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Abstract

Recognition and prediction of human actions is one of the important tasks in

various computer vision applications including video surveillance, human com-

puter interaction and home entertainment that require online and real time

approaches. In this work we propose a novel approach that utilizes contin-

uous streams of joint motion data for recognizing and predicting actions in

linear latent spaces operating online and in real time. Our approach is based

on supervised learning and dimensionality reduction techniques that allow the

representation of high dimensional nonlinear actions to linear latent low dimen-

sional spaces. Our methodology has been evaluated using well-known datasets

and performance metrics specifically designed for online and real time action

recognition and prediction. We demonstrate the performance of the proposed

approach in a comparative study showing high accuracy and low latency.

Keywords: Action recognition, action prediction, dimensionality reduction.

1. Introduction

The research field of human action recognition has rapidly expanded in re-

cent years with many innovative applications in a range of sectors including

healthcare, education, robotics and entertainment [1] . In healthcare, action

recognition enables touch-free browsing of medical images in operating rooms,5

physical therapy at home and in clinics and patient monitoring. In education,

action recognition can increase the engagement of users by providing realistic
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and immersive training simulations. In robotics, action recognition facilitates

natural interaction between humans and robots. In entertainment, action recog-

nition enables touch-free interaction with smart TVs and games consoles for10

more intuitive and natural interaction. A key requirement of these interactive

applications is the ability to robustly detect actions in real-time so the system

can provide an appropriate response to the user with no apparent delay.

Action recognition can be categorised into four distinctive approaches: of-

fline, online, early and prediction, as illustrated in Figure 1. Until recently,15

the vast majority of action recognition research focused on offline methods

using pre-segmented action sequences containing a single action and informa-

tion from all the frames to classify the action [2, 3, 4, 5, 6, 7, 8]. The action

was recognised after its completion and the computation time was unrestricted.

Similarly, early action recognition is typically performed on pre-segmented se-20

quences but using as few observations as possible from the start of the sequence

[9, 10, 11, 12, 13, 14]. These simplifications resulted in over-inflated accuracy

and action recognition algorithms unsuitable for real-world applications.

In contrast, recent research has pursued the more complex challenge of online

action recognition that processes a continuous stream of actions in real-time25

[15, 16], however the accepted latency of recognition can vary depending on

the application. For example, a sign language recognition system may delay

recognition until a sequence of words has been parsed [17], and therefore can

benefit from increased accuracy by delaying the recognition. However, other

systems require low latency and in may be benefited by early detecting the30

action even before its completion. Our research in this paper focuses on gaming

applications where low latency is essential for a smooth user experience.

Action prediction is the most recent development in human action recogni-

tion and involves forecasting future occurrences based on recent observations.

Prediction on a continuous stream with temporal localisation of the action peak35

before it occurs is a very challenging scenario. Action peak is defined as the

segment in time when the goal of the action is being satisfied. Action prediction

is a very difficult problem for machines but is naturally performed by humans
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Figure 1: Observations required for offline, early, online action recognition and predictio.

to coordinate their actions in time and space to accomplish their goals. Experi-

mental results in human-human interaction in a table tennis game showed that40

action prediction improves performance [18, 19, 20]. Action prediction can en-

hance many applications with a human-machine interface in a range of domains

including home entertainment, healthcare, sports, and robotics. For example,

a personal robotic assistant for the elderly can enable independent living by

assisting with a range of cognitive and physical tasks to improve their quality of45

life. Natural social interaction between the robot and patient is important for

acceptance of the robot in the patients home and can also provide vital social

contact for the patient [21].

This paper aims to deal with the tasks of early action recognition and action

prediction in continuous streams by introducing a novel linear latent low di-50

mensional space based on Clustered Spatio-Temporal Manifolds (CSTM). Such

challenging tasks are tackled because of two main characteristics of our method-

ology, the execution-rate invariance and stylistic invariance, that are achieved

because of the unique combination of the Temporal Laplacian Eigenmaps (TLE)

[2, 4] and k-means that allow the definition of the CSTM linear latent space.55
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Another important aspect is the novel action templates that provide the ability

to follow the progression of an action over time in a linear manner. Further-

more, these action templates are combined with the proposed Peak Key Poses

enabling online action recognition with high accuracy and low latency, which

are particularly useful in applications such as gaming and HCI, where timely60

and precise action detection is required.

2. Literature Review

Feature selection for offline action recognition is an extremely well researched

and established topic with a vast number of publications so this review begins

by focusing on approaches with low computational latency that may be adapted65

for online action recognition. Then, a review of the more recent research into

early, online action recognition and prediction approaches is provided. A more

detailed analysis is provided in [1] by B. Liang and L. Zheng.

2.1. Feature Selection

Dimensionality reduction techniques have been used in conjunction with70

machine learning algorithms to reduce the number of considered features to

improve computation time, reduce memory requirements and even improve ac-

curacy. There are many different dimensionality reduction techniques that can

be divided into feature selection and feature transformation.

Feature selection methods choose a subset of important features whereas75

feature transformation methods form new features, that are fewer in number

than the original and are divided into filters, wrappers and embedded methods

[22].Filter methods select subsets of variables by ranking individual variables

with scoring functions such as correlation coefficient or mutual information cri-

terion. Their benefits are their simplicity and computational efficiency, but80

may lack in performance. Wrapper methods use the prediction performance

of a given classifier to assess the relative usefulness of subsets of features. In

pose-based action recognition genetic algorithms have been used to determine

the optimum set of skeleton joints which improved recognition rates [23].
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Embedded methods incorporate variable selection in the process of training85

and can be more efficient than wrapper methods. Decision trees [24] and Ran-

dom Forests [25] contain a built-in mechanism to perform variable selection that

can estimate the importance of each feature during the classification process.

Random Forests were employed by Negin et al. [26] as a discriminative feature

selection tool to improve the action recognition performance of a Support Vec-90

tor Machine (SVM) with a small fraction of the original pose-based features.

Negin et al. [26] used features extracted from the entire sequence which has

high observational latency.

2.1.1. Feature Transformation

The aim of feature transformation is to map the original high dimensional95

feature space to a much lower dimension, resulting in fewer features that are a

combination of the original features. The advantage of feature transformation is

that it handles the situation in which multiple features collectively provide good

discrimination even if they provide relatively poor discrimination individually.

Schwarz et al. [27] use Laplacian Eigenmaps (LE) to suppress individual100

style. LE considers the spatial relationships between poses, but ignores the

temporal relationships which are critical for recognising similar actions. This

limitation has been overcome by spatio-temporal action manifolds [2, 3, 4, 5].

Lewandowski et al. [2, 4] proposed Temporal Laplacian Eigenmaps (TLE) that

extend LE by preserving the temporal structure and suppressing the stylistic105

variations of the data in the low dimensional space. Gong and Medioni [3]

proposed a directed traversing path on a spatial manifold to incorporate the

temporal dimension. They proposed Dynamic Manifold Warping for temporal

alignment followed by spatial similarity of sequences on their manifold. Vemu-

lapalli et al. [5] proposed a new representation of skeleton data as a Lie Group110

which is a 6D curved manifold. Human actions were modelled as curves on this

manifold. DTW was used for execution rate invariance and additionally Fourier

Temporal Pyramids to handle noise. The final classification was performed with

linear SVM and achieved state-of-the-art results for offline action recognition.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The spatial-temporal manifolds [2, 3, 4, 5] are invariant to personal style and115

execution rate invariant but as the whole sequence is used for classification the

action recognition has high observational latency and requires the action to be

pre-segmented.

Deep learning approaches have also been proposed for action recognition

[6, 7, 8]. In these architectures, early layers learn features from unlabelled video120

data, in contrast to selecting hand-crafted features, while later layers may per-

form feature transformation and finally action recognition. The benefit of deep

learning is that the features can be automatically selected without the use of

prior knowledge and they have achieved comparable or even better accuracy

than engineered features for offline action recognition. Nevertheless, deep learn-125

ing approaches require large amounts of training data, which may not always

be available.

2.2. Early action recognition

Early action recognition aims to determine the action class based on as few

observations as possible, even when only part of the action has been seen. Ex-130

isting early activity recognition approaches extend popular activity recognition

methods such as bag-of-words (BoW) [9, 10], sequential state models [11, 12]

and maximum margin methods [28, 13, 14].

Ryoo [9] proposed two extensions to the bag-of-words paradigm for early

activity recognition: Integral bag-of-words (Integral BoW) and Dynamic bag-135

of-words (Dynamic BoW). The integral histogram models spatial changes in the

visual words but the temporal relations are ignored. Dynamic BoW overcomes

this limitation by splitting an activity into subsequences and using a sequential

matching algorithm. Dynamic BoW outperforms Integral BoW which highlights

the importance of temporal modelling for early recognition. Both approaches140

determined accuracy on sequences that were manually pre-segmented to contain

a single action where results were calculated after observing ratios from 0.1 to

1.0, where 0.5 represents half the action and 1.0 the full action. Dynamic BoW

achieves reasonable accuracy when half the activity has been observed. However,
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the accuracy of both approaches is significantly reduced in the early part of the145

activity. Similarly, Cao et al. [10] use the bag-of-visual-words technique on video

segments to incorporate local spatio-temporal features. Each video is uniformly

divided into equal length segments and a mixture of segments of varied length

and temporal shifts is used to improve execution rate invariance. However, this

approach is limited to the number of scales and shifts that can be computed.150

Recently, Escalante et al [15] proposed a Naive Bayes classifier that accumulates

evidence provided by bag-of-features from the beginning of a gesture/action, to

achieve early recognition, even on continuous streaming data.

Sequential state models [11, 12] are effective at early recognition as they

intrinsically preserve temporal order. Davis and Tyagi [11] proposed a Hidden155

Markov Model (HMM) for rapid and reliable early action recognition on man-

ually pre-segmented sequences. Li and Fu [12] propose ARMA-HMM, an in-

tegrated autoregressive moving-average model (ARMA) with a HMM for early

activity recognition on pre-segmented sequences. ARMA-HMM predicts fu-

ture poses to enrich the partially observed activity sequences and improve early160

recognition. However, the reliance on manual pre-segmentation which has to be

performed offline, negates the benefit of the early detection of these approaches.

Lan et al. [13] developed a max-margin framework for early action recogni-

tion that achieves state-of-the-art results when half the action has been observed

in a manually pre-segmented sequence but the accuracy is significantly reduced165

in the early part of the activity. Kong et al. [14] extend the max-margin ap-

proach to multiple temporal scales and achieve state-of-the-art results when the

full action has been observed which is equivalent to the classic offline action

recognition problem but accuracy is lower than Lan et al. [13] when observing

half of the action.170

Hoai and De la Torre [28] proposed max-margin early event detectors (MMED)

for early detection of a range of human activities i.e. facial expressions, gestures

and actions. They extended Structured Output SVM to accommodate sequen-

tial data. Their learning formulation is a constrained quadratic optimisation

problem to ensure monotonicity of the detection of partial activities. To evaluate175
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their approach Hoai and De la Torre [28] concatenated manually pre-segmented

sequences to form longer sequences containing multiple actions to temporally

detect the action as soon as possible which is an improvement over the previous

scenarios in this section of single action evaluation. However, they considered

each action individually by placing the action of interest at the end of the se-180

quence and lowering the false positive rate until it reached 0% to ensure their

algorithm did not detect the action of interest before it started. Therefore,

MMED could not perform in a real-world scenarios of detecting multiple ac-

tions in a continuous stream. To address these issues, Huang et al [16] extended

the previous work by proposing the Sequential Max-Margin Event Detectors185

(SSMED) which are based on multi-class classification and were evaluated on

the newly-introduced CMU-MAD dataset to confirm their applicability on a

continuous stream

The majority of existing approaches [9, 10, 11, 12, 13, 14] for early activ-

ity recognition focus on classifying the action as soon as possible using pre-190

segmented sequences. These approaches achieve reasonable accuracy after ob-

serving half the action but manual pre-segmentation simplifies the task of early

detection which inflates accuracy and limits the applicability of these approaches

to real-world scenarios. Compared to the other few methods that may work on

continuous streams [15, 16], the linear latent space of our methodology explicitly195

models the overall temporal structure of each action and deals with issues such

as stylistic and execution rate variation.

2.3. Online Action Recognition

Most of the existing online action recognition algorithms do not have low

observational latency which is needed to ensure that the developed algorithms200

are suitable for real-time applications. There are two distinct approaches to

address observational latency: the first is automatic action segmentation of the

sequence followed by classification of the individual actions and the second is to

perform continuous classification.

Automatic action segmentation is a natural progression to enable existing205
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offline recognition approaches to be used online. De la Torre et al. [29] use a

clustering algorithm to cut sequences into action instances. However, their seg-

mentation algorithm is processed offline so subsequent action recognition would

also be offline. To overcome this limitation Gong et al. [30] fused the seg-

mentation with matching. However, as the segmentation is based on capturing210

transitions between actions, the recognition can only occur after the action is

complete incurring high observational latency, because of the potential differ-

ence between peak time and completion time.

An alternative approach for online action recognition with very low latency

is to reduce template matching to single pose matching. Ellis et al. [11] au-215

tomatically reduce the number of key poses to a single canonical pose for each

action. The disadvantage of such an approach is that no temporal history of an

action is used, and as a consequence matching of just a single pose may lead to

false detections especially when different actions contain similar poses.

Eickeler et al. [31] proposed two methods based on HMM for continuous220

recognition of gestures: smoothing and filtering. The former approach achieved

high accuracy but with high observational latency (12 seconds) which may be

acceptable in some applications e.g. sign language recognition but not suitable

for human-computer interaction. The latter approach reduced the time delay of

recognition but only if the gestures were temporally isolated which limits its suit-225

ability for gaming scenarios. Natarajan and Nevatia [32] proposed a hierarchical

HMM with variable size sliding temporal window to achieve high accuracy at low

observational latency (average 3.2 frames) and real-time computation (28.6fps)

for online action recognition. Although, this method allows continuous action

recognition the method requires prior knowledge of the structure of the actions,230

like the limbs involved.

To precisely measure latency Nowozin and Shotton [33] introduced action

points, a temporal anchor for action instances within a sequence. For example,

an action point for a punch could be defined as the moment at when the arm

is maximally extended. They also proposed two recognition models that can235

detect action points in real time. Their first approach, Firing Hidden Markov
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Model [33] is a variation of HMM with an explicit firing state which detects

action points when the probability of the action exceeds a threshold. In their

experiments they compared offline smoothing with online filtering.

Nowozin and Shotton second approach, online Random Forests [25] was240

adapted for continuous action recognition using a sliding window approach.

Experiments showed that Random Forest was simpler, faster and more reliable

than the HMM approach [33, 34]. Similarly, Bloom et al. [35] used a slid-

ing window and performed the classification by AdaBoost. However, the fixed

size of the sliding window in these approaches is a source of error due to ex-245

ecution rate variations. To address this Zhao et al. [29] optimised the size of

the segment during their pre-processing using a DTW variant for subsequence

matching. However, as the average length of their templates is 35 frames ob-

servational latency is high. Sharaf et al. [36] achieved state-of-the-art results

for online action recognition with a feature selection approach combined with250

a SVM. Sharaf et al. used features at multi-scales to improve execution rate

invariance but their approach is computationally limited to a couple of levels

which limits the execution rate invariance.

Recently, Gees et al [37] introduced the TVseries dataset and a relevant

evaluation framework for the evaluation of online action detection and early255

action recognition. However, their evaluation protocol is not appropriate for

applications where time-precise detection of the action peak is required, e.g. in

gaming and HCI applications.

2.4. Action prediction

Action prediction is a recent development in human action recognition, which260

has received relatively little attention and is also the most difficult task as it

involves forecasting future occurrences based on recent observations.

Sequential state models [12, 38] are able to predict future poses as they

intrinsically preserve temporal order. Li and Fu [12] proposed ARMA-HMM,

which predicts future poses to enrich the partially observed activity sequences.265

The focus of their work was to improve early recognition so the accuracy of the

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

predicted poses was not evaluated. Also, Galata et al. [38] proposed variable-

length Markov models (VLMM) to encode high-order temporal dependencies for

animation of human activities. They synthesised hypothetical activity sequences

using the VLMM as a stochastic generator to create realistic animations with270

statistically accurate variations. However, the aim of their work was to generate

synthetic poses rather than predict actual future poses.

Vondrick et al. [39] demonstrated the difficulty of predicting actions by

demonstrating that human subjects also fail to accurately predict actions in

30% of the cases when given a single frame one second before the action starts.275

To handle this ambiguity they develop a deep network architecture to produce

multiple predictions and use large amounts of unlabelled video data to capture

common sense knowledge about the world. Although they are still far from

human performance on this task they are able to achieve reasonable accuracy

for such a complex task. However, further analysis of their training frames shows280

that the start of an action is also an ambiguous concept as some examples do

contain pose information that reveal the intended action and others contain

contextual information that may be used to determine the action.

There is relatively little research into action prediction and the approaches

vary widely in their goals, ranging from improving early action recognition,285

through generating synthetic sequences to predicting the action class before

the action starts. The last is the most interesting and challenging especially in

scenarios where there is no contextual information. In the best of our knowledge,

our work is the first ever that deals with the problem of action prediction in

continuous streams.290

3. Methodology

The core of our proposed methodology is the Clustered Spatio-Temporal

Manifolds, which are compact style invariant models of the dynamics of human

actions. They enable action classification in a continuous stream for early action

detection in addition to the ability to follow the progress of the action so that295
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the peak can be detected with low latency or even predicted. Three inference

algorithms are also proposed to enable early action recognition, online action

recognition and action prediction.

The spatio-temporal manifolds are created by feature transformation to re-

duce style variance whilst still maintaining the temporal dynamics of the action.300

The main contribution of this paper is the combination of k-means and TLE,

that extracts style-invariant key-poses ordered along the TLE manifold, so to

define a linear latent low dimensional space for each action.

Action templates defined along the by linear latent spaces are effectively

matched using DTW for execution rate invariance. Our second contribution is305

to reduce the high observational latency of template matching by employing a

sliding window approach to match template fragments with low latency. Peak

key poses are the third contribution to enable explicit location of action peak

for low latency action recognition and even action prediction.

Latency is dependent on two separate factors which have been identified as310

observational latency and computational latency [40]. Observational latency

is the time it takes the system to observe enough frames to make a decision,

whereas computational latency is the actual time to perform the computation on

a frame. Ellis et al. [40] measured observational latency from a rest state which

is not possible feasible with in multiple action scenarios as the subjects may not315

return to the rest state between actions. Therefore, in this paper observation

latency is defined as the time after the peak of the action at which the action

is detected which at any rate is a more suitable measurement for evaluating

latency for natural user interface (NUI) applications.

The proposed methodology consist of the same training phase (section 3.1)320

which generates the action templates and an inference phase that depends on the

specific task: early action recognition (section 3.2.1), online action recognition

(section 3.2.2) and prediction (section 3.2.3).
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Figure 2: Action templates with four key stages: dimensionality reduction, clustering, ordering

and projection.

3.1. Action Model Learning

To create the spatio-temporal action templates, there are four key stages:325

feature transformation, clustering, ordering and projection (as shown in Fig-

ure 2). Human actions are represented by a large number of spatio-temporal

features, so the first stage is to reduce the dimensionality. Temporal dynamics

are critical for action recognition and prediction so a dimensionality reduction

method that preserves the temporal structure of the data in the embedded space330

is employed. Temporal Laplacian Eigenmaps (TLE) [2, 4] is a nonlinear feature

transformation technique, that finds a new set of dimensions that are combina-
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tions of the original dimensions. TLE has previously been used for offline action

recognition from video sequences [2] and is suited to any time series data that

contains repetitions of actions.335

Pose-based features can be viewpoint and anthropometric invariant as well

as generated in real-time with a pose estimation method [41]. Normalising the

skeleton poses and obtaining the joint angles removes the viewpoint variations.

Although the proposed algorithm is evaluated with skeleton data, the method

can also be applied to other time series data. Similar to Lewandowski et al.

[2] the joint angle features are defined as the quaternions of the angle between

three connected joints in a single pose (e.g. right wrist, wright elbow and right

shoulder) were calculated for 13 joint angles for each skeleton pose, so each high

dimensional feature vector has 52 dimensions. The quaternions fq ∈ C4 were

built in the standard polar (axis-angle) form:

fq = cos (
θ

2
) + sin (

θ

2
)(inx + jny + knz) (1)

where n is the (unit length) axis of rotation, θ is the angle, and i, j and k are

the imaginary basis vectors.

3.1.1. Dimensionality reduction

Temporal Laplacian Eigenmaps (TLE) algorithm [2, 4] is an unsupervised

nonlinear method for dimensionality reduction for time series data. Given a set340

of points X = (xir )(ir=1...nr) distributed in high dimensional space (xir ∈ RD),

TLE is able to discover their low dimensional representation Y = (yir )(ir=1...nr),

(yir ∈ Rd) where d � D and nr is the number of points in the time series, as

shown in Figure 4. The key feature of the embedded manifolds is that the

temporal structure of the data is preserved in the low dimensional space.345

Two neighbourhood graphs are constructed during the process of dimen-

sionality reduction, one with adjacent temporal neighbours and another with

geometrically similar neighbours, as illustrated in Figure 3. The adjacent tem-

poral neighbours are the 2nu closest points in the sequential order and repetition

neighbours are the points similar to xir , extracted from repetitions of time series350

14
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fragments.

Figure 3: TLE: temporal neighbours (green dots) of a given data of a given data point, xir ,

(red dots) in a) adjacent and b) repetition graphs.

Neighbourhood connections defined in the Laplacian graphs place neighbours

from the high dimensional space nearby in the embedded space. Consequently,

the temporal neighbours preserve the temporal structure and the spatial neigh-

bours reduce style variability by aligning the time series in the embedded space.355

3.1.2. Clustering

Clustering is then performed on the embedded manifold to remove redundant

information. k-means [42] is applied to cluster the nr low dimensional points Y

into nc clusters C = {cic}((ic=1...nc), cic ∈ Rd, where nc � nr as shown in Fig-

ure 4. Removing redundant information reduces the computational time of the360

subsequent action recognition and may also improve accuracy. Additionally, the

clusters provide key points throughout an actions lifecycle that can be used to

determine the current and even predict future progress. The number of clusters

(nc = 35) was set based on existing experiments for offline action recognition

[2].365

3.1.3. Ordering

The clusters discovered by k-means are unordered so the temporal rela-

tionships from the embedded manifold are exploited to order the clusters. A

first-order Markov chain [43] is constructed for each action to chronologically
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Figure 4: Clustered Spatio-Temporal manifold with the low dimensional points Y shown as

points, coloured according to their cluster and the cluster centers C as black circles. Each on

the clusters correspond to a key pose in the high dimensional space.

link the clusters. The Markov chain is defined by the transition matrix Λ =

(λic,jc)(ic=1...nc,jc=1...nc) where λicjc are the cluster transition probabilities. The

transition probability from cluster ic to cluster jc is found by counting connec-

tions between temporal neighbours on the manifold. If transitions to the same

cluster are ignored, the maximum transition probability for each cluster will

represent the temporal order o = (oic)(ic=1...nc) between the clusters as shown

in Figure 5 and in Eq. 2, where ic 6= jc.

oic = arg max
jc

(λicjc) (2)

Since the clusters are determined by k-means, their centres tend to be

equally-distant along the temporal structure specified by TLE and therefore

define a low dimensional linear latent space. This latent space extends the ap-

plicability of TLE from offline action recognition [2, 4] to the challenging tasks370

of online action recognition, early action recognition and action predictions that

are tackled in this work.

3.1.4. Projection

Selecting key poses removes redundant information to improve classification

accuracy and reduce the computational latency of template matching. In rel-375

evant works, key poses were estimated by identifying the most discriminative
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Figure 5: Cyclic clustered action manifold and highest probability transitions.

frames according to the entropy of their visual words [44] or using Adaboost

[45], or by k-means clustering of training poses and selecting the closest pose

to the cluster centre [46]. Ponce et al [47] also applied k-means but on aligned

subsequences to identify discriminative subgestures instead. The above meth-380

ods reduce stylistic variation by selecting an average pose but as the key pose

represents an individual some personal style will remain. To eliminate personal

style the proposed method uses the clusters from the low dimensional action

manifolds and projects their centres to the high dimensional space, using the

Radial Basis Function Network (RBFN) mapping to generate new poses that385

are not present in the training dataset.

One limitation of TLE is that it places the nr points in a low-dimensional

space but it does not learn general mapping functions that will allow new

points to be projected from the low to the high dimensional space. RBFN

mapping functions allow projecting new data between the low and high dimen-390

sional spaces [2]. Using χ = {yir ,xir}((i=ir...nr) as a training set, RBFN are

trained to learn the mapping between the low and the high dimensional space

[2]. Then using the RBFN mappings the cluster centres C are projected into

the high dimensional space to generate key poses k ∈ RD, that form the ac-

tion templates Ka = (kio)(io = o1...onc), by using the temporal order o found395

between clusters, as illustrated in Figure 6.
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Figure 6: Cyclic clustered action manifold and highest probability transitions.

Figure 7: Peak poses for different actions, from left to right: right punch, left punch, right

kick, left kick and defend.

3.1.5. Peak key pose selection

The peak of an action is a key concept, which is defined as the moment when

the goal of the action is satisfied. For example, in a boxing game the aim of

punching is to hit the opponent which is fulfilled when the arm is maximally400

extended. The poses in the dataset that fulfil the action goal are manually

labelled as peak poses with one peak pose labelled for each action instance.

Examples of peak poses for different actions are illustrated in Figure 7.

Key poses have been used with template matching for offline action classifi-

cation [46] but the novel contribution is to select the key pose that represents405
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the peak of the action for online classification. Peak key poses are a novel con-

cept, which are related to but are not the same as action points [33] or canonical

poses [40]. Peak key poses also represent a single pose, but in contrast to ex-

isting approaches, they are selected from the key poses rather than the training

poses, so they are invariant to individual style.410

To select the peak key poses, the peak poses from the training data (shown

in Figure 7) are matched against the key pose templates (shown in in Figure

6). To increase robustness, fragments of poses are matched rather than single

poses which enables actions with similar poses to be correctly matched based

on the temporal pose history before the action peak. To extract a fragment fG

from a sequence of poses S = (sis)(is=1...ns), (sis ∈ RD), Eq. 3 is used, where

nf is the required number of poses in the fragment, if is the index of the last

pose, ns is the number of poses in the sequence and if ≤ ns and if − nf ≥ 0.

fG(S, if ) = (sjf )(jf=if−nf ,if−nf+1,...,if ) (3)

Assuming the peak poses in the training data have been manually selected

for each action and their indices stored: η = (ηiη )(iη=1...nη) , the peak key poses

are selected as follows: for each action a and for each peak pose index ηiη , the

matching key pose index im is found by minimising the DTW distance between

the peak pose fragment from the training poses X and the key pose fragments

from the action templates Ka, as in Eq. 4.

im(ηiη ) = arg min
ik∈1...nc

fD(fG(X, ηiη ), fG(Ka, ik)) (4)

To find the peak key pose index ip for the action a, ζ is initialised (ζ = 01,nc)

and each time a matching key pose index im is found ζim is incremented. The

peak key pose index ip for the action is the key pose index, with the maximum

number of matches (ip(a) = (arg max ζ).

3.2. Action Recognition415

Three action recognition methods are introduced below, online, early ac-

tion recognition and action prediction, and all have a common base of online
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template matching with DTW for execution rate invariance [48]. Existing ap-

proaches for offline action recognition use the entire action template which in-

herently has high latency [46]. To enable online recognition a sliding window420

approach matches recent test poses with action template fragments, as illus-

trated in Figure 8.

Figure 8: Template fragment matching: observed test poses and matched action template.

3.2.1. Early Action Recognition

Early action recognition aims to determine the action class, based on as few

observations as possible, even when only part of the action has been seen. In425

most of existing work [9, 10, 11, 12, 13, 14] the sequences are pre-segmented

to contain a single activity and evaluation is performed at different observation

ratios, from 0.1 to 1. So an observation ratio of 0.5 represents the first half of

the action and an observation of 1 is the conventional offline action recognition

approach. Since the test sequences in this work are not pre-segmented, as they430

consider the real-time application of action recognition, the proposed method

assigns an action label for each frame in a continuous stream using a sliding

window. The sliding window contains the recent and current observations from

the test stream to ensure no future information is incorporated into the method.

The proposed method for early action recognition is online template match-

ing where the current test pose fragment is matched against sliding windows

on each of the different action templates to obtain key pose fragments. The

action class of the most similar key pose fragment is used as the action clas-

sification label for the current frame. DTW allows ”elastic” transformation so

actions in the test stream performed at different speeds to the action templates
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can be matched. Formally, early action recognition for each sequence of test

poses Z = (zit)(it=1...nt), zit ∈ RD is performed as follows: to find the action

classification label a’ for the current pose zit , the normalized DTW distance

between the test pose fragment and test poses from all the action templates are

minimised according to:

a∗(it) = arg min
a∈1...A

( min
ik∈nf ...nc

fD(fG(Z, it), f
G(Ka, ik))) (5)

The minimum normalised DTW distances for each frame of a sample sequence435

in the G3D dataset [49] against each action template are shown in Figure 9.

The lowest distance over all the actions represents the matched action class as

illustrated in Figure 9.

Figure 9: (Top) Normalised DTW distance for each frame (Bottom) Action classification label

for each frame. At this stage all frames are classified as an action, even the neutral frames.

To overcome this limitation action points are detected at the next stage to only classify the

peak frame of each action.

3.2.2. Online Action Recognition

To enable continuous action recognition to be suitable for real-world applica-440

tions a single point needs to be identified for each action, rather than classifying

individual frames. For this reason action points [33] were introduced which are

action labels with temporal anchors. Action points are used in this section to
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detect the peak of the action and each action point is represented by an action

label a and a timestamp td.445

Combining online template matching with peak key poses enables online

action recognition with high accuracy and very low latency [50]. To explicitly

locate the moment where an action reaches its peak, poses are followed as they

progress through the early stages of the action and the peak is detected by

comparing the matched poses with the peak key pose.450

For each test pose stream Z = (zit)(it=1...nt) online action recognition consist

of three main steps: the first step is to find the action classification label a∗

for the current test pose zit using the online template matching described in

section 3.2.1. The second step is to determine the progress of the current action

by locating the key pose on the action template that is the closest match to the

current test pose. To find the matching key pose index im for the current test

pose index it, the normalised DTW distance for the test pose fragment against

test poses from all the action templates are minimised according to Eq. 6.

im(it, a
∗) = arg min

ik∈nf ...nc
fD(fG(Z, it), f

G(Ka, ik)) (6)

The third step is to determine if the action has reached its peak. The peak

key pose can be conceptually projected onto the clustered action manifold to

illustrate that the peak pose is detected when the matched key pose index im

is the same as (or slightly greater) than the peak key pose index ip (as shown

in Figure 11) and is formally defined in Eq. 7.

ϕ(im, ip, nk) =





1 if 0 ≤ im − ip ≤ nk
0 otherwise

(7)

where im is the matched key pose index for the current test pose zit , ip is the

index of the peak key pose and nk is the maximum number of poses after ip

allowed to detect a peak pose. This can also be illustrated in graph format as

shown in Figure 10 where the key pose index ik, is plotted for each frame and

where this cluster index line crosses the peak key pose line (dotted horizontal455

line) for the corresponding action an action point is detected (o).
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Figure 10: Clustered Action Manifold cluster indices for each frame with ground truth action

points (*) and detected action points (o).

Figure 11: Right Punch Clustered Action Manifold with peak key pose index ip with matched

key pose index im and last matched key pose index il.

3.2.3. Action Prediction

There are relatively few approaches to action prediction and the approaches

vary widely in their goals, ranging from improving early action recognition [12],

through generating synthetic sequences [38] to predicting the action class before460

the action starts [39]. In this subsection a novel approach to action prediction

is proposed where action peaks are predicted in a continuous stream before the

peak has been observed. Action points are used in this section to represent the

action peak and each prediction is represented by an action label a, a timestamp

for the predicted action peak tp to determine the timeliness of the prediction465
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and a timestamp at the time the prediction was made td to measure how far in

advance the predictions can be accurately made.

For each test pose stream Z = (zit)(it=1...nt), online prediction consists of

four main steps: the first step is to find the action classification label a∗ for

the current test pose zit using the online template matching, using Eq. 5 de-470

scribed in section 3.2.1. The second step is to determine the progress of the

current action by locating the key pose index im on the action template that

is the closest match to the current test pose, using Eq. 6, described in section

3.2.2. The third step is to store the nm most recent sequential pose matches

of the current action class a′ to maintain the history of the action progress475

θ = (im(θt, a
∗))(θt=it−nm...it).

The fourth step is to perform the action prediction using the recent action

history and regression. Although the dynamics of human actions are nonlinear

in the high dimensional space, our embedded clustered spatio-temporal repre-

sentation establishes a linear latent space. This is demonstrated in Figure 10,

which shows time along the horizontal axis and the key pose index along the

vertical axis. Therefore, linear regression is proposed to quickly predict the ac-

tion peak. For the current test pose zit , when nm sequential key pose matches

of the same action class a′ have been observed, their key pose indices θ, are

fitted to a straight line by least-squares regression and the equation of the line

is derived by Eq. 8.

(α
′
(α∗, it), β

′
(α∗, it)) = arg min

α,β

it∑

θt=it−nm
(im(θt, α

∗)− α− βti)2 (8)

where α
′

is the y-intercept of the least squares line and β
′

is the gradient.

The least squares line is extended to predict future poses using the derived

equation. The peak key pose line is a horizontal line with a y-intercept of

the peak key pose index ip for the corresponding action. The point where480

the extended least squares line intersects the peak pose horizontal line is the

estimated time tp of the peak with time of detection td = it (see Figure 12).

Extreme cases are excluded by setting thresholds on the minimum and maximum
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gradient of the slope. The gradient of the line represents the execution speed of

the current test subject and is independent on the speed of subjects observed in485

the training set. Fast subjects will match key poses in the action template faster

than slower subjects resulting in a steeper slope. A key benefit of the proposed

temporal prediction is that it is invariant to execution speed as it utilises the

gradient of the slope which is formed based on the speed of the current subject.

Figure 12: Linear regression at time td to predict the time tp at which the partially observed

action will reach its peak.

490

4. Experiments

4.1. Datasets

The performance of the proposed algorithms are evaluated using publicly

available datasets designed specifically for real time action recognition: G3D [49]

and MSRC-12 [34]. Both datasets provide sequences of skeleton data captured495

using the Kinect pose estimation pipeline at 30fps.

The MSRC-12 dataset comprises of 30 people performing 12 gestures. These

gestures are categorised into two categories: iconic and metaphoric gestures.

The iconic gestures directly correspond to real world actions and represent

first person shooter (FPS) gaming actions. There are six FPS gaming actions:500

crouch, shoot, throw, night goggles, change weapon and kick. The dataset was

obtained using different instruction modalities and the modality that produced

the most accurate results was video + text.
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Table 1: The total number of training and testing instances for gaming action datasets.

Dataset Actions Subjects Repetitions
Cross

Validation

Training
Action

Instances

Testing
Action

Instances

G3D 5 10 3 10 1350 150

MSRC-12 6 10 10 10 5400 600

The G3D dataset contains 10 subjects performing 20 gaming actions grouped

into seven categories. The subjects are diverse in terms of gender, clothing and505

hair styles and in contrast to other action recognition datasets a G3D sequence

contains different actions in the same sequence as shown in Figure 7. The

fighting category was selected as it has substantial variations in execution rate

as well as personal style. The fighting category contains five gaming actions:

right punch, left punch, right kick, left kick and defend.510

Action point annotations of the peak poses are available for the MSRC-12

dataset and G3D dataset to precisely measure the latency of action recognition

methods as well as the accuracy. Comparative studies are conducted separately

for performance in the specific tasks of online action recognition, early action

recognition and action prediction.515

A leave-person(s) out cross validation protocol was used where a set of people

is removed to obtain the minimum test set that contains instances of all actions.

For the MSRC-12 dataset this may be more than one actor as not every actor

performs all the actions for the video + text modality. For the G3D dataset this

is simply one actor as all actors perform all the actions. The remaining large set520

is used for the training. This process is repeated 10 times with different subsets

of people to obtain the general performance. The total number of training and

testing instances for each dataset used in the following experiments is shown in

Table 1.
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4.2. Online Action Recognition525

4.2.1. Performance Metrics

For a fair comparison with existing approaches the same latency aware metric

was used as initially proposed by [34] and later adopted by [36]. For a specified

amount of latency (∆) the action point F1 score [33] determines whether a

detection made at time tda for action a is correct in relation to a ground truth

action point at time tga by using the following formula:

Φa(tda , tga ,∆) =





1 if |tga − tda | ≤ ∆

0 otherwise
(9)

For a specified amount of latency (∆) precision pr and recall re are measured

for each action a and combined to calculate a single F1-score.

F1(a,∆) = 2
pra(∆)rea(∆)

pra(∆) + rea(∆)
(10)

As online action recognition algorithms need to detect multiple actions, the

mean F1 score over all actions is used, defined as:

F1(A,∆) =
1

|A|
∑

a∈A
F1(a,∆) (11)

The detected action points are compared to the ground truth action points

using the action point metric to obtain a mean action point F1-score at a fixed

latency ∆, where ∆ = 333ms the same as the studies by [36] and [34].

4.2.2. Comparative Study530

Clustered Spatio-Temporal Manifolds that are proposed in this paper are

evaluated against five algorithms: Random Forest [34], Dynamic Feature Se-

lection [35], SVM-RFE [36] and our own implementations of Random Forests

and AdaBoost that provide baselines for further experiments. For all the ex-

periments the number of positive training samples selected around the action535

point was ±8 and all other samples were used as negative training samples. The

optimal positive sample size was found by varying this parameter between ±1

and ±20 on the training set.
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• Random Forests: the 3 parameters that affect the performance of the

Random Forest are the number of trees in the forest, the depth of each tree540

and the number of selected features at each node. Exhaustive searching

of every combination of these 3 parameters is computationally prohibitive

so in order to find the optimal forest configuration, 27 forests were trained

with a combination of (10, 50 and 200) nT trees, of depth (4, 6 and 8)

with (10, 100 and 297) features selected at each node. Parameter selection545

was performed using cross validation on the training set. The best values

of 200 trees, of depth 8 and 10 features at each node were found.

• AdaBoost: A comparison of Random Forests and AdaBoost in a dif-

ferent field [30] showed that AdaBoost can provide higher classification

accuracy at the cost of less efficient computation. The standard version550

of AdaBoost is sensitive to noise in the dataset so Gentle AdaBoost [51]

was selected as it gives less weight to outlier data points. As AdaBoost

is also based on Decision Trees it has similar parameters: the number of

weak classifiers which is the number of trees and the depth of the trees.

Similarly, exhaustive searching is computationally prohibitive so in order555

to find the optimal configuration, 16 models were trained with a combi-

nation of (10, 50, 100 and 200) trees of depth (1, 3, 5 and 8). Parameter

selection was performed using cross validation on the training set. The

best values of 100 trees and depth 5 were found.

• Clustered Spatio-Temporal Manifolds: To learn manifolds for each560

action the algorithm requires manual segmentation of the start and end

of the action and all frames are used for training. It is important to

note that this segmentation is only required in the training phase and

is not performed in the testing phase. The annotated action points are

additionally used to learn the peak key poses. The parameters for the565

proposed approach are the target dimensionality d, the number of clusters

nc in the manifold, the fragment size nf and the number of clusters nk

that can be skipped at the peak. The target dimensionality (d = 3), was
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Table 2: Action Point F1-scores at ∆ = 333ms , the average and standard deviations over ten

leave-persons-out runs are shown. The results shown in italics were published by the method

authors, all other results were generated by our own implementations.

Random
Forest

[34]
Random
Forest

Ada
Boost

Dynamic
Feature

Selection [35]
SVM-

RFE [36]

Clustered
Spatio-

Temporal
Manifolds

Feature
Vector

Multi-
frame

Single-
frame

Single-
frame

Single-
frame

Multi-
frame

Multi-
frame

G3D -
0.894

(0.155)
0.884

(0.147)
0.910

(0.128) 0.937
0.978
(0.026)

MSRC-12
0.765

(0.070)
0.619

(0.148)
0.675

(0.156)
0.744

(0.270) -
0.773
(0.124)

determined by applying the maximum likelihood intrinsic dimensionality

estimator [50]. The number of clusters (nc = 35) was set based on existing570

experiments for offline action recognition [2]. The number of poses in the

fragment (nf = 10) was set to match the size of the smoothing window

S in [35]. To find the value for nk an exhaustive search was performed

within the training set to maximise the F-score. The optimum value is

(nk = 0) for the MSRC-12 and (nk = 14) for the G3D dataset. No575

smoothing window was applied to the frame based distance results, and

the final output from the algorithm was the detected action points for

each sequence.

4.2.3. Online Recognition Results

The experimental results show that the proposed Clustered Spatio-Temporal580

Manifolds achieved state-of-the-art accuracy for online action recognition with

low latency. The experiments demonstrate the proposed method achieves the

highest accuracy, 77.3% and 97.8% on the MSRC-12 and G3D datasets respec-

tively (see Table 2 for a comparison with existing approaches). A breakdown

of the results by action shows increased performance of the proposed method585

over the comparative methods in every action in the G3D dataset (see Figure

14). The graphs show the methods action point F1-score for each action in
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the dataset and the average across all actions. There is also considerable im-

provement on actions in the MSRC-12 dataset with similar poses (e.g. change

weapon and night goggles) which were difficult to discriminate without the tem-590

poral history (see Figure 15). The higher accuracy of the proposed method may

be attributed to the improved execution rate invariance gained by matching

template fragments with DTW instead of fixed size feature windows as used by

Fothergill et al. [34] and Sharaf et al. [36]. Although both Zhao et al. [29] and

Ellis et al. [40] also perform online action recognition they use the non-gaming595

actions in the MSRC-12 dataset so a comparison with their accuracy results is

not possible.

The proposed method runs in real time (60fps) with low average observa-

tional latency of 2 frames (67ms). The observational latency of the proposed

approach is very low in comparison to [29]. that have an observation latency of600

830-1500ms. The significantly lower observation latency of the proposed method

was achieved by using considerably less frames in the sliding window than [29]

in conjunction with the explicit identification of the peak key pose.

Figure 13 is an example sequence from the G3D dataset which illustrates the

low latency that is achieved by the explicit peak pose (dotted horizontal line).605

The ground truth action points (*) and the vertical dashed lines represent the

time window (±∆) where the action point is deemed to be correctly detected.

The detected action points (o) show that the proposed approach has a very low

latency and high accuracy.

4.3. Early action recognition610

Most work on early recognition has been done in the video modality on

activities that were pre-segmented [9, 10, 11, 12, 28, 13, 14, 38] and therefore

a direct comparison is not feasible. Instead pose-based approaches for online

action recognition have been adapted for early action recognition in a continuous

stream to evaluate their effectiveness at a similar task.615
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Figure 13: Clustered Action Manifold cluster indices for each frame with ground truth action

points (*) and detected action points (o).

4.3.1. Performance Metrics

In the video domain, Hoai and De la Torre [28] recorded the F1-scores as

the action of interest unrolled from 0.1 to 1 and refer to this as the F1-score

curve. However, the percentage of action observed can only be calculated for

sequences that have been pre-segmented to contain a single action. [16] uses620

the metrics of Percentage of Discarded Classes (PDC) and Percentage of early

Labelling (PEL), while [37] proposes the calibrated Average Precision (cAP).

However, none of these provide an insight how early action recognition results

are evolved over time and prior to the peak of an action. Lan et al. [13] use the

temporal distance (in frames) to report accuracy. In real world scenarios such as625

gaming the videos are not pre-segmented, instead action points are provided as

temporal anchors and the latter frame-based metric seems the most appropriate

measurement. For example, the methods performance at a temporal stage -20

describes the classification accuracy given all of the testing frames up to 20

frames before the action peak.630

4.3.2. Comparative Study

The algorithms evaluated in the previous section with source code available

were adapted for early action recognition: Random Forests, AdaBoost, Dynamic

Feature Selection. Before the final detection step these algorithms output a

frame based classification that is used for early action recognition. Similarly,635
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Figure 14: G3D Fighting Online Action Recognition Results by Action.

Clustered Spatio-Temporal Manifolds, the algorithm proposed in this paper,

also outputs a frame-based classification before the final action detection.

4.3.3. Early Action Recognition Results

The proposed method significantly outperforms all of the comparative meth-

ods at all temporal stages across both datasets as illustrated in Figure 16 and640

Figure 17. The graphs show the methods frame F1-score at different temporal

stages from 20 frames before the action peak -20 to the peak of the action 0.

The proposed method reaches 80% accuracy 16 and 10 frames before the action

peak on the MSRC-12 and G3D datasets respectively, whereas the comparative

methods achieve less than 30% accuracy at similar stages. The significant im-645

provement in classification accuracy especially in the early stages of the action

can be attributed to the proposed temporal models. The majority of failure

cases were in the neutral or very early stage of the action as shown in Figures

18 and 19 where the action is ambiguous. The proposed method achieves 97.8%

and 100% accuracy on the MSRC-12 and G3D dataset respectively at the ac-650

tion peak. The failure cases at the action peak in the MSRC-12 dataset were
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Figure 15: MSRC-12 Fighting Online Action Recognition Results by Action.

mainly due to the Change Weapon action which in some cases appears very

similar to the neutral pose at the peak as illustrated in Table 4. The action

peak frame based F1 results are higher than the action point F1 scores reported

in the previous section because the frame based metric used in this section is655

only concerned with classification and not the temporal detection of the action

peak of which the latter is a more difficult task. Finally, the proposed approach

obtains 76.3% on the MSRC-12 dataset 20 frames before the peak which may

be attributed to the fact that the MSRC-12 actions typically have longer onset

than G3D actions, especially the Change Weapon, Shoot and Throw actions.660

Figure 16: G3D Frame F1-scores, the average over ten leave-persons-out runs are shown.
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Figure 17: MSRC-12 Frame F1-scores, the average over ten leave-persons-out runs are shown.

4.4. Action Prediction

The existing work on action prediction has also been performed in the video

modality and therefore a comparison is not feasible. Instead, the comparative

pose-based approaches for early action recognition have been extended with the

same linear regression as described in 3.2.3 to evaluate their effectiveness at665

action prediction.

4.4.1. Performance Metrics

Huang and Kitani [16] use average frame distance (AFD) to evaluate the

accuracy of their predicted poses. AFD is a good measure of the spatial pre-

diction but does explicitly measure the latency of the temporal prediction. In

the proposed method the emphasis is on the temporal prediction of the peak

pose, to the best of our knowledge there are no existing metrics for predicting

the peak of the action. However, the Action Point F1-score is a latency-aware

metric for online action recognition that can be adapted to measure the accu-

racy of the predicted action points tpa instead of measuring the accuracy of the

detected action points tda , by modifying Eq. 9 to Eq. 12.

Φp(tpa , tga ,∆) =





1 if |tga − tpa | ≤ ∆

0 otherwise
(12)
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Figure 18: G3D Temporal Frame Based Results: Correct classifications are shown in green

and failure cases in red. The majority of failure cases were in the neutral or very early stage

of the action.

For a new test sequence, the arrival of data can be simulated and the pre-

dicted action point F1-scores recorded. The predicted action point metric mea-

sures instances rather than frame based predictions so it will be referred to as670

the action point F1-score curve.

4.4.2. Comparative Study

To extend the early recognition algorithms with linear regression, the meth-

ods need to output a certainty measure for each action at each frame. This is the

case for two out of the three algorithms evaluated in the previous section: Ad-675
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Figure 19: MSRC-12 Temporal Frame Based Results: Correct classifications are shown in

green and failure cases in red. The majority of failure cases were in the neutral or very early

stage of the action but there were also some cases at the peak of the action as in some cases

the peak pose for Change Weapon is very similar to the neutral pose.

aBoost and Dynamic Feature Selection. Random Forests could not be adapted

for prediction as the frame based result was a classification. Clustered Spatio-

Temporal Manifolds, the algorithm proposed in this paper, outputs a cluster

index for each frame which can be used in conjunction with the peak key pose

index for prediction. The parameter required for prediction is the number of680

sequential frames for the linear regression. An exhaustive search was performed

on the training set and the optimum result for AdaBoost and Dynamic Feature

Selection was (nm = 2) and for the Clustered Spatio-Temporal Manifolds the

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

optimum value was (nm = 6).

4.4.3. Action Prediction Results685

To measure how precisely the peak of the action can be predicted for all

subjects the action point F1 metric was captured as the continuous stream pro-

gressed. The proposed method significantly outperforms all of the comparative

methods at all temporal stages on the G3D dataset as illustrated in Figure 20

and across the majority of temporal stages on the MSRC-12 dataset as illus-690

trated in Figure 21. The graphs show the methods action point F1-score at

different temporal stages from 20 frames before the action peak -20 to the peak

of the action 0. The proposed method works in a continuous stream, where the

prediction is made as early as possible and early incorrect predictions decrease

the final F1-score. Even at the action peak prediction accuracy is less than on-695

line action recognition as the latter approach delays the detection until the peak

has been observed. The proposed method reaches 38.1% and 45.6% 10 frames

before the action peak. Predicting the point in time at which the peak pose will

occur is a much more complex task than early detection of the action class or

online action recognition, so a decrease in performance is expected. This is sup-700

ported by the fact that the comparative approaches only reached a maximum

of 24% at 10 frames before the action peak. The improvement in prediction of

the proposed method can be attributed to the style invariant temporal model

that is learnt for each action which includes explicit identification of a generic

peak key pose.705

Figure 20: G3D Action Point F1-score curves, the average over ten leave-persons-out runs are

shown.
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Figure 21: MSRC-12 Action Point F1-score curves, the average over ten leave-persons-out

runs are shown.

A key benefit of the proposed prediction framework is that it is invariant

to execution speed; the experimental results show that the regression line for

a faster subject has a steeper gradient than the regression line for slower sub-

ject performing the same action and in both cases the action peak is detected

correctly (see Figure 22).710

5. Conclusion

The core of the proposed methods in this paper are the Clustered Spatio-

Temporal Manifolds, which are compact style invariant models of the complex

dynamics of human actions. They enable action classification in a continuous

stream for early action detection in addition to the ability to track the progress715

of the action so that the peak can be detected with low latency or even predicted.

Application such as early action recognition and action prediction are feasible

thanks to a linear latent space defined by the combination of TLE and k-means;

TLE reduce style variance whilst still maintaining the temporal dynamics of the

action, while k-means leads to equally distant cluster centres along the action720

temporal structure.

The action templates were effectively matched using DTW for execution rate

invariance. To reduce the high observational latency of template matching a slid-

ing window approach was used to match template fragments with low latency.

The proposed approach achieved high accuracy for early action recognition and725

in contrast to existing approaches can operate in a continuous stream.
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Figure 22: Two subjects performing a (right kick), at different speeds (classified right kick

poses blue(), classified left kick poses pink(), ground truth peak pose pink(*), predicted peak

pose ).

Peak key poses were introduced to explicitly and precisely locate the moment

where an action reaches its peak which enabled low latency recognition before

the completion of the action. Experimental results on publicly available gaming

action datasets demonstrate high accuracy with very low latency.730

This paper also introduced the novel and challenging problem of predicting

the action peak in a continuous stream. The proposed solution integrates the

recent action progress history with regression for fast estimation of the peak.

Experiments on public action recognition datasets showed that the proposed
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method outperforms the comparative approaches and makes reasonable predic-735

tions even when there is a significant variation in the style and execution rate

of the subject.
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