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Abstract

We present a multilinear algorithm to automatically establish dense point-to-point cor-
respondence over an arbitrarily large number of population specific 3D faces across
identities, facial expressions and poses. The algorithm is initialized with a subset of an-
thropometric landmarks detected by our proposed Deep Landmark Identification Net-
work which is trained on synthetic images. The landmarks are used to segment the 3D
face into Voronoi regions by evolving geodesic level set curves. Exploiting the intrinsic
features of these regions, we extract discriminative keypoints on the facial manifold to
elastically match the regions across faces for establishing dense correspondence. Fi-
nally, we generate a Region based 3D Deformable Model which is fitted to unseen
faces to transfer the correspondences. We evaluate our algorithm on the tasks of facial
landmark detection and recognition using two benchmark datasets. Comparison with
thirteen state-of-the-art techniques shows the efficacy of our algorithm.

Keywords: Dense 3D face correspondence, 3D face morphing, keypoint detection,
shape descriptor, face recognition, landmark identification, deep learning

1. Introduction

Dense 3D shape correspondence is the process of establishing a mapping between
a large number points on one surface to topologically similar points on other surfaces.
It has many applications in statistical shape analysis, computer graphics and shape phe-
notyping. In the context of 3D face analysis, dense correspondence has been used for
landmark detection [1]], face recognition [2| 13| 4, [5]], facial morphometric measure-
ments such as asymmetry for syndrome diagnosis [6, [7], facial changes after max-
illofacial surgery [8], non-rigid shape registration [9, [10} [L1], statistical shape mod-
elling [12] [13] [14]], shape interpolation [[15] and deformation analysis [[16]. Despite
the growing applications, dense 3D face correspondence remains challenging because
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human faces have non-linear surface dissimilarities due to variations in age, ethnicity
and expressions. Moreover, the unavailability of ground-truth dense correspondence
prohibits the direct use of learning based algorithms for this task and also makes subse-
quent evaluation of the results difficult.

A typical pipeline of establishing correspondence between faces starts with find-
ing keypoints on 3D facial surfaces and then matching the descriptors of these key-
points [[17]]. The established correspondence can either be sparse [[18,[19,120] or dense [[1}
S|l based on the target application. Once correspondences have been established on [V
number of faces, a statistical model can be generated and fitted on a target query face
to transfer the correspondence. Manual annotation of a sparse set of landmarks on the
3D faces can be an alternative to establishing the initial correspondence.

Many techniques [[18, 21} 19,122} 23] 124} 125} 15,20, 1] have been proposed in the liter-
ature for establishing correspondence between an arbitrary number of faces. However,
these techniques have one or more of the following limitations: (1) They are landmark
specific and hence the number of corresponding points are sparse. Such techniques can
detect only a few landmarks (~14) on the 3D human face [18| [19]. (2) They depend
on the manual annotation of a few landmarks for initialization [25] or fail if a specific
number of landmarks are not automatically detected [3]. (3) Fully automatic methods
generally have large correspondence errors and are restricted to faces with neutral ex-
pression [1]]. (4) Some methods use texture to aid in correspondence [5, [26]. However,
a potential pitfall of texture based dense correspondence is that the facial texture is not
always consistent with the underlying 3D facial morphology e.g. the shape and location
of eyebrows. (5) Most techniques are computationally expensive [27, [1]].

In this context, we propose a fully automatic multilinear algorithm that can estab-
lish dense correspondence (> 13, 500 points) over a large number of 3D human faces
with varying identities and expressions. We first train a deep Convolutional Neural
Network (CNN) for landmark identification. CNNs have been extensively used for 2D
texture images where the training data with ground truth labels is abundantly available.
However, in case of 3D faces there is a dearth of training data that contains significant
variation in facial shape, ethnicity and expressions. Our Deep Landmark Identification
Network (DLIN) is trained on synthetic 3D images generated from a commercial soft-
ware (FaceGen™) and is able to detect 11 biologically significant [28]] facial landmarks
with high accuracy and efficiency. Next, we divide the 3D face into five Voronoi regions
around a subset of these landmarks using geodesically evolved level set curves [29]]. A
sparse set of discriminative keypoints are detected within each region and used to elas-
tically align the corresponding region shapes of two given faces. Dense correspondence
is then achieved through nearest neighbour matches between the region vertices of all
training faces. Finally, a 3D deformable model is constructed from the densely corre-
sponding faces and the correspondence information is transferred to unseen 3D faces
by fitting the deformable model in an iterative optimization.

Our novel contributions are as follows. Firstly, we propose a Deep Landmark Iden-
tification Network (DLIN) architecture that is trained on synthetic 3D data to efficiently
detect biologically significant facial landmarks. The pre-trained model and correspond-
ing training data will be made public. Secondly, we propose a region based algorithm
to efficiently establish dense correspondence between 3D faces where the identities and



facial expressions vary simultaneously. Since we use the mean region shape to propa-
gate the dense correspondence to the entire dataset of say N faces, the correspondence
error may become large because the curvatures and discriminative keypoints start di-
minishing on the mean regions. Moreover, a model based representation of 3D faces
can yield better results more efficiently [26] not only for correspondence transfer but
for other applications like face recognition. These considerations have motivated us to
propose a Region based 3D Deformable Model (R3DM). Our algorithm is capable of
transferring correspondence to an unseen query face under expressions and pose varia-
tions with high accuracy and efficiency. Unlike the sparse landmark detection methods,
our model can detect a very large number of salient landmarks on 3D faces.

Since direct comparison of dense correspondence algorithms is not possible due to
the un-availability of ground truth [30], researchers often resort to applications such
as landmark localization or face recognition for comparison. More accurate correspon-
dence is likely to give higher face recognition and landmark localization accuracies. For
these reasons, we have performed extensive experiments on these two tasks using the
FRGCv2 [31] and Bosphorus [32]] 3D face datasets. Comparisons with twelve bench-
mark algorithms show that our proposed technique outperforms all others in terms of
accuracy and computational efficiency.

2. Related Work

3D Face Correspondence. Sun and Abidi [23| 24] detected keypoints for surface
matching by projecting geodesic contours around a 3D facial point onto their tangential
plane and called them Finger Prints of the 3D point. This method is highly sensitive
to surface noise and sampling density [33] of the underlying geometry [34]. The ap-
proach, with minor modifications, was employed by Salazar et al. [20] to establish point
correspondence on 3D faces in the BU3DFE [335] database.

For landmark detection, Creusot et al.[18] proposed an algorithm that uses a ma-
chine learning approach to detect 14 corresponding biologically significant [28] land-
marks on 3D faces. An LDA classifier was trained on a set of 200 faces and a linear
model of 14 landmarks. They exploited a number of local descriptors and used a binary
classification approach to detect the landmarks. Their method works well for neutral
expression faces of the FRGCv2 [31] and Bosphorus [32] databases. A method to de-
tect landmarks under large pose variations was proposed by Perakis et al. [19]. These
authors used a statistical facial landmark model for the frontal face and another two
models for the profile faces. Keypoints were detected using Shape Index and Spin Im-
ages and then matched on the basis of minimum combined normalized Procrustes and
Spin Image similarity distance from all the three landmark models. Eight correspond-
ing points were detected in the FRGCv2 and UND Ear databases using this method.
Later, the authors proposed an improved version [22] for fusing features from 2D and
3D data to detect these landmarks.

Blanz and Vetter [25] manually annotated seven facial landmarks on 100 male and
female faces each to initialize their dense correspondence algorithm. They proposed
a dense correspondence algorithm based on optical flow on the texture and the 3D
cylindrical coordinates of the facial points given their initial spatial alignment. The



dense correspondence was used to construct a linear deformable 3D face model which
was later used for face recognition [5}26]. However, they tested their algorithm on only
300 out of the 4, 007 faces in the FRGCv2 database [26].

Passalis et al. [21]] proposed an Annotated Face Model (AFM) based on an aver-
age facial 3D mesh. The model was created by manually annotating a sparse set of
anthropometric landmarks [28] on 3D face scans and then segmenting it into different
annotated areas. Later, Kakadiaris et al. [36] proposed elastic registration using this
AFM by shifting the manually annotated facial points according to elastic constraints
to match the corresponding points of 3D target models in the gallery. Face recognition
was performed by comparing the wavelet coefficients of the deformed images obtained
from morphing. Passalis et al. [3] further improved the AFM by incorporating facial
symmetry to perform pose invariant face recognition. However, the algorithm depends
on the detection of at least five facial landmarks on a side pose scan.

Recently, Gilani et al. [[1]] presented a shape based dense correspondence algorithm
for landmark detection. Their algorithm evolves level set curves with adaptive geomet-
ric speed functions to automatically extract effective seed points for dense correspon-
dence. Correspondences are established by minimizing the bending energy between
patches around the seed points of given faces to those of a reference face. The accu-
racy of landmark localisation depends on the number of initial seed points and does
not improve further since the algorithm already employs a coarse to fine search. Dense
correspondences are established between neutral expression scans only.

The literature also contains a few application specific methods for generating sparse
correspondence on 3D faces using keypoints [37, 38} 139} 127, 140} i41]]. These keypoints
are repeatable on the same identity and hence aid in face recognition and other face
analysis tasks. For instance, Li et al. [27] proposed two principal curvature-based 3D
keypoint detectors. Pose-invariant features are extracted using a 3D local coordinate
system. Three keypoint descriptors are designed and their features are fused to perform
face recognition on the Bosphorus dataset[32]]. The literature also points to the use of
biologically inspired features for textured 2D face identification. Song et al. [42]] pro-
posed a general framework for extracting biologically inspired features, whereas [43]]
utilize these features to perform 2D face recognition.

Deep Learning. After becoming the tool of choice for image classification [44] and
object detection [45]], CNNs have recently been used for semantic segmentation [46,147]]
and boundary prediction [48] in RGB images. Long et al. [49] analysed the specific lo-
cal correspondence by investigating the ability of intermediate features learnt in CNNss.
The authors compared the deep features with SIFT features and found that the former
are more useful for extracting local visual information. Later the authors [50] adapted
and extended a deep classification architecture to learn from whole image inputs and
whole image ground truths for semantic segmentation. They trained a Fully Convolu-
tional Network (FCN) end-to-end, pixel-to-pixel and showed that their results on se-
mantic segmentation outperformed the state-of-the-art. To the best of our knowledge,
CNNSs have not been used for landmark detection in 3D faces using a point-to-point or
pixel-to-pixel identification architecture.
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Figure 1: Block diagram of the proposed dense 3D face correspondence algorithm. The red box contains
steps that are performed offline. Note that both online (green boxes) and offline processes are fully automatic
and the online process is very efficient given the complexity of the dense correspondence task. The timings
are without using a GPU.
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Figure 2: The process of generating training data for the DLIN. Left shows the process of preparing the input
image while preparation of ground truth landmarks is shown on the right. The process is repeated for all input
images to the DLIN.

Proposed Algorithm

Figure[T] shows the block diagram of the proposed dense correspondence algorithm
and the following sections give details of each component.

3. The Deep Landmark Identification Network

3.1. Generating Synthetic Training Data

To train the Deep Landmark Identification Network (DLIN), we synthetically gen-
erate realistic 3D faces using a commercial software (FaceGen™) by varying the facial
shape and facial expressions. Since the faces are generated from a model, the ground
truth locations of landmarks are already known. The training data cover a huge space in
terms of facial shape variations due to age, ethnicity and expressions. We additionally
induce pose variations in the training data to cater for pose variations in test images.
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5. Nose Tip (NT) 12. Nasal Root
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Figure 3: Sample images from the FRGCv2 (first four) and Bosphorus databases (last four) along with the
landmarks used in this paper. We detect the 11 red coloured landmarks with DLIN and the three blue ones
by fitting the R3DM.

Each 3D training face is rendered from five viewing angles, that is, frontal, £15° in
pith and +15° in roll. Next, their depth images are generated by fitting a surface of the
form z(zx,y) to each 3D pointcloud using the gridfir algorithm [51]]. We also calculate
the Cartesian surface normals (n;, n,, n.) of each vertex in the pointcloud and convert
them to spherical coordinates (ng, ng, n,) Where 8 is the azimuth, ¢ is the elevation and
r is the radius of the normal. A surface similar to the one used for depth images is fitted
on the former two components of the normal. The depth, azimuth and elevation images
are used as the three channels, instead of the usual RGB channels, as input images to the
DLIN. The process is depicted in Figure 2] Since the correspondence in the synthetic
images is known a priori, we are able to automatically label 11 landmarks on each face
as shown in Figure 3] These are biologically significant landmarks which define
the high curvature points of the face and encode variation in expression. Ground truth
landmark locations are similarly projected on a 2D surface, dilated with a disk shaped
structure of size 10 x 10 and converted into a binary 2D image. The process is shown in
Figure[2] Note that each input image may have a different dimension (width and height)
but the image and its corresponding binary image are of the same size.

3.2. Training the Deep Landmark Identification Network (DLIN)

Our proposed architecture is motivated by the Fully Convolutional Network (FCN)
of Long et al. [30] with changes to better suit 3D depth data instead of RGB. The FCN
is based on the VGG architecture [50]. The FCN and VGG networks are both designed
for 2D images/textures. While texture can change abruptly in images, 3D surfaces
are generally smooth and this is especially the case for 3D facial surfaces. Hence a
smaller network with fewer parameters is sufficient to learn the variations. Learning the
parameters of a smaller network is fast and needs less training data. A smaller network
executes faster when deployed. Finally, the FCN was designed for 21 classes, while we
intend to learn DLIN for two classes only. For these reasons, we reduce the number of
convolutional layers from 13 to 5 and change the final upsampling to 4x. Since, these
changes are significant, the parameters of the proposed DLIN are learned from scratch.

The input to the DLIN comprises of the depth, azimuth and elevation channels.
Notice from Figure [2] that the landmarks we selected are very conspicuous in these
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Figure 4: (a) Sample images used to train the DLIN. Notice the variations in different modalities of the
training data.(b) Network architecture of DLIN.

channels which backs up our argument that fewer convolution layers are sufficient for
their delineation. Experiments show that reducing eight convolution layers reduces
the learning time by approximately three folds and the landmark detection time by four
folds. Moreover, DLIN slightly improves the accuracy over the fine-tuned FCN. Further
details are given in Section [6.1].

We also replace the 21 class prediction layer with two classes for detecting the
landmarks. At this stage we are only detecting the landmarks and not labeling them
individually. Exact classification into the 11 landmarks is done outside the network
based on their relative positions. We adopt this binary classification strategy rather
thank training the network to classify and label the landmarks into one of the 11 classes
because except for the nope tip, the remaining landmarks are symmetric on either side
of the face and somewhat ambiguous. Assigning a different class label to each landmark
causes errors in detection. This was confirmed experimentally. Moreover, once all the
landmarks are detected with a single label, it is trivial to assign them to the 11 landmark
classes based on facial anthropometry [52, 28]. Therefore, we use two classes in this



paper. The names and locations of the 11 landmarks is shown in Figure LetC(k,n, s)
denote a convolutional layer with kernel size k& x k, n filters and stride s, RL denote a
rectified linear unit, P(k, s) denote a max pooling layer with kernel size k x k and stride
s, F'C(n) denote a fully connected layer with n filters and D(r) denote a dropout layer
with drop our ratio r. Let Sk(k, n, s) denote the skip layer where the parameters have
a similar meaning as in the convolutional layer, SU denote the sum layer and DC(u)
denote the deconvolution layer where w is the upsampling ratio. Figure. [ shows the
architecture of our proposed DLIN which is enumerated as follows:

C(3,64,1) - RL — P(2,2) —» (C(3,128,1) - RL — P(2,2) — (C(3,256,1) —
RL — P(2,2) — (C(3,512,1) - RL — P(2,2) — FC(4096) — RL —
D(0.5) —» F(C(4096) — RL — D(0.5) — FC(2) —» DC(2) — Sk(1,2,1) —
SU — DC(2) — Sk(1,2,1) - SU — DC(4)

Our training data consists of 30, 000 synthetic 3D faces which are composed of 125
images from 240 male and female identities. Each identity has 25 images in varying
shapes where the variation is with respect to age, masculinity/femininity, weight, height
and facial expressions of surprise, happiness, fear and disgust. Each of the 25 images is
then rendered in 5 different poses. It has been shown [33} (1, [54] that these expressions
contribute to significant shape variation of the lower face. We use the facial images
in depth, azimuth and elevation format of 200 identities for training and those of the
remaining 40 identities for validation for learning the Deep Landmark Identification
Network. The new network is trained from scratch by zero initializing the model pa-
rameters. We use a momentum of 0.9, a weight decay of 0.0005 which are same as
in the FCN [50]. We train the network for 200 epochs using Matconvenet [535]]. Some
training data samples are depicted in Figure[d].

3.3. Landmark Identification Using DLIN

LetF; = [z;,y:,2)7 (j=1,...,Nandi = 1,..., P;) be areal arbitrary 3D face
scan. We obtain the depth, azimuth and elevation image of this face by fitting a surface
to F; as described in Section. and pass it through the learned DLIN. The output is
a binary mask of landmark locations. Subsequently we apply some basic morpholog-
ical operations to this binary image and utilize the veridical Cartesian coordinates of

Figure 5: Results of landmark detection using the proposed DLIN on sample scans from the FRGCv2 (left
four columns) and the Bosphorus (right four columns) datasets.
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Figure 6: (Right) BFM [56]] and FRGCv2 [31] faces depicted in the space of their first three PCs. Notice that
BFM is not able to generalize over some real faces. (Left) the minimum RMS error of each face of FRGCv2
to the BFM and our proposed R3DM in the PCA space.

the DLIN input scan to convert the landmark mask to 3D point coordinates and denote
them by £; = [k, yx, 2)”, where k = 1,...,11. This enables us to report the local-
isation error in metric units (mm) and facilitates comparison with the state-of-the-art.
Using the nose tip as the centre we crop a sphere of 90mm radius to discard non-facial
regions. Figure. [3]defines the location of the 11 landmarks. Figure[5]shows the detected
landmarks on sample faces from the FRGCv2 and Bosphorus datasets.

4. Region Based Dense Correspondence
4.1. Motivation

Our proposed algorithm uses a subset of landmarks detected by the DLIN as seed
points for subsequent region based dense correspondence. Before going into the details
of each algorithmic component we present the motivation for using a deep CNN for
seed point detection. The literature contains some algorithms (See [57, I58]) that use
pre-computed face models for real time facial performance capture or facial animation.
These pre-computed face models can also be used to detect a sparse set of landmarks
to initialize our proposed R3DM. However, this strategy suffers from two main draw-
backs. Firstly, The pre-computed face models span a limited face space and cannot
generalize to extreme cases of real life data. We fitted the publicly available Basel Face
Model (BFM) [56]], a variant of Blanz and Vetter’s [25] morphable model to the 4, 007
faces of the FRGCv2 [31]] dataset. Some of the faces in the dataset do not fall in the
space covered by the BFM faces. We demonstrate this graphically in Figure[6](Left), by
depicting the BFM and FRGCv2 faces in the space of their first three Principal Compo-
nents(PCs). Notice that BFM is unable to generalize to some faces from FRGCv2 and
would thus fail in detecting accurate landmarks. We also show in Figure [6] (Right) the
minimum RMS error of each face to the model in the PCA space and compare BFM
with our proposed R3DM. It is evident that the data driven model (R3DM) is able to
generalize better than a pre-computed model. The empirical validation is provided in
our results (Section [6.I). Accuracy of landmark detection and correspondence is of
paramount importance in medical applications where the dense correspondence must
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be very precise and often population specific to detect subtle shape changes for syn-
drome delineation (e.g. Autism [59}160,|61]], Schizophrenia [7]]). Therefore, initializing
the R3DM algorithm with points detected by a pre-computed model will induce further
error in establishing dense correspondence. Secondly, the pre-computed face models
require seed points for initial registration. On the other hand, we propose an algorithm
for “making” these models from real scans. There is a need for an automatic algorithm
that can establish dense correspondence between new faces without using pre-computed
models to avoid bias.

4.2. Dense Correspondence

The input to our dense correspondence algorithm is a set of N 3D faces denoted
by F; and their corresponding fiducial landmarks £;. We select a subset of five bio-
logically significant landmarks which include the outer eye corners, the nosetip and the
upper and lower lip centres. The selection of the last two landmarks is intuitive since
the expressions that mainly involve discontinuity in the mouth region (e.g. open smile,
surprise) separate the two lips. Exploiting the upper and lower lip centres aids in better
correspondences across facial expressions.

Starting from each of the five landmarks, we evolve level set curves to find the
geodesic distance between the landmarks and all the vertices of the face. At any given
point i on the 3D face F, the level set interface [62] is given by ®(¢) = 0 and the level

set equation by,

V|
¢>t+—7|3|=0 (1)

where @, is the position of the level set interface at time 7 [[62]], P is some metric over the
face manifold and 7 = 1/7P is the speed function of the level set interface. The level set
curve propagates following the evolution equation 7,%7?1 where 72/ is the exterior unit
vector normal to the curve at point . The distance function between any two points,
T, def d(i, 7) (where d(i, ) is the surface distance between points 4 and j [29]) satisfies
the Eikonal equation,

1

I9Till = 5 @)
When P; = 1, || VI;|| denotes the shortest surface distance between the two points
(i,7) and is called the geodesic distance. We solve the LHS of by making use
of the Fast Marching [29] algorithm on an orthogonal grid adopting an upwind finite
difference scheme. Using an efficient implementation [63]] of the solution, we find the
geodesic distance map D(k,i) where k = 1,...,5and ¢ = 1,...,P;. D(k,1) is the
geodesic distance given in Equation [2] between the five landmarks and each vertex on
the 3D face. Next, the 3D face is segmented into five Voronoi regions pertaining to the
five landmarks. By definition, a vertex ¢ on a 3D manifold belongs to the Voronoi region
V. if the geodesic distance D(k, i) < D(l,7), where k # I. This process is repeated
for all N 3D faces resulting in Voronoi regions V7, = [z;, i, 2|7, where i = 1,...,p

andk=1,...,5. _
Next, we proceed by detecting keypoints inside the Voronoi regions V9, to find
discriminative points for aligning these regions across the IV input faces. We follow the
procedure outlined by Mian et al. [37] and crop a small surface of radius p around each
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point p in Vi. However, rather than using, a large radius in order to capture identity
specific features [64], we use a small value of p = 5mm, to encode surface specific
discriminative features across identities. We perform Principle Component Analysis
(PCA) of this surface and find the ratio of the first two principal components. A point p
is accepted as a keypoint if the ratio is more than 1.5, a threshold that was empirically
determined.

To establish dense correspondence across IV faces, a random reference face is first
selected. We align the keypoints of Voronoi Region Vﬁ of an arbitrary face F3 in the
collection of N faces with the keypoints of the reference face Voronoi region V,lc. The
alignment is non-rigid [65] [66] and matches the shapes of the regions from the two
faces. Furthermore, this alignment process is fast and efficient as it is performed on
only a sparse set of discriminative keypoints. Next the registration information is used
to align the two Voronoi regions and dense correspondence is established between them
through nearest neighbour match using the k-d tree data structure [67]. Once the corre-
spondences are established between the two Voronoi regions, their mean shape is used
as the reference and the region V% from a third face is aligned with this shape following
the same procedure outlined above. This process is repeated for all £ Voronoi regions
across IV faces to establish dense correspondence. Note that segmenting the face into
regions and establishing region based dense correspondence introduces inaccurate cor-
respondences at the boundaries of the Voronoi regions. To mitigate this problem, we
perform a single iteration of global registration and matching between the reference
and the target face and update the correspondences at the boundaries only. The output
of this step is a set of densely corresponding facial regions V4, which together form
corresponding 3D faces F§ = [z, i, 2T, wherej=1,...,Nandi=1,...,P.

4.3. Deformable Model Fitting

Our dense correspondence algorithm outlined above is efficient and capable of es-
tablishing vertex level mapping between N faces. The correspondences can then be
used in a variety of applications, such as detecting a large number of fiducial land-
marks [1]. However, some applications like face recognition can be performed more
efficiently by creating a 3D deformable model from the set of N example faces and
then matching the model coefficients [} [26]. For this purpose we propose a region
based 3D deformable model (R3DM). Propagating dense correspondence to a large
number of query faces through deformable model fitting is faster than establishing re-
gion based correspondence. However, the accuracy of the propagated correspondences
depends on the quality of the model which depends directly on the quality of the initial
dense correspondence. Thus, the R3DM also serves as a way of validating the quality
of our dense correspondence algorithm. ‘

Let the R3DM of region k be denoted by ®, = [vi,vZ,...,vh,], where vi is the
vectorised form of densely corresponding facial regions Vi, ie.,

vl = [Tl Ty Y1s e Yir 2155 2) 7 and i = 1,...,p. The row mean p; =
N —

+ = v of the R3DM is subtracted from the ©, to obtain a zero mean R3DM ©.
n=1

N exti we model the R3DM by a multivariate Gaussian distribution and obtain it’s eigen-
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value decomposition, o
Usv’' =0, (©)

where US are the principal components (PCs), and the columns of V' are their corre-

sponding loadings. The mean of each facial region is given by Vi.

A query face Q of unknown and unseen identity goes through the process of land-
mark identification through DLIN and segmentation into five facial regions as described
in the previous sections. Centring both the R3DM and the query face at their nosetips
achieves initial face alignment. Next, the statistical model of each region given in (3]
is deformed to synthesize a random subset of 3D points in its respective query face
region in a two step optimization process. The vectorised query model is obtained by
m} = Uay + py,, where o, denotes the parameters required to vary the shape of the
model my. A rigid transformation of the form RV} + t aligns the query face region to
its model region. Here, R is the rotation matrix and the required translation is denoted
by t. The two step process is repeated iteratively. Empirically, we found that the fitting
error converges in n = 20 iterations to obtain an optimal representation for region k of
the query model. Finally, the parameters of all regions are concatenated to be used as
features representing the face.

5. Experimental Setup

Datasets. The synthetic dataset is used only for training the DLIN, whereas rest of the
experiments are conducted on real 3D face datasets, including the benchmark FRGCv2
[31]] and Bosphorus [32] datasets. Both datasets are rich in facial expression varia-
tions whereas the latter additionally includes pose variations and occlusions. FRGCv2
comprises of 4,007 scans from 466 identities of different ethnicities and age groups.
The scans are mostly frontal with minor (£10°) pose variations. The facial expressions
range from neutral to extreme but are not labelled as such. Manual landmark annota-
tions provided by Szeptycki et al. [[68] and Creusot et al. [18] are used as ground truth
for comparison. The Bosphorus dataset contains 4, 666 3D faces from 105 subjects with
considerable variation in ethnicity and age. The dataset is structured into Action Units
(AU) including the generic expressions of happy, sad, surprise, fear, disgust, anger and
neutral. Poses vary within a range of 90° in both yaw and pitch along with some cross
pose variations in yaw and pitch simultaneously. The dataset also contains scans with
four different types of occlusions. Ground truth landmark locations are provided with
the dataset. Sample images from the two datasets along with details of the landmarks
used in this paper are shown in Figure 3]

Evaluation Criteria. There is no known direct objective evaluation criterion for dense
shape correspondence due to the unavailability of the ground truth [30]. Subjective
evaluations can be carried out by visually inspecting the morph between densely cor-
responding faces. A seamless and smooth morph depicts higher quality of shape cor-
respondence. Figure [7] allows subjective evaluation of our proposed algorithm. The
seamless morphs across identities and expressions are possible only when the underly-
ing dense correspondence is of high quality [69} [70]. For indirect objective evaluation,
applications whose results are correlated with the dense correspondence accuracy are
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Figure 7: Subjective evaluation of our dense correspondence algorithm by morphing four identities of
FRGCv2. Notice the seamless morphs across expressions.

used. We have chosen two applications that are widely used in the literature for our ex-
periments; facial landmark identification and face recognition. We compare our results
with twelve state-of-the-art algorithms.

6. Results and Analysis

6.1. Facial Landmark Detection

Comparison between DLIN and FCN. . To evaluate the improvement of DLIN over
the FCN [50], we follow the same training protocol as detailed in Section [3.2] More
specifically, the DLIN is learned from scratch while FCN is fine-tuned on the same
training data. We test both the networks on 4, 007 scans of FRGCv2 and compare the
landmark localisation error as well the detection time per image. Results in Table [I]
show that the landmark detection speed of DLIN is four times faster than FCN whereas
the accuracy is either equal to or slightly better than FCN for all landmarks.

Table 1: Comparison of detection timing (seconds) and mean landmark localization error (mm) on 4, 007
scans of the FRGCv2 dataset. The landmarks are defined in FigureE].

Time / Landmark Localisation Error (mm)

Method Image EC NR NI NC MC ULC CT NB Mean
FCN 2 secs 2.9 3.1 24 35 3.0 3.4 3.4 33 3.1
DLIN 0.5 secs 2.8 3.1 2.4 3.4 2.7 32 3.4 32 3.0

FRGCv2 Data. The proposed DLIN provides 11 biologically significant [28] land-
marks which can be compared with algorithms that are designed to detect only these
landmarks. Figure. [§] shows the results of our proposed DLIN on the 4,007 scans of
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Figure 8: Comparison of mean4+SD (mm) of landmark localisation error on 11 landmarks in FRGCv2. It
is clear that the DLIN outperforms the state-of-the-art. Note that [19| 22] have not reported results for all
landmarks shown in the figure, while [22] has not reported the SD of error. It takes only 0.5s to detect the
11 landmarks through DLIN. The landmarks are defined in Figure[3].

Table 2: Comparison of mean landmark localization error on 4,007 scans of FRGCv2 with Gilani et al. [1]
(CVPR-15). The results are based on fitting a deformable model on the test dataset. Results of landmarks
that occur in pairs have been averaged. The landmarks are defined in FigureE]

Author OEC | IEC | NR | NT | NC | MC(L) | MC(R) | ULC | LLC | CT | NB | Mean
CVPR-15 [1] | 4.1 29 |36 |27 |43 53 44 33 4 42| 41 | 39+28
R3DM 29 27 |31 |24 |34 2.8 2.6 29 3.6 | 34| 3229423

FRGCv2 and compares them with the state-of-the-art. It is clear that DLIN detects the
landmarks with high accuracy and outperforms it competitors. In some cases the re-
duction in error is more that 50%. Overall the improvement in landmarking accuracy is
more than 35%.

To obtain a large number of landmarks efficiently and to have a fair comparison
with model based algorithms [1]] we use our deformable model fitting algorithm. In this
case, we annotate 14 landmarks on the mean face of R3DM (FGRCv2 and Bosphorus)
and back project them on the individual faces. Landmark localisation error is calculated
as the 3D Euclidean distance between the ground truth and the detected landmarks.

To ensure unbiased results (landmark detection on unseen faces), we keep the train-
ing and test identities mutually exclusive. We construct two region based dense cor-
respondence models of 300 scans each from the FRGCv2 dataset. The first R3DM
includes the first available neutral scans of identities 1 — 200 combined with the first
available extreme expression scans of identities 1 — 100. This model is then fitted on the
faces of identities 201 — 466 (total 1, 961 scans) to transfer correspondences. The sec-
ond R3DM is constructed from the first available neutral scans of identities 201 — 400
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and the first available extreme expression scans of identities 201 — 300. This model is
then used to transfer correspondences and detect landmarks in identities 1 — 200 (total
2,046 scans). Thus we report landmark detection results on unseen faces in all 4,007
scans of FRGCv2.

Table 2] compares the landmark localisation errors of our proposed R3DM with the
latest algorithm proposed by Gilani et al. [[1]]. Once again the improvement in accuracy
is more than 25%.

Table 3: Comparison of landmark localization results with the state-of-the-art on Bosphorus dataset. Results
of landmarks that occur in pairs have been averaged and the last three were obtained through R3DM.Refer to
Figure [3|for landmark definitions.

Mean of Localization Error(mm)
Author #Images | OEC IEC NT NC MC LC CT NB NR | Mean

5 [Cruesot [I8] | 2803 | 5.15 4.64 447 415 603 651 883 1523 633 | 6.27
2 | sukno[@0] | 2803 | 5.06 285 233 3.02 608 527 7.58 281 222 425
& | DLIN 2020 | 298 268 224 268 276 347 612 250 2.63| 2.80
= Creusot [18] | 1155 | 477 442 489 348 417 3.83 468 947 5.17| 4.68
£ | sukno 0] 1155 | 472 3.10 436 337 376 424 777 419 340 | 4.15
£ | pLIN 1365 | 339 2.84 263 3.1 301 379 647 393 281 3.3
Z [ Creusot (18] | 381 | 679 530 472 510 486 456 544 1105 7.78 | 587
Z | Sukno [E0) 381 | 646 385 3.83 454 491 421 763 376 412 | 4.80
2 | pLIN 381 | 3.60 293 282 353 338 407 525 303 2.82| 3.39

Creusot [18] | 4339 | 5.14 461 460 405 544 559 735 1320 610] 578

Sukno [40] | 4339 | 509 3.01 3.00 325 536 490 7.63 326 270 | 427
Al prIN 4666 | 3.15 275 240 2.87 2.88 361 6.5 297 270 2.95

Standard Deviation of Localization Error (mm)
Author #Images | OEC IEC NR NT NC MC LC CT NB | Mean
Creusot [18] 4339 394 224 256 240 491 519 7.6 237 227| 3.69
Sukno [40] 4339 291 345 344 275 423 535 698 3.09 258 | 3.82
Al prIN 4666 212 125 1.57 178 201 223 599 257 237| 183

Bosphorus Data. We use a similar strategy on the Bosphorus dataset to perform unbi-
ased landmark detection on unseen faces. The first R3DM is constructed from identities
1 — 55 (containing 95 neutral and 55 happy expression scans) and fitted to the 2,095
test scans of the remaining identities. The second R3DM is constructed from identi-
ties 56 — 105 (containing 100 neutral and 50 happy expression scans) and fitted to the
remaining 2, 571 scans of the first 55 identities. Note that in both cases, the R3DM is
constructed using only 150 near frontal pose scans and contains only the happy expres-
sion. However, our results show that our algorithm is still robust to facial expressions,
pose variations and occlusions.

Table 2 reports our results separately for scans containing facial expressions, ro-
tations and occlusions. The 11 landmarks detected by the DLIN are accurate within
2.95mm and a spread of 1.83mm, thereby improving the accuracy over the state-of-
the-art by 30%. These results demonstrate the high accuracy of our proposed method
as well as robustness to large pose and expression variations.

6.2. Face Recognition
3D face recognition is a convenient application to test the quality of dense corre-
spondence and R3DM fitting. Significant improvements can be achieved if the under-
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Figure 9: Comparison of Rank-1 Recognition Rate for FRGCv2 on neutral and non-neutral expression scans.
Missing bars show that authors have not reported the particular results.

lying dense correspondence is accurate. We define a challenging protocol to evaluate
the generalization ability of our algorithm. For this purpose we build dense correspon-
dence models that contain cross domain data. The first model (R3DM; ) is constructed
from the first available neutral scan of the 466 identities of FRGCv2 and 100 expression
scans of Bosphorus dataset. The second model (R3DM,) is constructed from the first
available neutral scans of the 105 identities of Bosphorus dataset and first 100 extreme
expression scans of FRGCv2. Notice that the linear span of the example faces in both
R3DMs contains neutral as well as non-neutral scans which on one hand helps in cross
domain data analysis and on the other hand results in an enhancement of the face space
and better generalisation to expressions.

We fit R3DM; to all 4,007 scans of FRGCv2 and use the model parameters of
the first available neutral scans of the 466 identities as gallery (training data). We
report Rank-1 recognition rate on the remaining 3,541 scans by minimising the co-
sine distance between the gallery and the probe model parameters. Figure [0] compares
the Rank-1 recognition rates of our proposed algorithm with the state-of-the-art on the
FRGCv?2 dataset. R3DM outperforms all others, especially in the neutral vs non-neutral
case.

Similarly, R3DMj is fitted to the 4, 666 scans of the Bosphorus dataset. The model
parameters of the first neutral scans of all 105 identities are used to form the gallery and
Rank-1 recognition rates on the remaining 4, 505 scans for the three types of variations
in the dataset are reported in Table [ R3DM performs better than the state-of-the-art
especially for the case of expressions since it encodes expressions in addition to identity
information. Significant improvement (from 47.1% to 86.2%) is achieved in the case
of large pose variations which demonstrates the capability of R3DM to generalize over
missing data. Our algorithm performs consistently well on both the FRGCv2 and the
Bosphorus datasets.

We emphasize that each identity of the test dataset appears only once in its respec-
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Table 4: Comparison of Rank-1 recognition results (in %age) with the state-of-the-art on Bosphorus dataset.
Expressions Poses Occlusions
Author AU Expr All |[YR<90 YR9O PR CR All | Eye Mouth Glasses Hair All | Aj
#scans [ 2150 647 2797 525 210 419 211 1365| 105 105 104 67 3814543

Drira et al. [71] - - - - - - - 197.1 780 942 81.0 87.0( -
Berretti et al. [39] | - - 957 816 457 983 934 88.6| - - - - 932]934

Hajatietal. [72] -| - - - - - - - - - - - - - |95.2%
Li et al. [27] 99.2 96.6 988 | 84.1 47.1 995 99.1 91.1100.0 100.0 100.0 955 99.2| 96.6
R3DM 99.3 979 99.0| 948 86.2 100.0 98.6 95.7(100.0 97.8 100.0 97.1 98.9| 98.1

* The algorithm was not tested on profile and occluded scans [72].
AU=Action Units; YR=Yaw Rotation; PR= Pitch Rotation; CR= Cross Rotation

tive R3DM and that too in the neutral expression. Facial expressions are encoded in the
R3DM in an unsupervised manner using unlabelled faces with non-neutral expressions
from a different dataset. The R3DM neither includes identity specific facial expressions
nor all of the facial expression types.

6.3. Efficiency and Computational Cost

DLIN was trained on an Intel Core i7 3.4 GHz machine, 32GB RAM with one
Tesla K40C GPU and a solid state hard drive. Training was done in Matconvenet [55]]
for three days to complete 200 epochs. All modules of the proposed method were im-
plemented in MATLAB™ on an Intel Core i7 3.4 GHz machine with SGB RAM. Dense
correspondence takes 10.13s per scan. This includes detection of 11 facial landmarks
using DLIN in 0.5s, segmenting the image into its Voronoi regions in 1.34s and es-
tablishing dense correspondence on a 3D image with 5 regions after keypoint detection
and NN matching in 8.27s. Developing the dense correspondence model on 300 images
over 13,394 vertices of FRGCv2 took 40 minutes while it took 29 minutes to do the
same on 215 scans of the Bosphorus dataset over 13,975 vertices. Note that training
the DLIN and establishing region based dense correspondences are performed offline.
However, use of parallel computation on GPUs can considerably speed up the latter
process as well.

The task for establishing dense correspondence on an unseen query face by fitting
the R3DM and then performing face recognition takes only 3.16s, which includes de-
tection of 11 landmarks in 0.5s, segmenting the image into Voronoi regions in 1.34s,
model fitting in 1.30s and matching the probe with the gallery (size 466 in case of
FRGCv2 and 105 in case of Bosphorus) in 5ms (on average).

Empirical comparison of efficiency runs into a bottle neck due to unavailability of
codes for dense correspondence. In the absence of codes from the original authors, it is
difficult to perform a fair comparison with the state-of-the-art algorithms. Furthermore,
comparison of timing using published results is not straightforward as they report timing
for establishing correspondences between different number of vertices [1]], on different
number of 3D faces and using machines with different processors [27]].
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7. Conclusions

We presented an algorithm for dense correspondence over a large number of 3D
faces across varying facial expressions and identities. We trained a Deep Landmark
Identification Network (DLIN) using synthetic images to detect salient landmarks and
used them to segment the 3D face into Voronoi regions by generating a geodesic dis-
tance map through level set curves. Keypoints in these regions were used to align
similar regions across faces in a non-rigid manner and dense correspondence was es-
tablished through NN search. We also proposed a Region based 3D Deformable Model
(R3DM) to propagate the dense correspondences to large datasets efficiently. Exper-
iments on benchmark datasets with challenging protocols show that our algorithm is
faster and more accurate than existing state-of-the-art. Our algorithm is able to generate
population specific accurate deformable 3D face models from scratch without relying
on existing linear 3D face models such as the BFM. In the future, we intend to use
our algorithm for phenotyping medical conditions such as Sleep Apnoea and Autistic
Spectrum Disorder.
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