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Abstract

Cervical cancer is one of the most common types of cancer in women worldwide. Most deaths due 

to the disease occur in less developed areas of the world. In this work, we introduce a new image 

dataset along with expert annotated diagnoses for evaluating image-based cervical disease 

classification algorithms. A large number of Cervigram® images are selected from a database 

provided by the US National Cancer Institute. For each image, we extract three complementary 

pyramid features: Pyramid histogram in L*A*B* color space (PLAB), Pyramid Histogram of 

Oriented Gradients (PHOG), and Pyramid histogram of Local Binary Patterns (PLBP). Other than 

hand-crafted pyramid features, we investigate the performance of convolutional neural network 

(CNN) features for cervical disease classification. Our experimental results demonstrate the 

effectiveness of both our hand-crafted and our deep features. We intend to release this multi-

feature dataset and our extensive evaluations using seven classic classifiers can serve as the 

baseline.
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1. Introduction

Cervical cancer ranks as the second most common type of cancer in women aged 15 to 44 

years worldwide [1]. Over 80% of deaths due to the disease occur in less developed regions 

of the world [1]. Therefore, there is a need for lower cost and more automated screening 

methods for early detection of cervical cancer, especially those applicable in low-resource 
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regions. Screening procedures can help prevent cervical cancer by detecting cervical 

intraepithelial neoplasia (CIN), which is the potentially precancerous change and abnormal 

growth of squamous cells on the surface of the cervix. According to the World Health 

Organization (WHO) [1], CIN is divided into three grades: CIN1 (mild), CIN2 (moderate), 

and CIN3 (severe). Lesions in CIN2/3+ require treatment, whereas mild dysplasia in CIN1 

only needs conservative observation because it will typically be cleared by an immune 

response in one year. Thus, in clinical practice one important goal of screening is to 

differentiate CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ [2]).

Widely used cervical cancer screening methods today include Pap tests, HPV tests, and 

visual examination. Pap tests involve collecting a small sample of cells from the cervix and 

need a laboratory and trained personnel to examine these samples under a microscope for 

squamous and glandular intraepithelial lesions (SIL). Also Pap tests suffer from low 

sensitivity in detecting CIN 2/3+ [3]. HPV tests are DNA tests which detect human 

papillomavirus (HPV) strains associated with cervical cancer. The sensitivity of HPV tests in 

detecting CIN 2/3+ lesions varies greatly [3]. Colposcopy is a visual diagnostic procedure 

that often involves taking a biopsy. Digital cervicography, a non-invasive visual examination 

method that takes a photograph of the cervix (called a Cervigram®) after the application of 

5% acetic acid to the cervix epithelium, has great potential to be a primary or adjunctive 

screening tool in developing countries because of its low cost and accessibility in resource-

poor regions. However, one concern with cervicography is that its overall effectiveness has 

been questioned by reports of poor correlation between visual lesion recognition and high-

grade disease, as well as disagreement among experts when grading visual findings. To 

address this concern and investigate the feasibility of using images as a screening method for 

cervical cancer, we conjecture that computer algorithms can be developed to improve the 

accuracy in grading lesions using visual (and image) information. This conjecture is inspired 

and encouraged by recent successes in computer-assisted Pap tests such as the ThinPrep 

Imaging System (TIS) [4], FocalPoint [5], and the work by Zhang et al. [6]; these computer-

assisted Pap tests apply multi-feature Pap smear image classification using support vector 

machines (SVM) and other machine learning algorithms, and they have been shown to be 

statistically more sensitive than manual methods with equivalent specificity.

In this work, we describe our efforts in building a dataset of multiple features extracted from 

Cervigram images along with patient diagnosis ground truth for evaluating image-based 

cervical disease classification algorithms. First, we design a new type of pyramid features. 

From each image, we extract three complementary pyramid features: Pyramid histogram in 

L*A*B* color space (PLAB), Pyramid Histogram of Oriented Gradients (PHOG), and 

Pyramid histogram of Local Binary Patterns (PLBP). Second, besides hand-crafted pyramid 

features, we investigate the performance of convolutional neuron network (CNN) features 

for cervical disease classification. Third, on this multi-feature dataset, we also present some 

baseline results of applying different classic machine-learning algorithms (e.g., SVM, 

random forest) to differentiate patient visits that are high-risk from those visits that are low-

risk. We train binary classifiers to separate CIN1/Normal and CIN2/3+ images. All the 

classifiers are trained and tested on the same dataset, with a uniform parameter optimization 

strategy. They are then compared by ROC curves and other evaluation measures. On the 
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same dataset, our lower-cost image-based classifiers can perform comparably or better than 

human interpretation on other traditional screening results, such as Pap tests and HPV tests.

2. Related Work

Several computer-assisted Pap tests have been approved by United States Food and Drug 

Administration (USFDA), such as ThinPrep Imaging System (TIS) [4] and FocalPoint [5]. 

These methods were shown to be statistically more sensitive than manual methods with 

equivalent specificity. Encouraged by these developments, a data-driven algorithm [2] was 

developed for automated cancer diagnosis via analyzing Cervigram images. In contrast to 

Pap tests [4, 5], Cervigrams are images captured by the non-invasive and low cost digital 

cervicography. To further improve the classification performance, Song et al. [7] combined 

the Cervigram information with other clinical test results such as Pap and HPV; however, 

these other clinical tests require additional resources that may not be available in resource-

poor areas of the world.

The choice of feature descriptors is one of the most important factors for image 

segmentation and classification. Several types of features [2, 7, 8, 9, 10] have been proposed 

to encode Cervigram information. Li et al. [8] identified acetowhite regions by analyzing 

local color features. Zimmerman et al. [9] detected specularities in Cervigrams by utilizing 

image intensity, saturation, and gradient information. In the work by Ji et al. [10], texture 

features were used to recognize important vascular patterns in Cervigrams. In [2, 7], the 

authors combined the pyramid histogram of oriented gradients (PHOG) and the pyramid 

color histogram in L*A*B space (PLAB) features to perform region of interest (ROI) 

segmentation and CIN classification.

In addition to feature descriptors, classifiers also have great influence on the performance of 

a machine-learning based classification method. Neural networks, support vector machines 

(SVM), k-Nearest Neighbors (KNN), linear discriminant analysis (LDA), and decision trees 

are commonly used for studying cervical cancer [11]. Kim et al. [2] applied a linear SVM to 

classify Cervigrams into CIN1/normal or CIN2/3+, while Song et al. [7] utilized KNN 

coupled with a majority voting algorithm to perform the CIN classification. Zhang et al. [12] 

proposed a discriminative sparse representation for tissue classification in Cervigrams. In the 

work by Lee et al. [13], the authors developed a system which integrates multiple classifiers 

including neural network classifiers, statistical binary decision tree classifiers, and a hybrid 

classifier.

3. An Image Data Set with Multiple Features for CIN Classification

Here we introduce a dataset for image-based CIN classification, built from a large medical 

data archive collected by the National Cancer Institute (NCI) in the Guanacaste project [14]. 

The archive consists of data from 10,000 anonymized women, and the data is stored in the 

Multimedia Database Tool (MDT) developed by the National Library of Medicine [15]. In 

the archive, each patient typically had multiple visits at different ages. During each visit, 

multiple cervical screening tests including cervicography were performed. The 
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cervicography test produced two Cervigram images for a patient during her visit and the 

images were later sent to an expert for interpretation.

In our dataset, we used 1112 patient visits, 345 positive (CIN2/3/cancer) and 767 negative 

(CIN1/Normal). For each patient, the ground truth diagnosis is based on the Worst Histology 

result of that patient visit: multiple expert histology interpretations were done on each 

biopsy; the most severe interpretation is labeled the Worst Histology for that visit in the 

database. Note that our dataset is unbalanced, i.e. it contains more negative cases than 

positive cases. Since many classification methods assume a balanced distribution of classes 

and require additional strategies to handle unbalanced data, we apply under-sampling to the 

negative visits and randomly choose 345 negative visits from each dataset. In this paper, we 

will use this balanced sub-dataset, including all 345 positive visits and the randomly selected 

345 negative visits.

Interpretations based on Cervigram images have been shown to be an effective way to detect 

CIN2/3+ [2]. Some of the most important visual observations in Cervigrams include the 

acetowhite region, and features within that region, such as mosaicism, punctation, and 

atypical vessels; it is important to distinguish these possibly disease-related features from 

benign features such as polyps or cysts. Fig. 1 shows some example images of those 

observations [7]. To robustly identify these characteristics which are helpful for diagnosis, 

we propose a type of hand-crafted pyramid features. We also investigate the performance of 

deep features for cervical disease classification, which have achieved superior performance 

in many other domains [16].

3.1. Hand-crafted Pyramid Features

Previous works [2, 7, 8, 9, 10] have shown that the local color, gradient and texture features 

are good at encoding Cervigram information. For example, color plays a key role to detect 

the presence of acetowhitened regions in Cervigrams; gradient plays important role in 

detecting specularities; texture is important for the identification of mosaicism and vessel 

pattern. We convert the pixel colors in a Cervigram into the perceptually uniform L*A*B 

color space because of its property: a small change in the color value corresponds to about 

the same small change in visual appearance. We utilize LBP for texture encoding and HOG 

for gradient encoding because of their great success in various classification tasks.

We extract multi-scale pyramid histogram features to encode the statistical appearance 

information in Cervigrams, as shown in Fig. 2. First, we isolate the cervix region of interest 

(ROI) from the input image and resize it to 300*250 pixels. We use the method proposed in 

[2] to segment the ROI. Second, we transform the ROI image patch into different types of 

feature maps, including the local binary pattern (LBP) map, L*A*B color channels, and the 

image gradient maps. Third, we construct a spatial pyramid of sub-regions for each feature 

map. We then extract and concatenate pyramid LBP (PLBP), pyramid LAB (PLAB) and 

pyramid Histogram of Oriented Gradients (PHOG) features to be a multi-feature descriptor.

Color and Image Gradient—Color plays an important role in cervical lesion 

classification, because one of the most important visual features on the cervix that have 

relevant diagnostic properties is the presence of acetowhitened regions. Thus, the color 
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feature is widely used in Cervigram analysis [2, 7, 12]. We calculate the L*A*B color 

channels as our color feature maps. To capture edge and shape information, we calculate the 

gradient map, which is shown to be complementary to the color feature [2, 7].

Texture—In addition to the color and gradient features, we introduce a new local binary 

pattern (LBP) feature that extracts local texture characteristics for cervical lesion 

classification. Ojala et al. [17] first introduced LBP and showed its powerful ability for 

texture classification. In a local neighborhood of an input image, given a pixel (xc, yc) which 

is surrounded by 8 neighbors, we can calculate its LBP value by Eq. (1),

(1)

Where ic indicates the gray-scale value of the center pixel (xc, yc); ip corresponds to the 

gray-scale value of the pth neighbor. s(x) is a sign function where s(x) = 1, if x ≥ 0; else, s(x) 

= 0.

Later, several extensions of the original LBP operator were presented [18]. First, the LBP 

was extended to a circular neighborhood of different radii, denoted as LBPP,R which refers 

to P equally spaced pixels on a circle of radius R. Furthermore, the rotation invariant local 

binary pattern is defined in Eq. (2),

(2)

Where ROR(LBPP,R, i) performs a circular bit-wise right shift on the P-bit LBPP,R, for i 
number of times.

To obtain the LBP map, we compute the  value for each pixel in the input image. 

Because of the neighborhood constraints when capturing LBP features, pixels on the 

boundary of the input image within the R range do not have any LBP values. We set those 

pixels’ values to be zeros or to be their closest neighbors’ LBP values.

In this paper, we use . There is no need to use LBP with other radii because our 

pyramid histogram LBP feature (PLBP) can encode a multi-scale local binary pattern.

Pyramid Feature Extraction—As Fig. 2 shows, we construct a spatial pyramid for each 

feature map. A pyramid is constructed by splitting the image into rectangular sub-regions, 

increasing the number of regions at each level, i.e., level 0 has 1 sub-region; level 1 has 4 

sub-regions; level 2 has 16 sub-regions, and so forth. Histogram features are extracted from 

each of these pyramid sub-regions. The extracted pyramid histograms encode the statistical 

distribution of feature values at different positions and scales in a cervigram.
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For the PLBP feature, the total number of bins is 10 for the histogram of a sub-region. A 4-

level pyramid is constructed resulting in a PLBP histogram feature that has 850 dimensions. 

For the PLAB feature, we use 3 pyramid levels with a 16-bin histogram for each channel in 

L*A*B color space in each sub-region. Thus, the PLAB color feature has 1,008 dimensions. 

In the gradient map, we calculate the histogram of oriented gradients (PHOG) for each 

subregion in the pyramid. An 8-bin orientation histogram over a 4-level pyramid is used. 

Hence, the total vector size of our PHOG feature is 680. Finally, we construct a multi-feature 

descriptor by concatenating the three different types of features, PLBP-PLAB-PHOG. Thus, 

this handcrafted multi-feature descriptor has a vector size of 2,538.

3.2. CNN Deep Features

The work by Razavian et al. [16] indicates that the deep features extracted from 

convolutional neural networks (CNN) are very powerful for many recognition tasks. In this 

work, we investigate the performance of CNN deep features for cervical disease 

classification. In contrast to hand-crafted features, CNN features are automatically learned 

from a large number of images. We extract CNN features using the open-source package 

Caffe [19] with its ImageNet pre-trained CaffeNet. CaffeNet is a variant of AlexNet [20]. It 

consists of five convolutional layers and two fully connected layers (fc6 and fc7) and a final 

1000-way softmax (fc8). Besides those main layers, there are some other layers, such as 

max-pooling layers and normalization layers. As in the published work [16], we extract the 

4096 dimensional CNN features from the fully connected layer (fc6 or fc7).

To make the CNN features more discriminative for our CIN classification task, we also fine-

tune the pre-trained CaffeNet from ROIs extracted in Cervigram images. We replace the 

original 1000-way fc8 layer in CaffeNet with our new 2-way fc8 layer with randomly 

initialized weights drawn from a Gaussian distribution with σ = 0.01 and μ = 0. Based on the 

loss curve on the training dataset, we find the appropriate base learning rate and weight 

decay. We set 0.0001 as the learning rate of all pre-trained convolutional layers and fully 

connected layers and increase the learning rate by a factor of 10 (i.e., to 0.001) for our new 

fc8 layer. The weight decay is set to be 0.5. The ROI of each training image is resized to 

256*256 pixels and then cropped to the 227*227 network input size. Flipped training images 

are also used in the fine-tuning process. For testing and for feature extraction, each ROI is 

directly resized to 227*227 and no cropping and flipping are used.

4. Seven Classifiers for Comparison

On the Cervigram image dataset introduced above, we compare seven classic machine 

learning methods, including random forest (RF), gradient boosting decision tree (GBDT), 

AdaBoost, support vector machines (SVM), logistic regression (LR), multilayer perceptron 

(MLP), and k-Nearest Neighbors (kNN). Some of these, such as SVM, have been widely 

used in the field of medical image analysis [21, 22, 23, 24], while others, like random forest 

and GBDT, have been used only in the recent few years [25]. There are additional published 

works that aim to compare classifier performances on benchmark datasets. For example, 

Morra et al. [21] compared AdaBoost with SVM while Osareh et al. [22] compared SVM 

with neural networks. In both papers, the comparisons were done between two classifiers. In 

Xu et al. Page 6

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the work by Wei et al. [23], more classifiers were studied, but ensemble methods like RF and 

GBDT were not included. In this paper, we conduct a comprehensive comparison of seven 

popular classifiers. Next, we briefly introduce each of them.

Random Forest (RF) is an increasingly popular machine learning method [26]. It builds an 

ensemble of many decision trees trained separately on a bootstrapped sample set of the 

original data. Each decision tree grows by randomly selecting a subset of candidate 

attributes for splitting at each node. We optimize parameters for RF by searching the number 

of trees in {10, 100, 200, 500, 1000, 2000} and searching the subset size of features for node 

splitting among {’sqrt’, 100, 200, 500, 1000, 2000} where ’sqrt’ is the square root of the 

whole feature size.

Gradient boosting decision tree (GBDT) is a kind of additive boosting model which, in 

general, can be expressed as Eq. (3)

(3)

where β is called the expansion coefficient, and serves as the weight of the tree in each 

iteration, and b(x; γ) are usually simple basic functions, e.g. decision tree, characterized by 

parameters γ. Details for the training process of GBDT can be found in [26]. We optimize 

the parameters for GBDT by searching the number of trees among {10, 100, 200, 500, 1000, 

2000} and the learning rate in {1, 0.1, 0.01, 0.001, 0.0001}.

Adaboost is a classic boosting tree model [27]. It has the form H(x) = Σtαtht(x), which can 

be trained by minimizing the loss function in a greedy fashion. An optimal weak classifier ht 

is selected for each training iteration t. We use shallow decision trees (i.e. stumps) as the 

weak learners. In the final strong classifier H(x), the weight of the weak classifier ht(x) is αt, 

which is inversely proportional to the classification error of ht(x). To optimize parameters for 

AdaBoost, we search the depth (d) of each decision tree in {1, 2, 3, 4} and the number of 

weak classifiers from 10 to the whole feature size with an increment of 120/d.

Multilayer perceptron (MLP) is a feed-forward neural network. MLP uses layer-wise 

connected nodes to build the architecture of the model. Each node (except for the input 

nodes) can be viewed as a neuron with a nonlinear activation function. In this paper, we use 

the sigmoid Eq. (4) as the activation function,

(4)

where the weight vector w and bias vector b in each layer pair are trained by the Back 

Propagation algorithm. We also introduce L2 regularization weight decay to prevent over-

fitting. We optimize hyper-parameters for MLP by searching the hidden layer size in {2, 3}, 
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the hidden unit size in {0.0625*m, 0.125*m, 0.25*m} where m is the feature size 2538, and 

searching the weight decay strength among {0.0005, 0.0001, 0.00001, 0.0}.

Logistic regression is a type of probabilistic statistical classification model. For the binary 

classification problem, with labeled sample set , it computes the positive 

probability by Eq. 5 and the model parameter is trained to minimize the cost Eq. (6).

(5)

(6)

In our experiments, we use the batch gradient descent algorithm with L2 regularization to 

train the model. The strength of regularization is searched from 10−5 to 105, with an 

increment of 1 for the exponent.

Support vector machines (SVM) is one of the most widely used classifiers in medical 

image analysis [2, 6, 21, 22]. It performs classification by constructing a hyperplane in a 

high-dimensional feature space. It can use either linear or non-linear kernels, and its 

effectiveness depends on the selection of kernel, the kernel’s parameters, and the soft margin 

parameter C. Linear SVM is widely used because it has good performance and fast speed in 

many tasks. In this paper, we also choose to use the linear SVM; we did try nonlinear 

kernels such as the radial basis functions (RBF) but they are time consuming and did not 

improve performance in our task. For linear SVM, we need to optimize the parameter C. Let 

C = 2m, we search m in the range [−8, 9] with a step increment of 1.

k-Nearest Neighbors (kNN) is one of the simplest classifiers, which classifies a new 

instance by a majority vote of its k nearest neighbors. In this paper, we use the Euclidean 

distance metric to find the k nearest neighbors. We search the optimal k value for our task in 

the range [1, 50] with a step increment of 1.

5. Experiments

On the image dataset with multiple types of features introduced in Section 3, we use the 

same ten-round ten-fold cross validation to evaluate our features and compare different 

classifiers. We randomly divide the samples (Cervigrams) into ten folds. In the ten rounds, 

we rotationally use one fold for testing and nine folds for training (or fine-tuning the 

CaffeNet). On the training set, we use a uniform strategy, Exhaustive Grid Search [28], to 

search for the optimal parameters of each classifier. The exact parameters and search ranges 

for each classifier are discussed in the Section 4. Note that there are two images from each 

patient visit, which are visually similar but not identical. We have to avoid using one image 

for training while the other image is being used for testing. Thus we construct two separate 

Xu et al. Page 8

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image datasets, D1 and D2, and randomly assign one image of a visit to D1 and assign the 

other image from the same visit to D2. We compute the average results on D1 and D2 to 

represent the visit-level performance. By default, we show the visit-level performance in all 

our experiments.

The results of our ten rounds are used to draw ROC curves. We compare different features or 

classifiers by analyzing their ROC curves, areas under ROC curves (AUC), and accuracy, 

sensitivity and specificity values at the point with the default probability threshold of 0.5. 

We also compare the results of our image-based classifiers with several other screening tests 

results, obtained for the same visits that are used to construct our dataset.

All our experiments are conducted on the computer with 3.0Ghz Intel Xeon E5-2623 CPU 

and 64 GB memory. The GPU card used in training the deep CNN network is Nvidia TITAN 

X. Since we use the ImageNet pre-trained model as the weight initialization for our deep 

CNN network, the training converges fast for our dataset and the total training time is about 

half an hour. For testing, the proposed CNN framework can achieve real-time speed (18ms 

per image), which demonstrates promising efficiency for future applications.

5.1. PLBP-PLAB-PHOG Feature vs. PLAB-PHOG

We evaluate the performance of our PLBP-PLAB-PHOG feature descriptor by comparing it 

with the baseline feature PLAB-PHOG [2, 7]. In Fig. 3, we compare their visit-level 

performance in ROC curves produced by linear SVM classifier trained on different features. 

It shows that the PLBP-PLAB-PHOG feature outperforms PLAB-PHOG. For example, our 

PLBP-PLAB-PHOG increases the accuracy from 73.70% to 77.17% at the probability 

threshold of 0.5. The best accuracy of PLBP-PLAB-PHOG feature is 78.12% achieved at 

83.19% sensitivity and 73.04% specificity, while the best accuracy of PLAB-PHOG is 

74.28%. Consequently, adding PLBP makes a better feature descriptor for Cervigram 

images.

5.2. Evaluation of Seven Classic Classifiers with PLBP-PLAB-PHOG Feature

In this set of experiments, we compare seven classifiers described in Section 4 based on our 

handcrafted PLBP-PLAB-PHOG feature. The implementations for the seven classic 

classifiers are from well known open source libraries. The Random Forest, GBDT, and LR 

classifiers are implemented with scikit-learn [29]; the MLP classifier is provided by 

pylearn2 [30]; the SVM is from Libsvm [28]; the AdaBoost is provided by Appel et. al. [27]; 

and the kNN classifier is provided by the implementation in MATLAB.

Our comparison results on D1 and D2 are shown in Fig. 4 as ROC curves, which illustrate 

that the three ensemble-tree models— RandomForest (RF), GBDT, and AdaBoost—

outperform other classifiers. At the 5% significance level, there is no difference between 

RandomForest, GBDT and AdaBoost. For instance, on D1 the p value is 0.0708 by paired t-

test between RF (1st rank) and AdaBoost (3rd rank). However, these three ensemble-tree 

classifiers are significantly better than all other classifiers. The p value is 0.0062 and 1.7191 

* 10−4, by paired t-test between RF (1st rank) and SVM (4th rank), and between RF and 

kNN (lowest rank), respectively. We conjecture that the ensemble-tree models perform best 
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because they are more robust to over-fitting than other models such as SVM and MLP when 

dealing with scalar data sets that are not too large.

5.3. Evaluation of CNN Deep Features

In this subsection, we evaluate the CNN deep features extracted from different layers and 

trained with different classifiers. Based on the results shown in Fig. 5 and Table 1, we have 

several observations. (1) CNN features extracted directly from pre-trained CaffeNet perform 

much worse than our hand-crafted PLBP-PLAB-PHOG feature descriptor. We believe the 

reason is that our task (i.e. cervical disease classification) is far too different from the 

original task of CaffeNet (i.e. object recognition in natural image scenes). (2) CNN features 

extracted from fc7 greatly outperform those from fc6 in the pre-trained model. The work in 

[16] also indicates that later layers in the CNN network can improve performance. Fine-

tuning, however, did not improve the performance of fc7 as much as that of fc6, thus fine-

tuned fc6 and fine-tuned fc7 achieved similar performance; one of the reasons for this could 

be that our dataset is too small to fine tune the large number of parameters in fully connected 

layers so that there is no big difference between fc6 and fc7 after fine-tuning. (3) Compared 

with AdaBoost and SVM classifiers trained on fine-tuned CNN features, the end-to-end 

CNN architecture achieves better performance. Fig. 6 shows some false positive and true 

positive examples according to the diagnosis given by the end-to-end CNN classifier. As one 

can see, some of the false positive examples are difficult to distinguish from true positive 

examples, based on image information alone. Multi-modal interpretation, using multiple 

sources of information, may be able to improve classification performance further.

5.4. Image-based CIN classification vs. Pap and HPV tests

In clinical practice, screening methods should have high specificity (e.g., higher than 90%) 

because it is important to have low risk for unnecessary treatment for women that do not 

have disease. In Table 2, we compare our image-based CIN classification methods with 

several conventional screening methods (Pap tests and HPV tests), which are available for 

the same visits that are used to construct our dataset. As discussed in Section 1, Pap tests 

involve collecting a small sample of cells from the cervix and need a laboratory and trained 

personnel to examine these samples under a microscope. Based on the degree of the disease, 

the examination result can be classified to be low-risk (negative) or high-risk (positive). 

HPV tests are DNA tests which detect human papillomavirus strains associated with cervical 

cancer. The detection result can be negative or positive. The performance for Pap or HPV 

tests is computed based on their examination results and the ground truth. It is clear that 

those conventional methods are designed to have high specificity. For fair comparison, we 

constrain our methods to have 90% specificity in Table 2

As illustrated in Table 2, with respect to accuracy and sensitivity, our handcrafted PLBP-

PLAB-PHOG feature descriptor with random forest classifier (RF.PLBP-PLAB-PHOG) 

outperforms every single Pap test or HPV test, when achieving a specificity of 90%. When 

not constrained by the 90% specificity requirement, our image-based classifier can achieve 

even better overall accuracy. For example, our fine-tuned CNN features with Softmax 

classifier can achieve an accuracy of 78.41% with 80.87% sensitivity and 75.94% specificity 

at the default probability threshold 0.5. Consequently, on this dataset, our lower-cost image-
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based classifiers can perform comparably or better than human interpretation based on 

widely-used Pap and HPV tests; in particular, the image-based classifiers can achieve higher 

sensitivity in detecting CIN2/3+.

5.5. Discussion

Besides testing the performance of using hand-crafted or deep features separately, we have 

evaluated the performance of combining hand-crafted and deep features. Unfortunately, the 

performance is not improved. For example, the SVM classifier trained on the combined 

features achieves 79.99% AUC; but the SVM classifier using hand-crafted features only or 

using deep features alone gives 80.71% and 80.01% AUC, respectively. At the 5% 

significance level, they are proven to have no significant difference. The p value is 0.5963 

and 0.3572 by paired t-test between the combined features and hand-crafted features, and 

between combined features and deep features, respectively. This result shows that the deep 

features and hand-crafted features are not complementary for our task.

6. Conclusions

In this paper, we present a new benchmark dataset with multiple types of features for 

evaluating cervical dysplasia classification or grading algorithms. Both image features and 

ground truth diagnoses are included in the dataset. We will publish 1 the original dataset, 

sample images, fine-tuned CNN model and the source code for extracting the multiple image 

features. We will also add information from other screening tests such as Pap and HPV and 

expand the size of the dataset in the future.

Our experimental results indicate that our hand-crafted PLBP-PLAB-PHOG descriptor and 

fine-tuned CNN features outperform the baseline feature descriptor [2, 7]. Based on those 

features, our lower-cost image-based classifiers perform comparably or better than human 

interpretation on traditional Pap and HPV test, on our test dataset. Further, we adopt a 

uniform experimentation and parameter optimization framework to compare seven classic 

machine learning algorithms in terms of their performance in classifying an image into 

either CIN1/Normal (i.e. low-grade lesion/healthy) or CIN2/3+ (i.e. high-grade lesion/

cancer). The reported results can serve as a baseline for future comparisons of automated 

cervical dysplasia classification methods. From the results, we find that ensemble-tree 

models—Random Forest, Gradient Boosting Decision Tree, and AdaBoost—outperform 

other classifiers such as multi-layer perceptron, SVM, logistic regression and kNN, on this 

task. This finding is consistent with the conclusion in other works [31].
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Figure 1. 
Illustration of visual observations in Cervigrams
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Figure 2. 
Image features extraction
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Figure 3. 
Comparison of PLBP-PLAB-PHOG and PLAB-PHOG feature descriptors
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Figure 4. 
Comparison of seven classifiers based on PLBP-PLAB-PHOG feature.
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Figure 5. 
Results of CNN features
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Figure 6. 
False positive (1st row) and true positive (2nd row) examples as diagnosed by the CNN 

classifier.
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Table 1

Overall performance of CNN features at the default probability threshold 0.5. ft indicates fine-tuned model. 

The ft-CNN model utilizes the fine-tuned CNN architecture as an end-to-end classifier; while all other models 

use either handcrafted or CNN features to train classifiers. This table lists the means ± standard deviations of 

our ten-fold ten-cross validation results.

Model AUC(%) accu(%) sensi(%) speci(%)

SVM.PLBP-PLAB-PHOG 80.71±6.15 77.17±6.62 78.55±6.17 75.80±8.39

SVM.CNN-fc6 69.81±5.02 66.01±3.10 65.07±5.52 66.96±6.79

SVM.CNN-fc7 75.05±5.50 69.13±5.16 69.57±8.08 68.70±7.29

SVM.ft-CNN-fc6 79.78±4.60 74.20±4.65 75.36±7.48 73.04±6.55

SVM.ft-CNN-fc7 80.01±4.99 74.64±5.71 76.52±9.11 72.75±6.09

ADA.ft-CNN-fc7 80.30±4.07 77.39±3.89 80.87±6.69 73.91±9.23

ft-CNN 82.31±4.63 78.41±5.01 80.87±7.43 75.94±7.46

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 21

Table 2

Comparison of visit-level performance: our image-based classifiers vs. Pap tests and HPV tests.

Method accu(%) sensi(%) speci(%)

Alfaro ThinPrep 51.26±10.02 20.69±19 81.82±5.07

Cytyc ThinPrep 69.01±4.77 49.55±8.14 88.46±3.33

Costa Rica Pap 63.77±4.18 39.42±7.65 88.12±3.18

Hopkins Pap 66.56±9.54 36.00±20.67 97.11±2.51

HPV16 64.01±4.66 33.82±7.41 94.19±3.69

HPV18 53.07±1.95 08.16±3.98 97.97±0.91

our RF.PLBP-PLAB-PHOG 70.50±6.02 51.00±6.07 90.00±0

our ft-CNN 65.00±5.11 40.00±7.34 90.00±0
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