
A New Distance Measure for Non-Identical Data
with Application to Image Classification

Muthukaruppan Swaminathan1,2, Pankaj Kumar Yadav1, Obdulio
Piloto3, Tobias Sjöblom4, and Ian Cheong∗1,2

1Temasek Life Sciences Laboratory, Singapore
2Dept of Biological Sciences, National University of Singapore

3Entopsis LLC, USA
3Rudbeck Laboratory, Uppsala University, Sweden

Abstract

Distance measures are part and parcel of many computer vision algo-
rithms. The underlying assumption in all existing distance measures is
that feature elements are independent and identically distributed. How-
ever, in real-world settings, data generally originate from heterogeneous
sources even if they do possess a common data-generating mechanism.
Since these sources are not identically distributed by necessity, the as-
sumption of identical distribution is inappropriate. Here, we use statisti-
cal analysis to show that feature elements of local image descriptors are
indeed non-identically distributed. To test the effect of omitting the uni-
fied distribution assumption, we created a new distance measure called
the Poisson-Binomial Radius (PBR). PBR is a bin-to-bin distance which
accounts for the dispersion of bin-to-bin information. PBR’s performance
was evaluated on twelve benchmark data sets covering six different clas-
sification and recognition applications: texture, material, leaf, scene, ear
biometrics and category-level image classification. Results from these ex-
periments demonstrate that PBR outperforms state-of-the-art distance
measures for most of the data sets and achieves comparable performance
on the rest, suggesting that accounting for different distributions in dis-
tance measures can improve performance in classification and recognition
tasks.

Keywords— Poisson-Binomial distribution, semi-metric distance, non-identical
data, distance measure, image classification, image recognition.

1 Introduction
The basis for many computer vision algorithms is quantifying the pairwise sim-
ilarity of feature vectors. This step is often accomplished by evaluating the dis-
tance between feature vectors using a distance (dissimilarity) measure. Thus,
choosing an appropriate distance measure is fundamentally important as it de-
termines the performance of learning algorithms in numerous applications such
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as image retrieval [1], stereo matching [2] and image classification [3],[4] to name
a few.

Mathematically, a distance measure, D(X,Y ), between pairs of feature vec-
tors, is considered a distance metric if the following axioms are satisfied:

1. D(X,Y ) ≥ 0 (non-negativity)

2. D(X,Y ) = 0 ⇐⇒ X = Y (identity of indiscernibles)

3. D(X,Y ) = D(Y,X) (symmetry)

4. D(X,Y ) ≤ D(Y, Z) + D(X,Z) (triangle inequality)

Despite the common use of distance metrics, Scheirer et al.[5] noted that
top scoring computer vision algorithms tended to employ distance measures
which are non-metric, meaning that they do not obey at least one of the four
axioms. The authors of [5] state: “What makes non-metric algorithms better?
We emphasize that treating all samples alike may unnecessarily handicap an
algorithm.” The triangle inequality axiom deserves particular attention. A
distance measure which does not obey the triangle inequality is by definition a
semimetric distance. The consensus in the field of cognitive psychology is that
human similarity judgments violate the triangle inequality. Tversky et al. [6]
specifically demonstrated that human subjects given visual pair-matching tasks
violated the triangle inequality in a statistically significant manner. Given that
human judgment is semimetric, we propose that the triangle inequality is at
best unnecessary and at worst a constraint on classification performance.

Moreover, at the heart of all existing distance measures lies the assumption
that data are independent and identically distributed (i.i.d). To restate the is-
sue, all existing distance measures, regardless of whether they are parametric
or non-parametric, assume that data derives from a single source. Hence, meth-
ods to calculate these distances must make the i.i.d. assumption. This may
be exemplified at a basic level by considering non-parametric entropy-based dis-
tance measures such as Kullback-Liebler (KL) divergence and Jeffrey divergence
(JD), which is the symmetric version of KL. Because measures of entropy are
predicated on data being from a single source, all entropy-based measures such
as KL and JD must by definition make the i.i.d. assumption when measuring
information content. Similar arguments can be applied to all existing histogram
distances.

Whether the i.i.d assumption is justified in real world settings is an often
debated topic. Feature elements are obtained from heterogeneous sources, even
if they are derived from a common data generating mechanism. Hence, it is rea-
sonable to assume that these feature elements are not identically distributed [7].
For example, image acquisition data derives from digitized imaging sensor out-
puts, noise caused by color filter array defects and pattern noise [8]. Given
these heterogeneous sources, it is preferable from the viewpoint of parsimony
to assume that feature elements originate from different distributions and are
hence independent but non-identically distributed (i.n.i.d). For example, Yu
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et al. [9] found that the best accuracy was achieved when the distribution for
each feature element was independently modeled. In that study, single isotropic
distributions could not be used to estimate the data distribution, hence corrob-
orating the point that feature distributions in real data should be assumed to be
heterogeneous. Such an approach however, requires a priori knowledge of how
feature elements are distributed. Also, one is limited by the set of distributions
chosen to model the data distribution. In theory, a more generalizable solution
would be to adopt a distance measure which avoids the assumption in the first
instance. However, a distance measure for non-identically distributed data has
hitherto not been proposed and tested.

In this paper, we address the above-mentioned deficiency by proposing a
new i.n.i.d. distance measure called the Poisson-Binomial Radius (PBR). The
underlying basis for PBR is the Poisson-Binomial distribution which is the prob-
ability mass function of independent Bernoulli trials which are not necessarily
identically-distributed. PBR is hence the first distribution-agnostic distance
measure.

Our contributions are as follows:

1. We show that feature elements of a local descriptor are indeed from sig-
nificantly different distributions.

2. We present PBR, a semimetric distance measure which avoids the iden-
tical distribution assumption and accounts for non-identically distributed
feature elements.

3. We evaluate PBR on six different image classification / recognition ap-
plications using twelve benchmark data sets and demonstrate its effective
performance.

The rest of the paper is organized as follows. In section 2, we review re-
cent advances in image classification and commonly used distance measures. In
section 3, we discuss the Poisson-Binomial distribution. The PBR semimetric
distance is introduced in section 4. In section 5, we present our results from
experimental comparisons between PBR and other distance measures using a
kernel-based image classification framework. Concluding remarks are provided
in section 6.

2 Related work

2.1 Image classification
Classifying images according to their visual content still remains one of the most
challenging problems in computer vision. This is largely due to the fact that real
world images suffer from changes in viewpoint (e.g., translation, rotation, and
scale), illumination variations, background clutter, partial occlusion, intra-class
diversity and inter-class similarity.
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To efficiently address these issues, various hand crafted features (e.g., gradi-
ents, patterns, shapes and gray-tones/colors) have been presented in the litera-
ture (see [10] for an overview). One interesting development is the integration
of multiple such visual feature representations. The challenge for this learning
framework, called multiview learning, lies in integrating features from differ-
ent spatial viewpoints or multiple features from a single viewpoint. Luo et
al. [11] recently proposed a framework to fuse different feature descriptors for
semisupervised multilabel classification using matrix completion. These matrix
completion outputs were then combined using weights obtained through cross-
validation on the labeled set. One consequence of multiview features is that
some views are more important than others. Zhu et al. [12] addresses this prob-
lem using a block-row Frobenius norm regularizer-based framework to select
informative views and features while avoiding redundant views and noisy fea-
tures. This method outperformed baseline algorithms with low computational
overhead.

The rise in popularity of deep learning models has seemingly rendered hand
crafted feature engineering otiose since these models learn a hierarchical feature
representation directly from the image. It is however perhaps more appropri-
ate to view deep learning as having replaced feature engineering with architec-
ture engineering. The convolutional neural network (CNN) in particular is a
deep learning architecture which has shown its promise for image classification
tasks [13]. This success has been driven by optimized implementations of al-
gorithms for graphics processing unit (GPU) architectures and new large scale
data sets such as LabelMe [14] and ImageNet [15]. Moreover, improvements
have been made to CNN classification performance and training time. He et
al. [16] presented a residual learning framework in which inputs are added to
the output of the stacked layers, thus asymptotically approximating the desired
underlying mapping function. This framework is shown to be easily optimized
and exhibits accuracy gain when compared to CNNs which are simply stacked.
Clevert et al. [17] proposed the exponential linear unit (ELU) as a replacement
for the rectified linear unit (ReLU), currently the most popular activating func-
tion in CNNs. ELUs enable faster learning because they saturate to negative
values with smaller arguments. Besides pushing mean unit activations closer to
zero, this behavior also helps CNNs to learn representations which are robust
to noise.

Recent works have also incorporated non-semantic features as inputs for
CNNs. For example, Wang et al. [18] used CNNs in combination with recurrent
neural networks (RNNs) to perform multi-label image classification by learning
a joint embedding space to characterize the image-label relationship and label
dependency. In a similar vein, Tang et al. [19] encoded GPS coordinates in a
CNN model to classify images with location context.

Importantly, there has been a great deal of interest in hybridizing support
vector machine (SVM) architectures with CNNs. In this hybrid model, CNNs
work as an automatic feature extractor while decision surfaces are generated by
SVMs. Compared to CNNs alone, CNN-SVM hybrids with non-linear kernels
such as Gaussian and radial basis functions have been shown to achieve superior
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classification accuracy with benchmarking data sets [20],[21],[22].
Even though CNNs are neither the focus nor compared in this work, the

non-linear kernel proposed in this work can be effectively combined with CNNs
in the manner described.

2.2 Distance measures
Several distance measures use histogram-based representations because of their
simplicity and rich discriminative information. These measures may be broadly
categorized as bin-to-bin, cross-bin or intra-cross-bin distances.

Bin-to-bin distances compare corresponding bin values between two his-
tograms. Summing these ‘same-bin’ comparisons gives the resultant distance
between two histograms. The most commonly used bin-to-bin distances are L1

and L2. Both belong to the Minkowski family and are distance metrics. Other
bin-to-bin distance measures such as Bhattacharyya distance (BD) [23], Jeffrey
divergence (JD) [24], χ2 distance [25],[26], Hellinger distance [27] and histogram
intersection (HI) [28] are also widely used in computer vision applications. It
is to be noted that histogram intersection is equivalent to L1 distance when
the area of the two histograms are equal. While BD, JD and χ2 distances are
semimetric in nature, Hellinger distance and HI are distance metrics.

In contrast to bin-to-bin distances, cross-bin distances compare values be-
tween different bins and aggregate the distances using the ground distance. A
notable example is the Earth Mover Distance (EMD) [29] which is based on a
solution to the well-known transportation problem. EMD can be categorized as
a distance metric if the ground distance is a metric. EMD has been shown to
be very effective for comparing generic data summaries called signatures [3].
However the computational complexity of EMD is O(n3 log n) for a histogram
with n bins. On the other hand, match distance [30], a special form of EMD for
one dimensional histograms with equal areas, is equivalent to the L1 distance
between the cumulative histograms. But this distance is not robust to partial
matches. Another commonly used cross-bin distance measure is Mahalanobis
distance [31]. This distance represents the relationship among the bins using
the covariance matrix. Though it is scale-invariant, the covariance matrix is
usually singular when the number of feature elements in the feature vectors is
large. Further, when the feature vectors are sparse, the covariance matrix might
not capture the distribution of the features [32].

The last category of distance measures is the intra-cross-bin distance. Hu et
al. [32] introduced this new category and called their prototype intra-cross-bin
measure the Bin-Ratio-based histogram Distance (BRD). This distance oper-
ates on the ratios between histogram bin values, hence capturing correlations
between them. BRD can be combined with χ2 and L1 distances to form χ2-BRD
and L1-BRD respectively. These hybrid measures satisfy the triangle inequality
axiom and hence qualify as distance metrics.
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3 Poisson-Binomial distribution
Definition. The Poisson-Binomial distribution is defined by the probability
mass function (p.m.f.) for n successes given independent but non-identical
probabilities (p1, . . . , pN ) of success. The distribution is unimodal with mean
µ =

∑N
i=1 pi and variance σ2 =

∑N
i=1(1 − pi)pi. If Ωn is the corresponding

sample space of all possible
(
N
n

)
paired sets of I and IC resulting from n occur-

rences and N − n non-occurrences, then the Poisson-Binomial p.m.f. is given
as

P (Ωn) =

(N
n)∑
j=1

∏
i∈Ij

pi
∏
i∈ICj

(1− pi) (1)

A special case of this distribution is the binomial distribution where pi has
the same value for all i. The Poisson-Binomial distribution finds use in a broad
range of fields such as biology, imaging, data mining, bioinformatics and engi-
neering.

While it is popular to approximate the Poisson-Binomial distribution to the
Poisson distribution, this approximation is only valid when the input probabil-
ities are small as evident from the bounds on the error defined by Le Cam’s
theorem [33] below:

∞∑
n=0

∣∣∣∣P (Ωn)− λnNe
−λN

n!

∣∣∣∣ < 2

N∑
i=1

p2i . (2)

where P (Ωn) gives the probability of n successes in the Poisson-Binomial domain
and λ is the Poisson parameter.

The Poisson-Binomial distribution has found increasing use in research appli-
cations. Shen et al. [34] developed a machine learning approach for metabolite
identification from large molecular databases such as KEGG and PubChem.
The molecular fingerprint vector was treated as Poisson-Binomial distributed
and the resulting peak probability was used for candidate retrieval. Similarly,
Lai et al. [35] developed a statistical model to predict kinase substrates based
on phosphorylation site recognition. Importantly, the probability of observing
matches to the consensus sequences was calculated using the Poisson-Binomial
distribution. Other groups [36], [37] have used this distribution to identify ge-
nomic aberrations in tumor samples. Since the probability of an aberration
event varies across samples, individual DNA base positions are treated as inde-
pendent Bernoulli trials with unequal success probabilities for ascertaining the
likelihood of a genetic aberration at every position in each sample. Following
the same reasoning, models to accurately call rare genetic variants [38], [39] have
been proposed.
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4 Poisson-Binomial radius semimetric distance
Before we introduce the PBR distance, we aim to show that feature elements
are not identically distributed by necessity.

Let X =
(
X1, X2, ....., XN

)
be an N -dimensional random vector where

X1, X2, ....., XN are real-valued random variables. IfXi andXj are non-identically
distributed, then their distributions Fi and Fj will differ. Whether this differ-
ence exceeds a statistical threshold can be evaluated using the Kolmogorov-
Smirnov two sample test (K-S test) [40]. The K-S test does not make any
assumptions about data distributions and can thus be used to probe whether
distributions are equal for any arbitrary pair of features. Thus, it has been
widely used as a feature selection/weighting procedure to identify significant
feature elements in feature vectors [41],[42]. In this study, we used the K-S test
to investigate the null hypothesis that a pair of feature elements are drawn from
the same distribution. This scenario should be distinguished from the covari-
ate shift, a situation where the feature vectors of training and test data follow
different distributions [43]. Taking the features for several benchmark data sets
which we use in our experiments in the next section, we performed the K-S
test with Bonferroni correction on pairwise combinations of feature elements
to determine the percentage of feature element pairs found to have significantly
different distributions. The experimental results for these data sets with 200,000
pairwise comparisons per data set are reported in Table 1. The majority of K-S
tested feature element pairs were found to be significantly different and this
result was robust over a range of confidence intervals (95 %, 99.5 %, and 99.9
%).

Table 1: Results of K-S test (with Bonferroni correction) on feature elements for
various data sets with α = 0.05 (95% confidence), α = 0.005 (99.5% confidence)
and α = 0.001 (99.9% confidence)

Significantly differently distributed
feature elements (percent)

Data set α = 0.05 α = 0.005 α = 0.001

FMD [44] 95.57 94.85 94.43
Kylberg [45] 99.63 99.54 99.45
USTB [46] 76.84 74.84 73.85

IIT Delhi I [47] 86.75 85.53 84.57

There is an emerging argument from the machine learning community that
feature elements may have dependency for image representation. To take such
dependencies into account, we repeated the experiment using the Wilcoxon-
signed rank test which makes no assumption of independence. The results of
this experiment in Table 2 mirrored that of the K-S test. Median p-values
generated by the K-S test for the four data sets were highly significant and
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ranged from ≤ 1.00× 10−308 to 1.79× 10−26. The corresponding range for the
Wilcoxon-signed rank test was from ≤ 1.00 × 10−308 to 9.84 × 10−21. These
low p-values further suggest that the null hypothesis can be rejected for any
reasonable threshold of significance. Taking Tables 1 and 2 in totality, the
evidence demonstrates that the identical distribution assumption is not reflective
of real-world data, regardless of whether feature elements are assumed to be
independent or non-independent.

Table 2: Results of Wilcoxon-signed rank test (with Bonferroni corrections) on
feature elements for various data sets with α = 0.05 (95% confidence), α = 0.005
(99.5% confidence) and α = 0.001 (99.9% confidence)

Significantly differently distributed
feature elements (percent)

Data set α = 0.05 α = 0.005 α = 0.001

FMD [44] 93.35 92.83 92.45
Kylberg [45] 97.35 97.13 97.01
USTB [46] 79.27 77.47 76.32

IIT Delhi I [47] 87.72 86.72 86.03

Given the above results, we were naturally motivated to ask if a distribution-
agnostic distance measure would actually lead to improved performance for
image classification and recognition. From a maximum likelihood perspective,
probability distributions play a fundamental role in distance measures by model-
ing the noise distribution. Besides the well-known Gaussian and exponential dis-
tributions which give rise to the L2 (Euclidean) and L1 (Manhattan) distances
respectively, practically any distribution (e.g. Cauchy and Gamma-Compound-
Laplace) can be used to create an appropriate distance measure [2],[48]. Since
all distributions currently used in distance measures do make the identical dis-
tribution assumption, we decided to adopt the Poisson-Binomial distribution
(PBD) because it is distribution-agnostic. While there are other distributions
which also account for non-identical data, such as discrete gamma, discrete burr,
discrete Weibull and discrete normal, the Poisson-Binomial distribution is one
which is not derived by discretization, a process which leads to information
loss [49]. Further, the discrete nature of PBD is consistent with the nature of
pixel intensities, which have also been shown to be discrete random variables
governed by quantum mechanics [50].

Based on the foregoing observations, we propose the PBR distance mea-
sure for similarity estimation based on the Poisson-Binomial distribution. In
particular, we estimate PBR distance by characterizing the distribution of the
difference vector E (given in the definition below) between two feature vectors
X and Y . Although elements in the difference vector E are not probabilities, we
treat them heuristically as such for the purposes of PBR. The Poisson-Binomial
distribution can be characterized by its first and second moments, which are re-
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spectively its mean and variance. Hence, these summary statistics capture the
essence of the difference vector distribution. PBR’s premise is to compare the
variance of E to its mean. Two difference vectors EXY and EXZ arising from
three distinct feature vectors X, Y and Z will not have the same combination
of mean and variance.

Definition. Given two N dimensional feature vectors X = (a1, a2, a3, ...., aN )
and Y = (b1, b2, b3, ...., bN ) with E = (e1, e2, e3, ...., eN ) where ei = ai ln( 2ai

ai+bi
)+

bi ln( 2bi
ai+bi

), the Poisson-Binomial Radius distance between X and Y is

PBR(X,Y ) =
σ2

N − µ
=

N∑
i=1

ei(1− ei)

N −
N∑
i=1

ei

(3)

PBR is a non-negative function, which satisfies the identity of indiscernibles
and symmetry property. However, PBR does not obey the triangle inequality
axiom and is thus a semimetric distance.

We used toy data to visually compare PBR with commonly used distance
measures. In Fig. 1, histograms (a) and (b) represent two images which be-
long to the same class whereas (c) represents a uniformly distributed reference
image. Histograms (d), (e) and (f) are the normalized histograms of (a), (b)
and (c) respectively. Table (g) shows that with the exception of PBR, all other
distance measures regardless of category (bin-to-bin, cross-bin, intra-cross-bin)
erroneously indicate (d) as being more similar to (f) than (e). This is because
the Poisson-Binomial variance between histograms (d) and (e) and between his-
tograms (d) and (f) are 0.2079 and 0.2135 respectively, demonstrating that bin-
to-bin dispersion was more efficiently accounted for by PBR. As a minor note,
PBR produces smaller values relative to the other distance measures because of
the large effect of the denominator in Eqn 3.

5 Kernel-based image classification
SVM performance depends heavily on the type of kernel employed. The most
commonly used kernel is the radial basis function (RBF) because of its universal
approximation properties and good generalization capabilities [51]. Although
RBF kernels are already considered generalized, a further level of generalization
may be achieved by replacing the L2 norm exponent with a distance measure
of choice. Popular choices, which include χ2, HI and L1-BRD have achieved
high levels of performance when used in the context of RBF kernels [52],[32].
Generalized RBFs are considered the gold-standard kernel class in computer
vision applications [3],[26]. In order to enable cross comparisons with current
state-of-the-art kernels, we built an RBF-based PBR kernel using the generalized
RBF kernel:
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Figure 1: A toy example comparing distances between histograms: (a), (b) and
(c) are non-normalized histograms with values [1, 15, 24, 32, 2], [3, 15, 26, 33,
52] and [20, 20, 20, 20, 20], respectively; (d), (e) and (f) are the corresponding
normalized histograms; Table (g) shows the distances between the histograms
(d) and (e) and between histograms (d) and (f).

Kd−RBF (X,Y ) = e−γD(X,Y ) (4)

where γ is a scaling parameter obtained using cross-validation and D(X,Y )
is the distance between two feature vectors X and Y . Although we do not
prove the positive definiteness for the PBR kernel, the PBR kernel has always
produced positive definite Gram matrices in all our experiments. Moreover, it
is also worth mentioning that non-Mercer kernels such as the EMD kernel work
effectively in image classification and recognition tasks [3],[4].

In this work, we compare the performance of PBR distance with BD, JD,
χ2, L1-BRD and Hellinger distance measures. In addition, we also use linear
and polynomial kernels as baseline kernels. Do note that there are state-of-
the-art algorithms that perform better than the results reported here. These
algorithms are implemented using complex machine learning techniques such as
multiple features [53], advanced encoding strategies [54] and more. The goal
of these studies is to improve algorithmic design, particularly in the area of
feature representation. In contrast, our main concern is to compare PBR’s
classification performance with other state-of-the-art distance measures on a
level playing field. For this reason, making comparisons to other algorithms is
beyond the scope of this paper.

Here, we evaluated the performance of the PBR distance in the following six
different classification / recognition applications: texture classification, material
recognition, leaf recognition, scene recognition, ear biometrics and category-level
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image classification. We used the Brodatz [55], KTH-TIPS [56] and Kylberg [45]
data set for texture classification. For material, leaf and scene recognition we
used the FMD [44], Swedish Leaf [57] and MIT Indoor 67 [58] data sets respec-
tively. The Ear biometrics application was tested using USTB [46], IIT Delhi
ear databases I and II [47]. Category-level image classification was evaluated us-
ing the Caltech-101 [59] data set and additionally, a binary image classification
task based on the LFW [60] and cat data sets [61].

For each data set, we randomly split training and testing sets according to
protocols recommended by the data set authors. For texture, material and leaf
classification, in addition to the standard testing protocol, we evaluated the de-
pendence of performance on the number of training images per class. For ear
biometrics, the testing image for each subject was randomly picked and the re-
maining images were used for training. All experiments were repeated 100 times
using a subsampling cross-validation approach except for the MIT Indoor 67 and
Caltech-101 data sets. In these two cases, results were based on repeating the
subsampling procedure 10 times due to computational complexity. The average
accuracy per category was calculated for each individual run. Mean accuracy
and standard deviation were reported as the final result. Grayscale intensity
values were used for all data sets, even when color images were available.

We extracted the Pairwise Rotation Invariant Co-occurrence Local Binary
Pattern (PRICoLBP) [62] feature for all our experiments. PRICoLBP has been
shown to be efficient and effective in a variety of applications. The significant
attributes of this feature are rotational invariance and effective capture of spa-
tial context co-occurrence information. Particular parameter settings of this
feature for individual data sets are described in the next section.

We used the one-vs-the-rest technique for multi-class SVM classification.
SVM hyperparameters such as C, γ and degree d were chosen by cross-validation
in the training set. For each data set, parameters were obtained for each dis-
tance measure separately using the candidate set log2 C ∈ [-2, 16] and log2 γ
∈ [-4, 8] (with step size 2). These candidate ranges, which can be considered
to be extreme RBF parameter values, were employed based on [63] where such
values were shown to result in superior classification performance in the context
of visual descriptor classification. The degree was chosen from the range d ∈
[1,2,3,4,5] and coefficient was set to 1 for the polynomial kernel.

In order to identify significant differences between PBR and the other meth-
ods, we used the Wilcoxon signed-rank test with Bonferroni correction to control
for Type I error [64], for each data set. This test is preferred over the resampled
paired t-test, as the latter tends to underestimate variance, thus inflating Type
I error in repeated subsampling cross-validation procedures [65].

To further show the generalization capability of the proposed kernel, we
estimated the number of support vectors (SVs) for each model chosen by cross-
validation for all tested methods in each data set. A classifier which has a large
portion of the training data as SVs can be said to have poor generalization per-
formance or to have overfitted the data [66].
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5.1 Texture classification
The Brodatz album is a popular benchmark texture data set which contains 111
different texture classes. Each class comprises of one image divided into nine
non-overlapping sub-images.

The KTH-TIPS data set consists of 10 texture classes, with 81 images per
class. These images demonstrate high intra-class variability because they are
captured at nine scales, under three different illumination directions and with
three different poses.

The Kylberg data set has 28 texture classes of 160 unique samples per class.
The classes are homogeneous in terms of scale, illumination and directionality.
We used the without rotated texture patches version of the data set.

The 2a template configuration of PRICoLBP was used to produce a 1,180
dimensional feature for all the above data sets. Figs. 2, 3 and 4 show the
classification accuracy for the Brodatz, KTH-TIPS and Kylberg data sets.

From the results, we observe that:
• PBR outperforms existing semi-metric distances (BD, JD and χ2) which in

turn perform better than distance metrics (L1-BRD and Hellinger) and baseline
kernels.
• PBR generally outperforms other methods in a significant manner when

the training set is small. The only exceptions are χ2 in Brodatz and BD in KTH-
TIPS. As the number of training images increases, other methods converge in
performance to PBR.
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Figure 2: Classification accuracy (percent) for the Brodatz data set using (a) 2
and (b) 3 training images per class. Means and standard deviations are reported.
PBR significantly (Bonferroni corrected Wilcoxon-signed rank test) outperforms
at α = 0.05 (95% confidence) indicated by ‘+’ and α = 0.005 (99.5% confidence)
indicated by ‘∗’.

5.2 Material recognition
The Flickr Material Database (FMD) is a recently published benchmark data set
for material recognition. The images in this database are manually selected from
Flickr photos and each image belongs to one of 10 common material categories,
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Figure 3: Classification accuracy (percent) for the KTH-TIPS data set using
(a) 10 and (b) 40 training images per class. Means and standard deviations
are reported. PBR significantly (Bonferroni corrected Wilcoxon-signed rank
test) outperforms at α = 0.05 (95% confidence) indicated by ‘+’ and α = 0.005
(99.5% confidence) indicated by ‘∗’.
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Figure 4: Classification accuracy (percent) for the Kylberg data set using (a) 2
and (b) 5 training images per class. Means and standard deviations are reported.
PBR significantly (Bonferroni corrected Wilcoxon-signed rank test) outperforms
at α = 0.05 (95% confidence) indicated by ‘+’ and α = 0.005 (99.5% confidence)
indicated by ‘∗’.

including fabric, foliage, glass, leather, metal, paper, plastic, stone, water, and
wood. Samples images are shown in Fig. 5. Each category includes 100 images
(50 close-up views and 50 object-level views) which capture the large diversity
in appearance of real-world materials. In particular, these images are defined
by large intra-class variations in scale, pose and illumination. All images are
associated with segmentation masks which describe the location of the object.
We use these masks to extract PRICoLBP only from the object regions. Feature
extraction was performed using PRICoLBP’s 6 template configuration, yielding
a 3,540 dimensional feature.

Fig. 6 shows recognition rates for the FMD data set. For the case of 10
training images per class, we observe that PBR significantly outperforms (99.5%
confidence) baseline kernels and distance metrics (L1-BRD and Hellinger) while
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Figure 5: Sample images of FMD data set

achieving comparable results for the others. When the number of training im-
ages per class is raised to 50, PBR significantly outperforms (99.5% confidence)
all other methods with the exception of JD.
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Figure 6: Recognition accuracy (percent) for the FMD data set using (a) 10 and
(b) 50 training images per class. Means and standard deviations are reported.
PBR significantly (Bonferroni corrected Wilcoxon-signed rank test) outperforms
at α = 0.05 (95% confidence) indicated by ‘+’ and α = 0.005 (99.5% confidence)
indicated by ‘∗’.

5.3 Leaf recognition
The Swedish leaf data set contains 15 different Swedish tree species, each repre-
sented by 75 images. The hallmark of this data set is that images exhibit high
inter-class similarity in combination with intra-class geometric and photometric

14



variation (Fig. 7).
We used the same setting of PRICoLBP as for the texture data set. We did

not use the spatial layout prior information of the leaves. Experimental results
for 5 and 25 training images per class are shown in Fig. 8. We observe that
PBR significantly outperforms (99.5% confidence) all other methods for both 5
and 25 training images per class.

Figure 7: Example images from Swedish leaf dataset, one image per species
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Figure 8: Recognition accuracy (percent) for the Swedish leaf data set using
(a) 5 and (b) 25 training images per class. Means and standard deviations are
reported. PBR significantly (Bonferroni corrected Wilcoxon-signed rank test)
outperforms at α = 0.05 (95% confidence) indicated by ‘+’ and α = 0.005 (99.5%
confidence) indicated by ‘∗’.

5.4 Scene recognition
The MIT Indoor 67 data set contains a total of 15,620 indoor scene images in
67 different categories. The images in this data set were collected from Google,
Altavista, Flickr and the LabelMe data set. Sample images are shown in Fig. 9.
The number of images per category ranges from 101 to 734. These images are of
different resolutions, hence we resized the images to have a maximum dimension
of 400 pixels while maintaining the aspect ratio. We used 80 images per class
for training and 20 images per class for testing.

We used the 6 template configuration of PRICoLBP which produces a 3,540
dimensional feature. Recognition performance results in Fig 10 show that PBR
outperforms baseline kernels and L1-BRD with statistically significance (95%
confidence) and achieves comparable performance with respect to other meth-
ods.
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Figure 9: Sample images from six categories of MIT Indoor 67 data set
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Figure 10: Recognition accuracy (percent) for the MIT Indoor 67 data set using
80 training images per class. Means and standard deviations are reported. A
‘+’ or ’◦’ means that either PBR or the corresponding method significantly
(Bonferroni corrected Wilcoxon-signed rank test) outperforms with α = 0.05
(95% confidence).
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5.5 Ear biometrics
The IIT Delhi ear data sets I and II consist of 493 ear images from 125 subjects
and 793 ear images from 221 subjects respectively. The number of ear images
for each subject in these data sets vary from 3 to 6.

We also used a similar ear data set from USTB containing 60 subjects and
a total of 185 ear images. In this data set, 55 subjects are represented with 3
images and the remaining with 4 images.

For the ear recognition application, we used histogram equalization as a
pre-processing step. Sample images from the above mentioned data sets after
histogram equalization are shown in Fig. 11. We then extracted the PRICoLBP
feature using the 6 template configuration. We evaluated performance using
rank-one recognition accuracy. The mean and standard deviation of the rank-
one recognition rate for different methods are shown in Figs. 12 and 13.

From Fig. 12, we can see that PBR works best on the USTB data set. We
further observe from Fig. 13 that PBR places second on the IIT Delhi data sets
and significantly outperforms (99.5% confidence) all other methods except BD
and JD.

Figure 11: Enhanced ear image samples from five subjects of USTB, IIT Delhi
I and II data sets

5.6 Category-level image classification
The detection of cat heads and faces have attracted the recent interest of re-
searchers, reflecting their popularity on the internet and as human companions.
Although, sharing a similar face geometry to humans, approaches for detect-
ing human faces can’t be directly applied to cats because of the high intra-class
variation among the facial features and textures of cats as compared to humans.
This motivated us to test the PBR kernel on a cat vs human binary classifica-
tion task. We used the LFW and cat data sets which consist of 13,233 human
images and 9,997 cat images respectively. Sample images are shown in Fig. 14.
We randomly selected 3000 images from each category to avoid a high computa-
tional workload. After resizing the images to have a maximum dimension of 250
pixels while maintaining the aspect ratio, we extracted the PRICoLBP feature
using the 6 template configuration. 25 training images per class were used for
training and the rest for testing.

The Caltech-101 data set is an important benchmark data set for image clas-
sification. This contains 9,144 images under 102 categories (101 diverse classes

17



and one background class). The number of images per class varies from 31 to
800. These images exhibit high intra-class variations and vary in dimensions.
Hence we resized the images to have a maximum dimension of 256 pixels (while
maintaining the aspect ratio). The protocol we used was standard; 30 images
per class for training and up to 50 images per class for testing. We applied PRI-
CoLBP’s 6 template configuration which produced a 3,540 dimensional feature.

Experimental results presented in Fig. 15 show that PBR achieves signifi-
cantly (99.5% confidence) superior performance compared to all other methods
for human vs cat binary classification. For the Caltech 101 data set, PBR was
comparable to χ2 distance, while significantly outperforming baseline kernels
and distance metrics (L1-BRD and Hellinger). Moreover, Table 3 shows that
PBR, in comparison to Caltech 101, compared with BD, JD and χ2 distance,
yields the best performance in 51 categories out of all 102 categories.

5.7 Evaluation of generalization capability
Table 4 summarizes the average number of SVs per chosen model for all methods
evaluated in all data sets. A classifier which has a high number of SV’s in
proportion to training data can be said to have generalized poorly. By this
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Figure 12: Rank-one recognition accuracy (percent) for the USTB data set.
Means and standard deviations are reported. A ‘∗’ means that PBR significantly
(Bonferroni corrected Wilcoxon-signed rank test) outperforms with α = 0.005
(99.5% confidence).
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Figure 13: Rank-one recognition accuracy (percent) for the IIT Delhi (a) I and
(b) II data sets. Means and standard deviations are reported. A ‘∗’ means that
PBR significantly (Bonferroni corrected Wilcoxon-signed rank test) outperforms
with α = 0.005 (99.5% confidence).

Figure 14: Sample images from LFW (left) and cat (right) data sets

token, we observe that PBR is consistently associated with the lowest number
of SVs compared to the state-of-the-art distance measures. The only exception
is IIT-II, where χ2 is associated with one less SV. Overall, this data indicates
that PBR’s improved performance is attributable to its superior generalization
capability and not to overfitting.

6 Conclusion
In this paper, we challenged the identical distribution assumption fundamental
to all existing distance measures. There were three parts to our work. First, we
asked if this assumption is a true reflection of real-world data. Using statistical
analysis, we found this not to be true. This result led to our second contribu-
tion, the construction of the PBR distance measure using the Poisson-Binomial
distribution. This distance measure avoids the identical distribution assump-
tion and accounts for non-identically distributed features. Further, unlike com-
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Figure 15: Classification accuracy (percent) for the (a) LFW-Cat data sets using
25 training images per class and (b) Caltech 101 data set using 30 training im-
ages per class. Means and standard deviations are reported. PBR significantly
(Bonferroni corrected Wilcoxon-signed rank test) outperforms at α = 0.05 (95%
confidence) indicated by ‘+’ and α = 0.005 (99.5% confidence) indicated by ‘∗’.

monly used distance measures, PBR captures bin-to-bin dispersion. Finally,
in the third part of our investigation, we evaluated PBR’s performance in six
different image classification/recognition applications using twelve benchmark
data sets spanning a wide variety of challenges encountered in computer vision.
Our experimental results demonstrated that PBR outperforms state-of-the-art
distance measures for most data sets and achieves comparable performance on
the rest. This outperformance is not explained by the semimetric nature of PBR
because other compared semimetric distances did not perform as well. These
results support the idea that distance measures which account for different dis-
tributions can improve performance in classification and recognition.
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