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Abstract

This paper proposes a framework in which a multivariate analysis method (MVA) guides a selection

of input variables that leads to a sparse feature extraction. This framework, called parsimonious

MVA, is specially suited for high dimensional data such as gene arrays, digital pictures, etc. The

feature selection relies on the analysis of consistency in the behavior of the input variables through

the elements of an ensemble of MVA projection matrices. The ensemble is constructed following a

bootstrap that builds on an efficient and generalized MVA formulation that covers PCA, CCA and

OPLS. Moreover, it allows the estimation of the relative relevance of each selected input variable.

Experimental results point out that the features extracted by the parsimonious MVA have excellent

discrimination power, comparing favorably with state-of-the-art methods, and are potentially useful to

build interpretable features. Besides, the parsimonious feature extractor is shown to be robust against

to parameter selection, as we all computationally efficient.

Keywords: Feature Selection, Dimensionality Reduction, Multivariate Analysis, Principal

Component Analysis, Canonical Correlation Analysis, Orthonormalized Partial Least Squares

1. Introduction

Multivariate analysis (MVA) has become a keystone tool in the application of machine learning

to solve pattern recognition problems. In a nutshell, MVA techniques preprocess the set of input

variables to form a new, reduced set that captures the useful information and filters out redundancies

and noise. Broadly used examples of MVA techniques are Principal Component Analysis (PCA) [1],5

Canonical Correlation Analysis (CCA) [2], Partial Least Squares (PLS) [3, 4], and Orthonormalized

PLS (OPLS) [5, 6]. This dimensionality reduction capability becomes critical in domains in which

the number of input variables is several orders of magnitude higher than the number of available data

samples. Examples of these scenarios can be found in image classification, neuroimage, gene arrays

processing, text classification, etc.10

∗Corresponding author.
Email addresses: sergio.munoz@urjc.es (Sergio Muñoz-Romero), vanessa@tsc.uc3m.es (Vanessa
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From the application perspective, a main drawback of the use of MVA is that it obscures the

interpretation of the machine learning outcome. For instance, consider a clinical application consisting

in learning a score for a disease from a massive set of input variables (like outcomes of clinical essays,

answers to questionnaires, etc). MVA would do an excellent job filtering non relevant information and

merging redundancies into a compact set of features that would lead to a very good performance of15

a regression algorithm. However, it will not be possible, in general, to interpret the resulting model

in terms of these original, valuable variables because they would appear melted within the features

extracted by MVA.

The immediate choice for gaining interpretability can be to use a feature selection (FS) method

that removes from the model definition all the non-informative input variables. An elegant way of20

providing this sparsity within linear models is with penalties in the cost function (see [7, 8] and

references therein for a survey of sparse regularizations). In the bayesian framework, sparsity in the

primal space is induced by the introduction of priors, such as the laplacian or the spike-lab, that drop

irrelevant weights to zero [9, 10, 11]. Several extensions of these approaches have been applied to MVA

algorithms; this is the case of the sparse PCA [12, 13, 14], the sparse CCA [14, 15], the sparse OPLS25

[16], or their bayesian formulations [17, 18, 19]. However, achieving sparsity in the coefficients of linear

models does not lead, in general, to an easily interpretable solution from a MVA perspective. In MVA

these coefficients form the projection matrix (the matrix that transforms the original variables in the

new ones), and in order to gain in interpretability one needs that whole rows of the projection matrix

become zero, and this property is not guaranteed by most of these approaches.30

Parsimony, therefore, becomes a proper way of gaining interpretability through FS. Parsimony

focuses on completely removing the participation of certain input variables in the definition of all the

new features by zeroing whole rows of the projection matrix. Some works use iterative approaches to

find the optimal subset of features which optimize a score related to parsimony [20]. Other alternatives

induce parsimony through group Lasso regularisations [21, 22, 23], incurring in an exceedingly high35

computational cost due to their performing the optimisations in the primal space. Alternatively, other

authors have proposed a solution to this problem by means of the L2,1 regularisation [24], introducing

both unsupervised [25, 26, 27] and supervised approaches [28, 29, 30, 31, 32, 33]. In particular, these

methods yield a robust parsimonious feature extraction over a dual formulation, allowing its application

in high dimensional problems [34]. However, this feature selection pursues to find out a subset of input40

variables that suffice to solve the problem at hand, involving the removal of not only noisy and but

also redundant features.

The removal of redundancy hampers interpretability in those cases where each original input vari-

able is not very informative by itself, like individual pixels in image classification applications. The

training of humans in natural image classification tasks exploits the presence of patterns, regions, ob-45
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jects, etc. However, the input to computer image classification systems are pixels and each of them is

managed in a isolated way. In cases in which the majority of pixels in the input images are not relevant

for the classification (maybe it is based in small details present or not in the image), the automatic

classifier will benefit from the previous application of an MVA or a feature selection preprocessing that

select the most discriminative pixels. MVA plus automatic classification can lead to excellent results50

in terms of classification accuracy, but in exchange of a lack of interpretability of the results of the

classification. The classifier becomes a black box that can not be used to gain further insight about

those patterns and visual features that define the classification task. In our view the feature selec-

tion and feature extraction tasks hamper the interpretability because they not only remove irrelevant

features, but also redundant ones. For those scenarios where some interpretability can be exchanged55

for accuracy, we propose to design feature filtering, as an alternative to feature selection and feature

extraction that focuses on removing non-relevant input variables but preserving redundancy where this

redundancy can help construct elaborated features with high semantic content.

Ensemble feature selection [35, 36, 37, 38, 39] is an elegant framework for a robust feature selection

tailored to the particularities of each machine learning task. In essence these methods combine a pool60

of different classifiers, each trained on a bootstrapped version of the problem, and employ different

strategies to determine the relevance of each feature by aggregating its role in the members of the

ensemble [40]. If the bootstrapped training sets carry enough diversity, the selection can include

redundancy. Following the classification of [41], there are two main streams in this framework, (1)

feature selection for the ensemble, in which the final goal is to optimize the accuracy of the overall65

classifier resulting from the ensemble; and (2) feature selection by the ensemble, in which the ultimate

goal of the method is to find a good set of selected features, and the bagging provides with consistency

(in the sense of the goodness of the selected features) and robustness (with respect to the parameter

selection) [42]. The work presented in this paper fits in this latter category. In this sense, [43] proposes

an ensemble feature selection where the members of the ensemble are linear SVMs for regression70

with L1 regularization and the features are selected according to their consistency in both sign and

magnitude across the ensemble. The selected features were fed into a nonlinear SVM for regression.

Our previous work in [44] goes an step further by using L2 regularized linear SVMs classifiers in the

ensemble. This enables to capture redundancy useful for unveiling clusters of voxels that explained a

MRI classification.75

Building on [44], this paper pursues to extend its feature selection by the ensemble, suited for

binary classification, to a feature extraction and selection by the ensemble, that serves as a general

framework for parsimonious, interpretable MVA. The contributions of this paper include:

• A methodology, based on an ensemble of feature extractors, which automatically captures the
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parsimony pattern underlying the input features. Moreover, this is accomplished without intro-80

ducing any prior knowledge about this pattern.

• An estimation of the relevance of each feature for the task at hand, and the possibility of intro-

ducing this relevance in a further feature extraction stage.

• A regularised MVA that exploits the above estimated relevance. This regularisation forces that

the contribution of each input variable in the MVA optimization becomes proportional to its85

relevance: informative (albeit redundant) input variables take a dominant role in the extracted

features while noisy input variables end up with a negligible weight. Therefore, this regularised

feature extraction method achieves accuracies comparable to those of a feature selection or ex-

traction aimed at optimising accuracy.

In order to obtain efficient implementations, all the above contributions build on a general MVA90

formulation able to cover the most popular MVA approaches: PCA, CCA and OPLS. This formulation

is based on weighted reduced rank regression problem [6], what yields results in a computational com-

plexity given by the number of target variables. In comparison to other well-known MVA frameworks

[45, 46] which scale with either the number of input dimensions or the number of input data (depending

on the use of a primal or a dual formulation), this new formulation involves a severe computational95

cost reduction, since in most of the problems the number of output variables is even much smaller

than the number of samples or input variables.

The remainder of the paper is as follows. Section 2 presents a general framework to formulate

MVA problems suitable to introduce the consistency heuristic that performs the feature selection

introduced in Section 3. Section 4 introduces parsimonious versions of PCA, CCA and OPLS that100

incorporate the characteristics described in this introduction. Section 5 shows experimental results

with these algorithms in different problems, such as, face recognition and gene array classification.

Finally Section 6 concludes the article.

2. A generalized formulation for regularized MVA

This section presents a generalized MVA formulation which covers the most well-known MVA105

methods: PCA, CCA and OPLS.

Let us consider a machine learning problem defined in terms of a collection of l input/output

data pairs {(xn,yn)}ln=1. Observations are formed by d input variables xn ∈ Rd and targets yn are

formed by c output variables. This codification of the output serves for multiple output regression,

classification, and unsupervised problems, such as, PCA.110
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• In the common single output regression case c = 1 and yn is in fact an scalar yn ∈ R. In the

multiple output regression case (c ≥ 2) yn ∈ Rc, n = 1, . . . , l and each element in yn is the target

in the corresponding regression problem.

• In the classification problems this notation means that targets yn are binary indicator vectors

[47]. Therefore, c ≥ 2 (the number of classes must be greater or equal than 2) and (yn)i = 1, if115

xn belongs to class i and (yn)i = 0, otherwise (i = 1, . . . , c).

• In a PCA problem the target vector is directly the input vector as the task of the multivariate

analysis is to come up with an optimal projection in the sense of achieving the best possible

reconstruction the original input vectors.

The notation of the paper uses brackets to denote component of vectors or matrices, i.e., (an)i120

refers to the i-th element of vector an and (A)ij is the element in position (i, j) of matrix A.

The input/output data pairs form two matrices: a input data matrix X ∈ Rl×d and an l× c target

matrix Y . For the remainder of the paper we consider, that matrices X and Y are centred, that

is, their columns add up to zero. This centering allows us to define the sample covariance matrices

CXX = l−1XTX, CY Y = l−1Y TY , and CXY = l−1XTY . The machine learning problems above

presented (multiple regression, multiple classification, PCA) can be solved using formulations that

lead to a solution that is a linear combination of the input variables. For example, the multiple

regression case can be solved minimizing

‖Y −XMT ‖2F , (1)

where ‖ · ‖F is the Frobenius norm operator. Each column of Y defines a single regression problem

and each column of the c × d matrix M stores the coefficients of the corresponding linear regression

model that minimizes the mean square error.

A general MVA problem extends the formulation in (1) with the introduction of an d×r projection

matrix U that maps the input data onto a lower dimensional space with r features. The input matrix

in this new space is Z = XU . The Least Square (LS) cost function defined with Y and Z is completed

adding a constraint that enforces the orthogonality of the extracted features:

L(W,U) = ||
(
Y −XUWT

)
Γ

1
2 ||2F , s.t. UTXTXU = I, (2)

where W is the c × r solution matrix in the mapped data, Z, and matrix Γ allows us to recover the125

different MVA methods:

• In CCA Γ is the inverse of the sample covariance matrix of the target data Γ = l(Y TY )−1 = C−1Y Y ,

• in OPLS Γ = I is the identity matrix,
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• and in PCA Γ = I and Y = X.

Following [6], the constraint UTXTXU = I can be replaced by an equivalent one in W , WT ΓW = I

(see Appendix A for a detailed derivation). Therefore, the optimization (2) becomes

L(W,U) = ||
(
Y −XUWT

)
Γ

1
2 ||2F , s.t. WT ΓW = I. (3)

Since this work focuses on high dimensional problems (d � l), the optimization of (3) becomes130

computationally more efficient using its dual formulation. As the mapping matrix U happens to be a

linear combination of the inputs, it can be written as U = XTA, where A is a matrix with the dual

variables or coefficients of these linear combinations. Defining Kx = XXT as the linear kernel (Gram)

matrix of the input data, the optimization problem (3) can be reformulated as

L(W,A) = ‖
(
Y −KxAW

T
)

Γ
1
2 ‖2F , s.t. WT ΓW = I. (4)

Problem (4) turns out to be ill-conditioned since Kx is positive semidefinite (notice that centering135

X gives at least an eigenvalue of Kx equal to 0). This situation is fixed by including a regularization

term ||A||2F , with its corresponding regularization parameter λ. These changes leave (2) as

L(W,A) = ‖
(
Y −KxAW

T
)

Γ
1
2 ‖2F + λ||A||2F , s.t. WT ΓW = I. (5)

Then, (5) can be solved in two steps: first, fixing W and solving for A yields

A = (KxKx + λI)−1KxY ΓW (6)

Second, we introduce (6) in (5) and after some algebra arrive at a cost function depending only on

W :

L(W ) = Tr {ΓCY Y } − Tr
{
WT ΓY TKx(KxKx + λI)−1KxY ΓW

}
, s.t. WT ΓW = I. (7)

Problem (7) can be formulated as a generalized eigenvalue problem,

ΓY TKx(KxKx + λI)−1KxY ΓW = ΓWΣ. (8)

where Σ is a diagonal matrix with the corresponding eigenvalues. Defining V = Γ
1
2W enables to

rewrite (8) as a standard eigenvalue problem:

Γ
1
2Y TKx(KxKx + λI)−1KxY Γ

1
2V = V Σ. (9)

Thus, once V is computed, A can be retrieved from

A = (KxKx + λI)−1KxY Γ
1
2V. (10)
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An immediate advantage of this formulation is that the eigenvalue problem given by (9) involves

matrices of size c instead of the size l matrices of the standard kernel MVA implementations. This

fact reduces drastically the computational cost in almost all cases since usually c � l: the number140

of classes in a classification problem or the single regression problems in a multiple regression case is

usually much smaller than the number of training data.

3. Feature filtering guided by bagged MVAs

This section introduces a new FS method that exploits a heuristic to spot which features behave

in a similar/consistent way in the definition of all the components of the mapping Z found by a MVA.

Each observation x is mapped into z (the corresponding column of Z), following z = xTU . Component

wise

(z)k =
∑
j

(x)j(U)kj , k = 1, . . . , r,

where r is the number of principal components found by the MVA method.

When the features forming each observation x are pixels, voxels, grayscale values, probabilities,145

etc, the role of each (x)j in the definition of (z)k has an interpretable meaning. A highly positive value

of (U)kj means that input patterns with a high value of feature (x)j push towards a large (positive)

(z)k. Conversely, a highly negative value for (U)kj means that patterns with high (x)j push towards

a highly negative component (z)k. A small absolute value for (U)kj points out that input feature (x)j

bears little relevance in the definition of the k-th component of the mapping. A dummy heuristic for an150

interpretable FS would be to carry out an MVA to discard irrelevant features and select features with

similar behaviour across all the principal components; however, this strategy poses a risk of overfitting

in high dimensional problems. As advised in [43, 44], this overfitting is dramatically alleviated by a

bagging procedure [48].

The bagging consists in repeating P times the MVA each time but with different input matrices of

size m × d obtained randomly sampling m rows of X. This way, one can obtain P slightly different

projection matrices from the same scenario and capture robust consistency patterns in the behaviour

of coefficients (U)kj . This robuster heuristic consists in averaging the one described in the previous

paragraph across all the P bagging iterations. In more detail, let us denote as Up, p = 1, . . . , P , the

projection matrix provided by each bagging iteration and construct a consistency matrix, B, in the

following way:

(B)kj =

∣∣∣∣∣
P∑

p=1

I((Up)kj > 0)− P/2

∣∣∣∣∣ , where I(·) is the indicator function. (11)

Notice that a high value of (B)kj indicates that the behaviour of feature (x)j in the definition of

(z)k is quite stable across all the bagging iterations. Our intuition indicates a physical relationship
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between (x)j and (z)k. This way, we can spot the critical input features by adding the consistency

values achieved across all the principal components:

(b)j =
r∑

k=1

(B)kj , j = 1, . . . , d. (12)

Vector b stores the overall consistency of each input feature. The final selection consists in sorting155

the input variables according to their decreasing overall consistency and select as relevant features

the subset S whose consistency exceeds a certain threshold t. This threshold can be fixed using prior

domain knowledge or cross validation.

The procedure described in the previous paragraphs selects input features that explain either with

a positive correlation or with a negative one (high (B)kj) a good number of the extracted features,160

that is, it selects those input features having a large value of (b)j what indicates that (x)j participates

in many (z)k.

Regarding the computational burden of this method, it is important to note that the generalized

kernel MVA formulation presented in Section 2 leads to dramatical reductions in the cost of the

bagging. Algorithm 1 shows that the bagging just involves subsampling two matrices and multiplying165

the resulting submatrices, instead of solving a generalized eigenvalue problem. Moreover, in cases in

which Kx is too large and step 1 becomes computationally unaffordable, we could save memory and get

additional computational cost reductions by applying a more aggressive subsampling and computing

Kx inside the bagging loop using Xp (i.e., Line 1 of Algorithm 1 could be included inside the loop of

Lines 2-5). Furthermore, this bagging scheme can be straightforwardly implemented in a map-reduce170

paradigm, providing an embarrassingly fast implementation.

4. Parsimonious MVA formulation from selected features

The previous section presents a FS method that, on the one hand, captures features with a consis-

tent behaviour in the definition of all the components in the mapping. This translates into a parsimony

structure: a sparsity pattern common to the definition of all the features. On the other hand, the out-175

come of the bagging can be used to somehow assess the relevance of each input feature: the higher the

consistency across all the bagging iterations, the higher the relevance. These two outcomes are com-

bined to yield the parsimonious MVA. This method is basically an MVA whose principal components

are built using exclusively the input features selected by the FS method. Moreover, the contribution

of each selected input variable in the extracted features is regularised with a term that is proportional180

to the relevance of the variable learned in the bagging.

The parsimonious MVA is applied to the set of selected features S (let XS be the submatrix of X

whose columns are the selected features). In most situations the number of selected features will be
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Algorithm 1 PseudoCode FS guided by bagged MVA.

Input: number of rows to be sampled from X and A: m, number of bagging iterations: P , consistency

threshold: t, training data: X = [xT
1 , . . . ,x

T
l ]T , Y = [yT

1 , . . . ,y
T
l ]T .

Output: S: Set of relevant features, {Up}Pp=1: Set of projection matrices

1: With the complete X, solve eigenvalue problem (9) and compute matrix A with (10).

2: for p = 1→ P do

3: Sample m rows of A and X: Ap = [aT
M1
, . . . ,aT

Mm
]T and Xp = [xT

M1
, . . . ,xT

sM ]T , being M the

subset of m subsampled data.

4: Obtain the primal eigenvectors Up = (Xp)TAp.

5: end for

6: Obtain consistency matrix B using (11) and add up consistencies using (12).

7: for j = 1→ d do

8: if (b)j > t then

9: S = S ∪ (x)j

10: end if

11: end for

less than the number of data (|S| < l), therefore it is more convenient to start from the generalised

MVA formulation in the primal space of (3), i.e.,

L(W,U) = ‖
(
Y −XSUWT

)
Γ

1
2 ‖2F , s.t. WT ΓW = I. (13)

This formulation is completed with a regularization term that resembles a `2,1-penalization term.

The proposed regularization consists in a d× d diagonal matrix Ω, where each of its elements, (Ω)jj ,

j = 1, . . . , d, emphasizes or penalizes the corresponding selected input variable (x)j according to its

relevance across the bagging iterations:

Ωjj =
1

2||ūj ||2
, (14)

being ‖ · ‖2 the Euclidean norm operator and ūj = 1
P

∑P
p=1 up

j the averaged value of the jth row of the

projection matrix Up obtained after P bagging iterations.

After the introduction of the proposed regularization (13) becomes

L(W,U) = ‖
(
Y −XSUWT

)
Γ

1
2 ‖2F + λ||Ω 1

2U ||2F , s.t. WT ΓW = I. (15)

Note that, unlike `2,1-penalization term, this regularization factors have been learned by the bagging

procedure, being more stable than other approaches which estimate them with an unique execution. In185
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fact, as we will analyse in the experimental section, this regularisation endows the feature extraction

with a strong robustness and stability against weaknesses that can arise during the FS, such as a bad

selection of the threshold t or of the number of selected features (notice that the overall FS is in fact

a combination of several FSs, one per each component of the mapping).

Now, to obtain the solution of (15), we can follow a similar process to that described in Section 2,

but applied over the primal formulation; thus, U is given by

U = (CXSXS + λΩ)−1CXSY Γ
1
2V, (16)

where CXSXS = l−1XT
SXS , CXSY = l−1XT

S Y , W = Γ−
1
2V ; and V is the solution of the following

eigenvalue problem:

Γ
1
2CT

XSY (CXSXS + λΩ)−1CXSY Γ
1
2V = V Σ. (17)

Finally, taking into account that (CXSXS + λΩ)−1CXSY Γ
1
2 has to be computed in both U and V

equations, we can obtain an efficient implementation with some manipulations. For this purpose, we

firstly propose to calculate this common matrix as

U ′ = (CXSXS + λΩ)−1CXSY Γ
1
2 .

and, then, we can rewrite (17) and (16) in terms of U ′ as Γ
1
2CT

XSY U
′V = V Σ and U = U ′V , respec-190

tively. Algorithm 2 summarizes the main steps of this approach.

Algorithm 2 PseudoCode Parsimonious MVA.

Input: number of rows to be sampled from X and A: m, number of bagging iterations: P , consistency

threshold: t, training data: X = [xT
1 , . . . ,x

T
l ]T , Y = [yT

1 , . . . ,y
T
l ]T .

Output: S: Set of selected features, U : projection matrix from the selected features.

1: Obtain S and {Up}Pp=1 following Algorithm 1: FS guided by bagged MVA.

2: Obtain Ω from {Up}Pp=1 using (14).

3: Using the set of selected features (XS), obtain the projection vector matrix:

(a) U ′ = (CXSXS + λΩ)−1CXSY Γ
1
2 .

(b) Γ
1
2CT

XSY U
′V = V Σ.

(c) U = U ′V .

5. Experimental results

The previous sections have introduced a novel framework to develop parsimonious versions of classic

MVA methods. Therefore, this section is devoted to an empirical evaluation of the capabilities of these
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new parsimonious MVAs in some classification problems. The main outcome of these enhanced MVAs195

is a set of extracted features, each constructed using as basis the same reduced set of the original input

variables that form a parsimony pattern.

Then, the focus of the study presented in this section is three fold. First of all we will look at

the accuracy achieved by a classifier fed with the extracted features. A high accuracy will point out

that the features indeed acquire that information relevant for the problem at hand. The second part200

of the study concentrates on the stability of the parsimony pattern formed by the selected original

variables across different realisations of the experiment with different training/testing partitions. One

of our motivations for this work is to capture the parsimonious structure underlying the data that is

responsible for the definition of the problem. The stability of this pattern opens doors for the design

of high level features suitable for human interpretation. Finally, the last part of the study aims at205

a detailed analysis of each of the individual contributions that conform the framework, the feature

selection, the feature extraction and the regularisation.

5.1. Experimental setup

We have selected six multiclass problems in which the number of input variables is significantly

larger than the number of available observations d� l. Table 1 summarises their main characteristics.210

Two datasets are gene arrays obtained from [24]: Carcinoms and LUNG. The other four datasets are

face recognition tasks: Yale, ORL, PIE from [49], and a preprocessed excerpt of “Labeled Faces in

the Wild” (LFW)1. In the Yale, ORL, and PIE data sets, we have used the partitions available at

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

Table 1: Summary of benchmark datasets: size of training (ltrain) and test subsets (ltest), input dimension (d), number

of categories (c) and number of training images per class (p).

Name ltrain ltest d c

Carcinoms 139 35 9182 11

LUNG 162 41 3312 5

Yale (p = 8) 120 45 4096 15

ORL (p = 8) 320 80 4096 40

PIE (p = 10) 680 10874 1024 68

LWF (p ≥ 70) 1030 258 1850 7

We have implemented parsimonious versions of the three feature extraction approaches included215

in our general MVA formulation that we term p-PCA, p-CCA and p-OPLS in the presentation of the

1http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
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results. For comparison purposes we include five baseline methods:

• RFS (Robust Feature Selection): the standard L2,1 approach for feature selection [24] (it does

not include any feature extraction process).

• L21SDA: a parsimonious feature extraction based on an L2,1 norm regularization [30]. It can be220

regarded as a CCA with L2,1 norm regularization.

• SRRR: whose formulation is equivalent to the OPLS extraction combined with an L2,1 norm

regularization [31].

• SCM (Simultaneous Capped L2-norm loss and L2,1-norm regularizer Minimization): a robust

feature selection based on capped L2 norm loss function and capped L2,1 norm regularization225

[50] (it does not include any feature extraction process).

• DFS (Discriminative Feature Selection): a parsimonious Linear Discriminant Analysis (LDA)

feature extraction based on an L2,1 norm regularization [33].

With respect to the hyperparameters of the training of the parsimonious MVAs, each bagging

comprises a total number of P = 10000 projection matrices, each one learned with m = 50% of the230

training samples. We have checked empirically that these hyperparameters do not need special tuning

(the observed results are very robust against reasonable selections of these parameters). The values

of the regularization parameter λ in equations (5) and (15) have been crossvalidated for each problem

within the following range: {10−6, 5 · 10−6, 10−5, 5 · 10−5, . . . , 50, 100, 500, 1000}.

All the sets of selected or extracted features are used as input for classification stage implemented235

by linear SVM classifiers with their regularization parameter set to C = 1. The test results displayed

in the sequel correspond to averages over 50 different train/test partitions with 80% of the dataset used

for training. Hyperparameters were crossvalidated by averaging ten separate 80/20 random partitions

of each training set.

5.2. Accuracy of the extracted features240

This section analyzes the discriminative power of the features extracted by the parsimonious MVA

in comparison to the L2,1 baseline methods. For this purpose, we are going to use two evaluation

measurements: (1) the Overall Accuracy (OA) or ratio of correct over total classifications; and (2)

the Multiclass Area Under the Curve (MAUC) [51], which is an extension of the AUC to multi-class

problems.245

Figure 1 displays OA achieved by an SVM trained with the extracted features vs. the percentage

of Selected Features (SF) defining the parsimony structure. In the supervised MVAs the number of
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Figure 1: Overall accuracy (OA) vs. percentage of selected features (SF) for the different methods under study.

extracted features was set to the number of output classes minus one. For analogy, the number of

principal components in p-PCA was also set to this number.

Methods RFS, SRRR and SCM achieve better performance with very low numbers of selected250

features in problems LUNG, Carcinom, Yale, ORL and LWF. This is mainly due to their focusing on

spotting strictly relevant input variables. However, after the number of selected features goes beyond

a certain value, the five baseline methods performance worsens since they are not able to handle

redundant and irrelevant variables properly. However, the performance of parsimonious MVAs does

not get worse as the number of features in the parsimony pattern increases. This characteristic endows255

these methods with great robustness against bad choices of the number of features, facilitating the

tuning of this parameter. Besides, it is remarkable the high accuracy achieved by p-PCA, despite

being an unsupervised approach. These results are corroborated with those of Table 2, which includes

a comparison of these methods, in terms of MAUC, using only 50% of the features.

Figure 2 completes this study showing the performance of the methods in feature extraction. The260

contour plots show the classification accuracy for different numbers of extracted features (r, size of

the input of the final classifier), and different sizes of the parsimony pattern (SF). In the colormap

red indicates the highest accuracy and blue the lowest. For briefness, this analysis is carried out with

problems Yale and ORL, although similar conclusions can be extracted using any of the other data

sets.265
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Table 2: Evaluation of the different methods under study with a 50% of selected features in terms of MAUC.

SBCCA SBOPLS SBPCA L21SDA SRRR RFS SCM DFS

Carcinom
0.997 0.997 0.996 0.993 0.992 0.994 0.993 0.997
± 0.005 ± 0.005 ± 0.006 ± 0.010 ± 0.014 ± 0.012 ± 0.012 ± 0.006

LUNG
0.994 0.992 0.993 0.993 0.994 0.996 0.995 0.995
± 0.008 ± 0.010 ± 0.010 ± 0.010 ± 0.006 ± 0.004 ± 0.005 ± 0.005

Yale
0.974 0.964 0.967 0.972 0.930 0.965 0.969 0.963
± 0.010 ± 0.014 ± 0.012 ± 0.008 ± 0.017 ± 0.013 ± 0.012 ± 0.011

ORL
0.999 0.998 0.997 0.998 0.999 0.999 0.998 0.998
± 0.001 ± 0.003 ± 0.003 ± 0.003 ± 0.001 ± 0.002 ± 0.002 ± 0.002

PIE
0.971 0.967 0.920 0.974 0.972 0.981 0.977 0.949
± 0.003 ± 0.004 ± 0.005 ± 0.002 ± 0.003 ± 0.002 ± 0.003 ± 0.004

LWF
0.548 0.491 0.470 0.538 0.546 0.519 0.539 0.506
± 0.034 ± 0.019 ± 0.025 ± 0.030 ± 0.045 ± 0.015 ± 0.025 ± 0.043

The plots clearly show that the parsimonious MVAs provide the most accurate classifications with

the lower number of selected features. This is specially remarkable in problem ORL; for this database,

p-OPLS, p-CCA and p-PCA obtain its maximum performance with r = 8 extracted features, whereas

L21SDA and SRRR need almost 40 and DFS around 20 features. With respect to the influence of the

size of the parsimony pattern, the baseline methods suffer accuracy decreasing as SF increases for a270

wide range of values of the extracted features (r). However, the accuracy of the parsimonious MVAs

never decreases as the parsimony pattern is enriched with more input features.

5.3. Stability analysis

Stability is a crucial property in a feature selection method. Stable methods would consistently

select the adequate subset of features under different variations of the problem settings. These different275

conditions can be variations in the signal to noise ratio of the input features, in the values of parameters

of the algorithms or different realizations of the training and test data. This section studies the stability

of the parsimonious MVA using a synthetic classification problem in which the informative and the

noisy features are known beforehand.

All datasets contain a total of 20 samples that belong to five output classes, and are generated280

in the following manner. First, 20 target vectors {yn}20n=1 are generated with equal probability from

each output class. The {yn}20n=1 are encoded as 5 components vectors with 4 components set to −1

and a single component set to 1 indicating the correct output class (a 1 in the i-th position means the

correct output class is the i-th one, i = 1, . . . , 5).

Then an observation xn formed by 2000 features is constructed for each yn, n = 1, . . . , 20. The285

2000 features come from three groups xn = [fTn ,h
T
n ,g

T
n ]T :
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Figure 2: Accuracy (OA) of the different methods under study as a function of the size of the parsimony pattern (number

of selected input features, SF) and of the number of extracted features (r).

1. The first subset of 200 input features (fn) are relevant since they are a linear combination of

the target vector plus an additive Gaussian noise (v) with zero mean and standard deviation

15



Table 3: Parameters explored during the stability analysis.

Parameter Explored values

Level of noise over the redundant features (σr) {10−5, .1}

Regularization parameter of the feature extractor (λ) [10−6, 103]

Percentage of the selected features (SF) [1%, 50%].

σ = 0.1:

fn = WT
r yn + v,

where Wr is a constant2 5× 200 matrix with its elements randomly selected in [0, 1].

2. The next 800 input features hn are also informative variables but redundant as they are linear

combinations of the relevant features plus additive Gaussian noise with zero mean and variance

σ2
r .290

3. The remaining 1000 input features (gn) are drawn from independent Gaussian distributions with

zero mean and unit variance, and do not take part in the construction of the target variables.

We have generated 948 different variations of the problem. Each variation is characterized by

its own realization of the training set (with a particular value of σr), value of the regularization

parameter λ and a percentage of features to select. Table 3 details the ranges of values analyzed for295

these parameters that configure the problem variations. Each of these situations was addressed with

all the algorithms used throughout the experimental section: the proposed methods, p-OPLS and

p-CCA, and the baseline approaches RFS, L21SDA, SRRR, SCM and DFS.

Figure 3 shows the results achieved by each method in the synthetic feature selection task. Each

point in the scatter plots corresponds to one of the 948 situations. The x-axis sorts the simulations300

according to the percentage of features that each method had to select. The y-axis shows the percentage

of these selected features that turned out to be actually informative, i.e., the percentage of the selected

features in each simulation that came from the corresponding relevant and/or redundant groups of

features.

Results are quite conclusive, the proposed methods are clearly more stable than the baseline ones.305

RFS, L21SDA, SRRR, SCM and DFS tend to include a significant percentage of non-informative

features, while p-CCA and p-OPLS behaviors are close to ideal. Notice how for numbers of selected

features smaller than 200 both p-CCA and p-OPLS achieve almost a perfect precision (almost all the

selected features are informative).

2It changes in each realisation of the dataset, but it is constant within a same realisation.
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Figure 3: Stability analysis in a toy problem. Each point in the plots corresponds to one of the 948 data sets (each

dataset constructed and analyzed with different parameters). The x-coordinate is the number of selected features, whilst

the y-coordinate states the percentage of the features selected by the corresponding method that came from any of the

actually informative groups.

5.4. Consistency of the parsimony pattern310

The methods presented in this paper rely on the hypothesis that there exists an underlying par-

simony pattern in the input variables. This section presents results showing that they indeed recover

such pattern by analysing the consistency across the patterns retrieved in all the simulations. For

this purpose we are going to focus on face recognition problems, since they enable to assess that the

retrieved parsimony patterns are in fact meaningful for the interpretability of the learning (we will315

check that they are mainly formed by clusters of pixels around the eyes, nose, mouth and other visual

salient features of the images).

Figure 4 shows the consistency in the selected input features across all the 50 simulations in

problems Yale and ORL for different sparsity factors. Each pixel color is proportional to the number

of simulations in which it was selected: red pixels were selected in all the simulations while dark blue320

pixels were never selected. The parsimony pattern is very stable across all the simulations, in fact,

as the number of selected features increases, these methods include redundancies that help achieve a

sharper definition of the parsimony pattern. On the contrary, the baseline feature selection methods

17
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Figure 4: Feature selection masks for Yale and ORL datasets for different sparsity factors. Red color pixels are selected

in all the runs; blue ones have never been selected.
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Figure 5: Sign consistency in the first 6 principal components of Yale. Red pixels are positive in all simulations, blue

pixels are always negative. U:,k denotes the k-th column of U .

(RFS and SCM) present a less consistent selection. For instance, with SF=30%, the pattern of SCM

presents many of the regions in the face in light-blue or green colours (i.e. these pixels were selected325

in about a half of the runs). In the case of the algorithm RFS the results look even worse. It yields a

very scattered parsimony pattern that is difficult to interpret in terms of a face recognition task.
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Figure 6: Sign consistency in the first 6 extracted features of ORL. Red pixels are positive in all simulations, blue pixels

are always negative. U:,k denotes the k-th column of U .

The second hypothesis supporting the approach presented in this paper is that each input feature

selected as member of the parsimony pattern presents a consistent behaviour in the definition of the

extracted features that will be used in the final classification, and that this behaviour can be captured330

by a bagging of MVAs (see Section 3). Figures 5 and 6 show another point of view for the analysis

of interpretability. Each mask corresponds to the sign consistency found for the first six extracted

features when SF is set to 100% (each subplot is the corresponding column of U arranged in the same

way as the input faces) in problems Yale and ORL. Red pixels correspond to elements (U)kj that

ended up with a positive sign in all the simulations while blue pixels indicate that the corresponding335

(U)kj got a negative sign in all the simulations. The existence of highly consistent clusters of pixels

with a same sign in all the features points out the existence of these latent meaningful features that

conform the parsimony pattern.

Finally, to conclude this experimental analysis, Figure 7 shows the features extracted by the pro-

posed parsimonious MVA methods, as well as baseline approaches L21SDA, SRRR and DFS, for one of340

the training/testing partitions of problems Yale and ORL. The recovered parsimony pattern comprises

a 30% of the total input variables. It can also be noticed how the stability of the parsimony pattern

in the proposed methods translates to the definition of the extracted features. These features are

formed by clusters of selected input variables in areas relevant for the face recognition. Moreover, the

coefficients in the same cluster receive weights of a similar value. However, the structure presented by345

the baseline methods is not so clear. This is specially remarkable in L21SDA and SRRR, since their

coefficients are scattered across all the image, without a clear structure in terms of location and value

of the weights.
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Figure 7: Values of the first 4 columns of U in one of the simulations for problems Yale and ORL. The columns have

been arranged so that each coefficient Ujk appears in the position of the corresponding pixel (x)j .

5.5. Analysis of the contributions of the feature selection and of the regularization

The remainder of the experimental work aims to give insights about the impact in the final results350

of the contributions introduced in Sections 3 (parsimonious feature selection) and 4 (regularization).

Figure 8 shows the overall accuracy when the classifier is directly fed with the selected features, without

the feature extraction stage (denoted as w/o FE in the figure). It is clear the poor performance provided

when the selected features are used in a straight way and the accuracy improvement achieved due to

the feature extraction process.355

Finally, Figure 9 shows the accuracy obtained after performing the feature extraction with and

without the regularization penalty introduced in Section 4.

The discrimination capability of the features extracted without regularisation is very poor, not only

in comparison with their standard versions, but also in comparison to L21SDA, SRRR and DFS. This is

mainly caused by an overfitting effect which is alleviated by including the information of the relevance360

of each feature in the regularisation term. Notice that including this regularisation does not lead to an

increment in the computational burden of the method, since this relevance is a collateral result of the

bagging process. Besides, this regularisation endows the parsimonious MVA with robustness against

20



0 20 40 60 80 100

SF (%)

50

60

70

80

90

100

O
A

 (
%

)
p-OPLS

p-CCA

p-PCA

p-OPLS w/o FE

p-CCA w/o FE

p-PCA w/o FE

RFS

SCM

0 20 40 60 80 100

SF (%)

80

85

90

95

100

O
A

 (
%

)

p-OPLS

p-CCA

p-PCA

p-OPLS w/o FE

p-CCA w/o FE

p-PCA w/o FE

RFS

SCM

a) Yale b) ORL
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Figure 9: Overall accuracy (OA) vs. percentage of selected features (SF) for the different methods under study.

the number of selected features: once the maximum accuracy is achieved, this performance is kept

constant as the number of selected features in the parsimony pattern increases.365

5.6. Computational complexity analysis

This last section completes the experimental analysis studying the computational cost required for

the training of the proposed methods. As all the eigenvalue problems are solved in the dual space

with a very reduced dimension (the size of the target vectors, c), the number of bagging iterations

becomes the dominant quantity impacting the discussion about the computational burden of the370

proposed algorithms. To be precise, an initial fixed cost of computing the l × l kernel matrices has to

be added to the quantities presented in the remainder of the section. Figure 10 shows the evolution

of the computation times with the number of bagging iterations for two problems: a) the synthetic

one described in Subsection 5.3 and b) the Yale problem presented in Table 1. For this study, we
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have only considered as reference approaches the most efficient methods, SRRR and L21SDA; DFS375

solves a generalized eigenvalue problem, i.e., two O(d3) operations, requiring about 50 times more than

our proposal with 1000 bagging iterations. All the simulations have been carried out on an ordinary

MacBook Pro laptop.

As expected, Figure 10 shows that the computational cost of p-OPLS and p-CAA grows linearly

with the number of iterations. It is remarkable that the computation time of the proposed methods380

compares favourably with the baseline methods up to 1000 bagging iterations.

Figure 11 shows the dependence of the method performance (both in terms of OA and MAUC) with

the number of bagging iterations. Notice that using around 1000 iterations does not cause significant

performance degradations. In fact, the number of bagging iterations could be reduced down to 100,

without serious drops in accuracy (it is the same in terms of MAUC and it is slightly reduced in terms385

of OA).
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6. Concluding remarks

This paper has introduced a framework for the implementation of parsimonious MVA, specially

suited for very high dimensional problems. This novel framework develops the concept of feature

filtering: to capture relevant and redundant variables and to discard the noisy ones. The core of the390

methodology is a bagging of MVAs. On the one hand, the bagging drives a feature selection based

on the consistency of input variables in the definition of the features extracted by the MVAs. This

feature selection recovers an underlying parsimony pattern formed by some of the input variables. On

the other hand, the bagging allows to assess the relevance of each input variable for the solution of the

problem. This relevance is used in a regularisation term that endows a final feature extraction with395

a strong robustness. Furthermore, the formulation developed to derive the MVAs is tailored to the

bagging procedure, limiting its computational burden.

The experimental results point out that the proposed approach is robustness against to their param-

eter selection, is computationally efficient and the extracted features presents excellent discriminatory

capabilities. Moreover, the retrieved parsimony patterns in face recognition problems are very stable400

across simulations. A further analysis of these patterns shows that the selected input variables appear

in clusters with similar sign consistency. These clusters are located in areas that are relevant for the

face recognition, what leads us to consider them as potential seeds for the definition of semantic fea-

tures that help interpret the results of the learning procedure and gain insight about the problem at

hand.405
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Appendix A. Proof of equivalence between Equations (2) and (3)410

This Appendix shows the equivalence between equations (2) and (3). The overall derivation com-

prises two main steps. The first step involves obtaining solutions for problems (2) and (3) indepen-

dently; the second step shows that both solutions are equivalent.

To obtain a solution for (2), first fixing U in (2) and solving for W yields W = CT
XY U(UTCXXU)−1.

This result is substituted back in (2) to form a new functional in which the constraints are introduced415

using Lagrange Multipliers:

L(U,Λ) = ||
(
Y −XU

(
UTXTXU

)−1
UTXTY

)
Γ

1
2 ||2F − Tr{XUΛUTXT }+ Tr{Λ}
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where Λ is a square matrix of size r in which each element Λij is the Lagrange Multiplier that corre-

sponds with each constraint UT
i X

TXUj = Iij .

The optimization of this functional can be carried out following a standard OPLS derivation that

ends up in a generalized eigenvalue decomposition problem (GEV):420

CXY ΓCT
XY UGEV = CXXUGEVΛGEV, (A.1)

where ΛGEV is the diagonal matrix3 containing the r largest generalized eigenvalues arranged in de-

creasing order, UGEV is a matrix whose columns are the corresponding r leading generalized eigenvec-

tors. Matrix UGEV is a solution to (2) (in fact any matrix UR = UGEVR, where R is a rotation matrix,

is also a solution of (2)). Moreover, UGEV is CXX -orthonormal (e.i., UT
GEVCXXUGEV = I) due to the

constraint of (2).425

Now UGEV is used to solve (2) for W :

WGEV = CT
XY UGEV. (A.2)

Premultiplying (A.1) by UT
GEV and inserting (A.2) yields WT

GEVΓWGEV = ΛGEV, which demon-

strates the orthogonality condition of W .

Besides, a pair of matrices (UT
EVD,W

T
EVD) that form a solution for (3) can be reached following a

similar procedure to the one described above. Fixing W in (3) and solving for U yields

UEVD = C−1XXCXY ΓW (WT ΓW )−1. (A.3)

With this expression replaced back in (3) and the constraints introduced using Lagrange Multipliers

contained in matrix Λ, some algebraic manipulations lead to the new functional

L(W,Λ) = ||
(
Y −XC−1XXCXY ΓW (WT ΓW )−1WT

)
Γ

1
2 ||2F − Tr{WT ΓWΛ}+ Tr{Λ}.

The solution to this optimization can be carried out by solving the following eigenvalue decompo-

sition problem:

ΓCT
XY C

−1
XXCXY ΓWEVD = ΓWEVDΛEVD, (A.4)

where ΛEVD is a diagonal matrix with the r largest eigenvalues arranged in decreasing order.

The UEVD that corresponds to WEVD can be obtained from (A.3)

UEVD = C−1XXCXY ΓWEVD. (A.5)

3Notice that in the optimum the constraints that correspond with the non-diagonal elements of Λ (UT
i XTXUj = 0)

have a null contribution in the functional.
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Moreover, premultiplying both terms of (A.4) by WT
EVD and inserting (A.5) yields

UT
EVDCXY ΓWEVD = ΛEVD,

since WEVDΓWEVD = I (constraint of (3)). Noticing also that according to (A.5), CXY ΓWEVD =

CXXUEVD:

UT
EVDCXXUEVD = ΛEVD, (A.6)

which demonstrates the orthogonality condition of the projected input data.

Since the columns of UEVD and UGEV span the same subspace of Rd, they should verify UEVD =

UGEVA, for some square and invertible matrix A of size r. Inserting this expression in (A.6), and

realizing that the columns in UGEV are CXX -orthonormal (e.i., UT
GEVCXXUGEV = I) yields

ATUT
GEVCXXUGEVA = ATA = ΛEVD.

Since ΛEVD admits a Cholesky factorization, and this is unique, it can be written necessarily A =

AT = Λ
1/2
EVD and

UEVD = UGEVΛ
1/2
EVD. (A.7)

The next step shows the relationship between the regression coefficient matrices. Inserting (A.5)

into (A.4) yields CT
XY UEVD = WEVDΛEVD. Also, the use of (A.7) together with (A.2) shows that

WGEVΛ
1/2
EVD = CT

XY UEVD. Combining these two last equations, it is straightforward to arrive at

WEVD = WGEVΛ
−1/2
EVD . (A.8)

The conclusion of the proof passes through showing that ΛEVD = ΛGEV = Λ, for which it is enough

to use (A.8) together with condition WT
GEVWGEV = ΛGEV. Resourcing also to the orthonormality

condition of the columns of WEVD:

WT
GEVWGEV = Λ

1/2
EVDW

T
EVDWEVDΛ

1/2
EVD = ΛEVD = ΛGEV. (A.9)

To summarize, the following relationships between (2) and (3) hold:

ΛEVD = ΛGEV(= Λ), UEVD = UGEVΛ1/2, WEVD = WGEVΛ−1/2.

Since Λ is diagonal, the columns of UGEV and UEVD must have the same direction, and differ only430

by a scaling factor. This finally concludes that Equations (2) and (3) are equivalent.

A similar equivalence demostration for the particular case Γ = I is described in [16].
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