
ar
X

iv
:1

70
2.

07
97

5v
1

 [
cs

.C
V

]
 2

6
Fe

b
20

17

Building Fast and Compact Convolutional Neural Networks for Offline

Handwritten Chinese Character Recognition

Xuefeng Xiaoa, Lianwen Jina,∗, Yafeng Yanga, Weixin Yanga, Jun Sunb, Tianhai Changa

aSchool of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
bFujitsu Research & Development Center Co. Ltd., Beijing, China

Abstract

Like other problems in computer vision, offline handwritten Chinese character recognition (HCCR) has
achieved impressive results using convolutional neural network (CNN)-based methods. However, larger and
deeper networks are needed to deliver state-of-the-art results in this domain. Such networks intuitively
appear to incur high computational cost, and require the storage of a large number of parameters, which
renders them unfeasible for deployment in portable devices. To solve this problem, we propose a Global
Supervised Low-rank Expansion (GSLRE) method and an Adaptive Drop-weight (ADW) technique to solve
the problems of speed and storage capacity. We design a nine-layer CNN for HCCR consisting of 3,755 classes,
and devise an algorithm that can reduce the networks computational cost by nine times and compress the
network to 1/18 of the original size of the baseline model, with only a 0.21% drop in accuracy. In tests, the
proposed algorithm surpassed the best single-network performance reported thus far in the literature while
requiring only 2.3 MB for storage. Furthermore, when integrated with our effective forward implementation,
the recognition of an offline character image took only 9.7 ms on a CPU. Compared with the state-of-the-art
CNN model for HCCR, our approach is approximately 30 times faster, yet 10 times more cost efficient.

Keywords: Convolutional neural network, Handwritten Chinese character recognition, CNN Acceleration,
CNN Compression

1. Introduction

Offline handwritten Chinese character recognition
(HCCR) has been applied to a number of applica-
tions, such as for recognizing historical documents,
mail sorting, transcription of handwritten notes, and
so on. Offline HCCR has drawn the attention of
many researchers for over half a century [1–6]. In
the last few years, a number of traditional offline
approaches have been proposed to improve HCCR
performance but have yielded scant progress; the

∗Corresponding author
Email addresses: xiaoxuefengchina@gmail.com (Xuefeng

Xiao), lianwen.jin@gmail.com (Lianwen Jin)

modified quadratic discriminant function (MQDF)
[1, 5, 7]-based methods are exemplary. There is hence
a recognition in the literature that even the best tra-
ditional methods are far from mimicking human per-
formance in this domain [7]. Due to the availability of
better computational hardware and massive amounts
of training data in recent years, convolutional neural
networks (CNNs), proposed by LeCun in the 1990s
[8, 9], have been used to attain state-of-the-art perfor-
mance in character recognition [6]. The multi-column
deep neural network (MCDNN) [10], composed of
several CNNs, was the first CNN used for HCCR.
Zhang et al. [6] recently reported an accuracy of
96.95% for recognition by extracting the traditional
normalization-cooperated direction-decomposed fea-

http://arxiv.org/abs/1702.07975v1

ture map as input with a CNN. However, the compu-
tational cost and storage requirements still prevent
the use of CNNs in portable devices, where power
consumption and storage capacity are the major chal-
lenges.
Many researchers have tried to build fast and com-

pact networks. In this vein, low-rank expansion [11–
14] aims to reduce computational cost by decompos-
ing the convolutional layer. According to [15, 16],
network pruning is the most effective way to compress
the CNN; it eliminates the redundant connections in
each layer, following which weight quantization and
Huffman encoding are applied to further reduce stor-
age capacity. Although [11–16] achieved impressive
performance in accelerating and compressing the net-
work, only a few studies have combined these meth-
ods to address the dual challenge of speed and storage
capacity. Furthermore, to the best of our knowledge,
no study has investigated whether these methods are
still feasible for large-scale handwritten Chinese char-
acter recognition involving more than 3,700 classes of
characters.
In this paper, we propose a method to build a

fast and compact CNN-based HCCR classifier. The
method is shown in Fig. 1; it unifies the advantages of
low-rank expansion and network pruning. The first
part employs low-rank expansion to decompose the
convolutional layer for acceleration purposes, which
renders the CNN deeper but compact. The moti-
vation underlying the second part is to remove re-
dundant connections in each layer’s to further reduce
the storage allocated to parameters and, hence, the
computational cost of the entire network. However,
in a previous study [15, 16] on network pruning, the
authors used a fixed threshold to prune the connec-
tions of each layer. Instead, we propose an Adaptive
Drop-weight (ADW) technique that dynamically in-
creases the threshold and gradually prunes out the
parameters of each layer. Here, it comes another
problem of the pruning ratio of each layer in pre-
vious work [15, 16], which may require numerous at-
tempts for the determination of a suitable threshold
for each layer in the context of a trade-off between
accuracy drop and compression ratio, especially for
some deep networks. Hence, to better address this
problem, we propose Connection Redundancy Anal-

ysis (CRA) that can analyze redundancy in the con-
nections of each layer and help maximize the pruning
ratio of each layer with a tolerable reduction in accu-
racy.
In experiments involving offline HCCR, the pro-

posed framework reduced by nine times the computa-
tional cost of, and by 18 times the parameter storage
needed for, the designed CNN; and it degraded accu-
racy only by 0.21%, which still surpassed the results
for the best single-network CNN, reported in the lit-
erature thus far, on the ICDAR 2013 Offline HCCR
Competition database. The network required only
2.3 MB of storage and took only 9.7 ms to process
an offline character image on a single-thread CPU.
Moreover, in order to further boost performance, we
can increase the width and depth of the networks,
or use a new CNN model such as GoogLeNet [17]
or Deep ResNet [18]. This may help finally obtain
new benchmarks for offline HCCR, but this is not
our main concern in this paper.
The remainder of this paper is organized as follows:

Section 2 reviews related work, and Section 3 elabo-
rates on the architecture of the baseline network of
the CNN used in our system. Section 4 introduces
the adaptive drop-weight technique, whereas Section
5 details the connection redundancy analysis method.
Section 6 describes global supervised low-rank expan-
sions in detail, and Section 7 presents the experimen-
tal results, which include run time, parameter stor-
age, and accuracy. The conclusions of this study and
our future work are summarized in Section 8.

2. Related Work

2.1. Offline HCCR

Due to the success of CNNs, MQDF-based meth-
ods for offline HCCR have already reached their limit.
The multi-column deep neural network (MCDNN)
[10], consisting of several CNNs, was the first CNN
used for offline HCCR. In an offline HCCR com-
petition subsequently organized by ICDAR in 2013
[7], the method developed by the team from Fujit-
sus R&D Center won with an accuracy of 94.77%.
In 2014, they improved accuracy to 96.06% by vot-
ing on four alternately trained relaxation convolu-
tional neural networks (ATR-CNN) [19]. Zhong

2

Figure 1: Overview of the proposed framework. The first step expands the convolutional layers, which involves decomposing
each layer into two low-rank convolutional layers. The second step prunes redundant connections in the convolutional layers
and the fully connected layers.

et al. [20] subsequently proposed combining tradi-
tional Gabor features with offline Chinese charac-
ter images as network inputs, and used a stream-
lined version of GoogLeNet called HCCR-Gabor-
GoogLeNet. They reported an accuracy of 96.35%,
and then that of 96.74% for ensembling ten model
and become the first one beyond human perfor-
mance. The framework proposed by Zhou et al.
[21] is based on HCCR-GoogLeNet [20]; they used
a Kronecker fully connected (KFC) layer to re-
place the layers after the four inception groups,
and then followed by two fully connected layers, fi-
nally obtaining an accuracy of 96.63%. Zhang et
al. [6] recently combined traditional normalization-
cooperated direction-decomposed feature maps and
CNNs to obtain accuracy values of 96.95% and
97.12% by voting on three models.

2.2. Accelerating and Compressing

Most CNN structures, such as VGGNet [22],
AlexNet [23], CaffeNet [24], and GoogLeNet [17],

have similar properties: for example, the convolu-
tional layers incur most of the computational cost and
the fully connected layers contain the most network
parameters. Despite the different potential avenues,
existing approaches mainly concentrate on accelerat-
ing the convolutional layers and compressing the fully
connected ones.

To reducing the computational cost of the convo-
lutional layers, Cong and Xiao [25] used the Strassen
algorithm for fast matrix multiplication to reduce
the arithmetic complexity of the convolutional layer
without loss in accuracy. Mathieu et al. [26] adopted
the fast Fourier transform (FFTs) to convert convo-
lutional calculations into pointwise products in the
frequency domain for fast computation. Lavin et al.
[27] proposed using Winograds minimal filtering al-
gorithms to reduce the multiplication in the convolu-
tional layers. Wu et al. [28] recently proposed quan-
tized convolutional neural networks that quantize the
weights and transform computations into inner prod-
ucts in the convolutional layer. Nevertheless, compu-

3

Figure 2: Architecture of the CNN for offline HCCR

tations of the convolutional layer are transformed into
matrix multiplication by using the im2col algorithm
[29] and the BLAS (Basic Linear Algebra Subpro-
grams) library. These tools are useful for faster CPU
implementation of CNNs and cannot be used with
the previously proposed method in [25–28]. In this
paper, we use the low-rank expansion-based method
that can combine the matrix multiplication method
by using the BLAS library. Jaderberg et al. [12] ex-
ploited the cross-channel or filter redundancy to for-
mulate a low-rank basis for filters, and proposed filter
and data reconstruction techniques for optimization.
Zhang et al. [14] improved their work by considering
a non-linear case and asymmetric reconstruction for
multiple layers to mitigate reconstruction error.

For fully connected layers, HashedNets proposed
by Chen et al. [30] uses the hash function to group
weights into hash buckets, where connections in the
same hash buckets share parameter value. Vanhoucke
et al. [31] used an eight-bit fixed-point integer to re-
place the 32-bit floating point. Matthieu et al. [32]
proposed binarized neural networks that constrain
weights and activations to +1 or -1, and replace most
floating-point multiplications by one-bit exclusive-
NOR operations. It is clear that this can reduce com-
putational cost and parameter storage but, on the
other hand, degrades network performance. Lin et
al. [33] used SVD-based low-rank expansions to com-
press the fully connected layers, and then used global
error reconstruction to fine-tune the entire network.
However, both these methods have low compression
ratios, or seriously deteriorate network performance.
Methods based on network pruning [15] can signifi-
cantly reduce parameter storage by learning impor-
tant connections without compromising network per-

formance. Deep compression was proposed by Han
et al. [34] to further reduce storage by combining
network pruning, weight quantization, and Huffman
coding. Guo et al. [16] proposed dynamic network
surgery that can dynamically prune and splice con-
nections based on Han’s work [15].

3. Architecture of Convolutional Neural Net-
work

As shown in Fig. 2, we designed a nine-layer (only
accounting for the convolutional layer and the fully
connected layer) network for offline HCCR consist-
ing of seven convolutional layers and two fully con-
nected layers. Each of the first three convolutional
layers are followed by a max-pooling layer. Follow-
ing this, every two convolutional layers are followed
by a max-pooling layer. The last max-pooling layer
is followed by a fully connected layer, which contains
1,024 neurons. The last fully connected layer contains
3,755 neurons, and is used to perform the final classi-
fication. The overall architecture can be represented
as Input-96C3-MP3-128C3-MP3-160C3-MP3-256C3-
256C3-MP3-384C3-384C3-MP3-1024FC-Output.

We found that within a certain range, increasing
the size of the input character image improved clas-
sification performance, but incurred higher compu-
tational cost. Hence, we fixed this effect of increas-
ing size and computational cost by resizing the input
characters into 96× 96. In our baseline networks, all
convolutional filters were 3×3, and a pixel was added
to retain the size. Finally, the max-pooling operation
was carried out over a 3× 3 window with a stride of
2.

4

In our proposed network, the parametric rectified
linear unit (PReLU) [35], slightly different from the
rectified linear unit (ReLU) [36], was used to enable
the network to easily converge and minimize the risk
of overfitting to boost performance. Ioffe et al. [37]
proposed batch normalization (BN), which can nor-
malize nonlinear inputs and stabilize the distribution
by reducing the internal covariate shift. It not only
provides the liberty of using higher learning rates to
expedite network convergence, but also ameliorates
network performance at a negligible computational
cost and storage. Moreover, for some deep networks,
BN can effectively solve the problem of vanishing gra-
dients. Therefore, all convolutional layers and the
first fully connected layer were equipped with a BN
layer, and the PReLU were added to each BN layer.
Since the fully connected layers are quite redundant,
we added the dropout [38] layer between the two fully
connected layers for regularization, where the ratio
was set to 0.5.
The main difference between our proposed model

and other available models for offline HCCR is that
the former involves BN and PReLU in the network;
hence, we refer to this baseline network as the HCCR-
CNN9Layer. Although the CNN model used is quite
simple, it is yielded state-of-the-art performance for
HCCR.

4. Adaptive Drop-Weight

Figure 3: The pruning strategy

Our pruning scheme is shown in Fig. 3; it con-
sists of two parts. The first a new technique called
Adaptive Drop-weight (ADW), which can gradually
prune out the weighted connections of each layer by

dynamically increasing the pruning threshold. When
the pruning ratio reaches a value determined by the
results of the CRA for the layer, we remember the
threshold for further pruning.

4.1. Pruning Threshold

In the previous work on network pruning [15, 16],
a fixed threshold was determined as follows:

Pth =
α

N

N
∑

i=1

|wi|+ β

√

√

√

√

1

N

N
∑

i=1

(wi−
1

N

N
∑

i=1

wi)2 + λ.

(1)
The pruning threshold Pth depends on the weight

of the layer wi in terms of average absolute value and
variance. In order to render Pth suitable for each
layer, parameters α, β, λ are selected by their empir-
ical rules [15, 16]. However, if the fixed threshold is
too high, it leads to the pruning of a large number
of connections at the outset, which results in dras-
tic drop in performance. On the contrary, if the fixed
threshold is too low, the compression ratio may be far
from the desired value. In order to solve this problem,
we propose using a dynamically increased threshold
that gradually prunes out the weighted connections of
each layer. This methodology can gradually lead the
network toward self-adaptive pruning connections.

4.2. Pruning Training Scheme

In order to gradually prune redundant connections
from each layer, we prune connections after every I
iterations (in experiments, we set I = 10). If we
intend to prune the ratio ri in each layer that contains
Ni weights within T1 iterations, the pruned number
pi is increased by riNiI/T1 in each pruning iteration.
The threshold is also gradually increased. During the
iterations without the pruning process, the weights
are updated with a gradient, and the pruned weights
never come back. Once the desired pruning ratio is
reached, the increasing threshold is fixed and noted
for further pruning of the layer until pruning ends
after T2 iterations. This pruning process has been
described in detail in Algorithm 1.
In order to further compress the network and im-

prove performance, we employ the strategy proposed

5

in [34] to quantize weights. A k-means clustering al-
gorithm is used to cluster weights for each layer of
a pruned network. The quantized pruned network is
then fine-tuned, which may result in better network
performance.

Algorithm 1 Adaptive Drop-weight for pruning the
redundant connections.
Input:

The weights in each layers Wi,the number of
pruning layers L;

Output:
The sparse weights in each layer;

1: while t ≤ T1 do
2: if t%I = 0 then
3: for i = 1 to L do
4: Only update the non-zero value in Wi

5: pi ⇐ pi + riNiI/T1

6: Find the pi-th smallest absolute value in
Wi to set Pth i

7: The absolute values of weights inWi below
Pth i are set to zero

8: end for
9: else

10: for i = 1 to L do
11: Only update the non-zero value in Wi

12: end for
13: end if
14: t ⇐ t+ 1
15: end while
16: while T1 < t < T2 do
17: for i = 1 to L do
18: Only update the non-zero value in Wi

19: The absolute value of weights in Wi below
Pth i are set to zero

20: end for
21: t ⇐ t+ 1
22: end while

5. Connection Redundancy Analysis

The deep neural network consists of many lay-
ers, and each plays a significant role in the network.
There are inevitably various redundancies in each

layer, especially in the large gap between the convo-
lutional layer and the fully connected layer. It makes
sense that pruning ratio be determined by the redun-
dant connections of each layers, and that the same
pruning ratio not be applied to all layers. Neverthe-
less, retrospective work by [15, 16] involved a fixed
threshold Pth based on the relevant layer’s weights
to prune the connection. Hence, numerous experi-
ments are needed to find the pertinent values of α, β,
and λ for the pruning threshold Pth for each layer; as
is self-evident, this is very time consuming, especially
for deep networks.
In order to better address the above issue, we

propose a Connection Redundancy Analysis (CRA)
method that analyzes each layer’s redundancy and
can help us set a suitable value for the pruning ra-
tio ri for it. Inspired by [39], a sensitivity analysis
was carried out to analyze the importance of a layers
parameters for network performance. Iandola et al.
[39] implemented the strategy of directly pruning half
the parameters with the smallest absolute values and
carried out the experiment separately for each layer.
After testing the pruned networks, network perfor-
mance was examined. However, this strategy can
only highlight the important parameters of a given
layer with regard to performance, and cannot help
determine how many connections are redundant.
To carry out the Connection Redundancy Analy-

sis, we separately conducted an experiment for each
layer. While carrying out the experiment on a layer,
we fixed the weights of other layers and pruned only
that layer. By using our proposed Adaptive Drop-
weight as pruning strategy, we gradually pruned each
layer’s redundant connections, which were thought to
gradually degrade network performance. When the
drop in accuracy was beyond a given tolerance level,
we knew how many connections had been pruned,
which guided us in further pruning the network.
Since the proposed CRA was implemented to prune

out the layers separately, it is difficult to analyze the
scenario where all layers are pruned together. How-
ever, it may guide us in setting a proper pruning ra-
tio for each layer. The ultimate goal of the CRA is
to maximize the compression ratio under a tolerable
reduction of accuracy rate, which desires further re-
search.

6

6. Grobal Supervised Low Rank Expansion

6.1. Decomposition Scheme

(a)

(b)

Figure 4: (a) The original convolutional layer with the BN
and the PReLU layer. (b) The convolutional layer of low-rank
expansion with the BN and the PReLU layer.

For the original convolutional layer illustrated
in Fig. 4(a), the input feature map is a three-
dimensional (3D) vector X ∈ R

C×H×W , where C is
the channel of the input feature map, and H and
W are its height and width, respectively. The out-
put feature map is also a 3D vector Y ∈ R

N×H′
×W ′

,
where N is the channel of the output feature map,
and H ′ and W ′ are its height and width, respectively.
The kernel matrix is a 4D vector W ∈ R

C×N×K×K ,
where the size of the kernel is K × K. The output
feature map can be calculated by

Y (n, h′, w′) =

C
∑

c=1

K
∑

i=1

K
∑

j=1

W (n, c, i, j)X(c, h′ + i− 1, w′ + j − 1).

(2)
We know that the computational cost of the direct

convolutional layer is O(CNK2H ′W ′).
By carrying out the low-rank expansion shown in

Fig. 4(b), that the input feature map originally con-
volved with the square filter, will be transformed into
the input feature map convolved with two low rank
filters. The first one is the input convolved with the
vertical kernel T ∈ R

C×D×K×1, where D is the out-
put feature number the decomposed layer. The first

output is

M(d, h′, w) =

C
∑

c=1

K
∑

i=1

T (d, c, i, 1)X(c, h′ + i − 1, w),
(3)

where the computational cost by the first convolution
is O(CDKH ′W).
Then the output M ∈ R

D×H′
×W convolves with

horizontal kernel V ∈ R
D×N×1×K , and the final out-

put is calculated by

Y (n, h′, w′) =

D
∑

d=1

K
∑

j=1

V (n, d, 1, j)M(d, h′, w′ + j − 1).
(4)

The computational cost by the second convolution
is given by O(NDKH ′W ′). If the two low-rank ex-
pansions are considered together, the computational
cost is O(DKH ′(NW ′ + CW)).
So if we want to accelerate x time for the convolu-

tional layer, D can be determined as

D =
CNKW ′

(CW +NW ′)x
. (5)

6.2. Training scheme

In past work [12–14], the output of each layer
was used as a supervisor to learn the low-rank fil-
ter for that layer. This method was mainly devised
to minimize the reconstruction error between the lo-
cal output and the low-rank approximation output,
as shown in Fig. 5(a). We refer to this strategy as
Local Supervised Low-rank Expansion (LSLRE). We
think that while using the output of the local layer
to guide the low-rank expansion is a reasonable and
straightforward strategy, it does not a direct relation-
ship with the performance of global classification.
Thus, we propose Global Supervised Low-rank Ex-

pansion (GSLRE), which uses the label as supervisor.
The training scheme is shown in Fig. 5(b). The train-
ing process is conducted in a layer-by-layer manner.
For a specific layer, the original convolutional layer,
say, the second layer Conv2 is decomposed into two
smaller layers, Conv2 de1 and Conv2 de2 (see Fig.

7

(a)

(b)

Figure 5: (a) The local output is used as the supervisor to
train the low-rank layer. (b) The true label-guided global loss
function is used as the supervisor to train the low-rank layer.

5(b)). The parameters of Conv2 de1 and Conv2 de2
are determined through back-propagation using the
SGD algorithm, based on the loss function for the en-
tire network. It is worth mentioning that during the
training of the specific convolutional layer, the pa-
rameters of other convolutional layers are kept fixed.
This is because our network is equipped with the BN
layer, which can enable gradients to smoothly pass
into lower-level layers even though the network deep-
ens.

Since the first convolutional layer is hard to ap-
proximate (as mentioned in [11, 12]), and plays an
important role in extracting features from the origi-
nal image, we begin our low-rank training scheme at
the second convolutional layer. Once the second layer
has been decomposed and trained adequately, we be-
gin decomposing the third layer. When training the
third convolutional layer, the parameters of both the
second and the third layers are learned and updated
according to the SGD-BP algorithm. In this way,
all convolutional layers are decomposed and trained.
Finally, since the first convolutional layer and the
parameters of the fully connected layer are always
fixed during the above low-rank expansion training
process, we need to fine-tune the whole network to
further improve overall performance.

7. Experiment

We evaluated our method on an offline HCCR
task. The training data was taken from the CASIA-
HWDB1.0 and CASIA-HWDB1.1 [40] databases,
written by 300 and 420 people, respectively. The
datasets contained 2,678,424 samples in total. The
test data were datasets used in the ICDAR-2013 of-
fline competition [7], which contained 224,419 sam-
ples written by 60 people. The training and testing
databases were written by different people, and con-
tained 3,755 classes.

7.1. Baseline Model

We trained our baseline network (Fig. 2) on the
Caffe [24] deep learning platform. We used the
method of mini-batch gradient descent with momen-
tum for training. The mini-batch size was set to 128
and momentum to 0.9. In order to make training
data independent of each mini-batch, we shuffled the
data before training. Since our proposed network is
equipped with a BN layer, it allowed us to use higher
learning rates to accelerate converge. We hence ini-
tialize the learning rate at 0.1, and then reduced it
×0.1 every 70,000 iterations. Training was completed
after 300,000 iterations, and we obtained an accuracy
of 97.30%.
Fig. 2 shows our proposed network. We realized

that the first convolutional layer plays an important
role in extracting features from the original image
[11, 12], and incurs lower computational cost and
smaller parameter storage (less than 1% of the entire
network). Thus, it is intuitive that the parameters of
this layer should not be modified.

7.2. The evaluation of the Global Supervised Low

Rank Expansions

Table 1: The results of accelerating 4 times

Method Accuracy
Baseline 97.30%
Direct Low Rank training 97.10%
GSLRE 97.27%

8

Table 2: The compression results on LeNet-5 and LeNet-300-100.

Network Layer Params. Params. after Params. after Params. after Pruning+ Pruning+
pruning[15] pruning[16] pruning ours clustering[34] clustering ours

LeNet-5

conv1 0.5K 66% 14.2% 27.2% 78.5% 10.8%
conv2 25K 12% 3.1% 3.7% 6.0% 1.5%
fc1 400K 8% 0.7% 0.4% 2.7% 0.28%
fc2 5K 19% 4.3% 8.8% 6.9% 3.0%
total 431k 8%(12X) 0.9%(108X) 0.75%(133X) 3.05%(33X) 0.4%(250X)
Baseline Accu. 99.20% 99.09% 99.11% 99.20% 99.11%
Pruned Accu. 99.23% 99.09% 99.11% 99.26% 99.12%

LeNet-300-100

fc1 236K 8% 1.8% 1.5% 3.1% 0.8%
fc2 30K 9% 1.8% 2.8% 3.8% 1.5%
fc3 1K 26% 5.5% 8.5% 15.7% 5.8%
total 267k 8%(12X) 1.8%(56X) 1.7%(60X) 3.1%(32X) 0.9%(113X)
Baseline Accu. 98.36% 97.72% 98.33% 98.36% 98.33%
Pruned Accu. 98.41% 98.01% 98.34% 98.42% 98.35%

By using our proposed architecture, the baseline
network was accelerated fourfold. Using Eq. 5, we
calculated the number of feature maps each convo-
lutional layer after decomposing it. In Table 1, it is
clear that we were able to accelerate the network four-
fold with a negligible drop in accuracy by integrating
our devised Global Supervised Low-rank Expansion
training scheme. It was also shown that our decom-
posing training scheme can obtain better results than
the direct training of a decomposed network architec-
ture.

7.3. The evaluation of the Adaptive Drop-weight

We first applied our method to the MNIST
database with the LeNet-300-100 and the LeNet-5
networks [9]. The MNIST dataset was designed for
character recognition of handwritten digits. LeNet-5
is a convolutional network that contains two convolu-
tional layers and two fully connected layers. LeNet-
300-100 is a fully connected network with two hid-
den layers. The baseline models were trained on the
Caffe [24] deep learning platform without any data
augmentation. We directly trained the LeNet-5 us-
ing the settings for the training parameters provided
by Caffe. In this way, an accuracy of 99.11% was ob-
tained after training for 10,000 iterations. The train-

ing parameter settings of LeNet-300-100 were nearly
identical to those for LeNet-5, and yielded an accu-
racy of 98.33%.

Table 3: The compression results on ICDAR 2013 dataset.

Layer Params. Params. after After pruning
pruning + clustering

conv2 de1 12K 36.9% 11.3%
conv2 de2 15K 42.7% 12.5%
conv3 de1 20K 33.6% 10.2%
conv3 de2 24K 41.9% 12.1%
conv4 1 de1 33K 35.3% 10.4%
conv4 1 de2 53K 37.6% 11.0%
conv4 2 de1 68K 39.6% 11.5%
conv4 2 de2 68K 39.1% 11.3%
conv5 1 de1 78K 40.0% 11.6%
conv5 1 de2 118K 35.3% 10.3%
conv5 2 de1 142K 33.9% 10.0%
conv5 2 de2 142K 37.0% 10.7%
fc1 3.5M 14.2% 4.4%
fc2 3.8M 35.1% 9.06%
total 8.17M 26.2%(3.8x) 7.2%(13.9X)

As shown in Table 2, with our proposed prun-
ing strategy, we compressed LeNet-5 by a factor of

9

133 and LeNet-300-100 by that of 60 using the pro-
posed ADW method. It surpassed the results in [15],
which was the first application of network pruning
for compression. Compared with recent work [16],
we achieved a higher pruning ratio and better ac-
curacy, especially for LeNet-300-100. We also com-
bined the methods of quantizing weights for further
compression. Finally, we obtained a state-of-the-art
compression ratio of 250 times for LeNet-5 and 113
times for LeNet-300-100 without any loss in accuracy.
Following this, we applied our proposed compres-

sion framework on an offline HCCR network that was
accelerated fourfold, and contained 13 convolutional
layers and two fully connected layers. In Table 3,
it is evident that the entire network was compressed
to approximately a quarter of its size using only the
proposed ADW method. When we integrated the
weight quantization, storage was further reduced ap-
proximately 14-fold with a drop of only 0.18% in ac-
curacy.
While pruning LeNet-5, we noticed that separately

pruning the convolutional and the fully connected
layers was a better choice to deal with the vanish-
ing gradient problem than pruning these layers to-
gether, which was the strategy used in past work
[15, 16]. However, since our accelerated network was
equipped with the BN layer, it enabled the gradi-
ent to smoothly pass in both forward and backward
propagations, as also demonstrated in [18]. In our
experiment, we were able to prune the convolutional
layers and fully connected layers together. This not
only reduced training time for the pruning process,
but also yielded higher accuracy and compression ra-
tio at the same time.

7.4. The evaluation of the Connection Redundancy

Analysis

We implemented our CRA on each layer in LeNet-
5 and LeNet-300-100. With our proposed Adaptive
Drop-weight pruning strategy, we gradually pruned
the connections of each layer.
In Fig. 6(a) and 6(b), we see that at the start of

the experiment, the network was less susceptible to
the pruning ratio; but later on, drastically decreases
down with the higher values of this pruning ratio.
However, since each layer had different redundant

(a)

(b)

Figure 6: The CRA results. The horizontal and vertical axes
represent pruning ratio and network accuracy, respectively. (a)
The results of gradually pruning each layer of LeNet-5. (b) The
results of gradually pruning each layer of LeNet-300-100.

connections, the pruning ratio of each was different.
In our experiment, CRA was implemented with a tol-
erable accuracy drop of 0.1% for each layer. Then,
the pruning ratio was used to guide the pruning of
the network.

In the same way, CRA was applied to an offline
HCCR network, which reduced computational cost
fourfold in the convolutional layer. We then ana-
lyzed each layer’s redundancy with a tolerable accu-
racy drop of 0.1% to guide us in pruning. Since the
convolutional layer had been accelerated four times,
the redundancy therein was significantly eliminated.

10

As shown in Fig. 7, we set a much lower pruning
ratio than the CRA results in convolutional layer to
maintain accuracy at par.

Figure 7: Connection Redundancy Analysis For HCCR-
CNN9Layer-LR

7.5. The results of accuracy

Table 4 illustrates the results of different methods
that achieved performance beyond human level on
the ICDAR-2013 offline competition database as well
as their network storage and FLOPs (multiply-adds)
in detail.
We use our nine-layer network, shown in Fig. 2,

and achieved an accuracy of 97.30%. We realized
that the BN and the PReLU layers are quite effec-
tive for offline HCCR. Using our proposed GSLRE
and ADW, we further reduced computational cost
by nine times and parameter storage by 18 times
with a only drop of 0.21% in accuracy. This result
still surpassed the best single-network performance
in line 7 in Table 4, but our model simultaneously
involved considerably less parameter storage and in-
curred lower computational cost.
It was clear that the larger and deeper the network,

the better it performed. Hence, based on our pro-
posed network, we added more convolutional layers:
Input-96C3-MP3-128C3-128C3-MP3-192C3-192C3-
MP3-256C3-256C3-MP3-384C3-384C3-384C3-MP3-
1024FC-Output. We refer to this large network
as HCCR-CNN12Layer, which yielded an accuracy
of 97.59%, as shown on line 12 in Table 4. Then,

combining our GSLRE and ADW, we were still able
to reduce computational cost 16-fold and parameter
storage 10-fold with only a drop of 0.19% in accuracy.

7.6. The results of the forward implementation

The run time of the network is crucial for applying
offline HCCR to deal with real-time tasks. Other
techniques can be deployed for accelerating CNNs
for real-time applications. Loop unrolling (LU) is a
well-known and efficient strategy to improve speed,
especially for large loops. Using the im2col algo-
rithm, convolutional computations were converted
into matrix-matrix multiplication using the BLAS
library1, which has been shown to be an efficient
way for CPU-based implementation of CNNs. By
using the BLAS library, the fully connected layers
were directly implemented into matrix-vector multi-
plication. Moreover, when we eliminated connections
in each layer using our proposed ADW method, we
used sparse matrix-matrix multiplication and sparse
matrix-vector multiplication, respectively, for the
convolutional layer and the fully connected layer.
However, we found that if the layer was not sparse
enough, performance degraded. In our proposed net-
work, we simply applied sparse matrix-vector multi-
plication only to compute the fully connected layer.
We compared the forward run time with differ-

ent strategies on a single-threaded CPU. The ex-
periments were carried out on a single desktop PC
equipped with 3.60 GHz Intel Core i7-6700 and 16 GB
of memory. From Table 5, we see that when we did
not use a technique to accelerate the CNN, the run
time was long (1369 ms per character). When we sim-
ply used loop unrolling for all layers, the run time was
reduced. When we used our acceleration method and
reduced computational cost fourfold, the run time
was also reduced approximately fourfold (from 492
ms to 118 ms). Then, all convolutional layers and
the fully connected layer were computed by adopt-
ing matrix-matrix and matrix-vector multiplication,
respectively, with the BLAS library. Loop unrolling

1In the following experiments, we used Intel MKL as
the BLAS library, available at https://software.intel.com/en-
us/intel-mkl.

11

Table 4: The results on ICDAR-2013 offline HCCR competition.

No. Method Ref. Storage(MB) FLOPs(×108) Top-1 Error(%)
1 Human Performance [7] n/a n/a 3.87
2 HCCR-Gabor-GoogLeNet [20] 24.7 3.58 3.65
3 HCCR-GoogLeNet-Ensemble-10 [20] 247 n/a 3.26
4 CNN-Single [41] 190 1.33 3.42
5 CNN-Ensemble-5 [41] 950 6.65 3.21
6 Kronecker Fully-Connected(KFC) [21] n/a n/a 3.37
7 DirectMap + ConvNet [6] 23.5 2.63 3.05
8 DirectMap + ConvNet + Ensemble-3 [6] 70.5 7.89 2.88

9 HCCR-CNN9Layer ours 41.5 5.94 2.70
10 HCCR-CNN9Layer+GSLRE 4X ours 31.2 1.52 2.73
11 HCCR-CNN9Layer+GSLRE 4X +ADW ours 2.3(18X) 0.65(9X) 2.91
12 HCCR-CNN12Layer ours 48.7 12 2.41
13 HCCR-CNN12Layer+GSLRE 4X ours 32.7 2.99 2.53
14 HCCR-CNN12Layer+GSLRE 4X+ADW ours 3.0 1.25 2.60

Table 5: The runing time for processing one character on a
CPU.
Method Storage Accuracy Time
Direct Calculation 41.5MB 97.30% 1368ms
LU 41.5MB 97.30% 492ms
LU+4X 31.2MB 97.27% 118ms
LU+BLAS 41.5MB 97.30% 21.1ms
LU+4X+BLAS 31.2MB 97.27% 10.1ms
LU+4X+Sparse+BLAS 2.3MB 97.09% 9.7ms
DirectMap+ConvNet[6] 23.5MB 96.95% 296.9ms

was also applied to all other layers. The run time
decreased significantly. Finally, using our compres-
sion method to prune redundant connections in the
convolutional layers and the fully connected layers,
we employed sparse matrix-vector multiplication to
implement the computations in the fully connected
layer. In this way, we achieved a fast and compact
CNN model for large-scale HCCR with a speed of 9.7
ms/char but only 2.3 of MB storage. We compared
the forward run time implemented by Zhang et al.
[6](the last row) with that of our model. The pro-
posed forward implementation method was clearly
more effective than Zhang’s [6] method: it was ap-

proximately 30 times faster but 10 times smaller. The
source code of our fast and compact CNN model’s
forword implementation will soon be made publicly
available.

8. Conclusion

In this paper, we proposed an effective approach for
accelerating and compressing a CNN for large-scale
HCCR involving 3,755 classes of Chinese characters.
We proposed a Global Supervised Low-rank Expan-
sion to accelerate calculations in the convolutional
layers, and an Adaptive Drop-weight method to re-
move redundant connections by using a dynamic in-
crease in the pruning threshold of each layer. We also
proposed Connection Redundancy Analysis technol-
ogy to analyze redundant connections in each layer
in order to guide the pruning of the CNN without
compromising the performance of the network.

In future work, we plan to apply the proposed
framework to other fields, such as image classifica-
tion and object detection. These ideas can also be
used to address deep recurrent neural networks [42],
especially for long short-term memory, as they are
viable deep-learning models to deal with such time

12

sequence-based problems as online handwritten char-
acter/text recognition [43, 44].

References

[1] F. Kimura, K. Takashina, S. Tsuruoka,
Y. Miyake, Modified quadratic discriminant
functions and the application to chinese char-
acter recognition, IEEE Trans. Pattern Anal.
Mach. Intell. 9 (1) (1987) 149–153.

[2] L. Jin, J. Huang, J. Yin, Q. He, Deformation
transformation for handwritten chinese charac-
ter shape correction, in: Proceedings of Ad-
vances in Multimodal Interfaces (ICMI), 2000,
pp. 450–457.

[3] R. Dai, C. Liu, B. Xiao, Chinese character recog-
nition: history, status and prospects, Frontiers
of Computer Science in China 1 (2) (2007) 126–
136.

[4] T. Long, L. Jin, Building compact MQDF clas-
sifier for large character set recognition by sub-
space distribution sharing, Pattern Recognition
41 (9) (2008) 2916–2925.

[5] C. Liu, F. Yin, D. Wang, Q. Wang, Online
and offline handwritten chinese character recog-
nition: Benchmarking on new databases, Pat-
tern Recognition 46 (1) (2013) 155–162.

[6] X. Zhang, Y. Bengio, C. Liu, Online and offline
handwritten chinese character recognition: A
comprehensive study and new benchmark, Pat-
tern Recognition 61 (2017) 348–360.

[7] F. Yin, Q. Wang, X. Zhang, C. Liu, ICDAR
2013 chinese handwriting recognition competi-
tion, in: Proceedings of International Confer-
ence on Document Analysis and Recognition
(ICDAR), 2013, pp. 1464–1470.

[8] Y. LeCun, B. E. Boser, J. S. Denker, D. Hen-
derson, R. E. Howard, W. E. Hubbard, L. D.
Jackel, Handwritten digit recognition with a
back-propagation network, in: Proceedings of

Advances in Neural Information Processing Sys-
tems (NIPS), Morgan-Kaufmann, 1990, pp. 396–
404.

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner,
Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86 (11)
(1998) 2278–2324.

[10] D. C. Ciresan, U. Meier, Multi-column deep
neural networks for offline handwritten chinese
character classification, in: Proceedings of Inter-
national Joint Conference on Neural Networks
(IJCNN), 2015, pp. 1–6.

[11] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun,
R. Fergus, Exploiting linear structure within
convolutional networks for efficient evaluation,
in: Proceedings of Advances in Neural Informa-
tion Processing Systems (NIPS), 2014, pp. 1269–
1277.

[12] M. Jaderberg, A. Vedaldi, A. Zisserman, Speed-
ing up convolutional neural networks with low
rank expansions, in: Proceedings of British Ma-
chine Vision Conference (BMVC), 2014.

[13] X. Zhang, J. Zou, X. Ming, K. He, J. Sun, Effi-
cient and accurate approximations of nonlinear
convolutional networks, in: Proceedings of Com-
puter Vision and Pattern Recognition (CVPR),
2015, pp. 1984–1992.

[14] X. Zhang, J. Zou, K. He, J. Sun, Accelerating
very deep convolutional networks for classifica-
tion and detection, IEEE Trans. Pattern Anal.
Mach. Intell. 38 (10) (2016) 1943–1955.

[15] S. Han, J. Pool, J. Tran, W. J. Dally, Learning
both weights and connections for efficient neural
network, in: Proceedings of Advances in Neural
Information Processing Systems (NIPS), 2015,
pp. 1135–1143.

[16] Y. Guo, A. Yao, Y. Chen, Dynamic network
surgery for efficient dnns, in: Proceedings of
Advances in Neural Information Processing Sys-
tems (NIPS), 2016, pp. 1379–1387.

13

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going deeper with convolutions,
in: Proceedings of Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[18] K. He, X. Zhang, S. Ren, J. Sun, Deep resid-
ual learning for image recognition, in: Proceed-
ings of Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 770–778.

[19] C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Hand-
written character recognition by alternately
trained relaxation convolutional neural network,
in: Proceedings of International Conference on
Frontiers in Handwriting Recognition (ICFHR),
2014, pp. 291–296.

[20] Z. Zhong, L. Jin, Z. Xie, High performance of-
fline handwritten chinese character recognition
using googlenet and directional feature maps,
in: Proceedings of International Conference on
Document Analysis and Recognition (ICDAR),
2015, pp. 846–850.

[21] S. Zhou, J. Wu, Y. Wu, X. Zhou, Exploiting
local structures with the kronecker layer in con-
volutional networks, CoRR abs/1512.09194.

[22] K. Simonyan, A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition,
in: Proceedings of International Conference on
Learning Representations (ICLR), 2014.

[23] A. Krizhevsky, I. Sutskever, G. E. Hinton, Ima-
genet classification with deep convolutional neu-
ral networks, in: Proceedings of Advances in
Neural Information Processing Systems (NIPS),
2012, pp. 1106–1114.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. B. Girshick, S. Guadarrama, T. Dar-
rell, Caffe: Convolutional architecture for fast
feature embedding, in: Proceedings of Interna-
tional Conference on Multimedia (ICM), 2014,
pp. 675–678.

[25] J. Cong, B. Xiao, Minimizing computation in
convolutional neural networks, in: Proceedings

of International Conference on Artificial Neural
Networks (ICANN), 2014, pp. 281–290.

[26] M. Mathieu, M. Henaff, Y. LeCun, Fast training
of convolutional networks through ffts, CoRR
abs/1312.5851.

[27] A. Lavin, S. Gray, Fast algorithms for convolu-
tional neural networks, in: Proceedings of Com-
puter Vision and Pattern Recognition (CVPR),
2016, pp. 4013–4021.

[28] J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng,
Quantized convolutional neural networks for mo-
bile devices, in: Proceedings of Computer Vi-
sion and Pattern Recognition (CVPR), 2016, pp.
4820–4828.

[29] K. Yanai, R. Tanno, K. Okamoto, Efficient
mobile implementation of A cnn-based object
recognition system, in: Proceedings of Inter-
national Conference on Multimedia(ACM MM),
2016, pp. 362–366.

[30] W. Chen, J. T. Wilson, S. Tyree, K. Q. Wein-
berger, Y. Chen, Compressing neural networks
with the hashing trick, in: Proceedings of In-
ternational Conference on Machine Learning
(ICML), 2015, pp. 2285–2294.

[31] V. Vanhoucke, A. Senior, M. Z. Mao, Improv-
ing the speed of neural networks on cpus, in:
NIPS Deep Learning and Unsupervised Feature
Learning Workshop, Citeseer, 2011.

[32] M. Courbariaux, Y. Bengio, Binarynet: Train-
ing deep neural networks with weights and
activations constrained to +1 or -1, CoRR
abs/1602.02830.

[33] S. Lin, R. Ji, X. Guo, X. Li, Towards convo-
lutional neural networks compression via global
error reconstruction, in: Proceedings of Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI), 2016, pp. 1753–1759.

[34] S. Han, H. Mao, W. J. Dally, Deep compression:
Compressing deep neural network with prun-
ing, trained quantization and huffman coding,

14

in: Proceedings of International Conference on
Learning Representations (ICLR), 2016.

[35] K. He, X. Zhang, S. Ren, J. Sun, Delving deep
into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, in: Proceed-
ings of International Conference on Computer
Vision (ICCV), 2015, pp. 1026–1034.

[36] V. Nair, G. E. Hinton, Rectified linear units im-
prove restricted boltzmann machines, in: Pro-
ceedings of International Conference on Machine
Learning (ICML), 2010, pp. 807–814.

[37] S. Ioffe, C. Szegedy, Batch normalization: Ac-
celerating deep network training by reducing in-
ternal covariate shift, in: Proceedings of Interna-
tional Conference on Machine Learning (ICML),
2015, pp. 448–456.

[38] N. Srivastava, G. E. Hinton, A. Krizhevsky,
I. Sutskever, R. Salakhutdinov, Dropout: a sim-
ple way to prevent neural networks from over-
fitting, Journal of Machine Learning Research
15 (1) (2014) 1929–1958.

[39] F. N. Iandola, M. W. Moskewicz, K. Ashraf,
S. Han, W. J. Dally, K. Keutzer, Squeezenet:
Alexnet-level accuracy with 50x fewer pa-
rameters and < 0.5mb model size, CoRR
abs/1602.07360.

[40] C. Liu, F. Yin, D. Wang, Q. Wang, CASIA on-
line and offline chinese handwriting databases,
in: Proceedings of International Conference on
Document Analysis and Recognition (ICDAR),
2011, pp. 37–41.

[41] L. Chen, S. Wang, W. Fan, J. Sun, S. Naoi,
Beyond human recognition: A cnn-based frame-
work for handwritten character recognition, in:
Proceedings of Asian Conference on Pattern
Recognition (ACPR), 2015, pp. 695–699.

[42] A. Graves, Supervised Sequence Labelling with
Recurrent Neural Networks, Vol. 385 of Studies
in Computational Intelligence, Springer, 2012.

[43] X. Zhang, F. Yin, Y. Zhang, C. Liu, Y. Ben-
gio, Drawing and recognizing chinese char-
acters with recurrent neural network, CoRR
abs/1606.06539.

[44] Z. Xie, Z. Sun, L. Jin, H. Ni, T. Lyons, Learning
spatial-semantic context with fully convolutional
recurrent network for online handwritten chinese
text recognition, CoRR abs/1610.02616.

15

	1 Introduction
	2 Related Work
	2.1 Offline HCCR
	2.2 Accelerating and Compressing

	3 Architecture of Convolutional Neural Network
	4 Adaptive Drop-Weight
	4.1 Pruning Threshold
	4.2 Pruning Training Scheme

	5 Connection Redundancy Analysis
	6 Grobal Supervised Low Rank Expansion
	6.1 Decomposition Scheme
	6.2 Training scheme

	7 Experiment
	7.1 Baseline Model
	7.2 The evaluation of the Global Supervised Low Rank Expansions
	7.3 The evaluation of the Adaptive Drop-weight
	7.4 The evaluation of the Connection Redundancy Analysis
	7.5 The results of accuracy
	7.6 The results of the forward implementation

	8 Conclusion

