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Abstract — Facial expression verification has been extensively 

exploited due to its wide application in affective computing, 

robotic vision, man-machine interaction and medical diagnosis. 

With the recent development of Internet-of- Things (IoT), there 

arouses the needs of mobile-targeted facial expression verification, 

where face scrambling has been proposed for privacy protection 

during image/video distribution over public network. 

Consequently, facial expression verification needs to be carried 

out in a scrambled domain, bringing out new challenges in facial 

expression recognition. An immediate impact from face 

scrambling is that conventional semantic facial components 

become not identifiable, and 3D face models cannot be clearly 

fitted to a scrambled image. Hence, the classical facial action 

coding system cannot be applied to facial expression recognition in 

scrambled domain. To handle with chaotic signals from face 

scrambling, in this paper, we propose an new approach – Many 

Graph Embedding (MGE) to discover discriminative patterns 

from the subspaces of chaotic patterns, where the facial expression 

recognition is carried out as a fuzzy combination from many graph 

embedding. In our experiments, the proposed MGE was tested on 

three scrambled facial expression datasets: JAFFE, MUG and 

CK++. In our experiment, we evaluated our algorithm via 2-fold, 

4-fold and 10-fold cross validation. The benchmark results 

demonstrated that the proposed method can apparently improve 

the recognition accuracy, making our method a promising 

candidate for the scrambled facial expression recognition in the 

emerging privacy-protected IoT applications. 

Index Terms — Facial expression, emotion recognition, user 

privacy, many graph embedding. 

1.  INTRODUCTION 

HE past decade has witnessed many new developments in 

facial expression analysis due to its wide application in 

robotic vision [1, 2], forensics[3], affective computing[4], 

man-machine interaction[4, 5], and even medical diagnosis[2]. 

Especially, recent advances in the paradigm of Internet-of- 

Things (IoT) has made it available to take face photos anywhere 

from mobile devices, bringing out a wide needs of effective 

facial expression analysis over IoT devices. For example, a 
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patient at home can send their facial images to their GP’s mobile 

device for an automated diagnosis of their facial muscles [2] 

from their facial expression analysis; a passenger back to home 

can send a photo of their facial expression images from their 

mobile to their intelligent home to interact with a smart 

home-care system [5]. With these potential applications, facial 

analysis over mobile devices has become an emerging need of 

this function. 

In the context of mass internet technology, privacy [6-12] has 

become a widely concerned issue in web-based video streaming. 

As one practical solution to this privacy issue, face scrambling 

[6-12] is emerging as a practical technique to protect the privacy 
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Fig.1. Facial expression becomes inscrutable after scrambled. 

While it does protect the privacy of the subjects/users, it 

brings out new challenges in facial expression recognition.  

a)   b)   c)  

Fig.2. Semantic facial components, as shown in b), can be 

easily detected and utilized from original facial images. But 

these approaches may not be feasible in the scrambled 

domain. 

a)   b)   c)  

Fig.3. Who is smiling? (Answers at the end of the paper). 
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legally during video distribution over public internet. As shown 

in Fig.1, by scrambling faces detected in videos, the privacy of 

subjects can be respected in modern security technology. 

Facial expression recognition has been researched 

extensively in the last decade. It can be carried out over 

multimodal features [15], multi-view images [16], or multiple 

frames [17, 18]. Usually, facial expression recognition is 

associated with facial action coding system (FACS) [18, 19], 

and landmarks tracking [20] can be used to assist the face 

expression recognition. In these approaches, sematic features 

[21-23] were exploited as effective cues for facial action 

recognition, while facial image is considered as being 

represented by semantic components such as eyes and mouth 

[21, 22] that can form the basic FACS units.  

As shown in Fig.2-b), it is not difficult to detect these 

semantic components automatically in a face. However, after 

scrambled, as shown in Fig.2-c),  a scrambled face has a very 

different appearance from its original facial image and it 

becomes extremely hard to match it with a 3D or semantic facial 

model. In the scrambled domain, semantic facial components 

simply become chaotic patterns. In this context, it becomes 

unavailable to exploit landmarks or 3D models for a better 

accuracy. In this case, as it has been discussed in [24, 25], an 

easy and straightforward way is to use the traditional 

data-driven approaches, where chaotic signals are treated 

simply as a set of data points spreading over manifolds. 

Various data-driven face recognition algorithms have been 

well developed in the past several decades for image-based face 

expression recognition. In early days, linear dimensionality 

reduction [29-30] was introduced to this challenge, such as 

principal component analysis (PCA) [29], independent 

component analysis (ICA) [29], and Fisher’s linear discriminant 

analysis (FLD) [30]. With kernel methods (KM) [30], these 

methods can be extended to a reproducing kernel Hilbert space 

with a non-linear mapping, and extended as k-PCA and k-FLD. 

Later, nonlinear manifold learning [31~34] have brought out a 

number of new methods for face recognition, such as 

Laplacianface [33] and Tensor subspace [34]. These 

approaches have been successfully applied to data-driven face 

recognition. However, for face recognition in scrambled 

domain, we need a robust approach to handle with chaotic 

signals in the scrambled domain, which are random and beyond 

the human perception.  

Facial expression recognition has mostly been relevant to the 

challenge of dimensionality reduction [26-27]. Recently, 

multi-view based manifold learning [35-39] has been proposed 

to handle with the complexity of data structure, where it is 

believed multiple-view discriminative structures need to be 

discovered while a manifold may have different geometric 

shapes in different subspaces. With the hope to utilize this 

approach for chaotic signals, in this paper, we propose a new 

approach called Many Graph Embedding (MGE) to handle with 

this new challenge of chaotic signal recognition in scrambled 

domain. 

In the following sections, a preliminary about facial image 

scrambling method is introduced in section 2, and challenges 

from chaotic pattern analysis are discussed in section 3. In 

section 4, we present the proposed Many Graph Embedding 

(MGE) method. In section 5, we exploited MGE for scrambled 

facial expression classification. In section 6 gives the 

experimental results on three facial expression datasets, and 

conclusions are drawn in section 7. 

2.  CHAOTIC PATTERNS FROM FACE SCRAMBLING 

There are several ways to perform facial image scrambling, 

such as simple masking or cartooning [8]. However, this kind of 

scrambling will simply lose the facial details, and hence facial 

expression recognition becomes unachievable in this case. This 

is not welcome by many applications that require recognizing a 

facial action in the scrambled domain.  

Arnold transform [13, 14] is a kind of recoverable scrambling 

method. Scrambled faces can be unscrambled by several manual 

tries. Arnold scrambling algorithm has the feature of both 

simplicity and periodicity. In this work, we have chosen Arnold 

transform based scrambling as our specific test platform. 

Arnold transform is proposed by V. I. Arnold in the research 

of ergodic theory. It is also called cat-mapping before it is 

applied to digital images. It has been widely used in visual 

systems where it is favored as a simple and efficient scrambling 

method. In the Arnold transform,  a pixel at the point (x, y) is 

shifted to another point (x', y') as: 

 

  

a) Facial components b) After 2 Arnold transforms 

  

c) After 5 Arnold transforms d) After 7 Arnold transforms 

Fig.3. Face scrambling by Arnold transform. While we can 

easily identify semantic components and group pixels 

together to represent these semantic regions, it becomes 

extremely hard to find which dimensions (pixels) can be 

grouped together to form semantic subspaces (regions) after 

scrambled.  
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which is called 2D Arnold scrambling, which is called 

two-dimensional Arnold scrambling. Here, x and y are the 

coordinates of the pixel; N is the height or width of the square 

image processed; x' and y' are the coordinate of the scrambled 

image. Considering the feedback, iterative process of Arnold 

transform can be applied as the following: 

 Tk

xy

k

xy

k

xy yxPAPP ,    ,1    (2) 

Here, a pixel (x, y)T after  the k-th Arnold transform is the input, 

Pxy
k+1 in the left is  the output for the k+1th Arnold transform. k 

represents the time of iterations, where k = 0, 1, 2 and so on.  

By the replacement of the discrete lattice for transplantation, 

Arnold transform produces a new image after all pixels of the 

original image have been traversed. In addition to simple, easy 

to come true, Arnold scrambling also has the character of being 

cyclic and reversible. 

Fig.3-a) shows a face with its facial components (i.e., eyes, 

nose and mouth) detected automatically by 3D model fitting. 

Fig.3-b) shows the scrambled face after two operations of 

Arnold transform, where it can be seen that facial components 

have drastic displacements. Fig.3-c) and d) shows the scrambled 

faces after five and seven operations of Arnold transform. In 

comparison with Fig.3-b), the scrambled faces in Fig.3-c) and d) 

are more difficult to identify by human eyes. In this work, we 

use seven operations of Arnold transform to scramble all faces. 

In many IoT based applications, it may not be allowed to 

unscramble detected faces due to privacy-protection policy. 

Moreover, unscrambling may involve parameters (such as the 

initial shift coordinates) that are usually unknown by the online 

software. Facial expression recognition in the scrambled 

domain then becomes a necessity in these IoT applications. 

As we can see from Fig.3, before scrambling, facial 

components can be easily identified by human eyes. After 

scrambling, the images become chaotic signals, and it is hard to 

figure out eyes and noses. In the concept of manifold learning, 

each pixel is a feature dimension, and pixels around eyes could 

form a subspace that denotes a semantic component for 

discriminative purpose. In the scrambled domain, we do not 

know which pixels or dimensions can be grouped together to 

form a semantic-meaning subspace for facial expression 

recognition. Hence, we need a more clever way in 

dimensionality analysis for facial expression recognition in the 

scrambled domain.  

3.  MANY MANIFOLD PROBLEM IN SCRAMBLED FACES 

In many real world applications such as face recognition and 

image classification, the data is often of very high 

dimensionality. Procedures that are computationally or 

analytically manageable in low-dimensional spaces can become 

completely impractical in a space of several thousands 

dimensions. This has been well known in machine learning as a 

notorious issue --- “Curse of Dimensionality” [28]. To tackle 

with this challenge, various techniques [29-39] have been 

developed for reducing the dimensionality of the feature space, 

in the hope of obtaining a manageable problem. Especially for 

face classification, dimensionality reduction (DR) has become 

an important step. Among various DR algorithms, we have 

linear subspace methods such as PCA, ICA and FLD, and 

nonlinear manifold learning methods such as LLE, Laplacian 

Eigenmap , non-negative matrix, tensor subspace analysis [34], 

and local Fisher discriminant analysis (LFDA) [24]. These 

approaches usually assume there is an underlying discriminative 

structure to discover, which leads to the paradigm of manifold 

learning. 

Recently, multi-view problem has been investigated by the 

research community, where it is advocated that the same 

manifold can have different shapes in different subspaces, as 

shown in Fig.4-a). Foster et al have employed canonical 

correlation analysis (CCA) approach [35] to derive the low 

dimensional embedding of two-view data and compute the 

regression function based on the embedding. Hedge et al [36] 

propose a multiple projection approach from the same manifold. 

Hou et al [37] used the pairwise constraints to derive 

embedding in mulitple views with linear transformation. Xia et 

al [38] combined spectral embedding with multi-view issue. 

Han et al [39] proposed a sparse unsupervised dimensionality 

reduction to obtain a sparse representation for multi-view data. 

In the multi-view problem, as shown in Fig.4-a), though a 

manifold has different shapes in different subspaces, these 

shapes can always be unified as the same manifold in a 

higher-dimensional subspace. However, this could not be 

always true. As shown in Fig.4-b), while the sequence of data 

points in the second subspace is shuffled, the combination of 

two submanifolds simply creates a noisy-like distribution, as 

shown in the right side figure of Fig.4-b). This means two 

submanifolds cannot be merged. In this case we have to treat it 

as a multiple or even many manifold problem, where more than 

one sub-manifold structures need to be discovered from 

numerous possible subspaces.  

In our facial recognition in scrambled domain, facial images 

 

a) Multi-View Problem 

 

b) Multiple Subspace Problem 

Fig.4. Multi-view dataset and multi-manifold dataset. When 

the sequence of data points in the second subspace is 

shuffled, two sub-manifolds become independent to each 

other, and cannot be unified in a higher dimensional 

subspace, which is not fully addressed in conventional 

multi-view methods. 
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become chaotic signals, as shown in Fig.3. In this real-world 

issue, its underlying discriminative structures could be more 

like the case in Fig.4-b), where multiple or even many manifold 

structures need to be discovered. When this “many manifold” 

issue is associated with scrambled faces, an immediate 

challenge is how to find out which pixels/dimensions can be 

grouped together to form a meaningful discriminative subspaces. 

In original faces, we can easily do so by identifying semantic 

regions and take advantage of those semantic approaches. In 

chaotic scrambled images, there is no way to do so. This makes 

chaotic pattern classification a new challenge that different from 

conventional visual pattern analysis. 

4.  MANY GRAPH EMBEDDING FOR CHAOTIC PATTERNS 

4.1 Problems to address 

As shown in Fig.4-b), we have a new assumption that there 

are multiple graph (manifold) structures hiding in a given 

dataset, especially for a dataset of chaotic patterns. These 

graphs have not only different geometric shapes but also 

different edge-node connections. As a result, they cannot be 

simply combined in a higher dimensional space and treated as a 

multi-view issue in lower dimensional subspaces.  

For example, in scrambled face analysis, each pixel is 

considered an independent dimension and we can have W×H 

dimensions for each scrambled image. We will then have many 

possible combinations of these dimensions to form a subspace, 

which can be approximated as CN
K. Here, N is the total number 

of pixels, and K is the dimensionality of the chosen subspaces. It 

then becomes a typical NP-hard problem to find out all 

discriminative subspaces. 

Given a dataset X={x1, x2, … xi … xN} RD, we may assume 

there are K discriminative graph structures Gk ~ { G1, G2,…, GK} 

underlying the given dataset X. While each graph corresponds to 

a subspace Rl constructed from a subset of dimensions, the 

total possible k could include all numerated combinations 

l

l

DC , which is an extremly large number. To learn an 

embedding from each subspace, we will have,  

     minarg~  
k

kTkkTk

k

k XQDXbY
k




  (3) 

Here, bk can be a binary value to denote if there is a clear 

embedded structure in a given subspace.  

As illustrated in Fig.4-b), an embedding in a subspace may be 

fully independent to another embedding in a different subspace, 

especially when their dimensional sets are not overlapped with 

each other. Based on this approximation, we can apply a “divide 

and conquer” strategy and estimate an embedding from each 

subspace independently, and Eq.(3) can then be reformulated 

as, 

  kTkkkkTkk xQDxy
k




minarg~  (4) 

Here, xk has a decimated dimensionality of a subspace Rl. As a 

result, the projections Y
~

={yk, bk} will be a matrix of K×d, 

while d<l. The above formulation can be seen as a simple 

extension or repetitive application of the single graph 

embedding method. 

After such simplification, though it seems we can repetitively 

carry out a process of graph embedding in each subspace simply 

one subspace by one subspace, it is however not practical to 

search through all possible subspaces. The number of such 

subspaces could be very large, making it computationally 

unavailable to carry out such an exhaustive search. 

Besides, it is also difficult to clearly assert whether or not a 

subspace contains an obvious embedding for discriminative 

purpose. As a consequence, it is an invincible challenge that is 

hard to be handled directly for the “many manifold” challenge. 

In this work, we proposed a random approach to generate a 

random selection of subspaces and provide a probability 

solution to the search of subspaces. 

4.2 Random Graph Generation 

When a search problem in a large search space is concerned, 

in computer science, a widely applied heuristic search strategy 

is called Monte Carlo, where random threads are generated to 

search in a vast space with the hope to converge on the best or 

second best decisions. This strategy has been well exploited in 

many areas such as particle filter for object tracking. Similarly, 

when many graphs are concerned in our “Many Manifold” 

challenge, we randomly select a number of subspaces to testify 

whether or not a discriminative graph embedding can be found 

in a specific subspace. 

Typically the random selection of a subspace can be 

described by the following procedure: 

  xnwxzxzx
Tnn  )( :)(        (5) 

Here, w{n} is a randomized diagonal binary matrix with 

constraints, 

qpwrw n

pq

k

n

kk   when 0 with ,0
  (6) 

In practical, dimensions with wkk
n=0 can be simply removed 

from further procedure, and hence zRm and m<d. With this 

constraint of randomized dimension selection, we have the 

selection ratio as (r0/d), and the random selection is repeated 

Nr~(d/r0) times, where Nr stands for the plurality of the graph 

structures. 

In this paper, we aim to use this randomness procedure to 

produce a set of random graphs to find the embedding. For a 

randomly selected feature zi, we simply apply k-NN algorithm 

and obtain local graph Gn from a random selection w, 

   n

ij

n

i

nn szGw ,:       (7) 

Where znRm, and {sij}BN×N forms a N×N adjacent matrix. 

As a consequence, the above procedure can be repeated Nr times 

and obtain Nr sets of local structure based graphs.  

4.3 Embedding of Many Graphs 

Given we have obtained multiple random graphs Gn~{zn, Sn}, 

the embeddings for each graph can be estimated in the same way 

as described in section 3, 
nTnn zy       (11)  

Similar to Eq.(2), we have, 

  kTkkkkTkk zQDzy
k




minarg~   (12)  

For all random graphs, we will find their embedding, 

ZΦY T      (13)  
Where Z~{zn} Bl×N, Φ~{ϕn} Bm×l×Nr, Y~{yn} Bm×N×Nr. 

Here, Y is the final projection result of the input Z from the 
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proposed Many Graph Embedding. It is worth to mention that 

the final output Y is actually a matrix of l×N, where N stands for 

the number of graphs.  

4.4 Facial Expression Classification  

It is noted that in Eq.(13), each data point will have a matrix 

of Yij calculated from MGE projection. From probabilistic view, 

on each manifold (or subspace) ϕn, given a query xq, we can find 

its likelihood (namely distance) to a known data point or a class 

landmark xc as P(xc|xq,ϕn) via the embedding ϕn by measuring 

the distance,  

  ,,| ,,

c

ni

q

ni

n

qc YYxxP 

 

(14)  

Then the final likelihood over all embeddings can be estimated 

as, 
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(15)  

Then the decision rule is to assign xq to class c for which the 

likelihood is the maximum: 

 
  



c n

n

qc

n

n

qc

x xxP

xxP
c

c 



,|

,|
maxarg~    (16) 

Here, c stands for the class label assigned to the query xq. 

5.  EXPERIMENTS 

5.1 Experimental Conditions 

To investigate the performance of the proposed scheme, we 

carried out systematic experiments on three databases: JAFFE 

database [40], MUG expression database [41] and 

Cohn-Kanada database [42]. Each subject in these databases 

has seven facial expressions, i.e., angry (AN), disgust (DI), fear 

(FE), happy (HA), neutral (NE), sad (SA), and surprise (SU). 

The JAFFE database contains facial images of 10 Japanese 

females, where each has 3 sample images per each expression. 

In total, there are 210 grayscale facial expression images in this 

database, each of pixel resolution 256×256. The MUG database 

contains image sequences of facial expressions belonging to 86 

subjects comprising 35 women and 51 men. Each image is of 

resolution 896×896. In our experiments, we use images of 45 

subjects, where 4 typical images were selected from image 

sequences per subject per expression, totaling 1260 images. The 

CK+ includes both posed and non-posed (spontaneous) 

expressions and additional types of metadata. In our 

experiments, we use images of 55 subjects, where each subject 

has 4 images per expression and in total 1320 images are 

included for our tests. Fig.5 shows the selected representative 

facial expression images in these three databases, respectively. 

In our benchmark test, we implemented our codes on Matlab, 

and ran on a PC with 2.7GHz dual-core Intel CPU. Our 

benchmark tests aim to verify whether or not the proposed MGE 

can improve the accuracy on scrambled face recognition. Our 

approach is a pure data-driven face classification method. 

Hence, similar to Ref.[24], we compared our approach with a 

number of typical data-driven methods, including Eigenface 

[29], Fisherface [30], kPCA[30], kLDA[30], and Laplacianface 

(LPP) [33]. In the evaluation of the proposed scheme, we simply 

use the nearest neighbor classifier because any involvement of 

 

k=1  

 

k=2 

a) Leave-k-sample-out test results per expression 

k PCA kPCA LDA kLDA LPP MGE 

1 92.38 92.38 94.29 94.29 94.76 95.24 

2 84.05 84.30 87.86 88.57 88.10 91.67 

b) Overall accuracy on all expressions per k test 

Fig.6. Overall leave-one-sample-out results on JAFFE. 

 
a) Samples in JAFFE database and their scrambled images 

 
b) Samples in MUG database and their scrambled images 

 
c) CK+ dataset and their scrambled images 

Fig.5. Facial images in JAFFE, MUG and CK++ datasets. 
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any other methods may blur the comparison and we then cannot 

easily assert if the enhancement comes from our MGE method 

or any other underlying more complicated classifiers. 

5.2 Validation on JAFFE dataset 

The validation on JAFFE dataset is based on a typical test 

scheme called leaving-k-sample-out, where k samples per 

class/subject are left out as test samples and the rest are kept as 

train samples.  

For a leaving k out scheme, there usually are CN
k choices. In 

our experiment, we just chose k consecutive faces from N 

samples/subjects. As a result, we have N sets of tests in turn for 

a leave-k-out experiment. The final accuracy is given by the 

average of all N tests. 

Fig.6-a) gives the results for leave-k-sample-out tests with k 

equal to 1 and 2, respectively. As it is shown, there are obvious 

degradations in accuracy for all methods when k is increased 

from 1 to 2. This is because fewer samples were used to train the 

classifier. However, the proposed MGE attained the best 

average accuracy (95.24% and 91.67%) in both tests for all 

facial expressions, as shown in the Table in Fig.6-b). 

5.3 Validation on MUG dataset 

MUG dataset has more faces to use for tests. Our validation 

on MUG dataset is based on a similar test scheme called 

leaving-k-subject-out, where samples from k subjects are left 

 

k=2  

 

k=5  

 

k=7 

a) Leave-k-sample-out test results per expression 

k PCA kPCA LDA kLDA LPP MGE 

2 24.88 24.88 33.81 34.64 38.33 42.02 

5 24.76 24.76 34.00 33.76 38.76 40.71 

7 24.90 24.90 33.74 33.03 40.20 41.53 

b) Overall accuracy on all expressions per k test Fig.7. Overall 

leave-k-subject-out results on MUG. 

 k=3 

 k=7 

 

k=12 

a) Leave-k-sample-out test results per expression 

k PCA kPCA LDA kLDA LPP MGE 

3 40.12 40.12 35.39 36.21 42.40 45.68 

7 38.90 38.90 35.45 38.36 43.30 44.36 

12 36.11 36.11 38.27 38.68 41.10 42.28 

b) Overall accuracy on all expressions per k test Fig.8. Overall 

leave-k-subject-out results on CK+. 
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out as test samples and the rest are kept as train samples. Usually 

this could be a bit more challenging than leave-k-sample-out 

while different subjects may have different ways for the same 

facial expression. 

Fig.7-a) gives the results for leave-k-subject-out tests with 

various k values. As it is shown, different from the test on 

JAFFE, the degradations over k is small when k is varied from 2 

to 7. This is largely because there are sufficient faces in the 

dataset for training. It is also seen that the proposed MGE 

method consistently attained the best average accuracy over all 

facial expressions, as shown in the table in Fig.7-b). 

5.4 Validation on CK+ dataset 

CK+ dataset has posed facial expression images, making it 

more challenging than previous two datasets. We still chose the 

leave-k-subject-out test scheme for our experiment on CK+ 

dataset. Fig.8-a) gives the results for leave-k-subject-out tests 

with various k values. Fig.8-b) shows the overall results per 

expression and it can be found that MGE attains the best 

accuracy in all k tests as well. 

6.  CONCLUSION 

In conclusion, we identified a new challenge in scrambled 

facial expression recognition originated from the emerging 

IoT-orientated biometric security paradigm, and proposed a 

novel method which considers as many graphs as possible to 

find the discriminative subspaces for scrambled signals. In our 

experiments, the validation shows that the proposed MGE 

method can work well on the chaotic patterns of scrambled faces, 

and consistently attained higher accuracy in all our tests on 

facial expression datasets, making our method a promising 

candidate for emerging IoT applications. 
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