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Abstract

Sparse representation based classification (SRC) is popularly used in many ap-
plications such as face recognition, and implemented in twosteps: representation
coding and classification. For a given set of testing images,SRC codes every image
over the base images as a sparse representation then classifies it to the class with
the least representation error. This scheme utilizes an individual representation
rather than the collective one to classify such a set of images, doing so obviously
ignores the correlation among the given images. In this paper, a joint representa-
tion classification (JRC) for collective face recognition is proposed. JRC takes the
correlation of multiple images as well as a single representation into account. Un-
der the assumption that the given face images are generally related to each other,
JRC codes all the testing images over the base images simultaneously to facilitate
recognition. To this end, the testing inputs are aligned into a matrix and the joint
representation coding is formulated to a generalizedl2,q− l2,p-minimization prob-
lem. To uniformly solve the induced optimization problems for anyq ∈ [1, 2] and
p ∈ (0, 2], an iterative quadratic method (IQM) is developed. IQM is proved to be
a strict descent algorithm with convergence to the optimal solution. Moreover, a
more practical IQM is proposed for large-scale case. Experimental results on three
public databases show that the JRC with practical IQM no onlysaves much com-
putational cost but also achieves better performance in collective face recognition
than the state-of-the-arts.
Keywords: SRC; JRC; IQM; practical IQM.

1 Introduction

Recently, representation coding based classification and its variants have been devel-
oped for face image recognition (FR) [1–5]. This schemes achieve a great success in FR
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and boost the applications of image classification [6, 7]. Sparse representation based
classification (SRC) [1] is the most known one which directlyuses the sparse code for
classification and efficiently recognizes the class giving the most compact representa-
tion. The main idea can be summarized to two steps: 1) coding atesting sample as a
linear combination of all the training samples, then 2) classifying the testing sample to
the most compact one by evaluating coding errors. Typical SRC employs the following
l1-minimization as the sparse representation model,

min
x

‖x‖1 s.t.‖y −Ax‖2 ≤ ε, (1)

whereA ∈ Rm×d is the dictionary of coding atoms andy ∈ Rm is a given observation.
x ∈ Rd is the coding vector andε > 0 denotes a noisy level. SRC outputs the identity
of y as

identity(y) = arg min
1≤i≤I

{‖y −Ax∗
i ‖2}, (2)

whereI denotes the number of classes andx∗
i is the coding coefficient vector associated

with classi. The experimental results reported in [1] exhibit that SRC scheme achieves
amazing performance. But the authors of [2] argued that SRC over emphasized the
importance ofl1-norm sparsity but ignored the effect of collaborative representation.
Consequently, a collaborative representation based classification with regularized least
square (CRC-RLS) was presented in [2] for face recognition

min
x

‖x‖2 s.t.‖y −Ax‖2 ≤ ε. (3)

Anyway, problem (3) is easier to solve than (2) for its smoothness. Models (2) and (3)
can be considered as the least square problems with different regularizers,

min
x

‖y −Ax‖22 + λ‖x‖1 and min
x

‖y −Ax‖22 + λ‖x‖22. (4)

Moreover, Wright et al. [3] ever used variantl1−norm to improve the coding fidelity
of y overA,

min
x

‖y −Ax‖1 + λ‖x‖1. (5)

Actually, the models (2)-(5) can be uniformly included in the framework

min
x

‖y −Ax‖qq + λ‖x‖pp, 1 ≤ q ≤ 2, 0 < p ≤ 2. (6)

In (6), the representation and regularization measurements are extended to be‖·‖q( 1 ≤
q ≤ 2) and‖ · ‖p( 0 < p ≤ 1) respectively. This modification provides possibility to
adaptively choose the most suitable model for different applications. Moreover, the
computational experiences [13–15] have showed that fractional normlp (0 < p < 1)
exhibits sparser pattern thanl1-norm. The unified generalization formula (6) is ex-
pected to achieve better performance. On the other hand, model (6) is a vector repre-
sentation based framework which implies the following weaknesses.

• Model (6) uses coding vector to represent testing samples one by one. In many
face recognition, a great of number of images for each known subject have been col-
lected from video sequence or photo album. The face recognition has to be conducted
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with a set of probe images rather than a single one [8]. In thiscase, representation
coding based classification like model (6) can not efficiently work.

• Any testing sample is coded independently from each other in(6). This approach
takes no account of the correlation hidden in the image set. The difference and simi-
larity between multiple pictures are totally ignored. It iswell known that the collective
faces share some similar feature patterns, such as eye or month pixels is more powerful
in discrimination than those of forehead or cheek.

• Whenq, p in (6) take different values, the involved optimization problems have
to be solved by different algorithms. For example, (1) is solved byl1 − ls solver [9] or
alternative direction of multiplier method while (3) chooses the algorithm presented in
[2].

To overcome the weaknesses in (6) and make sufficient use of collective relation-
ship among the given set of images, we consider to jointly represent all the test sam-
ples simultaneously over the training sample base. Here we employ matrix instead of
vector as the coding variable to evaluate the distribution of feature space. This idea
induces a joint representation based classification (JRC) for collective face recognition
and reduces it to al2,q − l2,p-minimization. To solve the derived optimization prob-
lem, a unified algorithm is designed and its convergence behavior is also analyzed.
Experiments on three public face datasets validate the improvement of JRC over the
state-of-the-arts.

This paper is organized as follows. In the second section, a joint representation
based classification (JRC) will be established. The third section is dedicated to a uni-
fied algorithm for solving the special optimization probleminduced by JRC. Some
computational details are considered in the fourth sectionand an improved practical
algorithm is proposed. The experimental results are reported in the last section.

2 Joint Representation Classification for Collective Face
Recognition

2.1 Joint Representation Model

Suppose that we haveI classes of subjects in the dataset.Ai ∈ Rm×di(1 ≤ i ≤ I)
denotes thei-th class, and each column ofAi is a sample of classi. Hence all the

training samples are aligned byA = [A1, A2, · · · , AI ] ∈ Rm×d, whered =
I
∑

i=1

di.

Given a collection of query imagesy1, y2, · · · , yn ∈ Rm, model (6) codes eachyj (1 ≤
j ≤ n) by the training samplesA as

yj ≈ Axj , (7)

wherexj ∈ Rd is the coding vector associated withyj. If yj is from thei−th class,
thenAi is the most compact representation dictionary and the optimal solutionx∗

j to
(6) can be used for classification. Obviously, coding pattern (7) depends on the single
test sampleyj individually for classification but takes no account of the correlation
with other samples (yl, l 6= j). Even though different frontal faces take on different
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appearances, they share similar features such as two eyes and brows at the upper face
while nose and mouth at the lower. Difference and similarityof multiple face pictures
form a unitary feature of the given set of images which play animportant role for
collective face recognition.

DenoteY = [y1, y2, · · · , yn] ∈ Rm×n all the query images, we propose to jointly
represent the image set simultaneously by

Y ≈ AX, (8)

whereX = [x1, x2, · · · , xn] ∈ Rd×n stands for the collective coding matrix. As far
as the columns are concerned, system (8) is an easy consequence of (7). To measure
the fidelity of the joint coding system (8), we considerX in another sense. LetAi ∈
Rd andY i ∈ Rn be thei−th (i = 1, 2, · · · ,m) row vectors of matrixA andY
respectively, formula (8) is equivalent to

XT (Ai)T ≈ (Y i)T for i = 1, 2, · · · ,m. (9)

It is noticed thatA andY array the sampled images column by column, hence their
rows span the feature space. In feature extraction view, thecollective coding matrix
X also projects the training feature space to approximate thetesting feature space.
Traditional least square regression aims to minimize the error

min
X

m
∑

i=1

‖XT (Ai)T − (Y i)T ‖22 or min
X

m
∑

i=1

‖AiX − Y i‖22 . (10)

Actually (10) can be easily reformulated as

min
X

m
∑

i=1

‖(AX − Y )i‖22 , (11)

where(AX − Y )i is thei−th row vector ofAX − Y . Especially when the number
of column inAX − Y is 1, the formula (11) is reduced to the fidelity function of (4).
Then we prefer a uniform generalization of (4) and (5) in the sense

m
∑

i=1

‖(AX − Y )i‖q2 , (1 ≤ q ≤ 2). (12)

Under the assumption that joint representation and featuredistribution share the similar
pattern for all testing face images, we use the following regularization

d
∑

i=1

‖X i‖p2 , (0 < p ≤ 2), (13)

whereX i is thei−th row vector ofX for i = 1, 2, · · · , d. Combining (12) and (13),
we present the joint representation model for classification as follows

min
X

m
∑

i=1

‖(AX − Y )i‖q2 + λ
d

∑

i=1

‖X i‖p2, (1 ≤ q ≤ 2, 0 < p ≤ 2). (14)
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When the number of column inY is 1, model (14) is reduced to coding vector version
(6). Compared with coding vectorx, joint coding matrixX unites sample representa-
tion with feature projection which somewhat reflects the integral structure of dataset.
Hence (14) is a general extension of (3)-(6). To simplify theformulation, we introduce
the mixed matrix norml2,p (p > 0) (taking‖X‖2,p for example)

‖X‖2,p = (
d

∑

i=1

‖X i‖p2)
1
p , X ∈ Rd×n, (15)

whereX i denotes thei−th row ofX . Then (14) is rewritten as

min
X

‖AX − Y ‖q2,q + λ‖X‖p2,p, (1 ≤ q ≤ 2, 0 < p ≤ 2). (16)

Especially whenp ∈ (0, 1), l2,p is not a valid matrix norm because it does not satisfy
the triangular inequality of matrix norm axioms. Meanwhilethe involved fractional
matrix norm based minimization (16) is neither convex nor Lipschitz continuous which
brings computational challenge. Designing an efficient algorithm for suchl2,q − l2,p-
minimizations is very important. It is also the most challenging task in this paper.

2.2 Joint Representation Based Classification

For fixed parameterq andp, suppose thatX∗ is a minimizer of optimization problem
(16), that is

X∗ = argmin
X

‖AX − Y ‖q2,q + λ‖X‖p2,p . (17)

If X∗ is partitioned toI blocks as follows

X∗ =

















X∗
1
...

X∗
i
...

X∗
I

















, (18)

whereX∗
i ∈ Rdi×n (1 ≤ i ≤ I). Let X̂∗

i denote the coding matrix associated with
classi, that is

X̂∗
i =

















0
...

X∗
i
...
0

















, (19)

thenAX̂∗
i = AiX

∗
i (1 ≤ i ≤ I). For each testing imageyj (j = 1, 2, · · · , n), we

classifyyj to the class with the most compact representation. By evaluating the error
corresponding to each class

‖(Y −AX̂∗
i )j‖2 , i = 1, 2, · · · , I (20)
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we pick out the index outputting the least error. The joint representation based classifi-
cation for face recognition can be concluded as follows.

Algorithm 2.1. (JRC scheme for FR)

1. Start: Given A ∈ Rm×d, Y ∈ Rm×n and select parameters λ > 0, q ∈ [1, 2]
and p ∈ (0, 2].

2. Solve l2,q − l2,p-minimization problem (16) for coding matrix X∗.

3. For j = 1 : n
For i = 1 : I
ei(yj) = ‖(Y −AiX

∗
i )j‖2

end
Identity (yj) = arg min

1≤i≤I
{ei(yj)}

end

Whenn = 1, observationY contains only a single testing sample and JRC is
reduced to vector representation based classification. Further on, SRC, CRC-RLS and
l1-norm fidelity model (5) are the special cases of JRC whenq = 2& p = 1, q = p = 2
andq = p = 1 respectively. In short, the main contributions of JRC lie in:

1. JRC implements collective face representation simultaneously. This scheme is
more economical and efficient in computational cost and CPU time. Moreover,
JRC can handle image set based face recognition which broadens the applica-
tions of vector representation based classifications.

2. Joint coding technique fuses the difference of each testing sample representation
and the similarity hidden in the feature space of multiple face images. For ex-
ample, when0 < p ≤ 1 all query image are jointly represented by the training
samples with the similarly sparse feature distribution.

3. In the next section, a uniform algorithm will be developedto solve the optimiza-
tion problem (16) for anyq ∈ [1, 2] andp ∈ (0, 2). The algorithm is strict
decreasing until it converges to the optimal solution to problem (16). To the
best of our knowledge, it is an innovative approach to solve such a generalized
l2,q − l2,p-minimization.

It is worth to point out that the JRC scheme can be easily extended for the presence
of pixel distortion, occlusion or high noise in test images.Modify (8) as

Y = AX + E , (21)

whereE ∈ Rm×n is an error matrix. The nonzero entries ofE locate the corruption or

occlusion inY . SubstituteÂ = [A, I] ∈ Rm×(d+m) andX̂ =

[

X
E

]

∈ R(d+m)×n

for A andX respectively, a stable joint coding model can be formulatedto

min
X̂

‖ÂX̂ − Y ‖q2,q + λ‖X̂‖p2,p, (1 ≤ q ≤ 2, 0 < p ≤ 2). (22)
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Once a solutionX̂∗ =

[

X∗

E∗

]

to (22) is computed, settingY ∗ = Y − E∗ recovers

a clean image from corrupted subject. To identity the testing sampleyj , we slightly
modify the error ofyj with each subjectei(yj) = ‖(Y − E∗ − AiX

∗
i )j‖2. Thus a

robust JRC is an easy consequence of Algorithm 2.1. The corresponding algorithm
and theoretical analysis can be similarly demonstrated. This paper will not concentrate
on this subject.

3 An Iterative Quadratic Method for JRC

Obviously, efficiently solving optimization problem (16) plays the most important role
in scheme 2.1. The mentioned models (1), (3) and (5) are special cases of (16), the
algorithms used in [1–3] to solve those special problems cannot be directly extended.
Such generally mixed matrix norm based minimizations as (16) have been widely used
in machine learning. Rakotomamonjy and his co-authors [10]proposed to use the
mixed matrix normlq,p (1 ≤ q < 2, 0 < p ≤ 1) in multi-kernel and multi-task learn-
ing. But the induced optimization problems in [10] have to besolved separately by
different algorithms with respect top = 1 and0 < p < 1. For grouped feature selec-
tion, Suvrit [11] addressed a fast projection technique onto l1,p-norm balls particularly
for p = 2,∞. But the derived method in [11] does not match model (16). Similar
joint sparse representation has been used for robust multimodal biometrics recognition
in [12]. The authors of [12] employed the traditional alternating direction method of
multipliers to solve the involved optimization problem. Nie et al. [16] appliedl2,0+-
norm to semi-supervised robust dictionary learning, whilethe optimization algorithm
has not displayed definite convergence analysis.

In this section, a unified method will be developed to solve thel2,q−l2,p-minimization
(16) for any1 ≤ q ≤ 2 and0 < p ≤ 2. Especially whenp ∈ (0, 1), (16) is neither
convex nor non-Lipschitz continuous which results in much computational difficulties.
Motivated by the idea of algorithm in [17] for solvingl2,p (0 < p ≤ 1)-based mini-
mization, we design an iteratively quadratic algorithm forsuchl2,q−l2,p-minimization.
Moreover, the convergence analysis will be uniformly demonstrated.

3.1 An Iteratively Quadratic Method

After simply transformation, the definition of‖X‖p2,p (15) can be rewritten as

‖X‖p2,p = Tr(XTHX), (23)

where

H =

{

diag{ 1

‖X1‖2−p
2

, 1

‖X2‖2−p
2

, · · · , 1

‖Xd‖2−p
2

}, p ∈ (0, 2);

I, p = 2,
(24)
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andTr(·) stands for trace operation. If denote

G =

{

diag{ 1

‖(AX−Y )1‖2−q
2

, 1

‖(AX−Y )2‖2−q
2

, · · · , 1

‖(AX−Y )m‖2−q
2

}, q ∈ [1, 2);

I, q = 2,

(25)
the objective function of (16) can be reformulated to

J(X) := Tr((AX − Y )TG(AX − Y )) + λTr(XTHX). (26)

Hence theKKT point of unconstrained optimization problem (16) is also the station-
ary point ofJ(X),

∂J(X)

∂X
= qATG(AX − Y ) + λpHX = 0 , (27)

solving (16) is reduced to find the solution to equations (27). If ATGA + λp
q
H is

invertible, equation (27) is equivalent to

X = (ATGA+ λ
p

q
H)−1ATGY. (28)

To find the iterative solution to system (28), let us considera closely related opti-
mization problem

min
X

Ĵ(X) := Tr((AX − Y )TG(AX − Y )) + λ
p

q
T r(XTHX). (29)

Ĵ(X) is almost equivalent toJ(X) in spite of a scaled factorp
q

in regularization pa-
rameter. If an iterative approximate solutionXk to (29) has been generated,Gk and
Hk can be derived fromXk as definitions (24, 25). Then we can compute the next
iterative matrixXk+1 by solving the following subproblem

min
X

Tr((AX − Y )TGk(AX − Y )) + λ
p

q
T r(XTHkX). (30)

Actually, (30) is a scaled quadratic approximation toJ(X) at the iterative point
Xk. LetMk = ATGkA+λp

q
Hk, sinceGk andHk are usually symmetric and positive

definite, problem (30) is equivalent to the following quadratic optimization problem

min
X

Qk(X) :=
1

2
Tr(XTMkX)− Tr(Y TGkAX). (31)

The minimizer toQk(X) is also the solution to the linear system

MkX = ATGkY. (32)

Based on the analysis and equations (23-32), the mixedl2,q − l2,p (1 ≤ q ≤ 2, 0 <
p ≤ 2) norm based optimization problem (16) can be iteratively solved by a sequence of
quadratic approximate subproblems. Hence we name this approachiterative quadratic
method (IQM). It is concluded as follows.
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Algorithm 3.1. (IQM for Solving Problem (29))

1. Start: Given A ∈ Rm×d, Y ∈ Rm×n and select parameters λ > 0, q ∈ [1, 2]
and p ∈ (0, 2].

2. Set k = 1 and initialize X1 ∈ Rd×n.

3. For k = 1, 2, · · · until convergence do :
Hk = diag{ 1

‖Xi
k
‖2−p
2

}di=1 (0 < p < 2) or Hk = Id (p = 2);

Ck = −Y ;
For i = 1 : I
Bi = Ai(Xk)i;
Ck = Bi + Ck;
end
Gk = diag{ 1

‖Ci
k
‖2−q
2

}mi=1 (1 ≤ q < 2) or Gk = Im (q = 2);

Mk = ATGkA+ λp
q
Hk;

Xk+1 = M−1
k ATGkY.

It is noticed that each iteration has to compute the inverse of Mk in Algorithm
3.1 which is expensive and unstable. Here we suggest to employ the general Penrose
inverse ofMk to update theXk+1. Moreover, the main computationAiX

∗
i for clas-

sification is a by-product ofBi in computing the approximate solutionX∗. Hence
identifying test images can be achieved with minor extra calculations.

Algorithm 3.1 is a unified method solvingl2,q − l2,p−minimizations forq ∈ [1, 2]
andp ∈ (0, 2]. This approach provides algorithmic support to adaptivelychoose better
fidelity measurement and regularization in various applications. Especially IQM pro-
vides a uniform algorithm for solving the existed representation based models: sparse
representation (q = 2, p = 1), collaborative representation (q = p = 2) andl1-norm
face recognition (q = p = 1).

3.2 Convergence Analysis of IQM

In this part, we will demonstrate the theoretical convergence of Algorithm 3.1. The key
point is that the objective functionJ(X) strictly decreases with respect to iterations
until the matrix sequence{Xk} converges to a stationary point ofJ(X).

Lemma 3.1. Let ϕ(t) = t− at
1
a , where a ∈ (0, 1). Then for any t > 0, ϕ(t) ≤ 1− a,

and t = 1 is the unique maximizer.

Proof Taking the derivative ofϕ(t) and set to zero, that is

ϕ′(t) = 1− t
1
a
−1 = 0 ,

thenϕ′(t) = 0 has the unique solutiont = 1 for any a ∈ (0, 1) which is just the
maximizer ofϕ(t) in (0,+∞). ✷
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Lemma 3.2. Given Xk and Xk+1 in Rd×n, the following inequalities hold,

‖AXk+1 − Y ‖q2,q −
q

2

m
∑

i=1

‖(AXk+1 − Y )i‖22

‖(AXk − Y )i‖2−q
2

≤ (1 −
q

2
)‖AXk − Y ‖q2,q (33)

and

‖Xk+1‖
p
2,p −

p

2

d
∑

i=1

‖X i
k+1‖

2
2

‖X i
k‖

2−p
2

≤ (1−
p

2
)‖Xk‖

p
2,p (34)

for any q ∈ [1, 2) and p ∈ (0, 2). Moreover, the equalities in Eq. (33) and (34)
hold if and only if ‖(AXk+1 − Y )i‖2 = ‖(AXk − Y )i‖2 for i = 1, 2, · · · ,m and
‖X i

k+1‖2 = ‖X i
k‖2 for i = 1, 2, · · · , d.

Proof Substitutingt1 =
‖(AXk+1−Y )i‖q

2

‖(AXk−Y )i‖q
2

and settinga1 = q
2 in Lemma 3.1, we

obtain
‖(AXk+1 − Y )i‖q2
‖(AXk − Y )i‖q2

−
q

2

‖(AXk+1 − Y )i‖22
‖(AXk − Y )i‖22

≤ 1−
q

2
. (35)

Similarly takingt2 =
‖Xi

k+1‖
p
2

‖Xi
k
‖p
2

anda2 = p
2 in ϕ(t), we have

‖X i
k+1‖

p
2

‖X i
k‖

p
2

−
p

2

‖X i
k+1‖

2
2

‖X i
k‖

2
2

≤ 1−
p

2
. (36)

Multiplying Eq. (35) and Eq. (36) by‖(AXk − Y )i‖q2 and‖X i
k‖

p
2 respectively, we

have the following inequalities simultaneously

‖(AXk+1 − Y )i‖p2 −
q

2

‖(AXk+1 − Y )i‖22

‖(AXk − Y )i‖2−q
2

≤ (1−
q

2
)‖(AXk − Y )i‖q2 (37)

for i = 1, 2, · · · ,m, and

‖X i
k+1‖

p
2 −

p

2

‖X i
k+1‖

2
2

‖X i
k‖

2−p
2

≤ (1−
p

2
)‖X i

k‖
p
2, i = 1, 2, · · · , d . (38)

Summing upi in formulas(37) and(38), we can derive(33) and(34).
Based on Lemma 3.1,t1 = 1 andt2 = 1 are the unique minimizers forϕ(t) in

(0,+∞) whena1 = q
2 anda2 = p

2 respectively. Namely,‖(AXk+1 − Y )i‖2 =
‖(AXk − Y )i‖2 and‖X i

k+1‖2 = ‖X i
k‖2 are necessary and sufficient for equalities

hold in (37) and (38) respectively. ✷

Remark 3.1. (33) and (34) are established nothing to do with Algorithm 3.1. The
inequalities express the innate properties of mixed matrix norms l2,q−l2,p for q ∈ [1, 2)
and p ∈ (0, 2).

Theorem 3.1. Suppose that {Xk} is the matrix sequence generated by Algorithm 3.1.
Then J(Xk) strictly decreases with respect to k for any 1 ≤ q ≤ 2 and 0 < p ≤ 2
until {Xk} converges to a stationary point of J(X).
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Proof Based on the procedure of Algorithm 3.1,Xk+1 is the solution to linear system
(32), also the optimal matrix of problems (30) and (31). Thuswe have

Qk(Xk+1) ≤ Qk(Xk) . (39)

For q ∈ [1, 2) andp ∈ (0, 2), (39) is equivalent to

q

m
∑

i=1

‖(AXk+1 − Y )i‖22

‖(AXk − Y )i‖2−q
2

+λp

d
∑

i=1

‖X i
k+1‖

2
2

‖X i
k‖

2−p
2

≤ q‖AXk−Y ‖q2,q+λp‖Xk‖
p
2,p , (40)

It is noticed thatJ(Xk) = ‖AXk − Y ‖p2,p + λ‖Xk‖
p
2,p. Adding inequalities (33) and

λ·(34), the following formula will be derived

J(Xk+1)− ( q2

m
∑

i=1

‖(AXk+1−Y )i‖2
2

‖(AXk−Y )i‖2−q
2

+ λp
2

d
∑

i=1

‖Xi
k+1‖

2
2

‖Xi
k
‖2−p
2

)

≤ J(Xk)− ( q2‖AXk − Y ‖q2,q + λp
2‖Xk‖

p
2,p) .

(41)

Based on (40) and (41),J(Xk+1) ≤ J(Xk) can be easily derived forq ∈ [1, 2) and
p ∈ (0, 2).

For q = 2 or p = 2, the inequalities is much easier to derive. Takingq = 2 and
p ∈ (0, 2) for example, (39) is reduced to

‖AXk+1 − Y )‖22,2 + λ
p

2

d
∑

i=1

‖X i
k+1‖

2
2

‖X i
k‖

2−p
2

≤ ‖AXk − Y ‖22,2 + λ
p

2
‖Xk‖

p
2,p , (42)

Combining the formulas (42) and (34), we also obtainJ(Xk+1) ≤ J(Xk). In the case
of q = 2, p ∈ (0, 2) or q = p = 2, J(Xk+1) ≤ J(Xk) can be deduced analogously.

OnceJ(Xk+1) = J(Xk) happens for somek, the equalities in (40) and (41) (or
(42)) hold. Hence the equalities in (33) and (34) are active.From Lemma 3.2, we obtain
‖(AXk+1 − Y )i‖2 = ‖(AXk − Y )i‖2 for i = 1, 2, · · · ,m and‖X i

k+1‖2 = ‖X i
k‖2

for i = 1, 2, · · · , d. ThusGk+1 = Gk andHk+1 = Hk which implies thatXk+1 is a
solution to (28). ✷

The objective function sequence{J(Xk)} is decreasing and lower bounded. Hence
{J(Xk)} eventually converges to some minimum of problem (16). The descending
quantity measures the convergence precision.

Remark 3.2. The stopping criterion of Algorithm 3.1 can be chosen as J(Xk) −

J(Xk+1) ≤ ǫ or ρk :=
J(Xk)−J(Xk+1)

J(Xk)
≤ ǫ for some required precision ǫ > 0.

Theoretically,X i
k = 0 orCi

k = 0 likely occurs in some stepk, thenHk andGk can
not be well updated for non-Frobenius norm case (0 < p < 2 and1 ≤ q < 2). We deal
with it by perturbing withδ > 0 such that{Hk}ii = δp−2 > 0 and{Gk}ii = δq−2 >
0. The descending of{J(Xk)} is relaxed to

J(Xk+1) ≤ J(Xk) + (1−
p

2
)δp or J(Xk+1) ≤ J(Xk) + (1−

q

2
)δq . (43)

If the convergence precisionǫ is chosen fairly larger than perturbationδ (ǫ ≫ δ),
perturbedJ(Xk) can be still considered approximate decreasing. As a matterof fact,
X i

k = 0 andCi
k = 0 never happen in practical implementation.
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4 Practical Implementation of JRC

In Algorithm 3.1, IQM has to update the matrix sequence by computing the inverse ma-
trix of Mk. It is expensive in practical implementation especially for large scale prob-
lems. Reviewing the procedure of Algorithm 3.1, we notice thatXk+1 = M−1

k ATGkY
exactly solves thek−th subproblem (31) which is unnecessary. It is observed that(31)
is a quadratic positive definite subproblem. There are a lot of efficient algorithms to
solve it approximately, such as conjugate gradient method,gradient methods with dif-
ferent stepsizes, etc. In this paper, we choose Barzilai andBorwein (BB) gradient
method due to its simplicity and efficiency. BB gradient method was firstly presented
in [18], afterwards extended and developed in many occasions and applications [18–
23]. When applied to quadratic matrix optimization subproblem (31), the Barzilai and
Borwein gradient method takes on

X
(t+1)
k = X

(t)
k − α

(t)
k ∇Qk(X

(t)
k ), (44)

where the superscript(t) denotes thet−th iteration solving (31).∇Qk(X
(t)
k ) is the

gradient matrix ofQk(X) with respect toX(t)
k

∇Qk(X
(t)
k ) = MkX

(t)
k −ATGkY . (45)

The Barzilai and Borwein gradient method [18] chose the stepsizeα(t)
k such thatD(t)

k =

α
(t)
k I has a certain quasi-Newton property

D
(t)
k = arg min

D=αI
‖S

(t−1)
k −DT

(t−1)
k ‖F (46)

or
D

(t)
k = arg min

D=αI
‖D−1S

(t−1)
k − T

(t−1)
k ‖F , (47)

where‖ · ‖F denotes Frobenius matrix norm andS(t−1)
k , T

(t−1)
k are determined by the

information achieved at the pointsX(t)
k andX(t−1)

k

S
(t−1)
k := X

(t)
k −X

(t−1)
k ;

T
(t−1)
k := ∇Qk(X

(t)
k )−∇Qk(X

(t−1)
k ) = MkS

(t−1)
k .

(48)

Solving (46) yields two BB stepsizes

α
(t)
k =

Tr((S
(t−1)
k )TT

(t−1)
k )

Tr((T
(t−1)
k )TT

(t−1)
k )

(49)

and

α
(t)
k =

Tr((S
(t−1)
k )TS

(t−1)
k )

Tr((S
(t−1)
k )TMkS

(t−1)
k )

. (50)

Compared with the classical steepest descent method, BB gradient method often
needs less computations but converges more rapidly [24]. For optimization problems
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higher than two dimensions, BB method has theoretical difficulties due to its heavy
non-monotone behavior. But for strongly convex quadratic problem with any dimen-
sion, BB method is convergent atR−linear rate [19, 21]. BB method has also been ap-
plied to matrix optimization problem [25] and exhibited desirable performance. Based
on equations (44)-(50), the last step in Algorithm 3.1,Xk+1 = M−1

k ATGkY , can be
practically substituted by the BB gradient method as thek−th inner loop.

Algorithm 4.1. (BB Gradient Method for Solving Subproblem (31))

1. Start: given the inner loop stopping criterion ǫ2 > 0

2. Initialize X(1)
k = Xk and ∇Q

(1)
k = MkX

(1)
k −ATGkY ;

3. For t = 1, 2, · · · until Tr(∇Q
(t)
k ) ≤ ǫ2, output Xk+1 = X

(t)
k , do :

if t = 1

α
(t)
k =

Tr((∇Q
(t)
k

)T∇Q
(t)
k

)

Tr((∇Q
(t)
k

)TMk∇Q
(t)
k

)
;

else

S
(t−1)
k = X

(t)
k −X

(t−1)
k ;

T
(t−1)
k = ∇Q

(t)
k −∇Q

(t−1)
k ;

α
(t)
k is computed as (49) or (50);

end

X
(t+1)
k = X

(t)
k − α

(t)
k ∇Q

(t)
k ;

∇Q
(t+1)
k = MkX

(t+1)
k −ATGkY ;

In thek−th inner loop, Algorithm 4.1 chooses two initial matrices. One is the ap-
proximate solutionXk to the last subproblem and another one is the Cauchy point from
Xk [26] . The Cauchy stepsizeα(1)

k is the solution to the one-dimensional optimization
problem

min
α>0

φ(α) := Qk(Xk − α∇Qk(Xk)) , (51)

then the Cauchy point isXk + α
(1)
k ∇Qk(Xk)). If Mk in Algorithm 3.1 is guaranteed

to be positive definite (if not,Hk or Gk can be slightly perturbed), subproblem (31)
is a strongly convex quadratic. BB gradient method with steplength (49) or (50) will
converges atR−linear rate.

For simplicity, we name the IQM with inexact Algorithm 4.1 practically iterative
quadratic method (PIQM). Still denote{Xk} the approximate matrix sequence gener-
ated by PIQM. BB inner loop makes the objective function value of subproblem (31)
decline, that isQ(Xk+1) ≤ Q(Xk). Then{J(Xk)} is always decreasing which is suf-
ficient and necessary for{Xk} uniformly converging to the stationary point of problem
(16). The following conclusion can be easily derived.

Theorem 4.1. Denotes X∗ the output point generated by PIQM, then X∗ is an ap-
proximate stationary point of J(X). Especially for q, p ∈ [1, 2], X∗ is an approximate
global minimizer of optimization problem (16). When p is fractional, X∗ is one of KKT
points.
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An practical version of iteratively quadratic method for joint classification in face
recognition can be concluded as follows.

Algorithm 4.2. (PIQM for JRC)

1. Start: loading A, Y and setting λ > 0, q ∈ [1, 2], p ∈ (0, 2] and precision levels
ε1 > 0, ε2 > 0.

2. Employing PIQM to solve (16), output an approximate coding matrix X∗ :=
Xk+1.

3. Classifying Y by X∗.

5 Experimental Results

In this section, the joint representation based classification (JRC) with PIQM will be
applied to face recognition. Three public data sets are used. Brief description is given
as follows.

AT&T database is formerly known “the ORL database of faces”. It consists of400
frontal images for40 individuals. For each suject,10 pictures were taken at dif-
ferent times, with varying lighting conditions, multiple facial expression, adorn-
ments and rotations up to20 degree. All the images are aligned with dimension
112× 92. The database can be retrieved fromhttp : //www.cl.cam.ac.uk/
Research/DTG/attarchive : pub/data/attfaces.tar.Z as a 4.5Mbyte com-
pressed tar file. Typical pictures can be seen in Figure 1.

Figure 1: Typical images of AT & T database

Georgia-Tech databasecontains15 images each of50 subjects. The images are taken
in two or three sessions at different times with different facial expressions, scale
and background. The average size of the faces in these imagesis 150 × 150
pixels. Georgia Tech face database and the annotation can befound in
http : //www.anefian.com/research/facereco.htm. Typical pictures of
four persons are shown in Figure 2.

Figure 2: Typical images of Georgia-Tech database

14



Extended Yale B databaseconsists of2414 frontal-face images of38 subjects. Each
subject has around64 images. The images are cropped and normalized to192×
168 under various laboratory-controlled lighting conditions[27, 28]. Figure 3
displays typical pictures of 4 subjects.

Figure 3: Typical images of Extended Yale B database

Extensive experiments are conducted for different image sizes and different param-
eters. Four comparable schemes are implemented, JRC, SRC, CRC-RLS and tradi-
tional SVM classifier. JRC is practically carried out via PIQM while SRC is solved
by l1 − ls solver [9] and CRC-RLS employs the code from [2]. We realize SVM
by the software LIBSVM [30] with linear kernel, the pseudo code can be found in
http : //www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html♯f203. All the schemes
are implemented by Matlab R2014a(win32) on a typical 4GiB memory and 2.40GHz
PC.

Considering that JRC is a joint framework including SRC and CRC-RLS, we select
six pairs ofq, p in [1, 2] and(0, 2] respectively:

q = p = 2 (corresponding to CRC-RLS),
q = 2, p = 1 (corresponding to SRC),

and other four generalized cases

q = 1.5 & p = 1, q = 1.5 & p = 0.5,
q = 1 & p = 1, q = 1 & p = 0.5.

The parameterλ in (16) is varied from0.01 to 10 each10 times, and the best result is
picked out. All the stopping precisions are set10−3.

All the images are re-sized like that of [1, 2]. For AT&T database, the pictures are
down sampled to11 × 10. The downsampling ratios of Georgia-Tech database and
Extended Yale B database are1/8 and1/16. For each subject, around80% pictures
are randomly selected for training and the left for testing.For example,8 pictures of
each individual in AT&T database are randomly picked out fortraining while the left2
are for testing. All the classification schemes are directlyapplied to the images without
any pre-processing. The recognition accuracy and running time are reported in Table
1-3.

Based on the experimental results on three databases, we draw the following con-
clusions:
• Jointly representing all the testing images simultaneously does accelerate face recog-
nition. On all the databases, JRC (q=p=2) is the fastest one.The CPU time is thou-
sand times less than that of SRC. For example, JRC (q=p=2) classifies484 images in
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Methods The recognition accuracy CPU time

SRC 98.75 67.2658
JRC(q=2,p=1) 97.5 0.1612
CRC-RLS 95 0.0872
JRC(q=p=2) 97.5 0.0073
SVM 95 0.0667
JRC(q=1.5,p=1) 97.5 0.3867
JRC(q=1.5,p=0.5) 95 1.8756
JRC(q=p=1) 97.5 0.1994
JRC(q=1,p=0.5) 97.5 0.1640

Table 1: The recognition accuracy (%) and running time (second)
for AT&T database

Downsampling ratio 1/8 Downsampling ratio 1/16
Methods Accuracy Time Accuracy Time

SRC 99.33 2843 97.33 3197
JRC(q=2,p=1) 99.33 2.41 97.33 1.07
CRC-RLS 98 1.95 96.67 0.66
JRC(q=p=2) 99.33 0.97 98.67 0.17
SVM 96.67 5.09 96.67 1.46
JRC(q=1.5,p=1) 99.33 4.89 98.67 3.86
JRC(q=1.5,p=0.5) 99.33 4.89 98.67 3.89
JRC(q=p=1) 99.33 5.54 99.33 1.11
JRC(q=1,p=0.5) 99.33 4.79 99.33 1.09

Table 2: The recognition accuracy (%) and CPU time (second)
for Georgia-Tech database

Down sampling ratio 1/8 Down sampling ratio 1/16
Methods Accuracy Time Accuracy Time

SRC 96.76 4828 96.36 668.53
JRC(q=2,p=1) 96.96 22.67 76.11 164.71
CRC-RLS 96.76 2.02 95.55 1.9
JRC(q=p=2) 96.96 0.75 91.29 0.34
SVM 95.55 6.12 94.33 2.61
JRC(q=1.5,p=1) 96.96 22.04 87.05 22.03
JRC(q=1.5,p=0.5) 96.96 54.21 65.59 101.59
JRC(q=p=1) 96.96 27.08 90.49 20.51
JRC(q=1,p=0.5) 96.96 26.87 91.29 25.23

Table 3: The recognition accuracy (%) and CPU time (second)
for Extended Yale B database
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0.17 second on Georgia-Tech database with downsampling ratio1/16. And the ac-
curacy rate is98.67%, outperforming SRC (97.33%), CRC-RLS (96.67%) and SVM
(96.67%). More details can be found in Table 1-3.
• JRC exhibits competitive performance in recognition accuracy. On AT & T database,
the recognition rate of JRC is 97.5%, compared to 98.75% for SRC, 95% for CRC-RLS
and SVM. On Georgia-Tech database, JRC achieves the best recognition rate (99.33%),
consistently exceeds other classification schemes. On YaleB database with downsam-
pling ratio1/8, JRC also outperforms other methods in accuracy. Unfortunately, JRC
does not keep the best achievement on downsampling ratio1/16. The possible reason
is that some pictures with strong contrast of lighting (see Figure 3) aggravates the noise
for other images in joint coding.
• Different q ∈ [1, 2] andp ∈ (0, 2] for JRC indicate different feature pattern behind
in the image set. Taking JRC (q = 2, p = 1) for example, the joint model combines
sparsity of representation and correlation of multiple images. The representation co-
efficients reveal the joint effect on JRC (q = 2, p = 1), Figure 4 gives an example
from Yale B database. Compared to SRC, JRC (q = 2, p = 1) concentrates a group
sparsity but not a single one. Acutally, the other testing samples (12 pictures) of the
same subject also have the similar group representation pattern.

Figure 4: The recovered coefficients by JRC (q=2,p=1) and SRC

• The convergence behavior of PIQM for JRC is displayed in Figures 5. The x axis
is the iterations and y-axis stands for the logarithm ofρk. PIQM converges within40
steps on three databases for all jointly sparse models (five pairsq andp). JRC (q=p=2)
always converges in three iterations hence its plot is omitted here. Anyway, PIQM
provides a uniform algorithm for varied JRC with respect toq ∈ [1, 2] andp ∈ (0, 2].

(a) (b) (c)

Figure 5: (a) PIQM on AT & T(b) PIQM on Georgia-Tech (c) PIQM onYale B
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• From Table 1-3, it is observed that CRC-RLS has a fairly good performance in recog-
nition accuracy and CPU time. But CRC-RLS is heavily sensitive to the regularization
parameterλ (see Table 4) because it has a smooth regularizer. By comparison, JRC
(q=p=2) is more stable for its joint technique. Multiple images has complementary
effect for recognition especially when the model is ill-posed.

λ = 0.01 0.1 1 10 100

CRC-RLS 28.34 66.82 95 96.76 96.76
JRC(q=p=2) 96.96 96.96 96.96 96.96 96.96

Table 4: The recognition accuracy (%) for differentλ on Extended Yale B database
with downsampling ratio1/8

6 Conclusions

In this paper, a joint representation classification for collective face recognition is pro-
posed. By aligning all the testing images into a matrix, joint representation coding is
reduced to a kind of generalized matrix pseudo norm based optimization problems. A
unified algorithm is developed to solve the mixedl2,q−l2,p-minimizations forq ∈ [1, 2]
andp ∈ (0, 2]. The convergence is also uniformly demonstrated. To adapt the algo-
rithm to the large scale case, a practical iterative quadratic method is considered to
inexactly solve the subproblems. Experiment results on three data-sets validate the
collective performance of the proposed scheme. The joint representation based classi-
fication is confirmed to improve the performance in recognition rate and running time
than the state-of-the-arts.
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code support.
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[26] A. Cauchy. Méthode générale pour la résolution dessystèms d’équations simul-
tanées. Comp. Rend. Sci. Pari, 1847, 25:141-148.

[27] A. Georghiades, P. Belhumeur and D. Kriegman. From few to many: Illumina-
tion cone models for face recognition under variable lighting and pose. IEEE
Trans. PAMI, 2001, 23(6):643-660.

[28] L. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition
under variable lighting. IEEE Trans. PAMI, 2005, 27(5):684-698.

[29] A. Martinez and R. Benavente. The AR face database. CVC Tech. Report No.
24, 1998.

[30] R.E. Fan, P.H. Chen and C.J. Lin. Working set selection using second order
information for training SVM. Journal of Machine Learning Research 2005,
6:1889-1918.

20


