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Abstract

Estimation, recognition, and near-future prediction of 3D trajectories based on their

two dimensional projections available from one camera source is an exceptionally dif-

ficult problem due to uncertainty in the trajectories and environment, high dimension-

ality of the specific trajectory states, lack of enough labeled data and so on. In this

article, we propose a solution to solve this problem based on a novel deep learning

model dubbed disjunctive factored four-way conditional restricted Boltzmann machine

(DFFW-CRBM). Our method improves state-of-the-art deep learning techniques for

high dimensional time-series modeling by introducing a novel tensor factorization ca-

pable of driving forth order Boltzmann machines to considerably lower energy levels,

at no computational costs. DFFW-CRBMs are capable of accurately estimating, rec-

ognizing, and performing near-future prediction of three-dimensional trajectories from

their 2D projections while requiring limited amount of labeled data. We evaluate our

method on both simulated and real-world data, showing its effectiveness in predicting

and classifying complex ball trajectories and human activities.
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1. Introduction

Estimating and predicting trajectories in three-dimensional spaces based on two-

dimensional projections available from one camera source is an open problem with

wide-ranging applicability including entertainment [1], medicine [2], biology [3],

physics [4], etc. Unfortunately, solving this problem is exceptionally difficult due to a5

variety of challenges, such as the variability of states of the trajectories, partial occlu-

sions due to self articulation and layering of objects in the scene, and the loss of 3D

information resulting from observing trajectories through 2D planar image projections.

A variety of techniques have considered variants of this problem by incorporating addi-

tional sensors, e.g., cameras [5], sonar radars [6], which provide new data for geometric10

solvers allowing for accurate estimation and prediction. Though compelling, the suc-

cess of these methods arrives at increased costs (e.g., incorporating new sensors) and

computational complexities (e.g., handling more inputs geometrically).

The problem above, however, can be framed as a time-series estimation and pre-

diction one, for which numerous machine learning algorithms can be applied. An15

emerging trend in machine learning for computer vision and pattern recognition is

deep learning (DL) which has been successfully applied in a variety of fields, e.g.,

multi-class classification [7], collaborative filtering [8], image quality assessment [9],

reinforcement learning [10], transfer learning [11], information retrieval [12], depth es-

timation [13], face recognition [14], and activity recognition [15]. Most related to this20

work are temporal-based deep learners, e.g., [16, 17], which we briefly review next.

Extending on standard restricted Boltzmann machines (RBMs)[18], temporal RBMs

(TRBMs) consider a succession of RBMs, one for each time frame, allowing them to

perform accurate prediction and estimation of time-series. Due to their complexity,

such naive extensions require high computational effort before acquiring acceptable25

behavior. Conditional RBMs (CRBMs) remedy this problem by proposing an alterna-

tive extension of RBMs [19]. Here, the architecture consists of two separate visible

layers, representing history (i.e., values from previous time frames), and current val-

ues, and a hidden layer for latent correlation discovery. Though successful, CRBMs

are only capable of modeling time series data with relatively “smooth” variations and30
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similarly with other state-of-the-art neural network architectures for time series, e.g.

recurrent neural networks, they can not learn within the same model different types

of time-series. Thus, to model different types of non-linear time variations within the

same model, the authors in [19] extend CRBMs by allowing for a three-way weight

tensor connection among the different layers. Computational complexity is then re-35

duced by adapting a factored version (i.e., FCRBMs) of the weight tensor, which leads

to a construction exhibiting accurate modeling and prediction results in a variety of

experiments, including human motion styles [20]. However, these methods fail to per-

form both classification and regression in one unified framework. Recently, Factored

Four-Way Conditional Restricted Boltzmann Machines (FFW-CRBMs) have been pro-40

posed [21]. These extend FCRBMs by incorporating a label layer and a four-way

weight tensor connection among the layers to modulate the weights for capturing sub-

tle temporal differences. This construction allowed FFW-CRBMs to perform both, i.e.

classification and real-valued predictions, within the same model, and to outperform

state-of-the-art specialized methods for classification or prediction [21].45

Contributions: In this paper we, first, propose the use of FFW-CRBMs to esti-

mate 3D trajectories from their 2D projections, while at the same time being also capa-

ble to classify those trajectories. Though successful, we discovered that FFW-CRBMs

require substantial amount of labeled data before achieving acceptable performance

when predicting three-dimensional trajectories from two-dimensional projections. As50

FFW-CRBMs require three-dimensional labeled information for accurate predictions

which is not typically available, secondly, in this paper, we remedy these problems by

proposing an extension of FFW-CRBMs, dubbed Disjunctive FFW-CRBMs (DFFW-

CRBMs). Our extension refines the factoring of the four-way weight tensor connecting

the machine layers to settings where labeled data is scarce. Adopting such a factor-55

ization “specializes” FFW-CRBMs and ensures lower energy levels (approximately

three times less energy on the overall dataset). This yields the sufficiency of a re-

duced training dataset for DFFW-CRBMs to reach similar classification performance

to state-of-the-art methods and to at least double the performance on real-valued pre-

dictions. Importantly, such accuracy improvements come at the same computational60

cost of O
(
n2
)

compared to FFW-CRBMs. Precisely, our machine requires limited la-
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beled data (less than 10 % of the overall dataset) for: i) simultaneously classifying and

predicting three-dimensional trajectories based on their two-dimensional projections,

and ii) accurately estimating three-dimensional postures up to an arbitrary number of

time-steps in the future.65

We have extensively tested DFFW-CRBMs on both, simulated and real-world data,

to show that they are capable of outperforming state-of-the-art methods in real-valued

predictions and classifications. In the first set of experiments we evaluate its per-

formance by predicting and classifying simulated three-dimensional ball trajectories

(based on a real-world physics simulator) thrown from different initial spins. Given70

these successes, in the second set of experiments we predict and classify high-dimensional

human poses and activities (up-to 32 human skeleton joints in 2D and 3D coordinates

systems, corresponding to 160 dimensions) using real-world data showing that DFFW-

CRBMs acquire double accuracy results at reduced labeled data sizes.

2. Background75

This section provides relevant background knowledge essential to the remainder of

the paper. Firstly, restricted Boltzmann machines (RBMs), being at the basis of our

proposed method, are surveyed. Secondly, Contrastive Divergence, a training algo-

rithm for Deep Learning methods, is presented. The section concludes with a brief

description of deep-learning based models for time series prediction and classification.80

2.1. Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) [18] are energy-based models for unsu-

pervised learning. They use a generative model of the distribution of training data for

prediction [22]. These models employ stochastic nodes and layers, making them less85

vulnerable to local minima [20]. Further, due to their stochastic neural configurations,

RBMs possess excellent generalization and density estimation capabilities [23, 24].

Formally, an RBM consists of visible and hidden binary layers connected by an

undirected bipartite graph. More exactly, the visible layer v = [v1, . . . , vnv ] collects all
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visible units vi and represents the real-data, while the hidden layer h = [h1, . . . , hnh ]

representing all the hidden units hj increases the learning capability by enlarging the

class of distributions that can be represented to an arbitrary complexity. nv and nh are

the number of neurons in the visible and hidden layers, respectively. Wij denotes the

weight connection between the ith visible and jth hidden unit, and vi and hj denote

the state of the ith visible and jth hidden unit, respectively. The matrix of all weights

between the layers is given by W ∈ Rnh×nv . The energy function of RBMs is given

by

E (v, h) = −
nv∑
i=1

nh∑
j=1

Wijvihj −
nv∑
i=1

aivi −
nh∑
j=1

bjhj (1)

where, ai and bj represent the biases of the visible and hidden layers, respectively. The

joint probability of a visible and hidden configuration can be written as P (v, h) =

exp(−E(v,h))
Z with Z =

∑
x,y exp (−E(x, y)). The marginal distribution, p(v) =90 ∑

h p(v, h) , can be used to determine the probability of a data point represented by a

state v.

2.2. Training an RBM via Contrastive Divergence

The RBMs parameters are trained by maximizing the likelihood function, typically

by following the gradient of the energy function. Unfortunately, in RBMs, maximum

likelihood estimation can not be applied directly due to intractability problems. These

problems can be circumvented by using Contrastive Divergence (CD) [25] to train the

RBM. In CD, learning follows the gradient of:

CDn ∝ DKL(p0(x)||p∞(x))−DKL(pn(x)||p∞(x)) (2)

where, pn(·) is the distribution of a Markov chain running for n steps andDKL symbol-

izes the Kullback-Leibler divergence [26]. To find the update rules for the free param-95

eters of the RBM (i.e weights and biases), the RBM’s energy function from Equation 1

has to be differentiated with respect to those parameters. Thus, in CDn the weight up-

dates are done as follows: wτ+1
ij = wτij + α

(〈
〈hjvi〉p(h|v;W)

〉
0
− 〈hjvi〉n

)
where τ is

the iteration number, α is the learning rate,
〈
〈hjvi〉p(h|v;W)

〉
0

= 1
NI

∑NI
k=1 v

(q)
i P (h

(q)
j =

1|v(q); W) and 〈hjvi〉n = 1
NI

∑NI
k=1 v

(q)(n)
i P (h

(q)(n)
j = 1|v(q)(n); W) where NI is the100
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total number of input instances, and the superscript (q) shows the qth input instance.

The superscript (n) indicates that the states are obtained after n steps of Gibbs sam-

pling on a Markov chain which starts at the original data distribution p0(·). In practice,

learning can be performed using just one step Gibbs sampling, which is carried in four

sub-steps: (1) initialize visible units, (2) infer all the hidden units, (3) infer all the105

visible units, and (4) update the weights and the biases.

2.3. Factored Conditional Restricted Boltzmann Machine

Conditional Restricted Boltzmann Machines (CRBM) [20] are an extension of

RBMs used to model time series data, for example, human activities. They use an

undirected model with binary hidden variables connected to real-valued visible ones.

At each time step t, the hidden and visible nodes receive a connection from the visi-

ble variables at the last L time-steps. The history of the real-world values until time

t is collected in the real-valued history vector v<t with nv<t = nv(L − 1) being the

number of elements in v<t. The total energy of the CRBM is given by:

E =

nv∑
i=1

(âi,t − vi,t)2

2σ2
i

−
nh∑
j=1

b̂j,thj,t −
nv∑
i=1

nh∑
j=1

Wij
vi,t
σi
hj,t (3)

where âi,t = ai +
∑nv<t
k=1 Akivk,<t and b̂j,t = bj +

∑nv<t
k=1 Bkjvk,<t represent the

“dynamic biases”, with k being the index of the elements from v<t.

Taylor and Hinton introduced the Factored Condition Restricted Boltzmann Ma-110

chine (FCRBM) [20], which permits the modeling of different styles of time series

within the same model, due to the introduction of multiplicative, three-way interac-

tions and of a preset style label, yt. To reduce the computational complexity of this

model, they factored the third order tensors between layer in products of matrices. For-

mally, FCRBM defines a joint probability distribution over the visible vt and hidden ht115

neurons. The joint distribution is conditioned on the past L observations, v<t, model

parameters, Θ, and the preset style label, yt. Interested readers are referred to [20] for

a more comprehensive discussion on CRBMs and FCRBMs.
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Figure 1: A high level depiction of the FFW-CRBM showing the four layer configuration and the factored

weight tensor connection among them. Gaussian nodes shown on the history and visible layers represent

real-valued inputs, while sigmoidal nodes on the hidden and label layers demonstrate binary values.

2.4. Four-Way Conditional Restricted Boltzmann Machines

Due to the limitations exhibited by FCRBMs, e.g., the impossibility of perform-120

ing classification without extensions, we proposed the four-way conditional restricted

Boltzmann machines (FW-CRBMs) for performing prediction and classification in one

unified framework [21]. FW-CRBMs introduced an additional layer and a four-way

multiplicative weight tensor interaction between neurons. Please note that, later on,

other four-way models have been proposed but they can perform just classification an125

no prediction [27].

FW-CRBMs extended FCRBMs to include a label layer lt and a fourth order weight

tensor connection Wijko ∈ Rnv×nh×nv<t×nl , where nv, nh, nv<t , nl represent the

number of neurons from the present, hidden, history and label layers, respectively.

Though successful, FW-CRBMs exhibited high computational complexities (i.e.,O
(
n4
)
)

for tuning free parameters. Circumventing these problems, we factored the weight ten-

sor into sums of products leading to more efficient machines (i.e., O
(
n2
)
) labeled as

factored four-way conditional restricted Boltzmann machines (FFW-CRBMs). FFW-

7



CRBMs, shown in Figure 1, minimize the following energy functional

E(vt,ht, lt|v<t,Θ) = (4)

−
nv∑
i=1

(vi,t − ai)2

σi2
−

nh∑
j=1

hj,tbj −
nl∑
o=1

lo,tco

−
nF∑
f=1

nv∑
i=1

W v
if

vi,t
σi

nh∑
j=1

Wh
jfhj,t

nv<t∑
k=1

W v<t
kf

vk,<t
σk

nl∑
o=1

W l
of lo,t .

where nF is number of factors and i, j, k, and o are the indices of the visible layer

neurons vt, the hidden layer neurons ht, the history layer neurons v<t and the labeled

layer neurons lt respectively. Wv , Wh, Wl symbolize the bidirectional and sym-

metric weights from the visible, hidden and label layers to the factors, respectively,130

while Wv<t represents the directed weights from the history layer to the factors. As

in the case of the three-way models [28], standard CD is unsuccessful in training also

the four-way models, due to the need of predicting two output layers (i.e. label and

present layers). Thus, in [21] we proposed a sequential variant of CD, named sequen-

tial Markov chain contrastive divergence, more suitable for tuning the free parameters135

in FW-CRBMs.

FFW-CRBMs have shown good generalization and time series latent feature learn-

ing capabilities compared to state-of-the-art techniques including but not limited to,

support vector machines, CRBMs, and FCRBMs [21]. It is for these reasons that we

believe that FFW-CRBMs can serve as a basis for predicting three-dimensional trajec-140

tories from two-dimensional projections. Unfortunately, FFW-CRBMs are not readily

applicable to such a problem as they require substantial amount of labeled data for

successful tuning. In this paper, we extend FFW-CRBMs to Disjunctive FFW-CRBMs

(DFFW-CRBMs) by proposing a novel factoring process essential for predicting and

classifying 3D trajectories from 2D projections. Our model, detailed next, reduces145

sample complexities of current methods and allows for lower energy levels compared

to FFW-CRBMs leading to improved performance.
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Figure 2: A high level depiction of DFFW-CRBMs showing the four layer configuration and the refined

tensors factoring for increased accuracy and efficiency.

3. Disjunctive Factored Four Way Conditional restricted Boltzmann Machines

This section details disjunctive factored four way conditional restricted Boltzmann

machines (DFFW-CRBMs), shown in Figure 2. Similarly to FFW-CRBMs, our model150

consists of four layers to represent visible, history, hidden, and label units. Contrary

to the factoring adopted by FFW-CRBMs, however, our model incorporates two new

factoring layers. The first, i.e., F 1(f) in the figure, is responsible for specializing the

machine to real-valued predictions through W1l, W1v , W1h, and W1v<t , while the sec-

ond, F 2(f), specializes the machine to classification through the corresponding weight155

tensor collections. Such a specialization is responsible for reducing sample complex-

ities needed by DFFW-CRBMs for successful parameter tuning as demonstrated in

Section 4, while the computational complexity of DFFW-CRBM remains the same as

for FFW-CRBM (i.e., O
(
n2
)
) . Given our novel construction, DFFW-CRBMs require

their own special mathematical treatment. Next, we detail each of the energy functional160

and learning rules needed by DFFW-CRBMs.
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3.1. DFFW-CRBM’s Energy Function

The energy function of DFFW-CRBMs consists of three major terms. The first, i.e.,

−
nv∑
i=1

(vi,t−ai)2
σi2

−
nh∑
j=1

hj,tbj−
nl∑
o=1

lo,tco corresponds to the standard energy representing

a specific submachine of DFFW-CRBMs (i.e. the energy given by the neurons of each

layers and their biases) while the second two denote energies related to the first and

second factoring layers, respectively:

E(vt,ht, lt|v<t,Θ) = (5)

−
nv∑
i=1

(vi,t − ai)2

σi2
−

nh∑
j=1

hj,tbj −
nl∑
o=1

lo,tco︸ ︷︷ ︸
standard three-layer energy

−
nF1∑
f=1

nv∑
i=1

W 1v
if

vi,t
σi

nh∑
j=1

W 1h
jf hj,t

nv<t∑
k=1

W 1v<t
kf

vk,<t
σk

nl∑
o=1

W 1l
of lo,t︸ ︷︷ ︸

first factoring layer

−
nF2∑
f=1

nv∑
i=1

W 2v
if

vi,t
σi

nh∑
j=1

W 2h
jf hj,t

nv<t∑
k=1

W 2v<t
kf

vk,<t
σk

nl∑
o=1

W 2l
of lo,t︸ ︷︷ ︸

second factoring layer

.

Here, nF 1 denotes the total number of factors for the weight tensor collection specializ-

ing DFFW-CRBMs to regression, while nF 2 is total the number of factors responsible

for classification. i, j, k, and o represent the indices of the visible layer neurons vt, the165

hidden layer neurons ht, the history layer neurons v<t and the labeled layer neurons

lt, respectively. Furthermore, W1v and W1h represent the bidirectional and symmet-

ric weight connections from the visible and hidden layers to the factors, while W1l

and W1v<t denote the directed weights from the label and history layers to the fac-

tors. Similarly, W2l and W2h represent the bidirectional and symmetric weights from170

the label and hidden layers to the factors, while W2v and W2v<t denote the directed

weights from the visible and history layers to the factors. Finally, the two groups of

four weight matrices each noted with W1. and W2. belong to the factorized tensor

specialization in regression and classification, respectively.
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3.2. DFFW-CRBM’s Activation Probabilities175

Inference for DFFW-CRBM corresponds to determining values of the activation

probabilities for each of the units. As shown in Figure 2, units within the same layer

do not share connections. This allows for parallel probability computation for all units

within the same layer. The overall input of each hidden shj,t, visible svi,t, and labelled

slo,t unit is given by:

shj,t =

nF1∑
f=1

W 1h
jf

nv∑
i=1

W 1v
if

vi,t
σi

nnv<t∑
k=1

W 1v<t
kf

vk,<t
σk

nl∑
o=1

W 1l
of lo,t

+

nF2∑
f=1

W 1h
jf

nv∑
i=1

W 2v
if

vi,t
σi

nnv<t∑
k=1

W 2v<t
kf

vk,<t
σk

nl∑
o=1

W 2l
of lo,t

svi,t =

nF1∑
f=1

W 1v
if

nh∑
j=1

W 1h
jf hj,t

nnv<t∑
k=1

W 1v<t
kf

vk,<t
σk

nl∑
o=1

W 1l
of lo,t

slo,t =

nF2∑
f=1

W 2l
of

nh∑
j=1

W 2h
jf hj,t

nnv<t∑
k=1

W 2v<t
kf

vk,<t
σk

nv∑
i=1

W 2v
if

vi,t
σi

. (6)

Consequently, for each of the jth hidden, ith visible, and oth labelled units, the activa-

tion probabilities can be determined as

p(hj,t = 1|vt,v<t, lt) =
1

1 + e−(bj+shj,t)
(7)

p(vi,t = x|ht,v<t, lt) = N
(
ai + svi,t, σ

2
i

)
p(lo,t = 1|vt,v<t,ht) =

1

1 + e−(co+slo,t)
,

where N (·) represents the standard Gaussian distribution.

3.3. Parameter Tuning: Update Rules & Algorithm

3.3.1. Update Rules

Generally, parameters, Θ, are updated according to:

Θτ+1 = Θτ + ρΘ̃τ + α(∆Θτ+1 − γΘτ )︸ ︷︷ ︸
Θ̃τ+1 update

(8)

where τ represents the update iteration, ρ ∈ (0, 1) is the momentum, α ∈ (0, 1) denotes

the learning rate, and γ ∈ (0, 1) is the weight decay. A more detailed discussion on

11



the choice of these parameters is provided by Hinton in [29]. Therein, the update rules

are attained by deriving the energy functional with respect to free parameters (i.e.,

weights matrices, and the biases of each of the layers). In DFFW-CRBMs, a set of

eight free parameters, corresponding to the connections between the factors and each

of the layers, has to be inferred. These are presented below. Intuitively, each of these

update equations, aims at minimizing the reconstruction error (i.e., the error between

the original inputs and these reconstructed through the model). Moreover, each of the

update equations include three main terms representing the connections between the

factored weights and the corresponding layer of the machine, as per Figure 2. For

instance, connections to only the hidden, history, and label layers suffice for updating

W 1v
if . Thus, the update rules ∆Θτ for each of the weights corresponding to the first

factored layer, can be computed as:

∆W 1v
if ∝

〈
vi,t

nh∑
j=1

W 1h
jf hj,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nl∑
o=1

W 1l
of lo,t

〉
0

−
〈
vi,t

nh∑
j=1

W 1h
jf hj,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nl∑
o=1

W 1l
of lo,t

〉
λ

∆W
1v<t
kf ∝

〈
vk,<t

nh∑
j=1

W 1h
jf hj,t

nv∑
i=1

W 1v
if vi,t

nl∑
o=1

W 1l
of lo,t

〉
0

−
〈
vk,<t

nh∑
j=1

W 1h
jf hj,t

nv∑
i=1

W 1v
if vi,t

nl∑
o=1

W 1l
of lo,t

〉
λ

∆W 1l
of ∝

〈
lo,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nh∑
j=1

W 1h
jf hj,t

nv∑
i=1

W 1v
if vi,t

〉
0

−
〈
lo,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nh∑
j=1

W 1h
jf hj,t

nv∑
i=1

W 1v
if vi,t

〉
λ

∆W 1h
jf ∝

〈
hj,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nv∑
i=1

W 1v
if vi,t

nl∑
o=1

W 1l
of lo,t

〉
0

−
〈
hj,t

nv<t∑
k=1

W
1v<t
kf vk,<t

nv∑
i=1

W 1v
if vi,t

nl∑
o=1

W 1l
of lo,t

〉
λ

,
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while for the second factoring we have:

∆W 2v
if ∝

〈
vi,t

nh∑
j=1

W 2h
jf hj,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nl∑
o=1

W 2l
of lo,t

〉
0

−
〈
vi,t

nh∑
j=1

W 2h
jf hj,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nl∑
o=1

W 2l
of lo,t

〉
λ

∆W
2v<t
kf ∝

〈
vk,<t

nh∑
j=1

W 2h
jf hj,t

nv∑
i=1

W 2v
if vi,t

nl∑
o=1

W 2l
of lo,t

〉
0

−
〈
vk,<t

nh∑
j=1

W 2h
jf hj,t

nv∑
i=1

W 2v
if vi,t

nl∑
o=1

W 2l
of lo,t

〉
λ

∆W 2l
of ∝

〈
lo,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nh∑
j=1

W 2h
jf hj,t

nv∑
i=1

W 2v
if vi,t

〉
0

−
〈
lo,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nh∑
j=1

W 2h
jf hj,t

nv∑
i=1

W 2v
if vi,t

〉
λ

∆W 2h
jf ∝

〈
hj,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nv∑
i=1

W 2v
if vi,t

nl∑
o=1

W 2l
of lo,t

〉
0

−
〈
hj,t

nv<t∑
k=1

W
2v<t
kf vk,<t

nv∑
i=1

W 2v
if vi,t

nl∑
o=1

W 2l
of lo,t

〉
λ

.

and for the biases are:

∆ai ∝ 〈vi,t〉0 − 〈vi,t〉λ

∆bj ∝ 〈hj,t〉0 − 〈hj,t〉λ

∆co ∝ 〈lo,t〉0 − 〈lo,t〉λ

where λ represents a Markov chain step running for a total of n steps and starting at

the original data distribution, 〈·〉0 denotes the expectation under the input data, and 〈·〉λ180

represents the model’s expectation.

3.3.2. Sequential CD for DFFW-CRBMs

Algorithm 1 presents a high-level description of the sequential Markov chain con-

trastive divergence [21] adapted to train DFFW-CRBMs. It shows the two main steps

needed for training such machines. Firstly, the visible layer is inferred by fixing the his-185

tory and label layers. While in the second step the label layer is reconstructed by fixing

the history and the present layers. Updating the weights involves the implementation

of the rules derived in the previous section. These two procedures are then repeated
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for a pre-specified number of epochs, where at each epoch the reconstruction error is

decreasing to reach the minimum of the energy function, guaranteeing a minimized190

divergence between the original data distribution and the one given by the model.

Inputs: TD - training data, n - number of Markov Chain steps;

Initialization: Θ←N (0, σ2), Set α, ρ, γ;

for all epochs do

for each Sample ∈ TD do

%%First Markov Chain to reconstruct vt;

Init vt← 0, lt=Sample.Label, v<t=Sample.History;

ht = InferHiddenLayer(vt,lt,v<t,Θ);

for λ = 0;λ < n;λ+ + do

%%Positive phase;

pSt=GetPosStats(ht,Sample.Present,lt,v<t,Θ);

%%Negative phase;

vt=InferPresentLayer(ht,lt,v<t,Θ);

ht = InferHiddenLayer(vt,lt,v<t,Θ);

nSt=GetNegStats(ht,vt,lt,v<t,Θ);

Θ=UpdateWeights(pSt,nSt,Θ,α,ρ,γ);

end

%%Second Markov Chain to reconstruct lt;

Init lt← 0, vt = Sample.Present, v<t = Sample.History;

ht = InferHiddenLayer(vt,lt,v<t,Θ);

for λ = 0;λ < n;λ+ + do

%%Positive phase;

pSt=GetPosStats(ht,Sample.Label,vt,v<t,Θ);

%%Negative phase;

lt=InferLabelLayer(ht,vt,v<t,Θ);

ht = InferHiddenLayer(vt,lt,v<t,Θ);

nSt=GetNegStats(ht,vt,lt,v<t,Θ);

Θ=UpdateWeights(pSt,nSt,Θ,α,ρ,γ);

end

end

end
Algorithm 1: Sequential Contrastive Divergence for DFFW-CRBMs
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4. Experiments and Results

This section extensively tests the performance of DFFW-CRBMs on both simulated

as well as on real-world datasets. The major goal of these experiments was to assess

the capability of DFFW-CRBM to predict three-dimensional trajectories from two-195

dimensional projection, given small amounts of labeled data (i.e., in the order of 9-

10 % of the total dataset). As a secondary objective, the goal was to classify such

trajectories to different spins (ball trajectories) or activities (human pose estimation).

In the real-valued prediction setting, we compared our method to state-of-the-art FFW-

CRBMs and FCRBMs, while for classification our method’s performance was tested200

against FFW-CRBMs and support vector machines with radial basis functions (SVM-

RBFs) [30].

Evaluation Metrics: To assess the models’ performance, a variety of standard

metrics were used. For classification, we used accuracy [31] in percentages, while for

estimation tasks, we used the Normalized Root Mean Square Error (NRMSE) estimat-205

ing distance between the prediction and ground truth, Pearson Correlation Coefficient

(PCC) reflecting the correlations between predictions and ground truth, and the P-value

to arrive at statistically significant predictions.

4.1. Ball Trajectory Experiments

We generated different ball trajectories thrown with different spins using the Bul-210

let Physics Library1. With this simulated dataset we targeted three objectives using

small amounts (9 %) of labeled training data. First, we estimated 3D ball coordinates

based on their 2D projections at each time-step t (i.e., one-step prediction). Second, we

aimed at predicting near-future (i.e., couple of time steps in the future) 3D ball coordi-

nates recursively, while giving limited 2D sequence of coordinates as a starting point.215

Third, we classified various ball spins based on just 2D coordinates. We used four tra-

jectory classes corresponding to four different ball spin types. For each class, a set of

11 trajectories each containing approximately 400 time-steps (amounting to a total of

1http://bulletphysics.org, Last accessed on November 8th 2016
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Figure 3: Averaged energy levels of FFW-CRBM and DFFW-CRBM over all ball trajectories when the

parameters (i.e. number of hidden neurons and factors) are varying. The training was done for 100 epochs.

17211 data instances) were sampled. To assess the performance of DFFW-CRBM, we

performed 11-fold cross validation and reported mean and standard deviation results.220

Precisely, from each class of trajectories we used only one labeled trajectory2 to train

the models and the other 10 were used for testing.

Deep Learner Setting: The visible layers of both models (i.e. FFW-CRBM and

DFFW-CRBM) were set to 5 neurons, three denoting 3D ball center coordinates (i.e.

x, y, z), and two for its 2D projection at time t. The label layer consisted of 4 neu-225

rons (one for each of the different spins classes), while the history layers included 100

neurons corresponding to the last 50 history frames. One frame incorporates the 2D

coordinates of the center of the ball projected in a two dimensional space. The number

of hidden neurons was set to 10, and the number of factors to 100, as discussed in the

next paragraph, and in Subsection 4.2. A learning rate of 10−4 and momentum of 0.5230

2A labeled trajectories has complete information: the 3D ball coordinates, their 2D projections, and the

spin (i.e. class).
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Task Metrics
Methods

SVM-RBF FCRBM FFW-CRBM DFFW-CRBM

Classification Accuracy[%] 39.26±4.63 N/A 37.49±3.66 39.51±4.47

Present Step NRMSE[%] N/A 18.38±8.07 19.53±33.24 11.24±8.53

3D estimation PCC N/A -0.06±0.70 0.31±0.72 0.62±0.61

P-value N/A 0.51±0.29 0.40±0.29 0.28±0.27

After NRMSE[%] N/A 25.61±3.25 23.53±2.48 9.52±6.12

1 step PCC N/A 0.14±0.69 0.31±0.74 0.95±0.14

Multi-Step P-value N/A 0.50±0.29 0.38±0.25 0.12±0.18

3D After NRMSE[%] N/A 31.38±7.99 29.49±8.14 19.93±10.27

prediction 50 steps PCC N/A 0.05±0.69 -0.05±0.72 0.20±0.66

P-value N/A 0.51±0.26 0.47±0.26 0.51±0.26

Table 1: Classification, present step 3D estimation, and multi-step 3D prediction for the balls trajectories

experiment. Results, cross-validated and presented with mean and standard deviation, show that our method

is capable of outperforming state-of-the-art techniques on all evaluation metrics.

were chosen. Weight decay factors were set to 0.0002, and the number of the Markov

chain steps for CD in the training phase, but also for the Gibbs sampling in the testing

phase, was set to 3. All weights were initialized with N (0, 0.3). Finally, data were

normalized to have 0 mean and unit variance as explained in [29], and the models were

trained for 100 epochs.235

Importance of disjunctive Factoring: To find the optimal number of hidden neu-

rons and factors, we have performed exhaustive search by varying the number of hidden

neurons from 10 to 100 and the number of factors from 10 to 160. To gain some in-

sights on the behavioral differences between FFW-CRBMs and DFFW-CRBMs, even

if the energy equation of DFFW-CRBM has an extra tensor, in Figure 3 we illustrate on240

the same scale the heat-map of the averaged energy levels. They were computed using

Equation 4 for FFW-CRBM and Equation 5 for DFFW-CRBM, after both models were

trained for 100 epochs. Though both models acquire the lowest energy levels in a con-

figuration starting with 10-20 hidden neurons and a number of factors larger than 100,

analyzing these results signifies the importance of the disjunctive factoring introduced245

in the paper. Namely, DFFW-CRBMs always acquire lower energy levels compared

to FFW-CRBMs due to it’s “specialized” tensor factoring. Moreover, by averaging the
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energy levels from the aforementioned figure, we found that the average energy level of

DFFW-CRBM is approximately three times smaller than the one of FFW-CRBM (i.e.

−6.63±2.09 for DFFW-CRBM, and−2.04±1.43 for FFW-CRBM), thus anticipating250

the more accurate performance results, as showed next.

Figures 4 and 5 compare the capabilities of DFFW-CRBMs on estimating different

3D trajectories of balls picked at random to FFW-CRBMs, showing that our method is

capable of achieving closely correlated transitions to the real trajectory. Interestingly,

DFFW-CRBMs can handle discontinuities “less abruptly” compared to FFW-CRBMs.255

The cross-validation results showing the performance of all models of all ball trajecto-

ries are summarized in Table 1. In terms of classification, SVM-RBF, FFW-CRBM,

and DFFW-CRBM perform almost similarly, with a slightly advantage of DFFW-

CRBM3. In the case of 3D coordinates estimation from 2D projection at a time-step

t, DFFW-CRBM clearly outperforms state-of-the-art methods with a NRMSE almost260

twice smaller than FCRBMs and FFW-CRBMs. Besides that, in this case, the mean

value of the correlation coefficient for DFFW-CRBM is 0.62, double than that for FFW-

CRBM, while the one for FCRBM is powerless (i.e below zero). For the multi-step

prediction of near-future 3D point coordinates, DFFW-CRBM has an even more sig-

nificant improvement. It is worth highlighting that in this scenario, the average PCC265

value after one step prediction is almost perfectly 0.95, while after 50 steps predicted

into the future the mean PCC value is still positive and larger than those of the other

methods. In a final set of experiments we tested the change in the accuracy of clas-

sification as a number of data points used. These are summarized in the bar-graph in

Figure 6, showing that our method slightly outperforms the state-of-the-art techniques270

in all cases.

4.2. Human Activity Recognition

Given the above successes, next we evaluate the performance of our method on

real-world data representing a variety of human activities. In each set of experiments,

3It is worth noting that in this scenario the random guess for classification would have an accuracy of

25%.
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Figure 4: Estimation of different 3D balls trajectories from their 2D counterparts with DFFW-CRBM (top)

and FFW-CRBM (bottom) showing that our method outperforms state-of-the-art techniques while requiring

less data.

we targeted two main objectives and a third secondary one. The first two corresponded275

to estimating three-dimensional joint coordinates from two-dimensional projections as

well as predicting such coordinates in near future, while the third involved classify-

ing activities based on only two-dimensional joint coordinates. Please note that the

third experiment is exceptionally hard due to the loss of three-dimensional information

making different activities more similar.280

Human 2.6m dataset. For all experiments, we used the real-world comprehensive

benchmark database [32, 33], containing 17 activities performed by 11 professional

actors (6 males and 5 females) with over 3.6 million 3D human poses and their cor-

responding images. Further, for 7 actors, the database accurately reports 32 human

skeleton joint positions in 3D space, together with their 2D projections acquired at 50285

frames per seconds (FPS).

We used these seven actors being Subject 1 (S1), Subject 5 (S5), Subject 6 (S6),

Subject 7 (S7), Subject 8 (S8), Subject 9 (S9), Subject 11 (S11) accompanied with their

corresponding joint activities, such as Purchasing (A1), Smoking (A2), Phoning (A3),

Sitting-Down (A4), Eating (A5), Walking-Together (A6), Greeting (A7), Sitting (A8),290

Posing (A9), Discussing (A10), Directing (A11), Walking (A12), and Waiting (A13).

To avoid computational overhead, we have also reduced the temporal resolution of the

data to 5 FPS leading to a total of 46446 training and testing instances. The instances

were split between different subjects as: S1 (5514 instances), S5 (8748 instances), S6
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Figure 5: Estimation of the 3D trajectory for the center of one ball from its 2D projection using FFW-CRBM

(left) and DFFW-CRBM (right). The top figure presents the trajectory in the 3D space, while the bottom

figure presents the Ox, Oy, Oz coordinates of the same trajectory in a 2D plot.

(5402 instances),S7 (9081 instances), S8 (5657 instances), S9 (6975 instances), and295

S11 (5069 instances).

Deep Learner Setting: The visible layers of both the FFW-CRBM and DFFW-

CRBM were set to 160 neurons corresponding to 96 neurons for the 3D coordinates

of the joints, and 64 for their 2D projections at time t. The label layer consisted of 13

neurons (one for each of the activities), and the history layers included 320 neurons300

corresponding to 5 history frames each incorporating 2D joint coordinates. The size of

the hidden layer was set to 10 neurons, and the number of factors to 100, as explained

in the next paragraph. Furthermore, a learning rate of 10−5 was used to guarantee

bounded reconstruction errors. The number of the Markov Chain steps in the training
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Figure 6: Average classification accuracies with mean and standard deviation, over all balls trajectories,

when the amount of training data is increased.

phase and of the Gibbs sampling in the testing phase were set to 3, and the weights305

were initialized withN (0, 0.3). Further particularities, such as momentum and weight

decay were set to 0.5 and 0.0002. Also, all data were normalized to have a 0 mean and

unit standard deviation.

Importance of disjunctive Factoring: Similarly with the previous experiment on

simulated balls trajectories, we searched for the optimal number of hidden neurons and310

factors, by performing exhaustive search and varying the number of hidden neurons

and factors from 10 to 100 and from 10 to 160, respectively. Figure 7 depicts on

the same scale the averaged energy levels for both FFW-CRBM and DFFW-CRBM,

after being trained for 100 epochs. As before, in the balls experiment, the energy

levels of both models are more affected by the number of factors than the number of315

hidden neurons. Even if we are scrutinizing unnormalized energy levels, the fact that

the energy levels of DFFW-CRBM are always much lower than the energy levels of

FFW-CRBM reflects the importance of the disjunctive factoring. By quantifying and

averaging all the energy levels for each model, we may observe that DFFW-CRBM has

in average approximately three times less energy than FFW-CRBM (i.e. −153.32 ±320

17.31 for DFFW-CRBM, and −48.57± 33.92 for FFW-CRBM).
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Figure 7: Averaged energy levels of FFW-CRBM and DFFW-CRBM for the human activities experiments

when the parameters (i.e. number of hidden neurons and factors) are varying. The training was done for 100

epochs.

4.2.1. Training and Testing on The Same Person

Here, data from the same subject has been used for both training and testing. Em-

ulating real-world 3D trajectory prediction settings where labeled data is scarce, we

made use of only 10% of the available data for training and 90% for testing with the325

aim of performing accurate one and multi-step 3D trajectory predictions.

Results in Tables 2, 3, and 4 show that DFFW-CRBMs are capable of achieving

better performance than state-of-the-art techniques in both classification and prediction

even when only using a small amount of training data. These results provide a proof-

of-concept to the fact that DDFW-CRBMs are capable of accurately predicting (in both330

one-step and multi-step scenarios) 3D trajectories from their 2D projections by using

only 10% of the data for training and 90% for testing.

Activity Recognition (Classification) The goal in this set of experiments was to

classify the 13 activities based on only their 2D projections. Please note that such a

task is substantially difficult to solve due to the loss of information exhibited by the335
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Persons SVM-RBF FFW-CRBM DFFW-CRBM

S1 49.77 50.53 49.34

S5 36.92 38.82 40.21

S6 30.68 31.51 30.18

S7 38.50 37.03 37.94

S8 26.49 30.41 31.32

S9 24.69 28.12 22.63

S11 34.56 34.21 32.16

Average 34.51 35.80 34.83

Table 2: Classification accuracies in percentages for the human activities experiments, when training and

testing data belong to the same person.

Persons
FCRBM FFW-CRBM DFFW-CRBM

NRMSE [%] PCC P-value NRMSE [%] PCC P-value NRMSE [%] PCC P-value

S1 8.41±3.75 0.02±0.10 0.49±0.29 9.93±7.47 0.13±0.37 0.15±0.26 6.36±3.45 0.54±0.29 0.05±0.16

S5 6.70±2.44 -0.03±0.09 0.54±0.28 6.95±3.21 0.10±0.33 0.16±0.26 4.30±2.30 0.68±0.25 0.02±0.10

S6 4.41±1.93 0.03±0.09 0.53±0.28 4.50±2.37 0.01±0.28 0.21±0.29 3.19±1.64 0.50±0.32 0.05±0.16

S7 9.14±3.46 0.02±0.10 0.49±0.29 9.16±4.30 0.13±0.35 0.14±0.25 6.19±3.11 0.71±0.24 0.01±0.09

S8 8.31±3.37 -0.00±0.11 0.47±0.29 8.23±4.42 0.02±0.27 0.26±0.31 4.96±2.57 0.62±0.26 0.05±0.18

S9 7.25±2.74 0.00±0.09 0.55±0.28 8.40±5.05 0.01±0.27 0.22±0.29 4.63±2.34 0.54±0.32 0.05±0.17

S11 9.62±4.05 -0.00±0.10 0.54±0.28 9.89±5.94 0.06±0.32 0.15±0.25 6.82±3.82 0.53±0.35 0.04±0.14

Average ≈7.69±3.10 ≈0.01±0.09 ≈0.51±0.28 ≈8.15±4.68 ≈0.07±0.31 ≈0.18±0.27 ≈5.21±2.75 ≈0.59±0.29 ≈0.04±0.14

Table 3: The 3D estimation of the human joints from their 2D counterpart at the present time, when the

training and testing are done on the same person. The results are presented with mean and standard deviation.

Steps
Persons

FCRBM FFW-CRBM DFFW-CRBM

Predicted NRMSE [%] PCC P-value NRMSE [%] PCC P-value NRMSE [%] PCC P-value

S1 7.68±3.71 0.02±0.09 0.51±0.28 7.78±4.95 0.17±0.32 0.17±0.27 5.91±3.45 0.55±0.26 0.06±0.16

S5 6.72±2.48 -0.05±0.09 0.50±0.28 6.41±2.70 0.19±0.37 0.18±0.29 3.88±1.68 0.68±0.25 0.01±0.08

After S6 4.40±2.17 0.04±0.09 0.52±0.28 4.27±2.31 0.11±0.31 0.21±0.30 3.17±1.83 0.48±0.32 0.05±0.16

1 step S7 9.07±3.20 0.02±0.11 0.46±0.29 8.78±3.52 0.27±0.35 0.06±0.17 6.52±3.05 0.73±0.17 0.00±0.02

S8 7.16±3.08 0.01±0.12 0.48±0.31 6.42±3.51 0.04±0.23 0.30±0.31 3.93±1.87 0.69±0.19 0.01±0.05

S9 6.98±2.64 -0.01±0.09 0.54±0.29 6.91±3.17 0.08±0.26 0.22±0.28 4.40±1.69 0.64±0.20 0.01±0.08

S11 9.55±4.05 -0.00±0.08 0.56±0.25 8.92±4.66 0.10±0.31 0.18±0.27 7.02±4.00 0.51±0.44 0.04±0.14

Average ≈7.37±3.05 ≈0.00±0.09 ≈0.51±0.28 ≈7.07±3.55 ≈0.14±0.31 ≈0.18±0.27 ≈4.96±2.51 ≈0.61±0.26 ≈0.03±0.1

S1 10.88±3.17 0.01±0.10 0.55±0.32 10.23±5.39 0.10±0.41 0.17±0.26 8.22±4.56 -0.03±0.29 0.14±0.24

S5 7.50±2.20 0.02±0.10 0.53±0.28 8.40±3.20 0.01±0.43 0.19±0.30 6.86±2.47 0.12±0.43 0.08±0.19

After S6 5.38±1.92 0.01±0.12 0.45±0.29 4.77±2.65 -0.02±0.24 0.22±0.30 4.44±2.17 0.12±0.32 0.12±0.23

50 steps S7 11.07±3.61 -0.03±0.09 0.52±0.30 10.68±4.04 0.11±0.44 0.15±0.26 9.31±3.60 0.17±0.33 0.12±0.25

S8 15.41±1.66 0.01±0.11 0.45±0.29 11.33±5.81 0.09±0.24 0.26±0.29 9.91±5.73 0.08±0.38 0.10±0.21

S9 9.25±2.10 0.01±0.11 0.48±0.28 8.56±3.23 0.03±0.25 0.25±0.28 7.48±3.60 -0.02±0.39 0.12±0.22

S11 14.39±2.71 -0.01±0.09 0.52±0.28 10.93±5.78 0.17±0.37 0.18±0.29 8.56±4.47 0.05±0.51 0.12±0.26

Average ≈10.55±2.48 ≈0.00±0.10 ≈0.5±0.29 ≈9.27±4.3 ≈0.07±0.34 ≈0.20±0.28 ≈7.82±3.8 ≈0.07±0.37 ≈0.11±0.23

Table 4: Multi-step 3D prediction for the human activities experiments, when the training and testing are

done on the same person. The results are presented with mean and standard deviation.
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Figure 8: Average classification accuracies with mean and standard deviation for the human activities exper-

iments, over all subjects, when the data for training and testing the models come from the same person and

the amount of training data is increased.

performed projection. Namely, activities different in 3D space might resemble high

similarities in their 2D projections leading to low classification accuracies. Table 2

reports the accuracy performance of DFFW-CRBMs, against state-of-the-art methods

including SVMs and FFW-CRBMs. By averaging the results over all subjects, we

can observe that all three models perform comparable. It is worth mentioning that340

the classification accuracy for random choice in this scenario would be 7.69% and all

models performs approximately 5 times better.

We also performed two more experiments to classify activities with more input data

points to prove the correctness of the presented methods and show DFFW-CRBMs is

capable of achieving state-of-the-art classification results. Here, we used 33% and 66%345

of the data to train the models, and the remaining for test. It is clear from Figure 8 that

all models increase in performance as the amount of training data increases, reaching

around 55% accuracy when 66% of the data is used for training.

Estimating 3D Skeleton Coordinates from 2D Projections (Present Step Pre-

diction) In this task, we estimate the 3D joint coordinates from their 2D counterpart350

while using 10% training data. Results depicted in Table 3 show that DFFW-CRBMs

achieves better performance than FFW-CRBMs and FCRBM. Though FFW-CRBMs

24



0 10 20 30 40 50
0

5

10

15

20

25

N
R

M
SE

 [%
]

FFW-CRBM S6
DFFW-CRBM S6

FFW-CRBM S11
DFFW-CRBM S11

0 10 20 30 40 50
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

PC
C

FFW-CRBM S6
DFFW-CRBM S6

FFW-CRBM S11
DFFW-CRBM S11

0 10 20 30 40 50
Future steps [#]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

FFW-CRBM S6
DFFW-CRBM S6

FFW-CRBM S11
DFFW-CRBM S11

Figure 9: Multi-step 3D prediction on the worst performer (S11) and best performer (S6) subjects, when the

data for training and testing the models come from the same person.

perform comparatively, it is worth noting that the PCC and P-values signify the fact

that DFFW-CRBMs drastically outperform FFW-CRBMs in the sense that the predic-

tions are correlated with ground truth, a property essential for accurate and reliable355

predictions.

Prediction of 3D Skeleton Trajectories (Multi-Step Prediction) Here, the goal

was to perform multi-step predictions of the 3D skeleton joints based on only 2D pro-

jections. Starting from a 2D initial state, the model was executed autonomously by

recursively feeding-back 2D outputs to perform next-step predictions. Definitely, the360

performance is expected to degrade since the prediction errors accumulate with time.
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Figure 10: Multi-step 3D prediction using cross-validation on all subjects, when the data for training and

testing the models come from different persons.

Table 4, showing the performance of the models after 1 and 50 step predictions, validate

this phenomenon since all metrics show a decrease in both models’ performance over

time. Table 4, however, also signify that DFFW-CRBMs outperform FFW-CRBMs in

both one and multi-step predictions achieving an average NRMSE of 7.82 compared to365

9.27 NRMSE for FFW-CRBMs. Further results are summarized by Figure 9 showing

the minimum and maximum performance results of both models. In these experiments,

clearly, DFFW-CRBM is the best performer in both, prediction errors and correlations.
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Task Metrics
Methods

SVM-RBF FCRBM FFW-CRBM DFFW-CRBM

Classification Accuracy[%] 37.93±5.04 N/A 44.96±2.68 44.49±6.60

Present Step NRMSE[%] N/A 7.58±3.62 7.52±3.63 3.93±1.75

3D estimation PCC N/A -0.00±0.09 0.14±0.24 0.79±0.16

P-value N/A 0.52±0.28 0.21±0.28 0.01±0.03

After NRMSE[%] N/A 6.60±3.53 6.52±3.54 3.95±1.99

1 step PCC N/A -0.01±0.11 0.21±0.27 0.81±0.14

Multi-Step P-value N/A 0.49±0.29 0.14±0.24 0.01±0.03

3D After NRMSE[%] N/A 7.27±3.81 7.24±3.84 7.34±3.84

prediction 50 steps PCC N/A 0.01±0.11 0.13±0.46 0.16±0.50

P-value N/A 0.49±0.31 0.10±0.20 0.10±0.22

Table 5: Classification, present step 3D estimation, and multi-step 3D prediction, for the human activities

experiments, when the training and the testing are done on different persons. The results are cross-validated

and presented with mean and standard deviation.

4.2.2. Testing Generalization Capabilities

Motivation: In the second set of human activities experiments, our goal was to de-370

termine to what extend can DFFW-CRBMs generalize across different human subjects

and activities. The main motivation is that in reality subject-specific data is scarce,

while data available from different users or domains is abundant. Results reported in

Table 5 and Figure 10 show that DFFW-CRBMs are capable of generalizing beyond

specific subjects due to their ability in learning latent features shared among a variety375

of tasks.

Experiments: Here, data from 6 subjects was used to train the models, and pre-

dictions on an unseen subject were performed. The procedure was then repeated to

cross-validate the results. Further, to emulate real-world settings only 10% of the data

was used for training. During testing, however, all data from the all testing subjects was380

used increasing the tasks’ difficulty. The same three goals of the previous experiments

were targeted.

Activity Recognition (Classification): Results reported in Table 5 show that DFFW-

CRBMs achieve comparable results to FFW-CRBMs at an accuracy of 44.5 % both

outperforming SVMs. Clearly, these classification results resemble higher accuracies385
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when compared to these in Table 2. The reasons can be attributed back to the availabil-

ity of similar domain data from other subjects signifying the latent feature similarities

automatically learn by DFFW-CRBMs.

Estimation of 3D Skeleton Coordinates from 2D Projections (Present Step Pre-

diction): Again, DFFW-CRBMs achieve better performance than FFW-CRBMs in390

present step estimation of the 3D skeleton joints from 2D projections, while both out-

perform FCRBM. It is worth highlighting that DFFW-CRBMs are capable of attaining

a high average prediction correlation to ground-truth of almost 0.8.

Prediction of 3D skeleton Trajectories (Multi-Step Prediction): Finally, Fig-

ure 10 shows that DFFW-CRBMs are capable of surpassing FFW-CRBMs in multi-395

step predictions on unseen subjects achieving low prediction errors and high ground

truth correlation.

5. Conclusion

In this paper we proposed disjunctive factored four-way conditional restricted Boltz-

mann machines (DFFW-CRBMs). These novel machine learning techniques can be400

used for estimating 3D trajectories from their 2D projections using limited amounts of

labeled data. Due to the new tensor factoring introduced by DFFW-CRBMs, these ma-

chines are capable of achieving substantially lower energy levels than state-of-the-art

techniques leading to more accurate predictions and classification results. Furthermore,

DFFW-CRBMs are capable of performing classification and accurate near-future pre-405

dictions simultaneously in one unified framework.

Two sets of experiments, one on a simulated ball trajectories dataset and one on a

real-world benchmark database, demonstrate the effectiveness of DFFW-CRBMs. The

empirical evaluation showed that our methods are capable of outperforming state-of-

the-art machine learning algorithms in both classification and regression. Precisely,410

DFFW-CRBM were capable of achieving substantially lower energy levels (approxi-

mately three times less energy on the overall datasets, independently on the number of

factors or hidden neurons) than FFW-CRBM. This leads to at least double accuracies

for real-valued predictions, while acquiring similar classification performance, at no
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increased computational complexity costs.415
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