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Abstract 

New methods for generating synthetic handwriting images for biometric 

applications have recently been developed. The temporal evolution of 

handwriting from childhood to adulthood is usually left unexplored in these 

works. This paper proposes a novel methodology for including temporal 

evolution in a handwriting synthesizer by means of simplifying the text trajectory 

plan and handwriting dynamics. This is achieved through a tailored version of 

the kinematic theory of rapid human movements and the neuromotor inspired 

handwriting synthesizer. The realism of the proposed method has been 

evaluated by comparing the temporal evolution of real and synthetic samples 

both quantitatively and subjectively. The quantitative test is based on a visual 

perception algorithm that compares the letter variability and the number of 

strokes in the real and synthetic handwriting produced at different ages. In the 

subjective test, 30 people are asked to evaluate the perceived realism of the 

evolution of the synthetic handwriting. 
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Highlights. 

 Method of synthesizing the temporal evolution of handwriting from

childhood to adulthood.

 Synthesis of both online and offline handwriting.

 Parameters (E, 𝜀𝐷 , 𝜀𝑡, 𝐾𝜎) for dealing with synthesized handwriting

evolution.

 Method for comparing temporal evolution of real and synthetic

handwriting.

Keywords: handwriting; handwriting synthesis; handwriting evolution; 
equivalence model, kinematic theory of human movements. 
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1. Introduction

Handwriting is a common tool for communication between human beings. It 

involves both cognitive and motor skills. Following the motor equivalence model 

presented in [1], the handwriting process can be divided into two stages: the 

effector independent stage, where the text trajectory plan is build up at cognitive 

level and the effector dependent stage, where the handwriting is performed by 

the neuromuscular system. These processes are developed during childhood 

by repeating patterns. Once children learn the basic patterns and are able to 

reproduce them, they develop their own style and evolve it up to their adulthood 

[2]. 

Aging involves some changes in handwriting characteristics. It is easy to 

appreciate the different writing styles between child and adult writers (see Fig. 

1). In children’s handwriting the pen velocity is smaller and the number of 

strokes greater than in the adult case [3, 4]. With aging, the handwriting tends to 

become slower again like that of children who are starting to write [2]. 

Figure 1 Handwritten sample from a child (above) and an adult (below) writing the sequence a, e, I, o 
and u.  

The research on handwriting synthesis has many motivations. Among them, 

is to provide large handwriting corpuses to the biometric community to evaluate 

automatic signature verifiers or writer identifiers and to avoid legal problems on 

privacy [5]. It is also worth mentioning that an accurate human like synthesis 
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mechanism could help improve the understanding of the underlying processes 

in human handwriting production or even answer questions related to intra and 

inter personal variability, as well as to help understand the variability due to 

different diseases, such as Parkinson’s, Alzheimer’s or ALS. In the future, 

artistic creation and CAPTCHA (Completely Automated Public Turing test to tell 

Computers and Humans Apart) generation may have other motivations 

[5,6,7,8,9,10]. 

There are different ways to generate synthetic handwriting. Some produce 

duplicates of a given handwritten sample. These duplicates can be generated 

by simple affine distortion or stroke wise distortion, as proposed by 

[11,12,13,14]. A second way of generating synthetic handwriting is the glyph-

based method, which records individual letters or words from one user, applies 

geometric deformation to simulate a new user and joins them to create a new 

version of the handwriting [15, 7]. Other methods generate handwriting samples 

by modifying the parameters of a handwriting generation model. Handwriting 

models have also been developed in the frequency domain [16] or from a 

neuromotor perspective [17, 18]. None of the above have studied the temporal 

evolution of handwriting nor included handwriting evolution models in the 

synthesizer. 

This paper is aimed at synthesizing handwriting by taking into account the 

graphic maturity of the synthetic writer for emulating its temporal evolution from 

childhood to adulthood. Graphic maturity is defined as the time a healthy person 

has been practicing his handwriting [19]. Specifically, the paper tries to answer 
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the question: how could the writing script of writers of different graphic maturity 

be synthesized automatically in a common framework? 

Related research has been performed on age estimation from handwriting 

[20] and on studying the effects of aging in signature recognition [21, 22]. It is 

expected that studying handwriting evolution from the synthesis point of view 

will deepen our understanding of the human handwriting process and its 

influence in designing automatic writer and signature verifiers. 

As the maturity process involves both the cognitive and the motor system, 

the synthesizer most suitable for modelling the temporal evolution of the 

handwriting is the one proposed in [17], which allows actions at both cognitive 

and motor level. Specifically, actions at cognitive level are related to the 

modification of the letter engram trajectories through the spatial grid, as evident 

in [23]. At motor level, actions to take into account the maturity modify the 

Plamondon Kinematic model [24]. 

The model presented here is verified for three important ages: 5, 10 and 

adult. This is because these three ages are distinct in terms of behavioural 

adjustment and related to the maturation process of the neuromotor system in 

human beings. At the age of 5, children start to learn the motor programs 

required to write with pre-handwriting letter patterns. The motor programs for 

cursive handwriting are fully developed and integrated around age 10 but need 

more deliberate practice [2, 4]. By the time children reach adulthood, 

handwriting movements are fully mastered. 

Summing up, this paper proposes a novel procedure through the use of a 

synthetic handwriting model to emulate the temporal evolution of real 
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handwriting. A review of the basic handwriting synthesizer which our method 

relies upon is presented in Section 2, while the proposed temporal evolution 

model and its integration into the basic synthesizer is described in Section 3. 

The performance evaluation is described in Section 4. This reports the 

quantitative experiments based on speed profiles and stroke distributions of real 

and synthetic handwriting samples at different ages. It also describes surveys 

on subjective opinion about the temporal evolution of synthetic handwriting. 

Section 5 closes the paper with the conclusions. 

2. Overview of the basic synthesizer.

The basic handwriting synthesizer is founded on the equivalence model that 

divides human handwriting into two steps: the working out of an action plan 

(effector independent) and its execution via the corresponding neuromuscular 

path (effector dependent). Once the action plan is learnt, most of the variability 

arises from the effector-dependent component [25]. 

Figure 2: Motor equivalence approach to synthetic handwriting generation and the trajectory plan for 
the letter ‘a’. 
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The synthesizer simulates the action plan through a trajectory plan which is a 

tessellation of a sequence of grid nodes. The neuromuscular path is calculated 

by the inverse model [26] as a sequence of kinematic filters that imitate the 

sequence of motor commands. Finally, an ink deposition model is applied. The 

block diagram of the synthesizer is shown in Fig. 2. 

The trajectory plan is built by concatenating letter trajectory plans which 

describe the sequence of grid points necessary to write each letter. The letter 

trajectory plan defines the temporal order of the principal targets of the pen 

movement [27], emulating how letters are memorized [15]. An example of 

trajectory for letter “a” is shown in Fig. 2, where each grid point is labeled with a 

number. For instance, the letter trajectory plan for the letter “a” is defined as the 

following sequence of grid points: {25, 24, 17, 10, 11, 12, 19, 26, 25, 26 and 

33}. 

Once the trajectory plan is defined, an inverse model for motor control is 

applied to obtain a realistic human text trajectory. In short, two kinematic filters, 

which are heuristically related to the finger and wrist, are applied as follows: 

1. the grid points of the trajectory plan are linked by straight lines and

divided into strokes;

2. the finger velocity profile is estimated using the kinematic theory of rapid

movements, developed in [28].  This theory shapes the velocity profile of

a simple stroke with a lognormal function scaled by the variable 𝐷 and

time-shifted by the variable 𝑡0:

|𝑣𝑗⃗⃗⃗⃗ (𝑡; 𝑡0𝑗)| = 𝐷𝑗⋀𝑗
(𝑡; 𝑡0𝑗, µ𝑗, 𝜎𝑗) =

𝐷𝑗

𝜎𝑗√2𝜋(𝑡−𝑡0𝑗)
𝑒
(
−|ln(𝑡−𝑡0𝑗)−µ𝑗|

2

2𝜎𝑗
2 )

      (1) 
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where µ and 𝜎 are the location and scale parameters, respectively, and j

indicates the stroke number. 

3. the finger velocity obtained with the kinematic theory is used to select the

length of the inertial Kaiser filter that programs the finger control motor.

The finger filter stops in each minimum of the velocity profile which could

be seen as stroke limits. Conversely, the wrist moves continuously when

writing and therefore the wrist inertial filter runs between penups without

stopping.

The handwriting synthesizer described above is not able to simulate the 

learning process by which the handwriting evolves from being composed of 

short, imprecise, individual strokes drawn one after the other, as when a child 

begins to write, to the fluent movement observed in an adult, when handwriting 

is fully mastered. In the following section we describe the changes to the basic 

synthesizer to incorporate within it such temporal evolution. 

3. Temporal evolution synthesis

Children usually start their handwriting practice using printed worksheets. 

These worksheets contain writing lines that guide the handwriting. At the 

beginning, the text trajectory plan is learned by repeating the writing on the 

worksheets. In a first stage, the children repeat simple traces such as small 

straight and then curved movement. Once children learn the basic traces, in a 

second stage, they combine them into complex ones (letters and numbers) by 

overlapping the movements.  In these cases children still overwrite or copy the 

guide lines with short, imprecise and slow movements. Finally, once the 
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handwriting skills are fully acquired, they are capable of selecting an ordered 

sequence of target points to perform fluent and personalized writing. 

The synthesizer proposed in [17] is oriented towards mature and fluent 

handwriting because the handwriting letter shape is worked out by filtering the 

original trajectory plan with inertial filters that relate to adult kinematics. It does 

not consider a child’s short and slow, unskilled movements. 

Also the sigma-lognormal model used to analyze the kinematics of real 

handwriting movements [24] is useful in reconstructing fast and well learned 

movements but it is not able to fit faithfully children’s dynamics and therefore 

obtains a poor signal-to-noise ratio in the reconstruction process [2, 4]. So a 

new model that enables the possibility of automatically generating dependable 

adult and child handwriting in terms of shape and dynamics from a trajectory 

plan is needed to improve the reliability and applicability of handwriting 

synthesizers. 

3.1. Analysis of simple straight and curved movements. 

To help model children’s handwriting, two basic or simple movements are 

defined, as suggested in [29]: straight movement, which is a direct movement 

between two grid points namely 𝑄1 and 𝑄2, and curved movement, which is 

defined as a ballistic movement from 𝑄1 to 𝑄3  through the “via point” 𝑄2, whose 

curvature is modified by changing the base/height ratio of the triangle 𝑄1𝑄2𝑄3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.

Both simple movements are illustrated in Fig. 3. 

In order to model these movements, we carried out a preliminary study by 

asking 10 adult volunteers to use a tablet to draw straight lines and triangles, 

between two points, so as to obtain the curved movement or arc, as shown in 
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Fig. 4 (left). The experiment was repeated for different scales, while maintaining 

the same proportions. The tablet used to collect the data was a WACOM Intuos 

3 with an Intuos 3 Grip Pen, with a sampling rate of 200 Hz. The tablet has a 

resolution of 2540 dpi and a work surface of 304.8 mm x 228.6 mm. 

Figure 3:  Definition of the trajectory plan for a basic straight (above) and curved movements (below). 

In the case of straight lines, we observed that the speed profile starts and 

ends in zero velocity with a maximum between them. In the case of curved 

movements, we observed that the speed profile was independent of the scale 

but related to the angle α between the vectors 𝑄1𝑄2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑄2𝑄3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Specifically, the

speed profile starts and ends with zero velocity and it displays one or two 

maxima depending on whether α is greater or smaller than 90º, respectively. 

This effect is illustrated in Fig. 4 (left), which shows how a simple movement is 

composed of two overlapping lognormals. The overlapping of two consecutives 

lognormals depends on the delay 𝛥𝑡 = 𝑡02 − 𝑡01 (see Equation 1). Analyzing the 

delay 𝛥𝑡, we fitted two lognormals to the velocity profile of an adult’s 

handwriting as shown in Fig. 4 (left). As a result of the fitting, the µ and σ values 

of both lognormals were set to 0 and 0.05 respectively. The result can be seen 

at Fig 4 (left) next to the Minimum Square Error which is obtained from 
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superposing the adjusted lognormal variation onto the real data signal.  The first 

lognormal starts with the curved movement.  The second lognormal was 

delayed to fit the second peak. The conclusion drawn from this experiment is 

that the delay between the two lognormals is inversely proportional to the angle 

between 𝑄1𝑄2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑄2𝑄3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The delay (Δt) was measured for ten subjects and 17

triangles, as Fig. 4 (left) with different angles from 180 to 0 in steps of ten 

degrees.  With these experimental values Fig. 4 (right) shows the mean 

normalized time increment measured for each angle and all subjects. As is also 

shown in Fig. 4, the experimental values can be fitted by a sigmoid curve 

𝑆(𝛼, 𝑏, −𝑐), where:

𝑆(𝛼, 𝑏, 𝑐) =
1

1+𝑒−𝑏(𝛼−𝑐)  (2) 

and where 𝛼 is the angle in degrees, as in Fig. 4. To adjust the sigmoid, the 

parameters b and c were chosen to minimize the Minimum Square Error 

between the real averaged curve and the sigmoid curve. The experiment was 

carried out for values of b between 0 and 1 in 0.001 steps and the value of c 

between 1 and 200 in steps of 0.1. The minimum peak was found for b values 

between 0.06 and 0.07 and for c between 60 and 70. The values that minimize 

the minimum square error, with respect to the average curve of all the subjects, 

were for b = 0.06 and c = 65. The resulting Minimum Square Error was 0.039 

between the real mean curve and the sigmoid curve. 

To validate whether the two-stroke experiment generalizes to a multi-stroke 

letter, we asked 10 children to write the letter ‘a’ where there are multiple slow 

movements and the lognormals are sufficiently time-spaced to allow the correct 

measure. We decomposed into lognormals the initial part of the character 

This is a PDF Þle of an unedited manuscript that has been accepted for publication. The manuscript 
will undergo copyediting, typesetting, and review of the resulting proof before it is published in its Þnal 
form. 



12 

(angle greater than 100º between segments) and the initial part of the terminal 

tail (angle near to 0º). The result can be seen in Fig. 5. The result of the initial 

part of the handwriting, shown at Fig. 5 (top), displays 𝛥𝑡 = 0.035 but with 

smaller σ values (σ ֖=0.01) than in the adult case because of shorter strokes.

Also, in the part of the letter ‘a’ with smaller angles (0º) (Fig. 5, lower), the time 

between lognormals increases, as in adults’ handwriting, increasing to 𝛥𝑡 = 0.2. 

So the differences between children and adults seem not to be in the lognormal 

combining rules but in the action plan and in the relation of the stroke length 

width σ. 

Figure 4: Left: Real variation of the velocity profile relates to the angle (α) of the trace (triangle base of 
1 cm). Lower figure: velocity profile (continuous line), individual lognormal (σ =0.05, µ =0) (dashed line) 
and lognormal integration (dotted line).The adult handwriting was recorded with a Wacom tablet. Right: 

Real measures of the time increment (dashed line) and Sigmoid approximation S(α,0.06,-65) (continuous 
line). 

These observations can bring about a unified framework for generating both 

child and adult movement in the synthesizer and therefore modelling the 

temporal evolution of the handwriting from childhood to adulthood, as described 

in the next section. 
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Figure 5: Corresponding child velocity profile (full line), individual lognormal (σ =0.01, µ =0) (dash line) 
and lognormal integration (dot line). 

3.2. Unified framework to synthesize slow and fast movements 

To allow the emulation of handwriting progress from childhood to adulthood, this 

section proposes a new model based on a modification to the one summarized 

on section 2. The new flowchart is shown in Fig. 6. 

For the effector independent, the new model keeps the trajectory plan as an 

open polygon through a grid, but following the findings in [23], the rectangular 

tessellation has been updated to a hexagonal denser grid as is shown in Fig. 7. 

Figure 6: Scheme of the handwriting evolution model. 
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For the effector dependent, the new model presented in this paper considers 

that the speed profile is defined by one lognormal per vector (𝑄𝑗𝑄𝑗+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) of the

trajectory. The parameters µ𝑗 , 𝜎𝑗 , 𝑡0𝑗  and 𝐷𝑗  of the lognormal relative to the j-th 

stroke are fixed so as to work out a realistic velocity profile, that is to say, a 

velocity profile that could be performed by any human but not anyone in 

particular. These parameters are estimated as follows. 

Figure 7: Grid and trajectory of letter ‘e’. 

From the results obtained in Section 3.1, we can assume that the scale 

parameter 𝜎𝑗 and  𝜇𝑗 can be set to a constant per person as they refer to the

individual’s motor system and therefore his or her letter size. In this way 𝜎 =  𝜎𝑗 

and 𝜇 = 𝜇𝑗. If 𝜎 and µ are constants, the lognormals’ shape is kept equal and 

the proportions of the letters are controlled by the amplitude of the lognormal 

and the time delay. Specifically, based on the experiments reported in section 

3.1, µ is set to 0 and σ is calculated as: 

𝜎 = 0.01 + 𝐾𝜎        (3) 

where 𝐾𝜎  is a writer dependent constant whose value depends on the average 

length of the trace. Assuming that the trace length is shorter for children than for 
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adults, the 𝐾𝜎 parameter ranges from 0 for children to 0.04 for adults, in order to 

reproduce the real handwriting measurements presented in section 3.1. Fig. 8 

shows the effect of changing 𝐾𝜎, without modifying the other parameters. It 

shows that as 𝐾𝜎 increases so does the superposition between lognormals and 

the roundness of the resulting letter shape. When 𝐾𝜎 reach values around 0.04, 

the shape is similar to the adult handwriting, but as shown by the velocity 

profile, the writing takes longer than in the case of 𝐾𝜎 = 0.01, and the lognormal 

width is greater. In conclusion, varying this parameter allows an evolution in the 

shape but not in the velocity profile. 

Figure 8:  Result of varying 𝐾𝜎, the letter shape and the velocity profile. (with εt=0, εD=0 and Kt=0.04) 

Following the results obtained in section 3.1, the time delay between 

consecutive lognormals can be defined by the sum of two terms: a constant part 

plus an angle dependent part. Therefore the initial time 𝑡0𝑗 of each lognormal 

can expressed as: 

 {
𝑡𝑜𝑗 = ∑ (𝐾𝑡 + 𝛿𝑙 + 𝐾𝛼𝑆(−𝛼𝑗 , 0.06,−65

𝑗
𝑙=1 ))

 𝛿𝑙 = 𝑁(0, 𝜀𝑡),   𝑙 = 0,1,2,… , 𝑛𝑠𝑙 
 (4)

where 𝛼𝑗 is the angle between the vectors 𝑄𝑗−1, 𝑄𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑄𝑗, 𝑄𝑗+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   defined as:

𝛼𝑗 = 𝑎𝑐𝑜𝑠 (
〈𝑄𝑗−1,𝑄𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉〈 𝑄𝑗,𝑄𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉

‖𝑄𝑗−1,𝑄𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ‖ ‖𝑄𝑗,𝑄𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
) ,    𝑗 = 0,1,2, … , 𝑛𝑠𝑙      (5) 
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where 𝑛𝑠𝑙 is the number of grid points in the trajectory, 𝐾𝛼 is the maximum time 

increment per writer (angle equal to 0º), 𝐾𝑡 is a constant which depends on the 

writer, letter size and average speed and 𝑁(0, 𝜀𝑡) is a normal random variable 

that emulates the time dispersion, which is inversely proportional to the skill of 

the writer. When  𝐾𝑡  increases, the size of the letters increases too, but if the 

values of 𝐾𝑡  becomes bigger than the time the lognormal is active, the 

superposition of the strokes is lost and the complete movement becomes a 

sequence of straight, independent movements (Fig. 9, Kt=0.06). When 𝐾𝑡  is 

reduced we get more superposition of the lognormals, the number of strokes 

decreases and the effect is that the letters are more curved and smaller (Fig. 9, 

Kt=0.005). The value of Kt is set to the average time separation between 

lognormals in the experiment of section 3.1 and 𝐾𝛼=0.2 as the maximum delay 

when the angle 𝛼𝑗 is near to 0 as is shown in Fig. 5. In Fig. 9 we can observe 

how the roundness of the letter shape, the time duration of the movement and 

the maximum of the speed profile are inversely proportional to the Kt value. 

Figure 9:  Result of varying 𝐾𝑡, the letter shape and the velocity profile. (with εt=0, εD=0 and Kσ=0.01. 

The parameter 𝜀𝑡  controls the time stability. If we increase this value, the 

time control is less accurate resulting in deformed letters in both size and 
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proportion. The maximum 𝜀𝑡 is related to the variance of Δt measured from the 

real children’s handwriting.  So, in this work  𝜀𝑡 = ±0.02  (50 % of 𝐾𝑡) was used 

for children’s handwriting (with deformation but keeping legibility) and 𝜀𝑡 = 0 in 

the case of adult handwriting synthesis. The effect of this parameter on letter 

shape is shown in Fig. 10: a too high value of 𝜀𝑡 seriously affects the trajectory 

proportions. 

Figure 10:  Result of varying εt (with Kt=0.04, εD=0 and Kσ=0.01). 

As the speed is proportional to the trace length, the amplitude 𝐷𝑗 of the 

lognormal has to be proportional to the distance between two consecutive grid 

points. Thus 𝐷𝑗 is given by: 

𝐷𝑗 = 𝐾𝐷(
𝑑𝑎𝑐𝑡,𝑗+𝑁(0,𝜀𝐷)

𝑑𝑟𝑒𝑓
)   𝑗 = 0,1,2, … , 𝑛𝑠𝑙   (6) 

where 𝑑𝑎𝑐𝑡,𝑗 is the distance between 𝑄𝑗 and 𝑄𝑗+1, 𝑑𝑟𝑒𝑓 is the distance between 

two grid points and 𝐾𝐷 is a constant that depends on each individual  and 

𝑁(0, 𝜀𝐷) is an aleatory value designed to give random variation in individual 

handwriting style.  𝐾𝐷 is fixed for a normal letter size and for a normal speed: 

increasing 𝐾𝐷 will increase both the letter size and the average speed. The 𝜀𝐷 is 

the distance to the ideal grid point and simulates the fact that, in the learning 

process, the trajectory of the letter is not exactly ideal. This means that writers 

try to approximate the ideal letter and the result is not always satisfactory [3].  If 

the 𝜀𝐷 value is too high, the letter could be deformed, illegible or not appear 
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realistic.  Based on real children’s data and the observation of synthetic results, 

the value in this study is 𝜀𝐷 = 0.3  (30 % of error in the trajectory) and  𝐾𝐷 =

𝑑𝑟𝑒𝑓  is used in the simulation. Fig. 11 shows how the letter shape varies with 

this parameter and the value for which the letter becomes unreadable (𝜀𝐷 = 1). 

Figure 11: Results of varying εt., (with εt=0, Kt=0.04,and Kσ=0.01) 

Once the parameters µ𝑗 , 𝜎𝑗 , 𝑡0𝑗  and 𝐷𝑗  of the lognormal of each vector 𝑄𝑗, 𝑄𝑗+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

have been estimated, the speed profile 𝑣 𝑗(𝑡; 𝑡𝑜𝑗) is obtained by substituting their 

values in Equation (1). The complete synthetic speed pattern is then produced 

by summing up all the lognormal functions, as in [30]: 

𝑣𝑛⃗⃗⃗⃗ (𝑡) = ∑ 𝑣 𝑗(𝑡; 𝑡𝑜𝑗)
𝑛𝑠𝑙
𝑗=1   (7) 

Finally, to compute the spatial-temporal coordinates of the trajectory points we 

first compute the 𝑥 and 𝑦 components of the vector 𝑣 𝑗(𝑡):

{
𝑣𝑥,𝑗(𝑡; 𝑡𝑜𝑗) = sgn(𝑄𝑗+1,𝑥 − 𝑄𝑗,𝑥)|𝑣 𝑗(𝑡; 𝑡𝑜𝑗) | cos(∅𝑗) + 𝑄𝑗,𝑥  , 𝑗 = 0,1,2,… , 𝑛𝑠𝑙

𝑣𝑥(𝑡) = ∑ 𝑣𝑥,𝑗(𝑡; 𝑡𝑜𝑗)
𝑛𝑠𝑙
𝑗=1

 (8) 

{
𝑣𝑦,𝑗(𝑡; 𝑡𝑜𝑗) = sgn(𝑄𝑗+1,𝑦 − 𝑄𝑗,𝑦)|𝑣 𝑗(𝑡; 𝑡𝑜𝑗) | cos(∅𝑗) + 𝑄𝑗,𝑦 , 𝑗 = 0,1,2,… , 𝑛𝑠𝑙

𝑣𝑦(𝑡) = ∑ 𝑣𝑦,𝑗(𝑡; 𝑡𝑜𝑗)
𝑛𝑠𝑙
𝑗=1

 (9) 

where 

∅𝑗 = |atan (
𝑄𝑗,𝑦−𝑄𝑗+1,𝑦

𝑄𝑗,𝑥−𝑄𝑗+1,𝑥
)|  (10) 

is the angle between two successive vectors, and eventually integrate them 

over the movement duration: 

𝑥(𝑡) = ∫ 𝑣𝑥(𝑡) 𝑑𝑡 (11)

𝑦(𝑡) = ∫𝑣𝑦(𝑡) 𝑑𝑡    (12) 
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3.3. Modelling temporal evolution of handwriting 

As we have already noticed, children’s handwriting is achieved by linking many 

short imprecise strokes, as the sequence of target points has not yet been learnt 

and therefore the letter shape is obtained by a step-by-step procedure, each step 

connecting two successive target points and visually locating the next one. Once 

the writer has learnt the letters’ shape and his or her motor control has developed, 

the number of strokes that are required to write a text is smaller and the drawing 

of each stroke becomes faster [2]. This reduction in the number of strokes could 

be the effect of a neuromuscular velocity increment [31], which can also be 

interpreted as simplification of the grid, i.e. the least relevant points for letter 

intelligibility are suppressed [3]. As a consequence, in adult handwriting the 

length of the connections 𝑄𝑗, 𝑄𝑗+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   increases [32].

Figure 12: Temporal model for select principal points. 

Such a behaviour is emulated in our model with a denser grid than in [17], 

the children’s inaccuracy with the aleatory errors (𝜀𝐷 , 𝜀𝑡) and the evolution of the 

trajectory plan with a decreasing number of target points and strokes.  
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The evolution of the trajectory plan is implemented in our model by the new 

block entitled “Temporal evolution” added to the effector independent block as 

shown in Fig. 6: the smaller the number of grid points, the higher the level of 

graphic maturity of the writer. After reducing the number of grid points, the new 

effector dependent algorithm presented in the previous section is applied to the 

new trajectory vector to obtain the actual trajectory. An example of the 

procedure is show in Fig. 12 which shows an evolution of the letter of Fig. 7. 

Accordingly, the degree of evolution or aging in the handwriting depends on 

the number of grid points selected. It can therefore be defined by the 

percentage Ε of points selected from the child’s trajectory. Specifically, the 

number 𝐿 of selected points is fixed at: 

𝐿 = 𝑛𝑠𝑙 ∗
𝛦 

100
(13) 

Figure 13: Automatic selection procedure diagram.

The value of L has to be greater than 5 to assure that both the resulting letter 

will be identifiable and the grid selection points will converge. So we have 

carefully defined the initial trajectory plan of each letter in order to secure the 

convergence of this algorithm, selecting the minimum E value as 𝐸𝑚𝑖𝑛 >

500 𝑛𝑠𝑙⁄  (0.2 in our case). The procedure for grid point selection is as follows.

(see Fig.13): 
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1. The first two grid points are retained and the first point is randomly

chosen among them.

2. The final point is also retained.

3. The remainder 𝑛𝑠𝑙 − 3 grid points (all of them except the two first and last

one) are segmented in L clusters. Approximately (𝑛𝑠𝑙 − 3)/(𝐿 − 2)

consecutive grid points belong to each cluster.

4. From each cluster we randomly select one of the grid points.

5. To guarantee legibility, we have to preserve at least one of the grid points

previously located on the upper line 1 or upper line 2 or lower line 1 or

lower line 2, if there are any (see Fig. 12). In case the point selection does

not satisfy this constraint, we go back to step 4 and select another grid

point, until the legibility rule is satisfied.

Fig. 14 shows the handwriting produced by our model by synthesizing the

sequence of letters “aeiou” when  the parameter Ε changes from 100 to 20 

and the values of the model parameters 𝜀𝐷 and 𝜀𝑡 decrease linearly with E, 

from 𝜀𝐷 = 0.3 and 𝜀𝑡 = 0.02 for Ε=100 to 𝜀𝐷 = 0 and 𝜀𝑡 = 0 for E=20 .  Note 

that we have omitted the diacritical mark over the letter ‘i’. We observe that 

for the value E=70 and E=80 there are no significant differences in the letter 

shapes because the number of points used are very similar. As the value of 

E decreases, the differences in the letter shapes become bigger.  For a 

preliminary qualitative comparison, Fig. 15 shows the handwriting recorded 

on a tablet by children and adults. Fig. 16 also shows the comparison 

between the synthetic result and those of Fig. 1. In the following section the 

results of objective and subjective comparison are shown. 
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Figure 14: “aeiou” synthetic text for different values of Ε and decreasing εD and εt with E.

Figure 15:   “aeiou” real text. 

Figure 16: “aeiou” real and synthetic text. 

4. Evaluation of the temporal evolution synthesizer

To evaluate the realism of the obtained results with the new handwriting 

synthesizer, we performed three experiments: 
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1. The first verifies that the evolution of the speed profile is similar in synthetic

and real samples. In this way the time variation with age has been

preserved.

2. The second examines whether the number of strokes and the shape

variability of the synthetic handwriting are similar to real handwriting.

3. Finally, a perceptual experiment is conducted to evaluate whether a human

observer can put in age order the synthetic writer’s text, following the Ε

aging value.

In the experiment involving human subjects, the writers’ consent was given in 

advance. For the children, we required the consent of their parents. 

4.1. Evaluation of the evolution with the velocity profile 

For this experiment, we recruited 10 children aged 5 and 10 children aged 10 

all of whom had attended school since they were two years old. We also 

engaged 10 educated adults. We asked each subject to write the letter ‘a’ on a 

paper grid over a WACOM Intuos 3 by an Intuos 3 Grip Pen, with a sampling 

rate of 200 Hz. The tablet has a resolution of 2540 dpi and a work surface of 

304.8 mm x 228.6 mm. We also generated three samples of synthetic 

handwriting for different values of E: 100, 50 and 20 from a predefined 

prototype of each letter with a fixed number of points (nsl) as shown Fig. 7. 

Fig. 17 shows the shape and the velocity profiles of both real and synthetic 

handwriting. By looking at the real data, we can see that the time taken by the 

children to write the letter ‘a’ is longer than in the adult’s case. Also the velocity 

in the children’s case is almost constant with a superimposed oscillation, 

whereas in the adult case we can clearly distinguish three strokes or peaks. 
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Figure 17:  Real online and offline ‘a’ handwriting for real (left) and synthetic (right) writers of different 
ages (5, 10 and greater than 18 years). 

To obtain a quantitative measure, the peaks of the velocity profile were 

automatically counted. In this experiment, the same subjects of the previous 

experiment were requested to write the word ‘aeiou’. Similarly, the same text 

was synthetized for different values of E. The results are shown in Fig. 18, 

where we can observe how the number of peaks decrease with age along with 

the synthetic evolution given to the generated handwriting. 

As a result, both experiments confirm that the proposed procedure of using 

grid selection points is able to emulate realistic progress in the evolution of 

handwriting from childhood to adulthood. Obviously, this curve could also be 

useful for comparing the differences between ages. 
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4.2. Assessment of the evolution with the static images 

An alternative analysis of the proposed procedure is to measure the evolution in 

the static images. With this aim, we conducted an analysis of the number of 

strokes and the handwriting similarity.  For counting up the strokes in the static 

handwritten images we used the procedure proposed in [33]. We performed a 

quantitative evaluation of the similarity between two handwritten words by using 

the similarity measure described in [34], which is based on the Fuzzy Feature 

Contrast model. The method considers three sets of features to quantify the 

similarity between two handwritten words: 45 zone features relative to the 

position of the extracted strokes within the word itself and within the word 

layout; 5 curvature features relative to the curvature of the strokes and 4 shape

feature relative to the word shape, as proposed in [35]. Each of these features 

is used as a crisp value of a linear membership function to obtain the 

corresponding fuzzy feature. A fuzzy feature represents the fuzziness of the 

presence of the feature in the handwritten word and its value is a positive real 

number that ranges between 0 and 1. Given a fuzzy feature vector for both the 

handwritten words to be compared, a score between 1 (identical letters) and 0 

Figure 18: (a) Number of local peaks in velocity profile of real and synthetic handwriting. 
Comparison of real writers with different ages (5, 10 and greater than 18 years) and a synthetic writer 

with different E (Ε from 100 to 20). 

This is a PDF Þle of an unedited manuscript that has been accepted for publication. The manuscript 
will undergo copyediting, typesetting, and review of the resulting proof before it is published in its Þnal 
form. 



26 

(completely different letters) is given for two handwriting samples by means of 

the relation: 

𝑆(𝑎, 𝑏) =
𝑓(𝐴∩𝐵)

𝑓(𝐴∩𝐵)+𝛼𝑓(𝐴−𝐵)+𝛽𝑓(𝐵−𝐴)
 (14) 

where: 

1. a and b are two images containing the two handwritten words;

2. A and B are the fuzzy feature vectors associated with a and b, respectively.

The fuzzy feature vectors are computed as described above;

3. 𝐴 ∩ 𝐵 represents the intersection between the two fuzzy vectors. It is a new

vector of the same size as A and B , whose i-th element is equal to

𝑚𝑖𝑛(𝐴(𝑖), 𝐵(𝑖)). It represents the extent to which a feature is present in both

𝑎 and 𝑏 and it captures the common features between 𝑎 and 𝑏 ;

4. 𝐴 −  𝐵 and 𝐵 −  𝐴 represent the complements between 𝐴 and 𝐵. They are

two vectors of the same size as A and B, whose i-th elements are equal to

𝑚𝑎𝑥(𝐴(𝑖) − 𝐵(𝑖), 0)  and 𝑚𝑎𝑥(𝐵(𝑖) − 𝐴(𝑖), 0) , respectively. They represent

the extent to which a feature is present in one of the two images but not in

the other and they capture the distinctive features of ‘a in respect to b’  and

‘b  in respect to a’;

5. 𝑓(𝐹𝑉) is the saliency function that associates an entire feature vector 𝐹𝑉

with a single number; in our implementation we choose the function 𝑓 as:

𝑓(𝐹𝑉) = ∑ 𝐹𝑉𝑖
54
𝑖=1 ; 

6. 𝛼 and 𝛽 are two weights that model the imbalance of the judgment of

inequality that is typically human.
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For this experiment, as in the previous one, each subject was asked to write 

the word 'aeiou'. Also 10 images of the word 'aeiou' were synthetically 

generated for each of three different values of E: 100, 50 and 20. 

In Fig. 19 we show the number of strokes found by this method for both real 

and synthetic offline images per age or E value respectively. The results are 

shown in the box plots in which each box represents the quartiles of each age 

database measure. The real data are plotted in the left (red color), and the 

synthetic data on the right (blue color) of each age point. If we compare this 

result with the previous experiment, we can observe that the number of strokes 

found by this procedure [33] is lower than the number of peaks in the online 

velocity profile. That could be possible because not all the peaks on the profile 

correspond to a visible variation in the handwriting image and also the error 

seems to be greater because of the difficulty in estimating the stroke division in 

the handwriting image. Anyway, as expected, the number of strokes counted in 

the image data decrease with increasing writer skill in both real and synthetic 

data. This method could also be used to compare the differences for the 

different ages in offline handwriting. 

In order to evaluate whether a statistical difference exists between the 

number of strokes found in real and synthetic data, created by using the method 

described in [33], we performed an Anova analysis using the “anova” function 

implemented in Matlab. Two groups of strokes are considered different when 

the residual p-value is close to 0 and statistically similar if the p-value is greater 

than 0.05 [36]. The results of the Anova analysis are shown in Table 1 and Fig. 

19 and they suggest that synthetic samples are second-order statistically similar 
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to the real data for each of the ages evaluated. It seems clear that the real 

samples of 5 year old children, 10 year old children and adults have a similar 

number of strokes as those synthetic samples generated with Ε =100, Ε =50 

and Ε =20 respectively. 

Table 1: P-value results from the comparison between groups of Fig. 19 (strokes number). 

5 years 
real 

Ε =100 
synthetic 

10 years 
 real 

Ε =50 
synthetic 

>18 years 
real 

Ε =20 
synthetic 

5 years real 1.0000 0.2796 0.0407 0.0587 0.0017 0.0001 
Ε =100 synthetic 0.2796 1.0000 0.0004 0.0001 0.0000 0.0000 
10 years real 0.0407 0.0004 1.0000 0.5134 0.0642 0.0020 
Ε =50 synthetic 0.0587 0.0001 0.5134 1.0000 0.0054 0.0000 
>18 years real 0.0017 0.0000 0.0642 0.0054 1.0000 0.1569 

Ε =20 synthetic 0.0001 0.0000 0.0020 0.0000 0.1569 1.0000 

To obtain the similarity analysis, each of the images given for a determinate 

age in the real case are compared with the other 6 images, thus obtaining 9 

scores of similarity. The same procedure is carried out with the synthetic 

database.  Fig. 20 shows that the distribution of similarity values of the synthetic 

samples for each Ε value is similar to the distribution of the similarity values for 

Figure 19: Offline strokes counting  [33]  from offline handwriting for the real handwriting for different 
age subjects ( 5, 10 years olds and adults) and the simulated data with different automatic selected 

numbers of grid points ( Ε  equal to 100, 50 and 20 ) . 
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the real samples for the different ages. Additionally, the minimum similarity 

score decrease when the writer age or E value increase, meaning that the 

shape of the letters have more variability. 

As in the previous case, we have performed an Anova statistical analysis and 

the resulting p-values are given in Table 2. This suggests that the similarity 

scores in the real adults’ case is similar to the similarity scores in the synthetic 

handwriting. 

Figure 20: Calculated similarity values (Equation 14) from offline handwriting for the real handwriting 
for different age subjects (5 and 10 years olds and adults) and the simulated data with different 

automatic selected numbers of grid points (Ε equal to 100, 50 and 20) . 

The difference between the minimum and the maximum of the similarity 

score measures the variability.  With this in mind, Fig. 20 also suggests that 

there is less variability in the case of synthetic children’s handwriting than in the 

real cases. In the real case, the children scores show much less variability than 

real adult cases. In general, there is a greater difference in variability between 

synthetic and real children’s handwriting than between the corresponding adult 

cases. This is due the fact that only one case of a child’s handwriting was 

synthesized as we explained in the previous experiment. 
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Table 2: p-value results from the comparison between groups of Fig. 20 (similarity value). 

5 years 
real 

Ε =100 
synthetic 

10 years 
 real 

Ε =50 
synthetic 

>18 years 
real 

Ε =20 
synthetic 

5 years real 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Ε =100 synthetic 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 
10 years real 0.0000 0.0000 1.0000 0.0000 0.0000 0.0006 
Ε =50 synthetic 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 
>18 years real 0.0000 0.0000 0.0000 0.0000 1.0000 0.7385 

Ε =20 synthetic 0.0000 0.0000 0.0006 0.0000 0.7385 1.0000 

4.3. Perceptual evaluation 

To evaluate the extent to which the modeling of temporal evolution generates 

samples that are perceived as produced by writers with different level of graphic 

maturity, we conducted a survey with 30 volunteers who were adults with a 

university education. The volunteers were asked to rank the handwriting from 

the youngest to the oldest. The handwritten samples shown to the volunteers 

were generated by changing only the Ε value and were randomly ordered for 

each questioned volunteer. Once the words were ranked, the Ε value of all the 

words with the same ranking were averaged. Fig. 21 shows the averaged result 

for each Ε value. As can be seen, the respondents were able to sort out the 

graphic maturity with amazing reliability, except for the two first values of Ε =80 

and Ε =70 which resulted in being indistinguishable. 

Figure 21: Mean of the E values estimated by the volunteers (Y axis) with respect of the actual E 
values used to generate the samples (X axis). 



31 

5. Conclusions and discussion

This paper proposes a novel methodology for including handwriting fluency 

evolution in a handwriting synthesizer. In the proposed method, changes to the 

graphic maturity from childhood to adulthood of synthetic handwriting are 

modeled with just four parameters (E, 𝜀𝐷 , 𝜀𝑡, 𝐾𝜎). 

The initial handwriting synthesizer is based on the motor equivalence model 

which divides the human action into two steps: the effector dependent and the 

effector independent. The effector independent is approached by a hexagonal 

grid that spans the handwriting area. The action plan is defined as a sequence 

of grids. The effector dependent step is defined with inertial filters. 

This paper redefines the effector dependent and independent step to allow 

the introduction of handwriting fluency progress into the synthesizer. Effectively, 

a lognormal shape profile is assigned to each segment of the action plan. The 

lognormal parameters are estimated through formulae that control the 

overlapping of the lognormals of the action plan, depending on the angle 

between consecutive segments and the writer’s skill. The proposed synthesizer 

uses an initial dense action plan, appropriate for the early stages of handwriting 

development, and progressively selects a percentage Ε of the initial set of grid 

points under the constraint of preserving the intelligibility of the handwriting. 

Three experiments, one based on the dynamics of the synthesized 

handwriting, a second based on the static image of the generated trajectory and 

a third based on human perception of handwriting similarity, show how, by 

changing the percentage Ε of selected grid points, it is certainly possible to 

generate synthetic handwriting which exhibits different level of graphic maturity. 
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This result seems to answer affirmatively the original question and confirm that 

it is possible to synthesize automatically handwriting of different maturity both in 

shape and dynamics in a common framework. The results show that when the 

E value decreases both the number of peaks and the intra-writer variability 

follow the real handwriting. The experimental results give measurable evidence 

of the similarity between real and synthetic handwriting in both shape and 

dynamics.  

 Comparing the results of both experiments (shape and dynamics), it should 

be noted that the number of strokes worked out in the dynamic domain is 

slightly greater than the number of strokes counted in the handwritten image. 

Strokes are not directly apparent in the image of a handwritten word because 

they are partially hidden in the trajectory as a consequence of the time 

superimposition process [11]. The dynamics evaluate spatio-temporal aspects 

of the handwritten word but the statics can evaluate only spatial aspects. 

Nevertheless, in both shape and dynamics, the evolutional result of the 

synthetic handwriting is consistent with the well-known decreasing of the 

number of strokes with the practice [4]. The new method used to extract strokes 

from a static image [33] seems to be useful in analyzing the graphic maturity in 

the handwriting images. 

 The temporal evolution model based upon the tuning of the εD parameter is 

able to produce handwritten words showing the same variation around the ideal 

trajectory produced by children in their early handwriting [3]. 

The proposed methodology could be used to generate a synthetic database 

for improving automatic biometric writer recognition or in CAPTCHA generation. 
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This study opens up the possibility of further research into handwriting evolution 

for elderly people. In this case, it would obviously be necessary to obtain the co-

operation of a medical team who should verify the state of health of any 

volunteers. Moreover, similar research could be carried out to characterize 

degenerative diseases such as Alzheimer’s, Parkinson’s, essential tremor and 

so on. 
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