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Abstract

Sparse representation based classification (SRC) is pbputed in many ap-
plications such as face recognition, and implemented instteps: representation
coding and classification. For a given set of testing ima§B€; codes every image
over the base images as a sparse representation then etagdifi the class with
the least representation error. This scheme utilizes amidchel representation
rather than the collective one to classify such a set of imageing so obviously
ignores the correlation among the given images. In this pap@int representa-
tion classification (JRC) for collective face recognitisrproposed. JRC takes the
correlation of multiple images as well as a single repredént into account. Un-
der the assumption that the given face images are geneetdiied to each other,
JRC codes all the testing images over the base images simaaltsly to facilitate
recognition. To this end, the testing inputs are aligned atnatrix and the joint
representation coding is formulated to a generalizgd- I2 ,-minimization prob-
lem. To uniformly solve the induced optimization problerosdnyq € [1, 2] and
p € (0, 2], an iterative quadratic method (IQM) is developed. IQM ieved to be
a strict descent algorithm with convergence to the optirohit®on. Moreover, a
more practical IQM is proposed for large-scale case. Erpantal results on three
public databases show that the JRC with practical IQM no salyes much com-
putational cost but also achieves better performance Ieatale face recognition
than the state-of-the-arts.

Keywords: SRC; JRC; IQM; practical IQM.

1 Introduction

Recently, representation coding based classification tangariants have been devel-
oped for face image recognition (FR) [1-5]. This schemegeaela great success in FR
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and boost the applications of image classification [6, 7]arS@ representation based
classification (SRC) [1] is the most known one which directbgs the sparse code for
classification and efficiently recognizes the class givimgrost compact representa-
tion. The main idea can be summarized to two steps: 1) codiegting sample as a
linear combination of all the training samples, then 2) siflging the testing sample to
the most compact one by evaluating coding errors. Typic& 8Rploys the following
l1-minimization as the sparse representation model,

min [|z[|y - s.t[ly — Azlls <e, 1)

whereA € R™*4 s the dictionary of coding atoms agds R™ is a given observation.
r € R%is the coding vector and > 0 denotes a noisy level. SRC outputs the identity
ofy as

identity(y) = arg min {|ly — Az7l2}, )

where!l denotes the number of classes afids the coding coefficient vector associated
with classi. The experimental results reported in [1] exhibit that SRResne achieves
amazing performance. But the authors of [2] argued that SRE emphasized the
importance ofl;-norm sparsity but ignored the effect of collaborative esgntation.
Consequently, a collaborative representation basedfitasi®n with regularized least
square (CRC-RLS) was presented in [2] for face recognition

min||zfl; sty — Azl <. 3)

Anyway, problem (3) is easier to solve than (2) for its smoets. Models (2) and (3)
can be considered as the least square problems with differgularizers,

minly — Az|3 + Al and minly — Az]3 + A3, @

Moreover, Wright et al. [3] ever used varidat-norm to improve the coding fidelity
of y overA,
min |y — Azly + Al (5)

Actually, the models (2)-(5) can be uniformly included i thhamework

min [ly — Az[g + Allz[j, 1<¢<2,0<p<2. (6)

In (6), the representation and regularization measureseeatextended to be||,( 1 <
g <2)and| - ||,(0 < p < 1) respectively. This modification provides possibility to
adaptively choose the most suitable model for differentiepfions. Moreover, the
computational experiences [13-15] have showed that &naatinormi, (0 < p < 1)
exhibits sparser pattern thap-norm. The unified generalization formula (6) is ex-
pected to achieve better performance. On the other handgIinf@)is a vector repre-
sentation based framework which implies the following weedses.

e Model (6) uses coding vector to represent testing samplesgrone. In many
face recognition, a great of number of images for each knavajest have been col-
lected from video sequence or photo album. The face redogriias to be conducted



with a set of probe images rather than a single one [8]. Indhge, representation
coding based classification like model (6) can not efficiewtbrk.

e Any testing sample is coded independently from each oth@)inThis approach
takes no account of the correlation hidden in the image de¢. difference and simi-
larity between multiple pictures are totally ignored. Iisll known that the collective
faces share some similar feature patterns, such as eye ¢ pigels is more powerful
in discrimination than those of forehead or cheek.

e Wheng, p in (6) take different values, the involved optimization plems have
to be solved by different algorithms. For example, (1) iwsdlbyi, — I solver [9] or
alternative direction of multiplier method while (3) ch@sshe algorithm presented in
[2].

To overcome the weaknesses in (6) and make sufficient usdlettive relation-
ship among the given set of images, we consider to jointlyasgnt all the test sam-
ples simultaneously over the training sample base. Heremy#oy matrix instead of
vector as the coding variable to evaluate the distributibfeature space. This idea
induces a joint representation based classification (JRQ)dilective face recognition
and reduces it to & , — [2 ,-minimization. To solve the derived optimization prob-
lem, a unified algorithm is designed and its convergencewiehs also analyzed.
Experiments on three public face datasets validate theawemnent of JRC over the
state-of-the-arts.

This paper is organized as follows. In the second sectionjra fepresentation
based classification (JRC) will be established. The thiotiee is dedicated to a uni-
fied algorithm for solving the special optimization problémduced by JRC. Some
computational details are considered in the fourth sediwh an improved practical
algorithm is proposed. The experimental results are redantthe last section.

2 Joint Representation Classification for Collective Face
Recognition

2.1 Joint Representation Model

Suppose that we haveclasses of subjects in the datasdt. € R™*% (1 < i < I)
denotes the-th class, and each column df; is a sample of clasé Hence all the
I
training samples are aligned by = [A;, As,--- , A;] € R™*?, whered = > d;.
=1
Given a collection of query images, y2, - - - ,y» € R™, model (6) codes eag)) (1 <
j < n) by the training sampled as

y; ~ Az, @)

wherez; € R? is the coding vector associated wigh. If y; is from thei—th class,
then A; is the most compact representation dictionary and the @pselutionz; to

(6) can be used for classification. Obviously, coding pat{@) depends on the single
test sampley; individually for classification but takes no account of trarelation
with other samplesiy(,! # j). Even though different frontal faces take on different



appearances, they share similar features such as two eydésa@ms at the upper face
while nose and mouth at the lower. Difference and similasftynultiple face pictures
form a unitary feature of the given set of images which playiraportant role for
collective face recognition.

DenoteY = [y1,y2,- - ,yn] € R™*™ all the query images, we propose to jointly
represent the image set simultaneously by

Y ~ AX, (8)

whereX = [z, 1, --,1,] € RY*" stands for the collective coding matrix. As far
as the columns are concerned, system (8) is an easy consequig(7). To measure
the fidelity of the joint coding system (8), we considérin another sense. Let’ ¢
R4 andY’ € R™ be thei—th (i = 1,2,---,m) row vectors of matrixA andY
respectively, formula (8) is equivalent to

XT(AHYT =~ (vHT for i=1,2,---,m. 9)

It is noticed thatA andY array the sampled images column by column, hence their
rows span the feature space. In feature extraction viewgahiective coding matrix

X also projects the training feature space to approximataesbing feature space.
Traditional least square regression aims to minimize tharer

- T giNT T (2 - i W2
H}%HZ;HX (A" = ()" llz or H§D2HAX—Y||2- (10)

Actually (10) can be easily reformulated as

: VY2
H}én;H(AX V)3, (11)

where(AX — Y)? is thei—th row vector ofAX — Y. Especially when the number
of columninAX — Y is 1, the formula (11) is reduced to the fidelity function of (4).
Then we prefer a uniform generalization of (4) and (5) in these

m

D IAX =) 3, (1<qg<2). (12)

i=1

Under the assumption that joint representation and fedfstgbution share the similar
pattern for all testing face images, we use the followingitagzation

d
SIxUE, (0<p<2) (13)
=1

whereX" is thei—th row vector ofX fori = 1,2,---,d. Combining (12) and (13),
we present the joint representation model for classifica®follows

m d
min Y [[(AX —Y)[3+ A (X5 (1<q<20<p<2). (14)
=1 i=1

4



When the number of column iFi is 1, model (14) is reduced to coding vector version
(6). Compared with coding vectar, joint coding matrixX unites sample representa-
tion with feature projection which somewhat reflects thegnal structure of dataset.
Hence (14) is a general extension of (3)-(6). To simplifyfivenulation, we introduce
the mixed matrix norni, ,, (p > 0) (taking || X ||2,, for example)

d
. :
X2 = O IXTB)7, X € RO™, (15)
1=1

whereX® denotes thé—th row of X. Then (14) is rewritten as

Ir}%nHAX—YHg,q—f—)\HXHg,p, (1<¢g<2,0<p<2). (16)

Especially wherp € (0, 1), l2, is not a valid matrix norm because it does not satisfy
the triangular inequality of matrix norm axioms. MeanwtHitee involved fractional
matrix norm based minimization (16) is neither convex nqdchitz continuous which
brings computational challenge. Designing an efficienbatgm for suchly , — I3 -
minimizations is very important. It is also the most chafjeny task in this paper.

2.2 Joint Representation Based Classification

For fixed parametey andp, suppose thaX * is a minimizer of optimization problem
(16), that is

X" = argmin [ AX — Y3, + M| X5, (17)
If X* is partitioned tal blocks as follows
X7
X*=| X; |, (18)
X7

whereX; ¢ R¥>n (1 <4 < I). Let X;* denote the coding matrix associated with
classi, that is

0
Xr=| xr |, (19)

0
thenAX; = A; X (1 < i < I). For each testing imagg (j = 1,2,---,n), we
classifyy; to the class with the most compact representation. By etiatythe error
corresponding to each class

H(Y_AXZ*)J”27 2213277] (20)



we pick out the index outputting the least error. The joipresentation based classifi-
cation for face recognition can be concluded as follows.

Algorithm 2.1. (JRC schemefor FR)

1. Sart: Given A € R™*4 Y € R™*" and select parameters A > 0, ¢ € [1,2]
andp € (0,2].

2. Solvely 4 — lo ,-minimization problem (16) for coding matrix X *.

B Forj=1:n
Fori=1:1
ei(y;) = [[(Y — A X7);ll2
end
Identity (y;) = arg lrglgl{ei(yj)}
end

Whenn = 1, observationY” contains only a single testing sample and JRC is
reduced to vector representation based classificationh&uon, SRC, CRC-RLS and
l1-norm fidelity model (5) are the special cases of JRCwhem2 & p=1,g=p =2
andg = p = 1 respectively. In short, the main contributions of JRC lig in

1. JRC implements collective face representation simatitasly. This scheme is
more economical and efficient in computational cost and dRid.t Moreover,
JRC can handle image set based face recognition which biedde applica-
tions of vector representation based classifications.

2. Joint coding technique fuses the difference of eachigsample representation
and the similarity hidden in the feature space of multipleefanages. For ex-
ample, wherd < p < 1 all query image are jointly represented by the training
samples with the similarly sparse feature distribution.

3. In the next section, a uniform algorithm will be developedolve the optimiza-
tion problem (16) for any; € [1,2] andp € (0,2). The algorithm is strict
decreasing until it converges to the optimal solution tobpem (16). To the
best of our knowledge, it is an innovative approach to sobehsa generalized
la,q — l2 p-minimization.

Itis worth to point out that the JRC scheme can be easily ee@ifor the presence
of pixel distortion, occlusion or high noise in test imagekadify (8) as

Y=AX+F, (21)
whereE € R™*"™ is an error matrix. The nonzero entriesiofocate the corruption or
occlusion inY. Substituted = [A, I] € R™*(d+m) and X = 27( € Rld+m)xn

for A and X respectively, a stable joint coding model can be formuléded

min |[AX - Y|, +AIX[5,, (1<q¢<2,0<p<2). (22)
X



X*
E*
a clean image from corrupted subject. To identity the tgssampley;, we slightly
modify the error ofy; with each subject;(y;) = [|(Y — E* — A;X}),ll2. Thus a
robust JRC is an easy consequence of Algorithm 2.1. The smoraling algorithm
and theoretical analysis can be similarly demonstratets Jdgper will not concentrate
on this subject.

Once a solution * = to (22) is computed, setting* = Y — E* recovers

3 An lterative Quadratic Method for JRC

Obviously, efficiently solving optimization problem (18pgs the most important role
in scheme 2.1. The mentioned models (1), (3) and (5) are apexses of (16), the
algorithms used in [1-3] to solve those special problemsdibe directly extended.
Such generally mixed matrix norm based minimizations atia@e been widely used
in machine learning. Rakotomamonjy and his co-authors pt6posed to use the
mixed matrix norm, , (1 < ¢ < 2,0 < p < 1) in multi-kernel and multi-task learn-
ing. But the induced optimization problems in [10] have todoéved separately by
different algorithms with respect o= 1 and0 < p < 1. For grouped feature selec-
tion, Suvrit [11] addressed a fast projection technique éng-norm balls particularly
for p = 2,00. But the derived method in [11] does not match model (16). il&m
joint sparse representation has been used for robust nmaléihbiometrics recognition
in [12]. The authors of [12] employed the traditional alt@ting direction method of
multipliers to solve the involved optimization problem.eNét al. [16] applieds o -
norm to semi-supervised robust dictionary learning, wikike optimization algorithm
has not displayed definite convergence analysis.

In this section, a unified method will be developed to soled4h —I5 ,-minimization
(16) for anyl < ¢ < 2 and0 < p < 2. Especially wherp € (0,1), (16) is neither
convex nor non-Lipschitz continuous which results in muemputational difficulties.
Motivated by the idea of algorithm in [17] for solvirlg, (0 < p < 1)-based mini-
mization, we design an iteratively quadratic algorithmdochi, ,—I2 ,-minimization.
Moreover, the convergence analysis will be uniformly destated.

3.1 An lteratively Quadratic Method
After simply transformation, the definition ¢fX||5 , (15) can be rewritten as
X5, = Tr(XTHX), (23)

where

€ (0,2);
= 2’

kNI
~—~~
N
N
N

)

dia L_ L ... L
H:{ g{nXlH% PUIXZ3TRY X3 7h



andT'r(-) stands for trace operation. If denote

i 1 1 “ e 1 N
G = diagf [AX-Y)Z77 [(AX=Y)2577 7 [[(AX=Y)™|3~* bhoa€ll2)
I, q=2,
(25)
the objective function of (16) can be reformulated to
J(X) :=Tr(AX —Y)TG(AX - Y)) + \Tr(XTHX). (26)

Hence the/X K'T' point of unconstrained optimization problem (16) is alse station-
ary point of J(X),

0.J(X)

o qATG(AX —Y)+ \pHX =0, (27)

solving (16) is reduced to find the solution to equations .(2T)ATGA + /\§H is
invertible, equation (27) is equivalent to

X = (ATGA+ \2m)tATqy. (28)
q

To find the iterative solution to system (28), let us consaletosely related opti-
mization problem

min J(X) i= Tr((AX = Y)"G(AX ~Y)) + /\gTr(XTHX). (29)

J(X) is almost equivalent to'(X) in spite of a scaled factdt in regularization pa-
rameter. If an iterative approximate solutiéf, to (29) has been generate@l;, and

Hj, can be derived fromX;, as definitions (24, 25). Then we can compute the next
iterative matrixXy; by solving the following subproblem

min Tr((AX = V)T Gy(AX = Y)) + ASTT(XTHkX). (30)

Actually, (30) is a scaled quadratic approximationkQX) at the iterative point
X Let M, = AT G A+ A2 Hy, sinceG), andHj, are usually symmetric and positive
definite, problem (30) is equivalent to the following quaaraptimization problem

min Q. (X) := %TT(XTMkX) —Tr(YTGLAX). (32)
The minimizer toQ(X) is also the solution to the linear system
M X = ATG,Y. (32)

Based on the analysis and equations (23-32), the niixgd I2 , (1 < ¢ < 2,0 <
p < 2) norm based optimization problem (16) can be iterativelyestbby a sequence of
quadratic approximate subproblems. Hence we name thigagiiterative quadratic
method (IQM). It is concluded as follows.



Algorithm 3.1. (IQM for Solving Problem (29))

1. Sart: Given A € R™*4 Y € R™*" and select parameters A > 0, ¢ € [1,2]
andp € (0,2].

2. Setk = 1 andinitialize X; € R4*".

3. For k =1,2,--- until convergencedo:
Hy, =diag{—=}L, (0<p<2)or H, =1 (p=2);

X157
Cy = -Y;
Fori=1:1
B; = Ai(Xk)s;
Cr = B; + Cy;
end

G = diag{W};’;l (1<g<?2)or Gy =1, (¢g=2)
M, = ATGLA + )\%Hk;
X1 = M T ATGLY.

It is noticed that each iteration has to compute the invefs&/g in Algorithm
3.1 which is expensive and unstable. Here we suggest to gritpdogeneral Penrose
inverse of M), to update theX,. Moreover, the main computatiofy, X for clas-
sification is a by-product of3; in computing the approximate solutioki*. Hence
identifying test images can be achieved with minor extrawdations.

Algorithm 3.1 is a unified method solvirlg , — l> ,—minimizations forg € [1, 2]
andp € (0, 2]. This approach provides algorithmic support to adaptieblyose better
fidelity measurement and regularization in various appbes. Especially IQM pro-
vides a uniform algorithm for solving the existed repreaioh based models: sparse
representationg(= 2, p = 1), collaborative representation & p = 2) andi;-norm
face recognitiond = p = 1).

3.2 Convergence Analysis of IQM

In this part, we will demonstrate the theoretical convergenf Algorithm 3.1. The key
point is that the objective functiofi(X) strictly decreases with respect to iterations
until the matrix sequencgXy} converges to a stationary point $fX).

Lemma 3.1. Let o(t) = t — at=, wherea € (0,1). Thenfor any ¢ > 0, p(t) < 1 —a,
and ¢t = 1 isthe unique maximizer.

Proof Taking the derivative of(¢) and set to zero, that is
Pty =1-t"" =0,

theny’(t) = 0 has the unique solutioh = 1 for anya € (0,1) which is just the
maximizer ofp(t) in (0, +00). O



Lemma 3.2. Given X}, and X}1 in R%*™, the following inequalities hold,

a4~ (AX e — V)73 g
1A% = VI3, =5 2 gz = (Al AXe - Yz, (9

and . _
P I_? ||X]i+1||§ < _ ]2 P
[ Xk+1ll2,p = 5 2 XE S (1= IXkl5, (34)
for any ¢ € [1,2) and p € (0,2). Moreover, the equalities in Eq. (33) and (34)
hold if and only if [|[(AX)11 — Y)|l2 = [[(AXy — Y)"|l2 for i = 1,2,---,m and
”‘lelc-i—lH2 = ”‘lelc”2 fori = 17 21 e ad'

I(AXg11—Y)*|2

Proof Substitutingt; = and settinga; = £ in Lemma 3.1, we

_ AX—Y )3 2
obtain g A
[AX 1 = V)3 g J(AXes = Y)'UE g (35)
[(AXy = Y)ills 2 [I(AXy = Y)i3 2
B B Y 4

Similarly takingt, = anday = § in ©(t), we have

[RSATE:

Xialh  plIXial3
|| kj{ilz')b _ B || kj1|2|2 S 1 — B . (36)
XG5 21X 2

Multiplying Eq. (35) and Eq. (36) by{(AX, — Y)||4 and || X} |5 respectively, we
have the following inequalities simultaneously

I(AX k1 = Y)'[I5

q [(AX 1 — Y3 q i
S X “ W - Gax vyl @)
(A%~ VI3

fori=1,2,---,m,and
i p ||X12+1H% p i .
Xl = 5oy < A=)IXEE,  i=1,2,---.d. (38)
2 Xl " 2

Summing ug in formulas(37) and(38), we can derivg33) and(34).

Based on Lemma 3.%; = 1 andt¢; = 1 are the unique minimizers fas(t) in
(0,+00) whena; = % anday = £ respectively. Namely||(AX; 1 — V)2 =
[(AXy — Y)'|l2 and|| X}, ]2 = || X[]|> are necessary and sufficient for equalities
hold in (37) and (38) respectively. ]

Remark 3.1. (33) and (34) are established nothing to do with Algorithm 3.1. The
inequalities expressthe innate properties of mixed matrix normsis ,—I2 ,, for ¢ € [1,2)
andp € (0,2).

Theorem 3.1. Suppose that { X } is the matrix sequence generated by Algorithm 3.1.
Then J(X},) strictly decreases with respect to k forany 1 < ¢ < 2and0 < p < 2
until { X} convergesto a stationary point of J(X).
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Proof Based onthe procedure of Algorithm 3X. 1 is the solution to linear system
(32), also the optimal matrix of problems (30) and (31). Tiwashave

Qr(Xpt1) < Qr(Xg) - (39)
Forq € [1,2) andp € (0, 2), (39) is equivalent to

(40)

P

 [(AX Hz [ Xia 3

q ;A < g AXk = Y13 4+ Aol X2
2 (ax, )1 Z:WWQP ‘

Itis noticed that/(Xy) = [[AXy — Y5, + Al Xk ,. Adding inequalities (33) and

A-(34), the following formula will be derived

(AX Y I X5qall3
J(XkJrl) ( Z W +/\p Z le‘J‘rl 2)

< J(Xk) = (3 HAXk Yl\z,q+/\”|leH 2

(41)

Based on (40) and (41)(Xx+1) < J(X}) can be easily derived far € [1,2) and
€ (0,2).
Forq = 2 orp = 2, the inequalities is much easier to derive. Taking: 2 and
p € (0,2) for example, (39) is reduced to

d_ | xé

4% =7+ 5 3 R < ax - viz, e i, @
Combining the formulas (42) and (34), we also obt&{iX 1) < J(X}). In the case
ofg=2,pe(0,2)orqg=p=2,J(Xkt1) < J(X%) can be deduced analogously.

OnceJ(X4+1) = J(Xi) happens for somg, the equalities in (40) and (41) (or
(42)) hold. Hence the equalities in (33) and (34) are activem Lemma 3.2, we obtain
(AXps1 = Y)ill2 = [(AXy, = Y)ill2 fori = 1,2, ,m and|[Xi,, ]2 = | X[
fori =1,2,--- ,d. ThusGyy1 = G andHy1 = Hj which implies thatX;,; is a
solution to (28). ]

The objective function sequen¢d (X}, )} is decreasing and lower bounded. Hence
{J(X})} eventually converges to some minimum of problem (16). Theceeding
quantity measures the convergence precision.

Remark 3.2. The stopping criterion of Algorithm 3.1 can be chosen as J(X}) —
J(Xp)—J(

J(Xp41) <eor py:= WX’““) < e for some required precision € > 0.

Theoretically,X; = 0 or C}, = 0 likely occurs in some step, thenH, andG, can
not be well updated for non-Frobenius norm cdse (p < 2 andl < ¢ < 2). We deal
with it by perturbing withs > 0 such tha{ Hy};; = 67=2 > 0 and{Gy}i; = 6972 >
0. The descending dfJ(X})} is relaxed to

J(Xps1) < J(Xp) + (1 — g)ap or J(Xnp1) < J(Xp) + (1— g)aq . (43)

If the convergence precisionis chosen fairly larger than perturbation(e > 9),
perturbed/(X}) can be still considered approximate decreasing. As a maftfect,
X} = 0andC; = 0 never happen in practical implementation.

11



4 Practical Implementation of JRC

In Algorithm 3.1, IQM has to update the matrix sequence bypating the inverse ma-
trix of M. It is expensive in practical implementation especiallylémge scale prob-
lems. Reviewing the procedure of Algorithm 3.1, we noticg %, 11 = M,;lATGkY
exactly solves thé—th subproblem (31) which is unnecessary. It is observed 81gt
is a quadratic positive definite subproblem. There are afleffitient algorithms to
solve it approximately, such as conjugate gradient mett@iient methods with dif-
ferent stepsizes, etc. In this paper, we choose BarzilaiBordiein (BB) gradient
method due to its simplicity and efficiency. BB gradient noethvas firstly presented
in [18], afterwards extended and developed in many occasiod applications [18—
23]. When applied to quadratic matrix optimization subpeai(31), the Barzilai and
Borwein gradient method takes on

x = x 0 _ o0y, (x), (44)

where the superscrift) denotes the—th iteration solving (31).VQ;€(X,§)) is the
gradient matrix ofQ (X) with respect toX,gt)

VQR(XD) = Mpx (P — ATGLY | (45)

The Barzilai and Borwein gradient method [18] chose theﬂ'mqa,(:) such thaID,(f) =
a,(f)l has a certain quasi-Newton property

Dl(f) = arg lgrlinl ||S,(:71) - DTét71)||F (46)
or
D} = arg min D757 — 17V p, (47)

where|| - ||  denotes Frobenius matrix norm aﬁﬁ_l), T,Et_l) are determined by the
information achieved at the poinIé,gt) andX,gt_l)

S](Ct—l) — X]gt) _ X]gt—l) :

48
T]Etfl) _ va(Xlit)) B va(Xétq)) _ MkSl(ctfl) _ (48)

Solving (46) yields two BB stepsizes

o _ TSy )T ) @9)
QR = T (t—D\pr(t—1)
T((Tk ) Ty )

and (t—1) (t—1)
t) TT((Sk )TSk )

®) _ k o
Tr((Sy )T MSY )

Compared with the classical steepest descent method, BBegtanethod often
needs less computations but converges more rapidly [24]optimization problems

(50)
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higher than two dimensions, BB method has theoretical diffies due to its heavy
non-monotone behavior. But for strongly convex quadratabjem with any dimen-
sion, BB method is convergent BRt-linear rate [19, 21]. BB method has also been ap-
plied to matrix optimization problem [25] and exhibited tleble performance. Based
on equations (44)-(50), the last step in Algorithm 3X},,; = M,;lATGkY, can be
practically substituted by the BB gradient method askthéh inner loop.

Algorithm 4.1. (BB Gradient Method for Solving Subproblem (31))

1. Sart: given the inner loop stopping criterion e; > 0

2. Initialize X" = X and VQ\" = M XV — ATG,Y;

3. Fort=1,2,--- until Tr(Vng)) < eg, OUtpUt Xj 11 = X,gt), do:

if t=1

o = _Tr(ve) Vo) |
ke (v T M vQ®)’

else

S}(:fl) _ X}gt) _ Xétq);
Tétq) _ ng) _ ngfl);
oz,(:) iscomputedas (49) or (50);
end
X}gtﬂ) _ X}gt) _ a,(f)VQ,(f);
VU = M XY — AT Gy Y

In the k—th inner loop, Algorithm 4.1 chooses two initial matricesaeds the ap-
proximate solutionX, to the last subproblem and another one is the Cauchy poimt fro
X}, [26] . The Cauchy stepsize,(cl) is the solution to the one-dimensional optimization
problem

min ¢(a) := Qu(Xy — aVQr(Xy)) , (51)
then the Cauchy point iX}, + a,(cl)VQk(Xk)). If My in Algorithm 3.1 is guaranteed
to be positive definite (if notH; or G, can be slightly perturbed), subproblem (31)
is a strongly convex quadratic. BB gradient method with $éeygth (49) or (50) will
converges ak—linear rate.

For simplicity, we name the IQM with inexact Algorithm 4.1agtically iterative
quadratic method (PIQM). Still deno{eX .} the approximate matrix sequence gener-
ated by PIQM. BB inner loop makes the objective function eatfi subproblem (31)
decline, that i€)(X,+1) < Q(X%). Then{J(X})} is always decreasing which is suf-
ficient and necessary f@X;, } uniformly converging to the stationary point of problem
(16). The following conclusion can be easily derived.

Theorem 4.1. Denotes X * the output point generated by PIQM, then X* is an ap-
proximate stationary point of J(X). Especially for ¢, p € [1, 2], X * isan approximate
global minimizer of optimization problem (16). When p isfractional, X* isone of KKT
points.
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An practical version of iteratively quadratic method foinjoclassification in face
recognition can be concluded as follows.

Algorithm 4.2. (PIQM for JRC)

1

Start: loading A,Y and setting A > 0, ¢ € [1,2],p € (0, 2] and precision levels
g1 > 0,52 > 0.

Employing PIQM to solve (16), output an approximate coding matrix X* :=
Xpq1.

Classifying Y by X *.

5 Experimental Results

In this section, the joint representation based classificgtIRC) with PIQM will be
applied to face recognition. Three public data sets are..Beef description is given
as follows.

AT&T database is formerly known “the ORL database of faces”. It consistg@f

frontal images for0 individuals. For each sujectf pictures were taken at dif-
ferent times, with varying lighting conditions, multipladial expression, adorn-
ments and rotations up &9 degree. All the images are aligned with dimension
112 x 92. The database can be retrieved frbtyp : //www.cl.cam.ac.uk/
Research/DTG /attarchive : pub/data/att races.tar.Z as a 4.5Mbyte com-
pressed tar file. Typical pictures can be seen in Figure 1.

Figure 1: Typical images of AT & T database

Georgia-Tech databasecontainsl5 images each df0 subjects. The images are taken

in two or three sessions at different times with differernidhexpressions, scale
and background. The average size of the faces in these inmg88 x 150
pixels. Georgia Tech face database and the annotation danibhe in

hitp : //www.anefian.com/research/ face.eco.htm. Typical pictures of
four persons are shown in Figure 2.

Figure 2: Typical images of Georgia-Tech database
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Extended Yale B databaseconsists oR414 frontal-face images di8 subjects. Each
subject has aroung@it images. The images are cropped and normalizé@2ox
168 under various laboratory-controlled lighting conditid2s, 28]. Figure 3
displays typical pictures of 4 subjects.

1 > -
‘ g 2 V ..
EEBEE. - =¥ N3

Figure 3: Typical images of Extended Yale B database

Extensive experiments are conducted for different imazggssand different param-
eters. Four comparable schemes are implemented, JRC, SRGRCS and tradi-
tional SVM classifier. JRC is practically carried out via RIQvhile SRC is solved
by I; — I, solver [9] and CRC-RLS employs the code from [2]. We realix&/S
by the software LIBSVM [30] with linear kernel, the pseudadeocan be found in
http : //www.csie.ntu.edutw/ cjlin/libsum/ faq.htmlif203. All the schemes
are implemented by Matlab R2014a(win32) on a typical 4GiBrmogy and 2.40GHz
PC.

Considering that JRC is a joint framework including SRC aROZRLS, we select
six pairs ofg, pin [1,2] and(0, 2] respectively:

q = p = 2 (corresponding to CRC-RLS
q=2

, p =1 (corresponding to SRC

and other four generalized cases

q=15&p=1, ¢=15&p=0.5,

g=1&p=1, q=1&p=0.5.
The parametek in (16) is varied from).01 to 10 each10 times, and the best result is
picked out. All the stopping precisions are $et3.

All the images are re-sized like that of [1, 2]. For AT&T dagale, the pictures are
down sampled td1 x 10. The downsampling ratios of Georgia-Tech database and
Extended Yale B database arg8 and1/16. For each subject, arours®% pictures
are randomly selected for training and the left for testiRgr exampleg pictures of
each individual in AT&T database are randomly picked outfaining while the lef2
are for testing. All the classification schemes are direagiglied to the images without
any pre-processing. The recognition accuracy and runivimg are reported in Table
1-3.

Based on the experimental results on three databases, wetdrdollowing con-
clusions:
¢ Jointly representing all the testing images simultangodisés accelerate face recog-
nition. On all the databases, JRC (g=p=2) is the fastest ®he.CPU time is thou-
sand times less than that of SRC. For example, JRC (g=p=8Jifits484 images in
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Methods The recognition accuracy CPU time
SRC 98.75 67.2658
JRC(g=2,p=1) 97.5 0.1612
CRC-RLS 95 0.0872
JRC(g=p=2) 97.5 0.0073
SVM 95 0.0667
JRC(g=1.5,p=1) 97.5 0.3867
JRC(g=1.5,p=0.5) 95 1.8756
JRC(g=p=1) 97.5 0.1994
JRC(g=1,p=0.5) 97.5 0.1640

Table 1: The recognition accuracy (%) and running time (sdo

for AT&T database

Downsampling ratio 1/8

Downsampling ratio 1/16

Methods Accuracy Time Accuracy Time
SRC 99.33 2843 97.33 3197
JRC(g=2,p=1) 99.33 2.41 97.33 1.07
CRC-RLS 98 1.95 96.67 0.66

JRC(g=p=2) 99.33 0.97 98.67 0.17
SVM 96.67 5.09 96.67 1.46

JRC(g=1.5,p=1) 99.33 4.89 98.67 3.86
JRC(g=1.5,p=0.5) 99.33 4.89 98.67 3.89
JRC(g=p=1) 99.33 5.54 99.33 1.11
JRC(g=1,p=0.5) 99.33 4.79 99.33 1.09

Table 2: The recognition accuracy (%) and CPU time (second)

for Georgia-Tech database

Down sampling ratio 1/8

Down sampling ratio 1/16

Methods Accuracy Time Accuracy Time
SRC 96.76 4828 96.36 668.53
JRC(g=2,p=1) 96.96 22.67 76.11 164.71
CRC-RLS 96.76 2.02 95.55 1.9
JRC(g=p=2) 96.96 0.75 91.29 0.34
SVM 95.55 6.12 94.33 2.61
JRC(g=1.5,p=1) 96.96 22.04 87.05 22.03
JRC(q=1.5,p=0.5) 96.96 54.21 65.59 101.59
JRC(q=p=1) 96.96 27.08 90.49 20.51
JRC(g=1,p=0.5) 96.96 26.87 91.29 25.23

Table 3: The recognition accuracy (%) and CPU time (second)

for Extended Yale B database
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0.17 second on Georgia-Tech database with downsampling tdii6. And the ac-
curacy rate i98.67%, outperforming SRC97.33%), CRC-RLS 06.67%) and SVM
(96.67%). More details can be found in Table 1-3.

¢ JRC exhibits competitive performance in recognition aacyr On AT & T database,
the recognition rate of JRC is 97.5%, compared to 98.75%RE,D5% for CRC-RLS
and SVM. On Georgia-Tech database, JRC achieves the beghiton rate (99.33%),
consistently exceeds other classification schemes. OnBrdiabase with downsam-
pling ratio1/8, JRC also outperforms other methods in accuracy. UnfotéiyaRC
does not keep the best achievement on downsamplinglratih The possible reason
is that some pictures with strong contrast of lighting (sigeife 3) aggravates the noise
for other images in joint coding.

e Differentq € [1,2] andp € (0, 2] for JRC indicate different feature pattern behind
in the image set. Taking JRG & 2,p = 1) for example, the joint model combines
sparsity of representation and correlation of multipleges The representation co-
efficients reveal the joint effect on JRG & 2,p = 1), Figure 4 gives an example
from Yale B database. Compared to SRC, JRC=(2,p = 1) concentrates a group
sparsity but not a single one. Acutally, the other testing@as (12 pictures) of the
same subject also have the similar group representatiterpat

e A D
Testing input Downsampled /8 200 400 60 B0D 1000 1200 1400 1600 1800 2000 0 20 400 60D BOD 1000 1200 1400 1600 1800 2000
ecovered coeflcients of JRC (4=2.9=1) Recovered coeficients of SRC

Figure 4: The recovered coefficients by JRC (q=2,p=1) and SRC

e The convergence behavior of PIQM for JRC is displayed in Fégb. The x axis
is the iterations and y-axis stands for the logarithmpof PIQM converges withir0
steps on three databases for all jointly sparse models @ivegandp). JRC (g=p=2)
always converges in three iterations hence its plot is eahittere. Anyway, PIQM
provides a uniform algorithm for varied JRC with respecf te [1, 2] andp € (0, 2].

oatg)

sssssssssssssss

@ (b) ©

Figure 5: (a) PIQM on AT & T(b) PIQM on Georgia-Tech (¢) PIQM Wale B
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e From Table 1-3, it is observed that CRC-RLS has a fairly gcarfiggmance in recog-
nition accuracy and CPU time. But CRC-RLS is heavily sevsitd the regularization
parameter\ (see Table 4) because it has a smooth regularizer. By cosopardRC
(q=p=2) is more stable for its joint technique. Multiple iges has complementary
effect for recognition especially when the model is ill-pds

A= 0.01 0.1 1 10 100

CRC-RLS  28.34 66.82 95 06.76 96.76
JRC(q=p=2) 96.96 96.96 96.96 96.96 96.96

Table 4: The recognition accuracy (%) for differenbn Extended Yale B database
with downsampling ratid /8

6 Conclusions

In this paper, a joint representation classification fotemtive face recognition is pro-
posed. By aligning all the testing images into a matrix, jo@presentation coding is
reduced to a kind of generalized matrix pseudo norm basechization problems. A
unified algorithm is developed to solve the mixed—!» ,-minimizations forg € [1, 2]
andp € (0,2]. The convergence is also uniformly demonstrated. To adegpalgo-
rithm to the large scale case, a practical iterative quadnaéthod is considered to
inexactly solve the subproblems. Experiment results oeetlitata-sets validate the
collective performance of the proposed scheme. The jopreentation based classi-
fication is confirmed to improve the performance in recognitiate and running time
than the state-of-the-arts.

AcknowledgementThe first author thanks software engineer Luo Aiwen for his
code support.
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