce complexity

of a hypergraph, we prune the hypergraph by removing some hyperedges with

low weighting scores and the vertices without being connected by any remaining
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hyperedge. In addition, we develop a robust hypergraph partition algorithm,

which can effectively detect sub-hypergraphs with each sub-hypergraph repre-

senting a potential model instance in the data, for model fitting. Overall, HF

can effectively and efficiently estimate the number of, and the parameters of,

model instances in data. The method can deal with multi-structural data heav-

ily corrupted with outliers. Experimental results on both synthetic and real data

show that HF can achieve better results than the other competing methods.

The proposed method (HF) has four main advantages over previous works.

First, the constructed hypergraph in this paper may include large and “data-

determined” degrees of hyperedges (i.e., each hyperedge may connect a large

and variable number of vertices in the hypergraph), which can yield better

accuracy in hypergraph partitioning. Second, the hypergraph can be directly

used to fit models, rather than constructing a pairwise affinity matrix by which

the projection from a hypergraph to an induced graph may cause information-

loss (shown in [20, 21]). Third, HF can simultaneously detect all structures in

multi-structural data, instead of using the sequential “fit-and-remove” proce-

dure. Fourth, HF clusters data points by the proposed sub-hypergraph detec-

tion algorithm, which does not totally depend on the inlier scale estimate to

dichotomize inliers from outliers. Thus the proposed method is more effective

and computationally efficient over previous works.

Note that the proposed HF uses some similar techniques to those used in

AKSWH. However, HF has some significant differences to AKSWH: HF uses the

inlier scale estimate to construct hypergraph modelling, and estimates model

instances in data by using a novel sub-hypergraph detection algorithm, which

introduces a new spectral clustering algorithm to deal with model fitting prob-

lems. In contrast, AKSWH estimates model instances by an agglomerative

clustering algorithm. Benefiting from these improvements, HF achieves better

results than AKSWH on both speed and accuracy. More importantly, the per-

formance of AKSWH is dependent on the accuracy of the inlier scale estimate.

The reason behind this is that AKSWH derives the inlier and outlier dichotomy

according to the corresponding inlier scales of the estimated model hypotheses,
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Window

Figure 3: An example of selecting the ground truth number of model instances in Merton

College 3, which may cause ambiguity. The data points belonging to the “window” may be

considered as one structure or outliers depending on different definitions of a structure.

and it achieves bad results when residual values from model hypotheses to data

points are very small and close. In contrast, for HF, although the constructed

hypergraph is also based on the inlier scale estimate, data points are clustered

by the proposed sub-hypergraph detection algorithm, whose performance is not

very sensitive to the inlier scale estimate. This will be shown in the experiments

for 3D-motion segmentation (see Sec. 5.2.3), where the residual values based on

subspace clustering are very small and close, and thus inliers and outliers can-

not be effectively distinguished by an inlier scale estimate for a parameter space

based fitting method (e.g., AKSWH).

It is worth pointing out that: we aim to design a fitting method that cannot

only estimate the parameters of model instances in data but also automatically

decide the number of model instances as if the ground truth number always has

a well-defined meaning. For synthetic data, the ground truth number of model

instances has a precise meaning since one can decide the number of model

instances during designing synthetic data. However, for real images, the ground

truth number of model instances may be ambiguous. For example, as shown in

Fig. 3 (the “Window” in Merton College 3 from the Oxford Visual Geometry
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Group 1), “what is important” is usually something to do with the size of the

structures (size being either number of data items or spatial extent of those

items or both) and also with the function of objects. Clearly, in such cases, the

ground truth number of model instances in data can only be decided when one

knows the purpose of segmentation. Of course, one can generally determine the

number of model instances following some common (and heuristic) rules, e.g.,

selecting the most significant (larger in spatial extent, larger in data population,

for example) model instances. Therefore, in this work we evaluate the proposed

method and several other competing fitting methods according to the ground

truth (usually this coincides with “significant” in the above senses) of standard

datasets, though of course the decision as to what constitutes a structure is

subjective and problem dependent. As a result, it is naive to expect (and even

more to claim to have produced) a method that will always agree with every

human judgement of what should be the ground truth number of model instances

in all cases. We only claim that the proposed method usually extracts the right

structures in some sense, and that this generally agrees with the ground truth

of standard datasets.

The rest of the paper is organized as follows: In Sec. 2, we construct hyper-

graphs for geometric model fitting. In Sec. 3, we develop a novel hypergraph

partition algorithm, and based on which, we propose a hypergraph based fitting

method in Sec. 4. In Sec. 5, we present the experimental results obtained by

the proposed method and several other competing methods on both synthetic

and real data. We draw conclusions in Sec. 6.

2. Hypergraphs

In this paper, the geometric model fitting problem is formulated as a hy-

pergraph partition problem. Therefore, for each dataset, we construct a hy-

pergraph to effectively express the relationships between model hypotheses and

1http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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data points.

2.1. Hypergraph Modelling

For hypergraph modelling, we regard each data point as a vertex and each

model hypothesis as a hyperedge in a hypergraph G = (V,E, ω) (as shown in

Fig. 2). Assume that there are n data points and m model hypotheses, and

thus, the generated hypergraph contains n vertices and m hyperedges. Let

V = {v1, v2, . . . , vn} represent n vertices and E = {e1, e2, . . . , em} denote m

hyperedges. We assign each hyperedge a positive weight value ω(e). When

v ∈ e, the hyperedge e is incident with vertex v. An |V | × |E| incident matrix

H, satisfying entries h(v, e) = 1 if v ∈ e and 0 otherwise, can be used to represent

the relationships between vertices and hyperedges in the hypergraph G.

We aim to construct a hypergraph to express the relationships between model

hypotheses and data points, that is, we can directly determine whether a data

point is one of inlier data points of a particular model hypothesis from a hyper-

graph. Therefore, to construct a hypergraph, we devise a scheme that contains

two main parts, i.e., hyperedge generation and hyperedge expansion. (i) Hy-

peredge Generation. We firstly sample a number of minimal subsets, based on

which we estimate model hypotheses using the Direct Linear Transformation

algorithm [22]. A minimal subset is composed of the minimum number of data

points, which are necessary to estimate a model hypothesis (e.g., 2 data points

for line fitting and 4 data points for homography fitting). Since each hypothesis

is associated to a hyperedge, we can directly generate a number of potential hy-

peredges, which connect the vertices that correspond to the associated minimal

sampled subsets. (ii) Hyperedge Expansion. We expand each potential hyper-

edge to connect as more vertices as possible—that is, we expand the degree of

each potential hyperedge as close as possible to the largest justified value. We

do this by using a robust inlier noise scale estimator. Scale estimation is very

important for robust model fitting because that it can be used to dichotomize

inliers from outliers. Accordingly, we use it to determine whether a hyperedge

e is incident with a vertex v or not. Based on this, each hyperedge is expanded
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Model Estimation with minimal−order hypergraph

(a)

Model Estimation with large−order hypergraph

(b)

Model Estimation with maximal−order hypergraph

(c)

Figure 4: Segmentation results obtained by NCut for circle fitting. (a), (b) and (c) show the

NCut segmentation on a 4-uniform, 8-uniform and nonuniform hypergraph, respectively. The

data points with blue, yellow and red color are inliers, outliers and subsets connected by a

hyperedge, respectively.

from the smallest justified degree (i.e., each hyperedge only connects the vertices

that correspond to its minimal sampled subset) as close as possible to the largest

justified degree (i.e., each hyperedge connects the vertices that correspond to all

the inlier data points decided by using the inlier scale estimator). In this paper,

we adopt the Iterative Kth Ordered Scale Estimator (IKOSE) proposed in [13]

to estimate the inlier scale (here, we adopt IKOSE because of its efficiency and

simplicity of implementation. Of course, we can also adopt other inlier noise

scale estimators, e.g., ALKS [23], MSSE [24] and TSSE [25], instead of IKOSE).

We argue that expanding degrees of hyperedges is necessary and reasonable

for improving the fitting accuracy. Purkait et al. [19] proved that NCut [26]

trusts larger degrees of hyperedges (i.e., each hyperedge connects more number

of vertices in a hypergraph) more than smaller degrees of hyperedges. Fig. 4

shows the NCut segmentation results for circle fitting on a 4-uniform, 8-uniform

and nonuniform (i.e., different hyperedges may connect variable number of ver-

tices) hypergraph, from which we can see that the eight data points (in the

8-uniform hypergraph) constrain a circle better than the four data points (in

the 4-uniform). However, using the largest justified degrees of hyperedges (in the
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nonuniform hypergraph) can fit the circle more accurately. Ideally, a hyperedge

(in the nonuniform hypergraph) connects all vertices that represent inlier data

points of the corresponding model hypothesis. Though, of course, we cannot

guarantee that all outliers are not wrongly recognized as inlier data points of a

particular model hypothesis, especially for data with a large number of outliers.

However, when vertices that represent most of inlier data points belonging to a

model hypothesis are connected by the corresponding hyperedge and when most

of outliers are removed by hypergraph pruning (in Sec. 2.3), then the effective-

ness of the hypergraph with the largest justified degrees of hyperedges will not

be affected by a few outliers. This will be further verified in experiments (see

Sec. 5.1).

We can see that, in addition to the advantage that the degrees of hyperedges

in the hypergraph constructed by the proposed method are much larger than the

ones in the hypergraph constructed by the previous works [15–18], the hyper-

graph constructed by the proposed method has an important attribute that it

allows hyperedges of arbitrary degrees. In contrast, the hypergraphs constructed

by the previous works [15–18] have used a fixed degree (and moreover, mostly of

the smallest justified degree). This is because the hyperedges of the hypergraph

constructed by the proposed method connect the corresponding vertices based

on the estimated inlier scale and different model hypotheses may have different

numbers of inlier data points. That is, the constructed hypergraph contains

“data-driven” (hence, varying) degrees of hyperedges.

2.2. Hypergraph Weighting

Large hypergraphs are computationally costly to deal with, and many hy-

peredges are less important: therefore, we introduce a weighting function to

capture this degree of importance, so that we can identify and prune the less

significant hyperedges whose weight scores are small. For the model fitting

problem, ideally, the hyperedges corresponding to the true “structures” in the

data (i.e., the hyperedges connecting more numbers of vertices corresponding

to inliers in the data), should have weight scores that are as high as possible;
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in contrast, the weight scores of the other hyperedges should be as low one as

possible.

Inspired by [13], we assign each hyperedge a weight based on the non-

parametric kernel density estimate techniques [27]. The weight of a hyperedge

ei can be written as

ωei =
1

n

n∑
j=1

KM(r̂eivj/ĥei)

s̃ei ĥei
, (1)

where n is the number of vertices; s̃ei is the estimated inlier scale of the corre-

sponding hypothesis; r̂eivj is the residual derived from the corresponding hypoth-

esis and data point; KM(·) is the popular Epanechnikov kernel [27], which is

written as follows:

KM(λ) =

 0.75(1− ‖λ‖2), ‖λ‖ ≤ 1,

0 , ‖λ‖ > 1,
(2)

where ĥei is the bandwidth of the i-th hyperedge, and it can be defined as [27]

ĥei =

[
243

∫ 1

−1 KM(λ)
2
dλ

35n
∫ 1

−1 λ
2KM(λ)dλ

]0.2
s̃ei . (3)

As discussed in [13], a model hypothesis (here, a corresponding hyperedge)

with more numbers of inlier data points and smaller residuals should have a

higher weight score.

2.3. Hypergraph Pruning

Dealing with a large and high degree hypergraph often has the high com-

putational complexity. Therefore, based on the weighted hyperedges (described

above), we can select some significant hyperedges (with higher weight scores)

by pruning insignificant hyperedges (with lower weight scores). However, how

to select significant hyperedges is not a trivial task, i.e., it is difficult to decide

a threshold for making a cut between what to prune and not to prune. A data

driven threshold is desirable since hyperedges are usually different for differ-

ent hypergraphs. In this paper, we adopt the information theoretic approach
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proposed in [28], which uses a filtering process to choose data points, to select

significant hyperedges. Although one could reasonably ask whether there are

better methods for this, for the moment we have only explored this option and

it is shown to be highly effective in experiments (see Sec. 5).

For a set of hyperedges E = {e1, e2, . . . , em} and the associated weights

W = {ωe1 , ωe2 , . . . , ωem}, where m is the number of the hyperedges, let $i =

max(W )−ωei denote the gap between the weight of ei and the maximum weight

of all hyperedges. Then we normalize $i to obtain the prior probability:

p($i) =
$i∑m
i=1 $i

. (4)

The entropy can be defined as

L = −
m∑
i=1

p($i) log p($i). (5)

The significant hyperedges with a higher probability than the entropy L can be

selected by

Ê = {ei|L+ log p($i) < 0}. (6)

After selecting significant hyperedges, we remove insignificant hyperedges

and the vertices that are not connected by any significant hyperedge. We note

that the removed vertices usually correspond to outliers in the data. Thus we

can obtain a simplified and more effective hypergraph (with less influence by

outliers) for model fitting.

3. Sub-Hypergraph Detection via Hypergraph Partition

The result of hypergraph partitioning of a hypergraph is a set of sub-hypergraphs.

Each sub-hypergraph represents a potential model instance in data. For a sub-

hypergraph GB = (VB , EB , ωB), VB is a subset of the vertices V and EB is the

hyperedges of GB . Each hyperedge is assigned a positive weight value ωB . In

this section, we propose a novel hypergraph partition algorithm, which cannot

only adaptively estimate the number of sub-hypergraphs, but also be highly

robust to multi-structural data with outliers.
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3.1. Hypergraph Partition

Before we propose the novel hypergraph partition algorithm, we first briefly

introduce the hypergraph partition algorithm in [26] because the proposed al-

gorithm is one of its variants. We choose this algorithm because it generalizes

the well-known “Normalized cut” pairwise clustering algorithm [29] from simple

graphs to hypergraphs, and it has been proven to be very effective [30, 31].

Given a hypergraph G = (V,E, ω) and the associated incident matrix H,

the degree of a vertex v ∈ V is defined to be d(v) =
∑

e∈E ω(e)h(v, e), and the

degree of a hyperedge e ∈ E is defined to be δ(e) =
∑

v∈V h(v, e). Based on

this, Dv, De and W are used to represent the diagonal matrices of the vertex

degrees, hyperedge degrees, and hyperedge weights, respectively.

The hypergraph G can be partitioned into two parts A and B, A ∪B = V ,

A ∩ B = ∅. The hyperedge boundary ∂A := {e ∈ E|e ∩ A 6= ∅, e ∩ B 6= ∅} is

a hyperedge set that partitions the hypergraph G into two parts, A and B. A

two-way hypergraph partition is then defined as

Scut(A,B) =
∑
e∈∂A

ω(e)
|e ∩A||e ∩B|

δ(e)
. (7)

For a hypergraph, a two-way normalized hypergraph partition is written as

NScut(A,B) = Scut(A,B)

(
1

vol(A)
+

1

vol(B)

)
, (8)

where vol(A) is the volume of A, i.e., vol(A) =
∑

v∈A d(v), and vol(B) is simi-

larly defined.

Then, in [26], Eq. (8) is relaxed into a real-valued optimization problem as

per Eq. (9), which is a NP-complete problem:

arg min
q∈R|V |

∑
e∈E

∑
{u,v}⊂e

ω(e)

δ(e)

(
q(u)√
d(u)

− q(v)√
d(v)

)2

= arg min
q∈R|V |

2qT4q, (9)

where q is a label vector and the hypergraph Laplacian matrix 4 = I −

D
− 1

2
v HWD−1e HTD

− 1
2

v , where I denotes the identity matrix. The eigenvector

associated with the smallest nonzero eigenvalue of 4 is a theoretical solution of

Eq. (9).
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Algorithm 1 Hypergraph Partition for Sub-Hypergraph Detection

Input: A hypergraph G and the largest possible sub-hypergraphs number C

1: Compute the hypergraph Laplacian matrix 4 = I−D−
1
2

v HWD−1e HTD
− 1

2
v .

2: Obtain the eigenvector matrix Y by selecting the C smallest eigenvectors of

4.

3: Find the best alignment of Y ’s columns to recover the rotation matrix R

(see [33]).

4: Determine the number of sub-hypergraphs k0 by minimizing Eq. (10).

5: Assign the vertices of the hypergraph to the k0 sub-hypergraphs according to

the alignment results U , i.e., sm̂ = {vi ∈ V |maxj Uij = Uim̂}, m̂ = 1, . . . , k0.

Output: sub-hypergraphs Ŝ = {s1, s2, . . . , sk0}.

For a multi-way classification of vertices in the hypergraph, the first k eigen-

vectors with the k smallest eigenvalues of 4 can be taken as the representations

of the vertices, as in [32]. After that, the k-means algorithm is used to obtain

final clustering results.

3.2. Sub-Hypergraph Detection

The hypergraph partition algorithm in [26] (described above) is very effec-

tive, but it cannot adaptively estimate the number of sub-hypergraphs, and it

conducts the final clustering by the k-means algorithm, which is usually sensi-

tive to the initialization. However, one important task in fitting multi-structural

data is to automatically estimate the number of the structures in the data, and

multi-structural data usually contain outliers. Therefore, we improve that hy-

pergraph partition algorithm by introducing an idea from Zelnik-Manor and

Perona [33]. They presented a spectral clustering algorithm which obtains final

clustering results by non-maximum suppression and adaptively finds the number

of groups by exploiting the structure of eigenvectors.

The spectral clustering algorithm in [33] minimizes the cost of aligning the

top eigenvectors, to determine the number of groups. For a normalized affinity

14



matrix, the cost function is defined as

E =

n∑
i=1

C∑
j=1

U2
ij

(maxj Uij)2
, (10)

where C is the largest possible group number, and U is a matrix derived from

the rotation matrix R of an eigenvector matrix Y (Y consists of the C top

eigenvectors of the normalized affinity matrix), i.e., U = Y R (R is an orthogonal

matrix).

By combining the advantages of both the hypergraph partition algorithm in

[26] and the spectral clustering algorithm in [33], we propose a novel hypergraph

partition algorithm for sub-hypergraph detection (see Algorithm 1). This novel

algorithm can adaptively detect sub-hypergraphs, and it is more robust than

the hypergraph partition algorithm in [26] because it obtains final clustering

results by non-maximum suppression instead of the k-means clustering process

(in detecting sub-hypergraphs). Although there is a parameter C used in the

proposed hypergraph partition algorithm, it has a clear meaning which means

the largest possible number of model instances included in data, and the result

of the proposed hypergraph partition algorithm is not sensitive to the value of

C. We set its value to 10 (which means that we assume that there are 10 model

instances, at most, included in data), and we do not change the C value in all

of the following experiments.

4. The Proposed Hypergraph based Model Fitting Method

By the hypergraph partition algorithm, we can adaptively obtain k0 sub-

hypergraphs. Each partition in a hypergraph would ideally be related to a

single model instance in data (for each model instance there is a partitioned sub-

hypergraph, and for each partitioned sub-hypergraph there is model instance).

However, unless the partition has only one hyperedge, in practice it tends to

have multiple models within a single partition, which are essentially imperfect

estimates of the same model. Thus we need to select the best representative

(i.e., the hyperedge with the highest weight).
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Algorithm 2 Hypergraph based Geometric Model Fitting

Input: Data points X, the C value and the K value

1: Sample many minimal subsets, which are used to generate the corresponding

potential hyperedges.

2: Expand the hyperedges according to IKOSE and assign each hyperedge a

weight by the approach introduced in Sec. 2.1.

3: Select some significant hyperedges by Eq. (6) and then remove the vertices

without being connected by any significant hyperedges by hypergraph prun-

ing.

4: Detect sub-hypergraphs Ŝ = {s1, s2, . . . , sk0
} by Algorithm 1.

5: Select the best representative of hyperedges in each sub-hypergraph.

6: Eliminate duplicate hyperedges by the mutual information theory [13].

Output: The retained hyperedges (model hypotheses) and the vertices (in-

liers) connected by the associated hyperedges.

Now, we have all the ingredients developed in the previous sections, based

on which, we propose the complete hypergraph based fitting method (HF) (see

Algorithm 2). The proposed HF method well formulates the problem of geomet-

ric model fitting as a hypergraph partition problem. HF consists of two main

steps, i.e., hypergraph construction (described in Sec. 2) and sub-hypergraph

detection (described in Sec. 3). Besides the parameter C, there is the other

parameter (i.e., K) used in the proposed hypergraph-based fitting method: K

is the K-th ordered point used in IKOSE to estimate the inlier scale. The value

of K in IKOSE has a clear meaning and it does not have significant influence on

the performance of model selection by the proposed HF. As for the number of

the sampled minimal subsets, one can easily estimate its value when the outlier

percentage and the dimension of the model parameters are known [6].

To characterise the computational complexity, we focus on the verification

stage for a hypothesize-and-verify framework, and we do not consider the time

for sampling subsets (i.e., Step 1). For hypergraph modelling (i.e., Step 2 and

Step 3), the complexity approximately amounts to O(M), where M is the num-
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ber of hyperedges (i.e., the number of generated model hypotheses). For the

sub-hypergraph detection (i.e., Step 4), the computational cost of Algorithm 1

is mainly used to compute the Eq. (10). So, the complexity of Step 4 is about

O(C ∗ n), where n is the number of data points. For Step 5 and Step 6, they

only deal with a small amount of data, thus they are efficient. Therefore, the

total computational complexity of HF is approximately O(M) since the value

of M is usually larger than the value of C ∗ n.

5. Experiments

We evaluate the proposed method (HF) on synthetic data and real images,

and compare it with four state-of-the-art robust model fitting methods, namely,

KF [12], RCG [17], AKSWH [13] and T-linkage [14]. All of the competing

methods can handle multi-structural data and estimate the number of model

instances2. Our test environment is MS Windows 7 with Intel Core i7-3630

CPU 2.4GHz and 16GB RAM.

Since all the competing fitting methods operate a hypothesize-and-verify

framework and we focus on the verification stage; to be fair, we first generate

model hypotheses by using the proximity sampling technique [11, 34] for all

these methods. There are 5, 000 model hypotheses generated for line fitting in

Sec. 5.1, 10, 000 model hypotheses generated for homography based segmenta-

tion in Sec. 5.2.1, and 20, 000 model hypotheses generated for two-view based

motion segmentation in Sec. 5.2.2. Then we fit the model instances of the

input multi-structural data by the five competing fitting methods using the

same model hypotheses generated from the sampling step. We optimize the

parameters of all the competing fitting methods on each dataset for the best

performance.

2For KF and T-linkage, we use the codes published on the web: http://cs.adelaide.

edu.au/~tjchin/doku.php?id=code and http://www.diegm.uniud.it/fusiello/demo/jlk/,

respectively. For RCG and AKSWH, we use the codes provided by the authors.
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(a) (b) (c) (d) (e) (f)

Figure 5: Examples for line fitting and segmentation. 1st to 4th rows fit and segment three,

four, five and six lines, respectively. The corresponding outlier percentages are respectively

86%, 88%, 89% and 90%. The inlier scale is 1.5. (a) The original data with 100 inliers for

each line, are distributed in the range of [0, 100]. (b) to (f) The results obtained by KF, RCG,

AKSWH, T-linkage and HF, respectively.

5.1. Synthetic Data

Firstly, we evaluate the performance of the five fitting methods on line fit-

ting using four challenging synthetic datasets (see Fig. 5). Given the set of

ground-truth and estimated line parameters, i.e., p = {p1, p2, . . . , pa0} and

p̃ = {p̃1, p̃2, . . . , p̃b0}, we compute the error between the pair of parameters

as ‖pi − p̃j‖/
√

2 [12]. Then the fitting error between p and p̃ is computed as

[12]:

error = |a0 − b0|+
min(a0,b0)∑

i=1

minϕi, (11)

where ϕi represents the set of all pairwise errors at the i-th summation.

We repeat each experiment 50 times and show the average results of fitting

errors in parameter estimation and the computational speed, i.e., the CPU time

(we exclude the time used for sampling and generating potential hypotheses
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Table 1: The fitting errors in parameter estimation (and the CPU time in seconds). The

smallest fitting errors are boldfaced.

KF RCG AKSWH T-linkage HF

3 lines
0.01 0.00 0.00 0.00 0.00

(14.79) (0.35) (1.52) (142.91) (1.15)

4 lines
0.48 0.32 0.32 0.34 0.25

(18.45) (0.42) (1.59) (180.57) (1.32)

5 lines
1.86 2.64 0.27 0.44 0.32

(25.56) (0.58) (2.85) (250.27) (1.18)

6 lines
0.48 3.15 0.51 0.51 0.47

(34.70) (0.60) (2.98) (314.94) (1.24)

which is the same for all the fitting methods) in Table 1, and we also show the

best fitting results obtained by all the fitting methods in Fig. 5.

From Fig. 5 and Table 1, we can see that for the three line data, the five

fitting methods succeed in fitting all the lines with low fitting errors. For the

four line data, the five methods also succeed in fitting all the lines, but HF

achieves the most accurate results among the five methods. For the five line

data, KF correctly fits four lines but fails in fitting one line because many inliers

are wrongly removed. RCG only correctly fits two lines. Four model instances

estimated by RCG overlap to one line. In contrast, AKSWH, T-linkage and HF

correctly fit all the lines with the three relatively low fitting errors. The data

points are not correctly segmented by T-linkage because T-linkage is a data

clustering based fitting method, which cannot effectively deal with the data

points near the intersection. For the six line data, RCG only correctly fits two

lines although it correctly estimates the number of lines in data by using some

used-adjusted thresholds. All of KF, AKSWH, T-linkage and HF succeed in

fitting all six lines, but HF achieves the lowest fitting error. Overall, AKSWH

and HF have achieved good performance on all the four synthetic datasets, and

T-linkage succeeds in fitting all lines with low averaged fitting errors while it

wrongly segments many data points for the five line data and the six line data.
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Figure 6: The average fitting errors obtained by HF based on the constructed hypergraph in

this paper and different uniform hypergraphs with different fixed degrees in data with different

outlier percentages: (a) and (b) show the performance comparison on the three line data, and

the four line data, respectively.

For the performance in terms of computational time, RCG achieves the

fastest speed while it achieves the worst fitting errors for the five line data and

the six line data. In contrast, HF achieves the second fastest speed and the

lowest or the second lowest fitting errors for all four datasets. HF achieves

similar speed with AKSWH for the three line data and the four line data, but

it is about 140% faster than AKSWH in fitting the five line and six line data.

HF is faster than KF and T-linkage for all four datasets (about 12.8-27.9 times

faster than KF and about 124.2-253.9 faster than T-linkage).

We also evaluate the performance of HF based on the constructed hyper-

graph in this paper, and the different uniform hypergraphs with different fixed

degrees in data with different outlier percentages, which can show the ability

of hyperedges with large degrees in dealing with the model fitting problem, as

shown in Fig. 6. We use two datasets (i.e., the three line data and the four

line data) in Fig. 5 for the evaluation. We change the number of outliers to

obtain different outlier percentages on the two data. From Fig. 6(a), we can

see that HF based on different hypergraphs with different degrees achieves low

fitting errors for the three line data with different outlier percentages, but HF

based on the proposed hypergraph (recall that the hyperedges have larger jus-

tified degrees in the hypergraph) obtains more stable fitting results than HF
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(a) (b) (c) (d) (e) (f)

Figure 7: Qualitative comparisons on homography based segmentation using a subset of the

data, namely Ladysymon, Sene, Library, Elderhalla, Neem and Johnsona in the top-down

order (only one of the two views is shown for each case). (a) The ground truth segmentation

results. (b) to (f) The results obtained by KF, RCG, AKSWH, T-linkage and HF, respectively.

based on the other hypergraphs. For the four line data with different outlier

percentages, as shown in Fig. 6(b), HF achieves better results as the hyperedge

degree is increased while HF based on lower hyperedge degree generally obtains

larger fitting errors. This further verifies that using large degrees of hyperedges

is beneficial for the hypergraph partition in HF.
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Table 2: The segmentation errors (in percentage) on homography based segmentation (and

the CPU time in seconds). The smallest segmentation errors are boldfaced.

Ladysymon Sene Library Elderhalla Neem Johnsona

KF
16.46 12.08 13.19 12.15 10.25 25.74

(3.06) (5.14) (3.34) (3.54) (6.32) (16.53)

RCG
22.36 10.00 9.77 10.37 11.17 23.06

(0.83) (0.82) (0.71) (1.66) (0.83) (1.36)

AKSWH
8.44 2.00 5.79 0.98 5.56 8.55

(2.87) (2.73) (2.13) (2.79) (2.49) (2.93)

T-linkage
5.06 0.44 4.65 1.17 3.82 4.03

(20.86) (22.78) (16.04) (15.28) (21.40) (57.11)

HF
3.12 0.36 2.93 0.84 2.90 3.75

(2.27) (2.15) (1.70) (1.92) (2.19) (2.49)

5.2. Real Images

In this section, we evaluate the performance of the five fitting methods using

real images from the AdelaideRMF datasets [35]3 for homography based seg-

mentation (see Fig. 7) and two-view based motion segmentation (see Fig. 8).

The ground truth segmentation is also provided by the authors of [35]. We

randomly select six datasets for each of the two applications, respectively.

The segmentation error is computed using the criterion of [3] and [14]:

error =
number of mislabeled data points

total number of data points
. (12)

We repeat each experiment 50 times. We show the average results of seg-

mentation errors and the computational speed, i.e., the CPU time (as before, we

exclude the time used for sampling and generating potential hypotheses which is

the same for all the fitting methods) in Table 2 and Table 3. The corresponding

best segmentation results obtained by the five fitting methods are also shown

in Fig. 7 and Fig. 8.

3http://cs.adelaide.edu.au/~hwong/doku.php?id=data
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(a) (b) (c) (d) (e) (f)

Figure 8: Qualitative comparisons on two-view based motion segmentation using a subset of

the data, namely Cubetoy, Cubechips, Breadcube, Gamebiscuit, Biscuitbookbox and Cube-

breadtoychips, in the top-down order. (a) The ground truth segmentation results. (b) to (f)

The results obtained by KF, RCG, AKSWH, T-linkage and HF, respectively.

5.2.1. Homography based segmentation

As shown in Fig. 7 and Table 2, KF succeeds in fitting four datasets (i.e., the

“Ladysymon”, the “Sene”, the “Library” and the “Neem” data), but it fails in

fitting the other two datasets (i.e., the “Elderhalla” and the “Johnsona” data).

And it also achieves high average segmentation errors for all the six datasets.

The reason why KF achieves the bad average segmentation errors is that outliers

are often clustered with inliers when KF uses the proximity sampling technique,

and many inliers are often wrongly removed or outliers are wrongly recognized

as inliers by KF. We note that RCG cannot achieve stable fitting results when
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Table 3: The segmentation errors (in percentage) on two-view based motion segmentation

(and the CPU time in seconds). The smallest segmentation errors are boldfaced.

D1 D2 D3 D4 D5 D6

KF
12.53 8.42 14.83 13.78 16.06 31.07

(6.08) (7.94) (7.07) (7.66) (8.50) (25.68)

RCG
13.35 13.43 12.60 9.94 16.87 37.95

(1.34) (1.69) (1.53) (2.36) (1.71) (1.83)

AKSWH
7.23 4.72 5.45 7.01 8.54 14.95

(4.97) (5.10) (6.10) (6.44) (5.11) (5.99)

T-linkage
5.62 5.63 4.96 7.32 1.93 3.11

(51.65) (64.87) (46.17) (91.49) (53.44) (91.05)

HF
2.45 4.23 2.23 6.59 1.93 3.67

(4.87) (4.98) (5.42) (5.59) (4.98) (5.56)

(D1-Cubetoy; D2-Cubechips; D3-Breadcube; D4-Gamebiscuit; D5-Biscuitbookbox;

D6-Cubebreadtoychips.)

the model hypotheses contain many bad structures, and it succeeds in fitting 5

out of 6 datasets. However it achieves high average segmentation errors for all

the six datasets. RCG often wrongly estimates the potential structures in data

during detection of the dense subgraphs. AKSWH obtains good performance

and succeeds in fitting all the six data. However, sometimes two potential struc-

tures in the data are clustered together by AKSWH (i.e., in the “Ladysymon”

and the “Johnsona” data), which increases the average fitting errors. In con-

trast, both T-linkage and HF obtain good performance, but HF achieves the

lowest average segmentation errors for all the six datasets.

For the computational efficiency, HF takes similar computational time as

AKSWH. However, HF is about 1.3-6.6 times faster than KF and it is more

than one order faster than T-linkage for all six datasets. We note that the gap

of computational efficiency between HF and T-linkage is larger for the datasets

that contain a larger number of data points, e.g., the “Johnsona” data (HF is

about 22.9 times faster than T-linkage). This is because that the agglomerative
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clustering step in T-linkage takes more time to deal with a large number of data

points. RCG is faster than HF for all the six datasets but it yields much larger

average segmentation errors.

5.2.2. Two-view based motion segmentation

From Fig. 8 and Table 3, we can see that KF achieves high average segmenta-

tion errors in all the six datasets, although it can succeed in fitting some datasets

(i.e., the “Cubetoy”, the “Cubechips”, the “Breadcube” and the “Gamebiscuit”

data). The model instances estimated by KF often overlap to one structure in

some datasets (i.e., the “Biscuitbookbox” and the “Cubebreadtoychips” data).

RCG achieves the worst results (achieving the highest average segmentation er-

rors in fitting four of the six datasets). RCG cannot effectively detect dense

subgraphs (representing potential structures in data) for model fitting when

there exists a large proportion of bad model hypotheses because the bad model

hypotheses may lead to an inaccurate similarity measure between data points

(the similarity measure plays an important role in RCG). AKSWH achieves bet-

ter fitting results than RCG and KF, and it can obtain low segmentation errors

in 5 out of 6 datasets. However, AKSWH misses one structure in the “Cube-

breadtoychips” data. In this case, most of model hypotheses (generated for the

structure with a small number of inlier data points) are removed when AKSWH

selects significant model hypotheses, and the few remained model hypotheses are

wrongly clustered. Both T-linkage and HF can effectively estimate the model

instances and achieve low segmentation errors in all the six datasets. However,

HF obtains the lowest segmentation errors in 5 out of 6 datasets. Moreover,

HF is also very efficient, i.e., HF achieves the second fastest speed among the

five fitting methods in all six datasets (RCG achieves the fastest speed while it

cannot effectively estimate the model instances in most cases).

5.2.3. 3D-motion segmentation

In this sub-section, we evaluate the proposed method on 3D-motion segmen-

tation. Similar to [14, 36], we formulate the problem of 3D-motion segmentation
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(a) Arm (b) People1 (c) 2T3RTCR (d) Cars5

Figure 9: Some results of 3D-motion segmentation obtained by the proposed method for

several sequences in the Hopkins 155 dataset are shown.

as a subspace clustering problem. We evaluate HF on the Hopkins 155 motion

dataset [37]4, and we show some results obtained by HF on Fig. 9. We can see

that HF successfully estimates the subspace on the motion datasets with two

motions (i.e., “Arm” and “People1”) and three motions (i.e., “2T3RTCR” and

“Cars5”).

To provide a qualitative measure of the performance of the proposed fitting

method, we also use the “checkerboard” image sequence as [36], and we are able

to compare directly to PM [36] and indirectly to RANSAC, Energy minimiza-

tion [38], QP-MF [39] and SSC [40]5. Table 4 shows the results obtained by all

the competing methods. The results (except the results obtained by AKSWH

and HF) are taken from [36] (here, AKSWH is performed by formulating the

problem of 3D-motion segmentation as a subspace clustering problem). For the

datasets with two motions, as shown in Table 4, we can see that HF achieves the

second lowest average segmentation error (which is only inferior to that obtained

by SSC) in all eight fitting methods. However, HF achieves a zero median seg-

mentation error as SSC does. In contrast, AKSWH cannot achieve good results.

This is because inliers and outliers are hard to be distinguished when the resid-

ual values from the data points to the hypotheses are small and confusingly close

4http://www.vision.jhu.edu/data/hopkins155
5Here, we use the same input datasets as PM, and thus we can compare the proposed

method to PM directly. The results obtained by RANSAC, Energy minimization, QP-MF

and SSC are taken from [36], by which we can compare the proposed HF with them indirectly.
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Table 4: The segmentation errors (in percentage) on 3D-motion segmentation.

RANSAC Enargy QP-MF SSC PM T1 PM T2 AKSWH HF

2 Motions

Mean 6.52 5.28 9.98 2.23 3.98 3.88 10.96 2.57

Median 1.75 1.83 1.38 0.00 0.00 0.00 4.64 0.00

3 Motions

Mean 25.78 21.38 15.61 5.77 11.06 6.81 22.28 6.75

Median 26.01 21.14 8.82 0.95 1.20 1.04 26.06 4.91

to each other, which causes that AKSWH cannot effectively cluster hypotheses

based on the information derived from inliers. For the datasets with three mo-

tions, HF achieves the second best average result and the fourth lowest median

error in all eight fitting methods. In contrast, AKSWH achieves the second

worst average result (which is only superior to that obtained by RANSAC) and

the eighth median error in all eight fitting methods. Therefore, the superiority

of HF over AKSWH on 3D-motion segmentation is obvious. Compared with

SSC which shows better performance, HF can estimate the number of model

instances and is more robust to outliers.

5.3. Failure cases

In this sub-section, we investigate the circumstances in which the proposed

method cannot correctly estimate the number of the model instances in data.

Figs. 10(b) and 10(d) show the failures of HF on the “Unionhouse” and the

“Bonhall” data. The model instances corresponding to the undetected planes

on the “Unionhouse” and the “Bonhall” data have very few inliers, which is

due to the small physical size or lack of textures on the surface of the missing

structure [4]. The number of inliers belonging to different model instances in

these datasets is extremely unbalanced, which have great influence on the effec-

tiveness of fitting methods. Note that the proposed method selects significant

hyperedges by the step of hypergraph pruning to improve the effectiveness and

efficiency of sub-hypergraph detection, but this will increase the challenge due

to the fact that this step may also remove most of good model hypotheses that

27



 

 

(a)

Undetected plane

(b)

 

 

(c)

 

 

Undetected plane

Undetected plane

(d)

Figure 10: Two examples show that the proposed method fails to estimate the number of

model instances in homography based segmentation (only one of the two views is shown for

each case). (a) and (c) The ground truth segmentation results on the “Unionhouse” data

and the “Bonhall” data. (b) and (d) The results obtained by HF. The undetected planes are

pointed by black arrows.

correspond to the model instances with few inliers in unbalanced data. In ad-

dition, one more challenge involved in these examples comes from the spatial

smoothness assumption. The spatial smoothness assumption is too simple to

correctly handle complex situations where the key-point data from a plane is

broken into separate clusters. These challenges also affect the performance of

the other competing fitting methods.

We also consider the circumstance in which the proposed method deals with

the data where the inliers belonging to two model instances are not separated

well. Fig. 11(a) shows an example of this circumstance on the “Elderhallb” data.

We note that the proposed method improves the stability to effectively estimate

the number of model instances in the data by eliminating duplicate hyperedges

(by the step 6 in Algorithm 2). This step can effectively help the proposed

method improve the average fitting accuracy in most cases. However, this step

may also fuse two model instances when their inliers are not separated well, as

shown in Fig. 11(b). This is because the data points near the intersection of two

model instances wrongly increase the value of the mutual information shared by

the two corresponding model hypotheses. Note that the other fitting methods

(such as KF and AKSWH) cannot effectively deal with data points near the

intersection of two model instances as well, while it can be counterbalanced by

the proposed method if the number of model instances in data is provided in
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Figure 11: One example shows that the proposed method deals with the “Elderhallb” data

in which the inliers belonging to two model instances are not separated well in homography

based segmentation (only one of the two views is shown). (a) The ground truth segmentation

results on the “Elderhallb” data. (b) and (c) The results obtained by HF without and with

providing the correct number of model instances beforehand, respectively.

advance (i.e., replacing the step 4 of Algorithm 1 by using a user-specified model

instance number) according to the ground truth, as shown in Fig. 11(c).

6. Conclusions

In this paper, we have presented a novel hypergraph based fitting method

(HF) for geometric model fitting. HF formulates the geometric model fitting

problem as a hypergraph partition problem based on a hypergraph model, in

which each vertex represents a data point and each hyperedge denotes a model

hypothesis. The hypergraph is derived from model hypotheses and the corre-

sponding inlier data points, and it contains large and “data-determined” degrees

of hyperedges, which can effectively express the relationships between model

hypotheses and data points. We have also developed a robust hypergraph par-

tition algorithm for effective sub-hypergraph detection. The proposed method

can adaptively estimate the number of model instances in data and in parallel

estimate the parameters of each model instance.

HF deals with the partitioning problem with a variant of the hypergraph

partition algorithm introduced in [26]. The previous hypergraph partition al-

gorithms are often not suitable for model estimation problems, since those al-

gorithms tend to find a balanced cut [15]. However, HF separates data points

into k clusters simultaneously instead of a two-way partition. In addition, the
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hypergraph constructed in this paper contains hyperedges of large degrees and

removes a large number of outliers in data by hypergraph pruning (which are

beneficial to the global clustering). Overall, HF can effectively solve the parti-

tioning problem for model fitting. In terms of computational time, HF is very

efficient because it adopts the effective hypergraph pruning and sub-hypergraph

detection. The experimental results have shown that HF generally performs bet-

ter than the other competing methods on both synthetic data and real images,

and HF is faster than most of the state-of-the-art fitting methods.
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