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A Dynamic Framework Based on Local Zernike Moment and Motion History Image for Facial

Expression Recognition

Xijian Fan, Tardi Tjahjadi

School of Engineering, University of Warwick Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom.

Abstract

A dynamic descriptor facilitates robust recognition of facial expressions in video sequences. The current

two main approaches to the recognition are basic emotion recognition and recognition based on facial action

coding system (FACS) action units. In this paper we focus on basic emotion recognition and propose a spatio-

temporal feature based on local Zernike moment in the spatial domain using motion change frequency. We

also design a dynamic feature comprising motion history image and entropy. To recognise a facial expression,

a weighting strategy based on the latter feature and sub-division of the image frame is applied to the former

to enhance the dynamic information of facial expression, and followed by the application of the classical

support vector machine. Experiments on the CK+ and MMI datasets using leave-one-out cross validation

scheme demonstrate that the integrated framework achieves a better performance than using individual

descriptor separately. Compared with six state-of-arts methods, the proposed framework demonstrates a

superior performance.

Keywords: Zernike moment, facial expression, motion history image, entropy, feature extraction.

1. Introduction

In recent years facial expression recognition has become a popular research topic [1, 2, 3]. With the

recent advances in robotics, and as robots interact more and more with human and become a part of human

living and work space, there is an increasing requirement that robots are able to understand human emotions

via a facial expression recognition system [4]. Facial expression recognition system also plays a significant

role in Human-Computer Interaction (HCI) [5], which has helped to create meaningful and responsive HCI

interfaces. It has also been widely used in behavioural study, video games, animations, safety mechanism in

auto-mobile, etc. [6].

Discriminative and robust features that represent facial expressions are important for effective recognition

of facial expressions, and how to obtain them is still a challenging problem. Recent methods that address

this problem can be categorised into global-based methods and local-based methods. It has been shown that

local-based methods (e.g., based on Gabor wavelets using grid points) achieve better performance than the

global-based ones (e.g., based on eigenfaces, Fisher’s discriminant analysis, etc.) [7]. Gabor wavelet results

in good performance due to its locality and orientation selectivity. However, its computational complexity
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requiring high computational time makes it unsuitable for real-time applications. Local Binary Pattern

(LBP) descriptor which is based on the histogram of local patterns also achieves a promising performance

[8].

Shape as a geometric-based representation is crucial for interpreting facial expressions. However, current

state-of-the-art methods only focus on a small subset of possible shape representation, e.g., point-based

methods that represent a face using the locations of several discrete points. Noting that image moments can

describe simple properties of a shape, e.g., its area (or total intensity), its centre and its orientation, Zernike

moments (ZMs) have been used to represent a face and facial expressions in [9, 10]. Zernike moments are

rotation invariant features, which can be used to address in-plane head pose variation. In the field of facial

expression recognition, rotation invariant LBP and uniform LBP [11] have also been used to overcome the

rotation problem. In [12], Quantised Local Zernike Moment (QLZM) is used to describe the neighbourhood

of a face sub-region. The Local Zernike moments have more discriminant power than other image features,

e.g., local phase-magnitude histogram(H-LZM), cascaded LZM transformation (H-LZM2) and local binary

pattern (LBP) [13].

Since a facial expression involves a dynamic process, and the dynamics contain information that rep-

resents a facial expression more effectively, it is important to capture such dynamic information so as to

recognise facial expressions over the entire video sequence. Recently, there has been more effort on mod-

elling the dynamics of a facial expression sequence. However, the modelling is still a challenging problem.

Thus, in this paper, we focus on analysing the dynamics of facial expression sequences. First, we extend

the spatial domain QLZM descriptor into spatio-temporal domain, i.e., Motion Change Frequency based

QLZM (QLZM MCF), which enables the representation of temporal variation of expressions. Second, we

apply optical flow to Motion History Image (MHI) [14], i.e., (optical flow based MHI) MHI OF, to represent

spatial-temporal dynamic information (i.e., velocity).

We utilise two types of features: a spatio-temporal shape representation, QLZM MCF, to enhance the lo-

cal spatial and dynamic information, and a dynamic appearance representation, MHI OF. We also introduce

an entropy-based method to provide spatial relationship of different parts of a face by computing the en-

tropy value of different sub-regions of a face. The main contributions of this paper are: (a) QLZM MCF; (b)

MHI OF; (c) an entropy-based method for MHI OF to capture the motion information; and (d) a strategy

integrating QLZM MCF and entropy to enhance spatial information.

The rest of the paper is organised as follows. Previous related work is presented in Section 2. Section 3

presents QLZM MCF, the method using MHI OF and entropy, and the intergration of the two dynamic

features. The framework and the experimental results are respectively presented in Section 4 and Section 5.

Finally, Section 6 concludes the paper.
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2. Related Work

The two main focuses in the current research on facial expression are basic emotion recognition and

recognition based on facial action coding system (FACS) action units (AUs). The most widely used facial

expression descriptors for recognition and analysis are the six prototypical expressions of Anger, Disgust,

Fear, Happiness, Sadness and Surprise [15]. The most widely used facial muscle action descriptors are AUs

[1]. With regard to basic emotion recognition, geometric-based features and appearance-based features are

most widely used.

Geometric-based methods rely on the locations of a set of fiducial facial points [16, 17], a connected

face mesh [18, 19], or the shapes of face components [20]. The commonly used geometric representation

is facial points, which represent a face by concatenating the x and y coordinates of a number of fiducial

points. Alternative shape representations include the distances between facial landmarks, distance and angle

that represent the opening/closing of the eyes and mouth, and groups of points that describe the state of

the cheeks. Although it has been shown that shape representation plays a vital role for analysing facial

expressions, they have not been exploited to their full potential [12].

Image moments can be categorised into geometric moments, complex moments and orthogonal moments.

Although easy to use, the large values of geometric moments are their main limitations leading to numerical

instabilities and sensitivity to noise. Complex moments are defined similarly to geometric and have been

used to describe the shape of a probability density function and to measure the mass distribution of a body.

Hu moments exhibit translation, rotation and scaling invariance, and has been applied in many areas [21].

Orthogonal moments are projections of a function onto a polynomial basis. ZMs employ complex Zernike

polynomials as its moment basis set [22], and have been used to recognise facial expressions [23]. The rotation

invariance of Zernike-based facial features is discussed in [9, 10]. QLZM is used in [12] for recognising facial

expressions. However, ZM has its shortcomings, namely it is a low level histogram representation which

ignores the spatial relations (i.e., configure information) among the different facial parts. Also, ZMs only

describe the texture information in each frame of an image sequence, and do not capture any dynamic

information. In this paper, we address these two limitations by extending QLZM to spatio-temporal in

order to extract dynamic information, and introducing an entropy to incorporate spatial relations.

The appearance-based methods try to find a more effective and robust way to represent appearance

feature including skin motion and texture changes (i.e., deformation of skin) such as bulges, wrinkle and

furrows. Transformations and statistical methods are used to determine the feature vectors that represent

textures and are thus simple to implement. Gabor wavelets [24] and LBPs [25] are two representative

feature vectors of such an approach that describe the local appearance models of facial expressions. Gabor

magnitudes are robust to misalignment of corresponding image features. However, computing Gabor filters

has a high computational cost, and the dimensionality of the output can be large, especially if they are
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applied to a wide range of frequencies, scales and orientations of the image features. LBP is a histogram

where each bin corresponds to one of the different possible binary patterns representing a facial feature,

resulting in a 256-dimensional descriptor. The most popular LBP is the uniform LBP [26]. LBP has been

extended to spatio-temporal domain so as to utilise the dynamics information, which results in a significant

improvement in recognition rate [27]. One drawback of appearance-based approach is that it is difficult to

generalise appearance features across different persons.

A Dynamic Texture (DT) is a spatially repetitive, time-varying visual pattern that forms an image

sequence with certain temporal stationarity [28]. MHI applied to the recognition of DT can be used to

address the problem of facial expression recognition [29]. MHI decomposes motion-based recognition by first

describing where there is motion (i.e., the spatial pattern) and then describing how the object is moving

[14], where the temporal information can be retained by eliminating one dimension. One of the advantages

of MHI is that a range of times may be encoded in a single frame, and in this way, the MHI spans the time

scale of the human motion. In MHI, the intensity value of each image pixel denotes the recent movement,

ignoring the speed of the movement. However, speed can be used to distinguish the movement of some facial

parts (e.g., opening of mouth and raising of eyebrows) and the movements caused by changes of in-plane

head pose or relatively stable facial parts (e.g., cheek, nose, forehead, etc.) during facial expressions. Optical

flow has been used to capture the velocity of movement at pixels in an image, but by computing the changes

in pixel intensities between two consecutive frames it does not accurately describe the entire video sequence.

We address the limitations of MHI and optical flow by combining them so as to incorporate speed and to

enable more distinct representations of movement of different facial parts.

Entropy-based methods extract intensity information of image pixels, and have been applied for face

recognition. For example, Cament et al. [30] combined entropy-like weighted Gabor features with the

local normalisation of Gabor features. Chai et al. [31] introduced the entropy of a facial region, where

a low entropy value means the probabilities of different intensities are different, and a high value means

the probabilities are the same. They used the entropy of each of the equal-size blocks of a face image to

determine the number of sub-blocks within each block. Inspired by [31], we use entropy in the proposed

MHI OF as follows. Since the intensity value of each pixel in MHI represents a movement, the high intensity

values denoting large movement will result in high entropy value, and vice versa.

3. Feature extraction

3.1. Motion History Image

MHI can be considered as a two-component temporal template, a vector-valued image where each com-

ponent of each pixel is some function of the motion at that pixel location. The MHI Hτ (x, y, t) is computed
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from an update function Ψ(x, y, t), i.e.,

Hτ (x, y, t) =











τ, Ψ(x, y, z) = 1

max(0, Hτ (x, y, t)− δ), otherwise

(1)

where (x, y, t) is the spatial coordinates (x, y) of an image pixel at time t (in terms of image frame number),

the duration τ determines the temporal extent of the movement in terms of frames, and δ is the decay

parameter. Ψ(x, y, z) is defined as

Ψ(x, y, z) =











1, D(x, y, t)

0, otherwise

(2)

where D(x, y, t) is a binary image comprising pixel intensity differences of frames separated by temporal

distance ∆, i.e.,

D(x, y, z) = |I(x, y, t)− I(x, y, t±∆)| (3)

and I(x, y, t) is the intensity value of pixel with coordinates (x, y) at the tth frame of the image sequence.

The duration τ and the decay parameter δ have an impact on the MHI image. If τ is smaller than the

number of frames, then the prior information of the motion in its MHI will be lost. For example, when

τ = 10 for a sequence with 19 frames, the motion information of the first 9 frame will be lost if the value

of δ = 1. On the other hand, if the temporal duration is set at very high value compared to the number

of frames, then the changes of pixel value in the MHI is less significant. The MHI of a sequence from the

Extended CK dataset (CK+) [32] is shown in Fig. 1.

Figure 1: Example of images from sequences (left and middle) and its MHI (right).

3.2. Optical Flow Algorithm

Optical flow descriptor can represent the velocity of a set of individual pixels in an image, which cap-

ture their dynamic information. We employ optical flow descriptor in our framework to exploit velocity

information.

The Lucas-Kanade method is one of most widely-used method for optical flow computation [33], which

solves basic optical flow equation for all pixels in their local neighbourhood by using the least squares

criterion. Given two consecutive image frames It−1 and It, for a point p = (x, y)T in It−1, if the optical flow
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is d = (u, v)T then the corresponding point in It is p+ d, where T is the transpose operator. The algorithm

finds the d which minimises the match error between the local appearances of two corresponding points. A

cost function is defined for the local area R(p), i.e., [33]

e(d) =
∑

x∈R(p)

w(x)(It(x+ d)− It−1(x))
2, (4)

where w(x) is a weights window, which assigns larger weight to pixels that are closer to its central pixel as

these pixels are considered to contain more important information than those further away.

3.3. Optical Flow based MHI (MHI OF)

In [34], Tsai et al. proposed a representation that incorporates both optical flow and a revised MHI

for action recognition, which can better describe local movements. Since a video sequence of facial ex-

pression involves local movements of different facial parts, we consider applying this representation into

spatio-temporal facial expression recognition. As according to [34], we compute the optical flow between

two consecutive frames and obtain the optical flow image where the intensity of each pixel represents the

magnitude of the optical flow descriptor. The higher values denote the faster movement of facial points. We

define MHI OF of a sequence as

M(x, y, t) = d(x, y, t) +M(x, y, t− 1) ∗ τ̄ (5)

where τ̄ is another decay parameter, and

d(x, y, t) =











a ∗ d(x, y, t) + b d(x, y, t) > T

0 otherwise.

(6)

a and b are scale factors, and T is a threshold which is used to remove small movements, while retaining

large movements of some fiducial points (e.g., eyebrows, lips, etc.). Scale factors are used because the

optical flow descriptor is not significantly large for the movements of points in two consecutive frames. In

our experiments, the original optical flow d(x, y, t) is magnified by a scale factor a of 10 with a starting value

b of 20, and the threshold T is set to 1. A large value of the decay parameter τ̄ creates a slow decrement

of the accumulated motion strength, and the long-term history of the motion is recorded in the resulting

MHI OF image. A small value of τ̄ gives an accelerated decrement of motion strength, and only the recent

short-term movements are retained in the MHI OF image. Fig. 2 illustrates optical flow based MHI for some

facial expressions.

3.4. Entropy

The entropy of a discrete random variable X with possible values {x0, x1, ...x2, xN} can be defined as

[35]

E(X) = −
∑

i=0

p(xi)× log2(p(xi)), (7)
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Figure 2: Optical flow based MHI for Anger, Happiness and Surprise (from left to right).

where p(.) is the probability function. For a grey-level face image, the intensity value of each pixel varies from

0 − 255, and the possibility of a particular value occurring is random and varies depending on the pattern

of different face images. Considering a face image with dimension H ×W having a total of M = H ×W

pixels, the probability of a particular intensity value xi occurring in the image is p(xi) = ni/M , where ni

is the number of occurrences of xi among the M pixels. In this case, considering Σini = M , the entropy of

the image can be expressed as

E(X) = log2M − 1

M
×

255
∑

i=0

ni × log2(ni). (8)

It is shown in [37] that certain facial regions contain more important information for recognising facial

expressions than others. For example the regions of mouth and eyes that produce more changes than those

of nose and forehead during an expression have more contribution towards the recognition. Also, as can

be seen from the leftmost and middle columns of Fig. 3, different facial regions in MHI have different

intensity levels due to the distance and speed of movements during an expression. Thus, introducing a

weight function which allocates different weights to different facial regions will improve recognition. Instead

of setting weights empirically based on the observation, we utilise entropy to determine the weights as it is

expected that the entropy at different facial regions will differ significantly due to pixel intensity variation

at these regions.

The size of the training samples in practice is often not large enough to cover all the possible values

of pixels in MHI. To address this sparse problem, we divide the possible 256 intensity levels into several

sections to form intensity divisions. For a 2-dimensional (2D) matrix X = (xij)H×W , let χ = {t1, t2, ..., tK}
be the sorted set of all possible K intensity values that exist in X where t1 < t2 < t3... < tK and K is the
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Figure 3: Example image entropies: (left column) neutral image and its entropy; (middle colulmn) surprise

image and its entropy; and (right column) MHI of surprise image and its entropy. Lighter shades denote

larger entropy values.

number of the distinct intensity values. The process of division is

xij =



















































































xt1 , t1 ≤ xij ≤ t2

xt2 , t2 ≤ xij ≤ t3

xt3 , t3 ≤ xij ≤ t4,

.

.

.

xtk , tK−1 ≤ xij ≤ tK .

(9)

To compute the weight function, we divide the MHIs with size of H ×W into several non-overlapping

sub-regions. The 2D spatial histogram of the intensity values xtk on each sub-region of X is

hk = {hk(p, q)|1 ≤ p ≤ P, 1 ≤ q ≤ Q}, (10)

where p, q ∈ Z
+, P ×Q is the size of sub-regions, and hk(p, q) ∈ [0,Z+] is the number of occurrences of the

intensity values xtK in the spatial grid located on the image sub-region of [(p−1)H
P
, pH

P
]× [(q−1)W

Q
, qW

Q
]. In

forming 2D spatial histogram hk of intensity values xtk , the aspect ratio of the original image is maintained

on spatial grids. In this way, spatial characteristics of pixels are retained when forming the 2D spatial

histogram.

The entropy value on each sub-region of the 2D spatial histogram is computed for intensity values xtk
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using

S(p, q) = −
K
∑

k=1

p(hk(p, q))log2p(hk(p, q)), (11)

where p(hk(q, p)) is the possibility of particular intensity value xtk in the spatial grid located on the image

sub-region of [(p− 1)H
M
, pH

M
]× [(q − 1)W

N
, qW

N
].

The normalisation process is implemented using

ω(p, q) =(s(p, q)− smin)/(smax − smin) (12)

to convert the range of weights into 0− 1, where smin and smax are respectively the maximum value and the

minimum of the entropy values over all sub-regions. The computed weights of each subregion on MHI OF

are as the final weight features

enMHI OF = {ω(1, 1), ω(1, 2), ...ω(1, q), ..., ω(p, q)}. (13)

The MHI OF using entropy representation is shown in the rightmost column of Fig. 3.

3.5. Local Zernike Moment

ZMs of an image is computed by decomposing the image onto a set of complex orthogonal basis on the

unit disc x2 + y2 ≤ 1 called Zernike polynomials. The Zernike polynomials are defined as [12]

Vnm(ρ, θ) = Vmn(ρcosθ, ρsinθ) = Rnm(ρ)ejmθ, (14)

where n is the order of the polynomial and m is the number of iterations such that |m|< n and n− |m| is
even. Rmn are the radial polynomials, i.e.,

Rmn(ρ) =

n−|m|
∑

s=0

(−1)sρ(n−2s)(n− s)!

s!(
n+ |m|

2
− s)!(

n− |m|
2

− s)!

, (15)

where ρ and θ are the radial coordinates. A ZM of a face image I(x, y) consisting of a real and an imaginary

components is [12]

ZI
nm =

n+ 1

π

X−1
∑

x=0

Y−1
∑

y=0

I(x, y)V ∗
mn(ρxy, θxy)∆x̄∆ȳ, (16)

where x and y are the image coordinates mapped to the range [−1,+1], ρxy =
√

x̄2 + ȳ2, θxy = tan−1 x̄
ȳ
and

∆x̄ = ∆ȳ = 2/N
√
2.

Since a local descriptor represents the discontinuities and texture of an image effectively, QLZM is

proposed in [12] using non-linear encoding and pooling, where non-linear encoding facilitates the relevance

of low-level features by increasing their robustness against image noise, while pooling is exploited to deal

with the problem of small geometric variation. Non-linear encoding is carried out on complex-valued local
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ZMs using binary quantization, which converts the real and imaginary parts of each ZM coefficient into

binary values using signum functions. Such coarse quantisation increases compression and encodes each

local block with a single integer. Since features along borders may fall out of the local histogram, they

are down-weighted in pooling using a Gaussian window peaked at the centre of each subregion. A second

partitioning is also applied to account for the down-weighted features, where a higher emphasis is placed on

features down-weighted at the first partitioning. The final QLZM feature is constructed by concatenating

all local histograms, and the length of extracted correspond to two parameters: the number of moment

coefficient K1 and the size of the grid M , which are computed by

22K1 × [M2 + (M + 1)2], (17)

where for moment order n, K1 is computed using the function of moment order n

K1(n) =











n(n+ 2)

4
if n is even

(n+ 1)2

4
if n is odd.

(18)

The process of generating QLZM is illustrated in Fig. 4.

Figure 4: QLZM based facial representation framework.

3.6. Extension to spatio-temporal

QLZM of a 2D image incorporating local spatial textural information has been shown to achieve good

facial expression recognition rate [12]. In this paper, we incorporate dynamic information by applying a

Motion Change Frequency (MCF) for spatial QLZM, and propose a spatio-temporal descriptor QLZM MCF.

Suppose we have a QLZM sequence where each image frame has been transformed by using QLZM, and

the subregions of each QLZM frame are denoted as Qp,q(i, t), where t is the image frame number in the

sequence and i denotes the local pattern from a subregion (m,n) of each QLZM image. For each pattern i

in subregions (p, q), its positive change sequence posp,q(i, t), t = 1, 2, ..., T − 1 is defined as

posp,q =











1 Qp,q(i, t+ 1)−Qp,q(i, t) > Ts ∗Qp,q(i, t)

0 otherwise,

(19)
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where Ts is a threshold. Similarly, its negative change sequence is defined as

negp,q =











1 Qp,q(i, t+ 1)−Qp,q(i, t) < −Ts ∗Qp,q(i, t)

0 otherwise.

(20)

Also, we define the unchanged sequence as

uncp,q =











1 | Qp,q(i, t+ 1)−Qp,q(i, t) |≤ Ts ∗Qp,q(i, t)

0 otherwise.

(21)

Ts is an adjustable parameter which affects the performance of the proposed framework. If Ts is set too

large then some movements between two consecutive frames might be ignored, while if Ts is set too small

then small movements, e.g., due to subtle head pose are detected. In our experiments, Ts is set to 0.1. The

QLZM MCF on each subregion (p, q) is the combination of three changes of the pattern i, i.e.,

QLZM MCFp,q = {QLZM MCFp,q(i, 1),

QLZM MCFp,q(i, 2),

QLZM MCFp,q(i, 3)}

(22)

where

QLZM MCFp,q(i, 1) =

T−1
∑

t=1

pos(i, t)/(T − 1)

QLZM MCFp,q(i, 2) =

T−1
∑

t=1

neg(i, t)/(T − 1)

QLZM MCFp,q(i, 3) =

T−1
∑

t=1

unc(i, t)/(T − 1).

(23)

The final QLZM MCF feature is obtained by concatenating all QLZM MCFp,q on each region.

3.7. Fusion using weighting function

Given two different types of facial features, an efficient way to combine them is to concatenate the two

features to give

fFUSION = (enMHI OF,QLZM MCF), (24)

where enMHI OF and QLZM MCF are the two features.

Another combination scheme is also introduced to combine the two features by applying enMHI OF

feature as weight function in pooling during the generation of QLZM. Specifically, we use the same strategy

of subregion division on the input image of MHI and QLZM, and the threshold based on enMHI OF is

introduced to each subregion of QLZM image to determine which subregions are removed or retained to
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compute spatial-temporal QLZM MCF. If the enMHI OF value of a subregion is larger than the threshold,

the subregion at the same location in the QLZM image is retained for further processing, otherwise the

subregion is removed. The threshold function is defined as

Rp,q =











Rp,q enMHI OFp,q > Ten

remove otherwise,

(25)

where Ten is the threshold to be set and enMHI OFp,q is the value of enMHI OF in subregion (p, q). This

scheme is required because subregions with larger enMHI OF value indicating more significant motion (thus

making larger contribution to recognition) should be allocated larger weights, while subregions with smaller

enMHI OF indicating little motion (thus making no or little contribution to recognition) should be allocated

smaller weights or removed. The integrated feature is fWeightedFUSION, and the dimension of the feature is

3× 22K ×Ns, where Ns is the number of selected subregions obtained by the thresholding.

3.8. Dimensionality reduction using 2D PCA

Principal Component Analysis (PCA) is widely used in facial expression recognition for reducing the

dimensionality of feature space. It aims to extract decorrelated features out of possible correlated features

using a linear mapping function. Under controlled head-pose and imaging conditions, these features capture

the statistical structure of facial expressions. 2D PCA has been shown to be superior to PCA in terms of more

accurate estimation of covariance matrices and reduced computational complexity for feature extraction by

operating directly on 2D matrices instead of 1-dimensional vectors [39], i.e., it is not necessary to convert

the 2D image into 1D feature prior to feature extraction. Given L training samples, i.e., G1, G2, .., GL, the

scatter matrix S is [39]

S =
1

L

L
∑

i=1

(Gi −M)T × (Gi −M), (26)

where M = (1/L)
∑L

i=1 Gi. Since there are at most L − 1 eigenvectors of S with non-zero eigenvalues, N

eigenvectors (where N < L− 1) are randomly chosen from the set of L− 1 eigenvectors, i.e., (e1, e2, ...eL−1),

with the largest eigenvalues used to construct L subspaces Rk
L
K=1. The nth eigenvector with zero eigenvalue

is discarded in order to reduce the dimensionality of the feature space while preserving discriminatory

information. Thus, 2D PCA is adopted in this paper.

4. Facial expression recognition framework

Fig. 5 outlines the proposed framework which comprises pre-processing, feature extraction and classifi-

cation. The pre-processing includes facial landmark detection and face alignment, where face alignment is

applied to reduce the effects of variation in head pose and scene illumination. We use the local evidence

aggregated regression [38] to detect facial landmarks over each frame, where the locations of detected eyes
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and nose are used for face alignment including scaling and cropping. The aligned face images are the size

of 200× 200, where the x coordinate of the centre of the two eyes are the centre in the horizontal direction,

while the y coordinate of the nose tip locates the lower third in the vertical direction. Since the dimension-

ality of the features is high, following the feature extraction as in Section 3 a dimension reduction technique

is applied to obtain a more compact representation. Different classifiers may lead to different recognition

performance. We use support vector machines (SVM) that has been widely used and shown to be effective

in recognising facial expressions.

Figure 5: The proposed framework.

5. Experiments

5.1. Facial expression datasets

We use the Extended CK dataset (CK+) as it is widely used for evaluating the performance of facial

expression recognition methods and thus facilitates comparison of performances. The dataset includes 327

image sequences of six basic expressions (namely Anger, Disgust, Fear, Happiness, Sadness and Surprise) and

a non-basic emotion expression (namely Contempt), performed by 118 subjects. Each image sequence from

this dataset has various number of frames and starts with the neutral state and ends with the peak phase

of a facial expression. We use standard leave-one-out cross-validation scheme to evaluate the performance

of the proposed framework by computing the average recognition rate. One sequence corresponding to an

expression is chosen for testing and the remaining sequences of the same expression are used for training. We

run the proposed recognition system 327 times on the selected image sequences, and averaged all recognition

rates to obtain the final rates.

We also use MMI [36], a publicly available dataset, which includes both posed and spontaneous facial

expression sequences. 203 sequences which are labelled as one of six basic expressions are selected, and all
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selected sequences are converted into 8-bit grey-scale images with only the sub-sequences from start frame

to the frame with the peak expression phase included.

5.2. Experimental results

The first experiment aims to investigate the effectiveness of the enMHI OF feature, and is conducted on

the CK+ dataset. As the performance of enMHI OF might rely on the size of sub-regions and the number of

grey levels represented by K, we conducted our experiment using different sizes and K. Table 1 shows that

better performances are achieved using divided grey levels (i.e., using K=4, 10, 20) than using the entire

256 grey levels. Also, using sub-regions with size 20× 20 gives the best performances.

Table 1: Recognition rate of enMHI OF using several combinations of different grey levels and block sizes

on classification of six facial expressions and contempt of the CK+ dataset with leave-sequence-out cross-

validation.

20× 20 10× 10 8× 8 5× 5

K=4 74.31 70.33 71.55 67.28

K=10 75.84 75.84 70.63 72.78

K=20 76.14 75.53 72.48 74.92

K=256 73.40 70.94 71.55 73.09

The second experiment compares the performance difference between the spatial and spatio-temporal

features. The recognition rates in using spatial QLZM and the spatio-temporal QLZM MCF which employs

dynamic information are summarised in Fig. 6. We also compare the use of MHI OF and MHI. Since using

MHI image as input of the classifier may lead to higher dimensionality, we use histogram computation to

represent MHI and MHI OF. The recognition rates in using MHI and MHI OF are shown in Fig. 7. As

can be seen from Fig. 7, the performance in using MHI OF is better than in using MHI. These two figures

show that QLZM MCF and MHI OF outperform the spatial QLZM and MHI, respectively, although the

performance of both MHI and MHI OF are less than satisfactory.

The third experiment investigates the effectiveness of concatenating QLZM MCF with enMHI OF in the

proposed framework. Table 2, Table 3, Table 4 and Table 5 respectively show the results using two individual

features separately, the simple fusion strategy fFUSION and the proposed fusion strategy fWeightedFUSION.

The overall recognition rates using all four features (QLZM MCF, enMHI OF, feature using simple fusion

strategy and feature using proposed weighting fusion strategy) are shown in Table 6. The tables show the

framework using the simple fusion strategy of two features performs better than using individual feature

separately, and the proposed fusion strategy achieves the best performance. In Table 6, we compare the

proposed feature with the method of Eskil et al. [43], the static method of Lucey et al. [32] and our previous
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Figure 6: Recognition rates of all expressions using QLZM and QLZM MCF on CK+ dataset.

Figure 7: Recognition rates of all expressions using MHI and MHI OF on CK+ dataset.

work [44], which shows the fused feature achieves an average recognition rate of 88.30% for all seven facial

expressions, and outperforms the other methods. Thus, we can also conclude that the combination of two

dynamic features improves the recognition rate.
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Table 2: Recognition rate (in term of percentage of true positive, true negative, ect.) of QLZM MCF

on classification of six facial expressions and contempt of the CK+ dataset with leave-sequence-out cross-

validation.

A D F H Sa Su C

Anger(A) 89.9 2.2 0 0 4.4 0 4.4

Disgust(D) 1 94.9 1.7 0 0 0 1.7

Fear(F) 4.0 8.0 64.0 4.0 12.0 0 4.0

Happiness(H) 1.4 0 0 97.1 0 1.4 0

Sadness(Sa) 0 3.6 7.1 0 78.6 3.6 7.1

Contempt(Su) 0 0 1.2 2.4 1.2 94.0 1.2

Contempt(C) 0 5.6 16.7 11.1 5.6 0 61.1

Table 3: Recognition rate (in term of percentage of true positive, true negative, ect.) of enMHI OF on

classification of six facial expressions and contempt of the CK+ dataset with leave-sequence-out cross-

validation.

A D F H Sa Su C

Anger(A) 73.3 4.4 6.7 6.7 6.7 0 2.2

Disgust(D) 5.1 84.8 3.4 0 3.4 0 3.4

Fear(F) 8.0 0 40.0 16.0 20.0 4.0 12.0

Happiness(H) 0 0 4.3 89.9 2.9 0 2.9

Sadness(Sa) 10.7 0 21.4 3.6 42.9 7.1 14.3

Surprise(Su) 1.2 0 2.4 2.4 1.2 90.4 2.4

Contempt(C) 11.1 0 27.8 5.6 11.1 5.6 38.9
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Table 4: Recognition rate (in term of percentage of true positive, true negative, ect.) of using simple fusion

strategy on classification of six facial expressions and contempt of the CK+ dataset with leave-sequence-out

cross-validation.

A D F H Sa Su C

Anger(A) 86.7 2.2 2.2 2.2 6.7 0 0

Disgust(D) 3.4 94.9 1.7 0 0 0 0

Fear(F) 8.0 4.0 72.0 0 4.0 4.0 8.0

Happiness(H) 0 0 0 95.7 8.0 4.0 0

Sadness(Sa) 3.6 0 10.7 0 78.6 0 7.1

Surprise(Su) 0 0 1.2 2.4 1.2 95.2 0

Contempt(C) 5.6 0 22.2 5.6 5.6 5.6 55.6

Table 5: Recognition rate (in term of percentage of true positive, true negative, ect.) of the proposed fusion

strategy on classification of six facial expressions of the CK+ dataset and contempt with leave-sequence-out

cross-validation.

A D F H Sa Su C

Anger(A) 91.1 2.2 6.7 0 0 0 0

Disgust(D) 3.4 96.7 0 0 0 0 0

Fear(F) 4.0 4.0 80.0 4.0 0 4.0 4.0

Happiness(H) 0 1.4 0 98.6 0 0 0

Sadness(Sa) 3.6 0 0 3.6 89.3 3.6 0

Surprise(Su) 0 0 0 0 1.2 97.6 1.2

Contempt(C) 5.6 0 11.1 5.6 5.6 0 72.2

Table 6: The overall recognition rates of the four spatio-temporal features on the CK+ dataset.

Feature Recognition rate

Lucey et al [32] 50.4

Eskil et al [43] 76.8

Our previous work [44] 83.7

QLZM MCF 82.6

enMHI OF 65.7

simple fusion strategy 82.6

proposed weighting fusion strategy 88.3
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We also conducted an experiment on the MMI dataset, comparing the proposed framework with the

method that uses LBP and SVM [37], and the methods in [45] and [44] that are evaluated using the same

classification strategy of 10-fold cross-validation. The average recognition rates are shown in Table 7. The

table shows that the proposed framework outperforms all the other five methods. The result for LBP was

obtained by using different samples to those used in [37], and using the same strategy of classification

introduced in [45] which is also used in [44] and the proposed method.

Table 7: Comparative evaluation of the proposed framework on the MMI dataset.

Study Methodology

LBP [37] 54.5

AAM [45] 62.4

ASM [45] 64.4

Fang in [45] 71.6

Our previous work [44] 74.3

Proposed weighting fusion strategy 79.8

Although CK+ and MMI are two of the most widely used datasets for evaluating facial expression

recognition methods, they are both collected in a strict controlled settings with near frontal poses, consistent

illumination and posed expressions. The recent and more challenging datasets of AFEW and SFEW [46]

provide platforms for researchers to create, extend and test their methods on a common benchmarked data.

Since the proposed framework recognises facial expression on video sequence which treat a sequence as an

entity, we use AFEW which are used for EmotiW 2014 for our experiments [47]). AFEW is a dynamic

temporal facial expressions data corpus extracted from movies with realistic real world environment. It

was collected on the basis of Subtitles for Deaf and Hearing impaired (SDH) and Closed Caption (CC) for

searching expression-related content and extracting time stamps corresponding to video clips which represent

some meaningful facial motion. The database contains a large age range of subjects from 1-70 years, and

the subjects in the clips have been annotated with attributes like Name, Age of Actor, Age of Character,

Pose, Gender, Expression of Person and the overall Clip Expression. There are a total of 957 video clips in

the database labelled with six basic expressions anger, disgust, fear, happy, sad, surprise and the neutral.

To compare with the baseline method of EmotiW 2014 [47], we modified the proposed framework slightly,

where we use the pre-processing methods (face detection and alignment) provided by the baseline method.

We used the training samples for training, and the validation samples for performance evaluation. Table 8

shows the recognition rate using the proposed framework on AFEW dataset. The overall recognition rate

of the proposed framework on the validation set is 37.63%, which is higher than the 33.15% achieved by

the video only baseline method. Unlike the experiments on CK+ dataset, the surprise expression is much
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more difficult to be recognised. This is because sometimes the surprise expression might not be acted

exaggeratedly (i.e., the openness of mouth) in real situations. Also, the overall recognition rate is much

lower than on the CK++ and MMI dataset. This is because numerous frames from the AFEW sequences

were captured under poor light condition, have large pose or occlusion, and the expressions are not always

from neutral to peak expression.

Table 8: Recognition rate (in term of percentage of true positive, true negative, ect.) of the proposed

strategy on classification of six basic facial expressions and neutral expression of the AFEW dataset

A D F H N Sa Su

Anger(A) 65.6 7.8 4.7 1.6 9.4 6.3 4.7

Disgust(D) 15.0 22.5 7.5 12.5 17.5 10.0 15.0

Fear(F) 21.7 13.0 20.6 15.2 15.2 8.7 6.5

Happiness(H) 3.2 7.9 7.9 63.5 9.5 6.3 1.6

Neutral(N) 3.2 6.3 14.3 9.5 49.2 9.5 7.9

Sadness(Sa) 8.2 11.5 14.8 14.8 26.2 21.3 3.3

Surprise(Su) 13.0 10.9 17.4 13.0 19.6 4.3 21.7

6. Conclusion

This paper presents a facial expression recognition framework using enMHI OF and QLZM MCF. The

framework which comprises pre-processing, feature extraction followed by 2D PCA and SVM classification

achieves better performance than most of the state-of-art methods on CK+ dataset and MMI dataset. Our

main contributions are three folds. First, we proposed a spatio-temporal feature based on QLZM. Second,

we applied optical flow in MHI to obtain MHI OF feature which incorporates velocity information. Third,

we introduced entropy to employ the spatial relation of different facial parts, and designed a strategy based

on entropy to integrate enMHI OF and QLZM MCF. The proposed framework performs slightly worse in

distinguishing the three expressions of Fear, Sadness and Contempt, thus how to design a better feature to

represent these expressions will be part of our feature work. Also, since an expression usually occurs along

with the movement of shoulder and hands, it might be useful to exploit these information in our recognition

system.

When applying a facial expression recognition framework in real situations, computation speed might

be a factor to be considered. In some case, the increase in speed may result in a decrease in recognition

performance. How to design a framework for facial expression recognition which increases the computational

speed without any degradation in the recognition rate remains a challenge.
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