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Abstract

In this paper, we propose an innovative averaging of a set of time-series based on the Dy-
namic Time Warping (DTW). The DTW is widely used in data mining since it provides
not only a similarity measure, but also a temporal alignment of time-series. However,
its use is often restricted to the case of a pair of signals. In this paper, we propose
to extend its application to a set of signals by providing an average time-series that
opens a wide range of applications in data mining process. Starting with an existing
well-established method called DBA (for DTW Barycenter Averaging), this paper points
out its limitations and suggests an alternative based on a Constrained Dynamic Time
Warping. Secondly, an innovative tolerance is added to take into account the admissible
variability around the average signal. This new modeling of time-series is evaluated on a
classification task applied on several datasets and results show that it outperforms state
of the art methods.
Keywords: Time-series averaging, Dynamic Time Warping, Local constraints,
Constrained DTW Barycenter Averaging, Time-series Classification

1. Introduction

Time-series are studied in many fields and used for instance to analyze motion [10],
handwriting [2], biological systems [23] and audio (speech or music) [11] signals. They
differ from classical data because they are time-ordered. As a matter of fact, time-series’
processing has become an important challenge for many research areas. One of the main
goals is to derive a single model from a set of signals corresponding to several instances
of the same physical process. This model can then be used for pattern recognition or to
evaluate the differences between time-series. For example, one can measure the quality of
a surgical gesture by comparing it to a set of correct ones [24]. Contrary to classical data
that can be represented very simply by their mean and covariance matrix, time-series are
much more difficult to process because they can have different lengths, requiring their
temporal alignment as a pre-processing step.

A well-known tool for time-series’ modelling is the Hidden Markov Model (HMM) [17]
in which data are modeled using a Markov chain with unobserved states. Each state gen-
erates observed values according to a probability distribution that can be, for example,
a multivariate Gaussian distribution for continuous values. Baum-Welch method [17] is
Preprint submitted to Elsevier October 16, 2017



used to learn HMM parameters from observed unaligned time-series and the forward-
backward procedure estimates the probability that an observed sequence has been gen-
erated by a HMM with a known (or learnt) set of parameters. HMM are powerful tools
for solving simple time-series’ recognition problems [1, 22, 5]. They however cannot eval-
uate the local quality of time-series, representing a gesture for example, since they only
provide global probabilities to go from a state (a posture) to another one. It also implies
that the alignment of a new sequence with the Markov chain is done only based on the
timing between these states that does not allow a fine analysis of signals. Other models
like Time delay neural networks [21] or finite state machines [7] have the same drawbacks.

For these reasons, some works have been developed based on Dynamic Time Warping
(DTW). The DTW does not only provide a similarity measure between two time-series,
but also a nonlinear alignment path between them. Several authors developed DTW
based tools to average time-series [16, 14, 15, 13, 20]. However, these works face several
limitations that will be discussed in Section 2.2. In this article, we propose a new
DTW based averaging method that solves many of the limitations of the classicial DTW.
Moreover, in addition to the mean value, we introduce a tolerance at each time step to
model time-series’ variation around the average. To the best of our knowledge, this is
the first time that tolerances are introduced into DTW to model time-series. This new
model of temporal data is introduced in Section 3. Results on a time-series’ classification
task show our approach outperforms state-of-the-art and are presented in Section 4.

2. Related Works

Before reviewing the different DTW-based methods for averaging time-series, we first
give a brief overview of Dynamic Time Warping.

2.1. Dynamic Time Warping

DTW was first introduced in the 1970’s for audio analysis [19, 18] before being used for
general time-series analysis. DTW provides a non-linear alignment optimal path between
two time-series by minimizing the cumulative distance between the signals (x(i))1≤i≤M
and (y(j))1≤j≤N (time-series) to be aligned. It is a relatively straightforward process
that first estimates the distance map d between the signals with elements di,j given by:

di,j = (x(i)− y(j))2 (1)

A cumulative distance map D with elements Di,j is then computed from the distance map
d. Di,j represents the minimal accumulated distance to reach the point (i, j) starting
from the origin (1, 1). It is given by:

Di,j = di,j + min

 Di,j−1
Di−1,j
Di−1,j−1

i = 2, ...,M j = 2, ..., N (2)
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considering the following initial conditions:

D1,1 = d1,1 (3)

D1,j =
j∑
p=1

d1,p j = 1, ..., N (4)

Di,1 =
i∑

q=1
dq,1 i = 1, ...,M (5)

This cumulative distance is used to define a warping path between signals (x(i))1≤i≤M
and (y(j))1≤j≤N , noted φxy:

φxy:
{

J1;KK −→ J1;MK× J1;NK
k 7−→ φxy(k) = (φxxy(k), φyxy(k)) (6)

φxy verifies several constraints:

• the monotonicity constraint guarantees the time ordering.

• the boundary constraints: φxy(1) = (1, 1) and φxy(K) = (M,N).

• the step size conditions: 0 ≤ φxxy(k)−φxxy(k− 1) ≤ 1 and 0 ≤ φyxy(k)−φyxy(k− 1) ≤
1, ∀k ∈ 2...K, see Equation 2.

This path minimizes the final cumulative distance. Its length K depends on the signals
to be aligned and is determined during the DTW process.

Figure 1 presents two examples of DTW alignments between two signals with Fig-
ures 1a and 1b showing the alignments between signals and Figures 1c and 1d showing
the cumulative distance maps D and the warping paths in green for these two examples.

DTW provides an optimal alignment of two signals. Let us now focus on the process
of averaging a set of signals to obtain an average signal.

2.2. Time-series averaging
Let us first consider the simple case of two signals to average.

2.2.1. Averaging of two signals
In Section 2.1, we have introduced a method to align two time-series. The warping

path φxy of length K contains index correspondences that align both signals x(i) and
y(j) in a nonlinear way. This allows us to create two new aligned signals xK(k) and
yK(k) with the same length K so that:

xK(k) = x(φxxy(k)) k = 1, ...,K (7)

yK(k) = y(φyxy(k)) k = 1, ...,K (8)

where φxxy(k) and φyxy(k) are defined in equation 6.
3



(a)
(b)

(c)
(d)

Figure 1: Illustration of the DTW process for the alignment of two pairs of signals (one per column).
First row: the matching between points of two pairs of signals (in blue and green) is symbolized by grey
lines. Second row: superimposition of the warping path on the cumulative distances matrix D. White
areas of D correspond to largest cumulative distances whereas dark ones correspond to smallest ones.
The second case of alignment ((b) and (d)) is an example of pathological path: as the green signal has
a higher amplitude than the blue one, all high-amplitude values of the green signal are linked to only
one value of the blue one (actually the higher one). This is characterized by the horizontal or vertical
segments in the warping path (d).
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The mean of signals x(i) and y(j) is then estimated by averaging signals xK(k) and
yK(k) at each time step:

µ(k) = xK(k) + yK(k)
2 k = 1, ...,K (9)

By definition, the length K of the average signal µ(k) is such that K ≥ max(M,N).
Figure 2 illustrates this average signal on the two examples of Figure 1, based on the
warping path φxy. xK(k) and yK(k) (respectively in blue and green) result in the average
signal µ(k) (in black). Note that the length of µ(k) is K = 91 which is higher than the
lengths of x(i) and y(j) (75 and 55 respectively) for the first example and K = 92 is
higher than 59 and 49 for the second time-series.

(a) (b)

Figure 2: Illustration of the averaging method for the two pairs of signals in (a) and (b). xK(k) (in
blue) and yK(k) (in green) with the same length K result from the resampling of signals x(i) and y(j)
relatively to φxy . Their resulting average signal is µ(k) (in black).

2.2.2. Extension to the averaging of more than two time-series
DTW is widely used in signal processing but only for the alignment of two signals. It

thus cannot directly extract an average signal from a set of time-series. Several authors
have proposed solutions to tackle this issue.

The most intuitive process is the nonlinear alignment and averaging filters (NLAAF
[6]): from a set of N time-series {x1(k), . . . , xN (k)}, the authors propose to recursively
align pairs of signals using DTW until the whole set is aligned. First, x1(k) and x2(k)
are aligned and their average signal z1(k) is computed as explained in Section 2.2.1.
Then the alignment and averaging of x3(k) and z1(k) gives z2(k) and so on, until every
signals have been processed. One can also consider a weight during the averaging
process so that every time-series has the same influence on the average. The main
drawback of these kinds of methods is the succession of averaging. As illustrated before,
an average signal is always longer than the two original signals: multiple averaging make
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the resulting average signal much longer than the signals it represents.

The Prioritized Shape Averaging (PSA), an extension of NLAAF introduced by
Niennattrakul et al. [13], orders the signals according to their shape similarity before
averaging them. Considering a time-series dataset, the most similar signals are first
detected, then aligned and averaged and so on until there is one final average time-series.
Here again, the average signal becomes very long with regards to the number of
time-series in the dataset.

A more global approach called DTW Barycenter Averaging has been introduced by
Petitjean et al. in 2011 [16]. We give a short overview of this method in the next section.

2.2.3. DTW Barycenter Averaging (DBA)
Authors in [16] proposed a fast algorithm that insures that the average signal will have

a reasonable length. The main steps of the algorithms are given below:

1. Randomly choose a signal x0(k) from the dataset to initialize the average signal:
µ(k) = x0(k), k = 1, ...,M0 where M0 is the length of x0(k).

2. Iterate IT times the following steps:
(a) Align all signals xl(k) on µ(k) and compute warping paths φµxl

.
(b) Update every point of the average signal µ(k) as the barycenter of points asso-

ciated to it during step 2(a).

This process is described in Algorithm 1 and illustrated in Figures 3a and 3b where both
signals x1(k) and x2(k) in green and blue respectively are simultaneously aligned on µ(k)
in black.

Algorithm 1 DBA : averagingDTW
Require: x0(k) of length M0, (xl(k))l=1...L of lengths Ml, IT
K = M0, µ(k)← x0(k), k = 1, ...,K
for it ∈ 1...IT do
assocTab[k] = ∅, k = 1...K
for l ∈ 1...L do
φµxl

← DTW (µ, xl)
p← length(φµxl

)
while p ≥ 1 do

(k, n)← φµxl
(p)

assocTab[k]← assocTab[k] ∪ {xl(n)}
p← p− 1

end while
end for
for k ∈ 1...K do
µ(k)← mean(assocTab[k])

end for
end for
return µ(k), k = 1, ...,K
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(a)
(b)

Figure 3: One iteration of DBA for 2 different sets of signals. The black signal is the average one µ(k)
resulting from the previous iteration. Both blue and green signals are aligned on the black one. Each
point of µ(k) is updated as the average of the points aligned on it (for example the red points for the
corresponding time step).

One of the main limitations of DTW and DBA, occurs when the path “stagnates”
during several indexes (one point of x(k) is matched to several points of y(k)). This is
what we call pathological paths, as the example of alignment of two signals with different
amplitudes in Figure 1d. To solve this problem, a very simple idea is to first normalize
the signals before aligning them. However, the zero-mean normalisation is not adequate
when signals have different lengths and the normalization by the extrema is not robust
to noise. Moreover, in case of more complex signals than the one in Figure 1b, the
normalization will not be effective for all time steps. For example, if a signal has
multiple local extrema, the normalization may be effective for the first extrema, but not
for the others.

Another approach consists in considering both distance and derivative distance to
align signals [9, 3]. Unfortunately, the alignment of the derivative is noise sensitive.

Since the DBA algorithm is based on DTW, it is also concerned by this alignment
problem. Figure 4 illustrates the result of DBA averaging after IT = 4 iterations for
the 2 sets of signals from which were extracted examples of Figure 1. The first set
contains 319 time-series and the second one contains 101 time-series. Note that the high
amplitudes are summarized in a single pathological point leading to an average signal
whose shape is very different from original signal ones.

To avoid this problem, we developed a new algorithm, called CDBA for Constrained
DTW Barycenter Averaging with several contributions. First, we propose to generalize
the use of local constraints in DTW to avoid pathological paths. Second, we combine the
two well-established concepts of DBA and CDTW to improve the time-series averaging.
Finally, we add to the DBA averaging method a tolerance that takes into account the
variability among the signals in the dataset. This innovative set of combined contribu-
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(a) (b)

Figure 4: Illustration of the bad average signal obtained with DBA method with only 4 iterations on
the 2 sets of signals from which were extracted examples of Figure 1.

tions provides a more accurate representation of signals than those provided by a simple
averaging as classically done in literature.

3. Main contributions

Whereas DBA aligns the whole dataset on an updated average signal using DTW,
CDBA is based on the same process but adds a Constrained DTW. Let us first explain
the behaviour of Constrained DTW in the following section.

3.1. Constrained DTW
There exist mainly two ways to constrain the warping path: globally and locally.
A global constraint restricts the evolution of the warping path to a specific area to

make it as diagonal as possible. Sakoe-Chiba band [19] and Itakura parallelogram [8] are
the most common constraint areas and can be seen in Figure 5. These areas avoid the
warping path to be vertical or horizontal for too long: it is constrained to move forward.

A local constraint consists in modifying the step conditions to penalize the vertical and
horizontal paths. The penalty weight is applied to the cumulative distance computation
to favor the diagonal. This weight must handle the variability of the signals to be
averaged. In the extreme, the step conditions can prevent the path from being locally
horizontal and vertical.

To avoid the problem of DBA introduced by vertical or horizontal path, we use a
locally constrained DTW, called CDTW for Constrained Dynamic Time Warping [12].

This solution consists in locally preventing horizontal and vertical displacements. For
that, some sideways displacements are artificially added to make the path as diagonal
as possible. A first solution, presented in Figure 6a, consists in considering three local
displacements. This configuration leads to the same accessible area than the global
constraint proposed by Itakura (see Figure 5b). This process can be extended to a larger
number of possible displacements around the diagonal. Let us call Kp the number of

8



(a) Sakoe-Chiba Band (b) Itakura Parallelogram

Figure 5: Common global constraints for the warping path in the literature. Comparing two signals, the
path’s research space is restricted to the green area.

(a)

(b)

Figure 6: Local constrained applied during the creation of the warping path. The figure illustrates the
allowed values used to compute the new Di,j . (a) With a constraint slope Kp = 2; (b) the general case
of local constrained admissible steps with any Kp.
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elementary steps of the longest local displacement (for example Kp = 2 in Figure 6a).
The cumulative distance map D corresponding to Figure 6a is given by:

Di,j = min

 Di−1,j−2 + di,j−1 + di,j
Di−1,j−1 + di,j
Di−2,j−1 + di−1,j + di,j

(10)

whereas in the general case (Figure 6b), it is given by:

Di,j = min



Di−1,j−Kp +
Kp∑
k=1

di,j−(Kp−k)

Di−1,j−(Kp−1) +
Kp−1∑
k=1

di,j−(Kp−1−k)

...
Di−1,j−2 + di,j−1 + di,j
Di−1,j−1 + di,j
D(i−2,j−1 + di−1,j + di,j
...

Di−(Kp−1),j−1 +
Kp−1∑
k=1

di−(Kp−1−k),j

Di−Kp,j−1 +
Kp∑
k=1

di−(Kp−k),j

(11)

As can be seen in Figure 7, using CDTW avoids pathological paths and leads to a better
alignment between signals.

(a)
(b)

Figure 7: One iteration of CDBA for two different sets of signals. The black signal is the average µ(k).
Both blue and green signals are aligned on the black one with CDTW. Each point of µ(k) is updated as
the average of the red points.
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3.2. CDBA
Based on the work of Petitjean et al. [16], we propose to average a set of time-series

by using a CDTW instead of a DTW. The CDTW, as explained in Section 3.1, provides
a constrained warping path between two signals. Figure 8 compares two average signals
obtained by DBA and CDBA after 4 iterations for the set of signals presented in Figure 4.
Even if CDBA may associate several points of a signal to only one point of the other one
as in DBA, Figure 8 shows that the average signal obtained with CDBA does not have
the singular points of the one obtained with DBA. Moreover, it kept the shape of initial
signals.

(a) (b)

Figure 8: Illustration of the average signal obtained with DBA (in green) and CDBA (in blue) after 4
iterations for the 2 sets of signals of Figure 4. The average signal obtained with CDBA does not have
the singular points of DBA.

As a set of points is badly represented by its simple mean and can be better modeled
by a Gaussian which takes into account the deviation around this mean, we propose to
introduce a tolerance in the representation of time-series. To the best of our knowledge,
it is the first time that tolerance is introduced in the temporal signal modelling. This
concept is presented in the following section.

3.3. Introducing tolerance in the modeling
To better represent a set of signals, we added to its modelling the tolerance that depicts

admissible values around the average signal. This tolerance is computed for each time
step of the average signal. It corresponds to the standard deviation of the sets of signals
aligned on each point of the average time-series. The tolerance of the CDBA at time
step k is thus computed as the standard deviation of the points aligned on this time step
k of the average time-series. Algorithm 2 summarizes the proposed process to model a
set of signals using CDBA.

Figure 9 depicts the average signals and tolerances for both sets of signals. The tol-
erance is depicted as ±(1 × σ), where σ is the standard deviation among the learning
set (see Algorithm 2 for its computation). Note that using tolerance with the DBA is
possible but not relevant because of the pathological paths that would make the whole
variability restricted to the extrema points.

11



(a) (b)

Figure 9: Average signal with CDBA for two different sets of signals. The tolerance corresponds to the
gray area around the average signal, computed as ±(1× σ).

Algorithm 2 CDBA : averagingCDTW
Require: x0(k) of length M0, (xl(k))l=1...L of lengths Ml, IT , Kp

M0 = K, µ(k)← x0(k), k = 1...K
for it ∈ 1...IT do
assocTab[k] = ∅, k = 1...K
for l ∈ 1...L do
φµxl

← CDTW (µ, xl,Kp)
p← length(φµxl

)
while p ≥ 1 do

(k, n)← φµxl
(p)

assocTab[k]← assocTab[k] ∪ {xl(n)}
p← p− 1

end while
end for
for k ∈ 1...K do
µ(k)← mean(assocTab[k])
σ(k)← std(assocTab[k])

end for
end for
return µ(k), σ(k), k = 1...K
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In the following section, we validate this new time-series modelling on a classification
task.

4. Application to time-series classification

4.1. Database
We used the UCR time-series Classification Archive dataset [4], also used in [13], [14],

[15] and [16]. The characteristics of this dataset, containing 20 databases, are presented
in Table 1. The 20 different databases contains various types of data, such as images
(Adiac, FaceAll, FaceFour, FISH, OSULeaf, SwedishLeaf, Yoga), motions (GunPoint),
ECG data (ECG200 ) or simulated data (CBF, TwoPatterns). The number of classes
varies between 2 to 50 according to the database. Moreover, the length of all signals
inside a database is fixed. It varies from 60 to 637 time steps depending on the database.

Database Nb cl. Nb ex. Length
50words 50 905 270
Adiac 37 781 176
Beef 5 60 470
CBF 3 925 128

Coffee 3 56 286
ECG200 2 200 96

FISH 7 350 463
FaceAll 14 2570 131

FaceFour 4 112 350
GunPoint 2 200 150
Lighting2 2 121 637
Lighting7 7 143 319
OliveOil 4 60 570
OSULeaf 6 442 427

SwedishLeaf 15 1125 128
syntheticControl 6 600 60

Trace 4 200 275
TwoPatterns 4 5000 128

Wafer 2 7174 152
Yoga 2 3300 426

Table 1: Characteristics of the databases in UCR time-series Classification Archive [4]. For each database
in first column, second column provides the number of classes it contains, the third one the number of
signals and the fourth on the number of time step of signals (all signals inside a database have the same
length).

4.2. Procedure
The test procedure is the same or all databases of the archive. Every data class Cc is

represented by its average signal µc(k) and its tolerance σc(k) obtained from the training
signals. Each test signal x(k) is aligned on µc(k) using DTW or CDTW depending on
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whether µc(k) and σc(k) are estimated by DBA or CDBA. The alignment leads to the
warping path φxµc = (φxxµc

, φµc
xµc

) (see Equation 9). This path is used to compute the
log-probability of signal x(k) to belong to class Cc given by:

P (x ∈ Cc) = 1
K

K∑
k=1

ln
(

1√
2πσc(φµc

xµc(k))
exp

{
−

(x(φxxµc
(k))− µc(φµc

xµc
(k)))2

2σc(φµc
xµc(k))2

})
(12)

The classification step is carried out looking for the class Cc that maximizes the log-
probability P (x ∈ Cc).

Moreover, a 10-fold cross validation has been used. For that, each database was ran-
domly divided into 10 subsets: each subset was then independently used for testing and
the 9 reminders for learning, until all have been considered for testing.

4.3. Results
To validate our approach, we classify every test signals using the following different

processes:

• DBA: we minimize the cumulative distance estimated by DTW between the average
signal µc(k) obtained by DBA and test sample x(k).

• CDBA without tolerance: we minimize the cumulative distance estimated by CDTW
between the average signal µc(k) obtained by CDBA and test sample x(k).

• CDBA with tolerance: we maximize Equation 12 with (µc(k), σc(k)) estimated by
CDBA and φxµc(k) obtained by CDTW.

4.3.1. Improvements induced by the constraint (CDBA)
The classification results without tolerance are given in Table 2. The number of it-

erations to compute both DBA and CDBA is set to IT = 10 (the number of iterations
has been fixed arbitrary: the algorithm converges quickly, and we could have chosen
any value of IT > 5) and during the CDTW alignment process, the slope constraint Kp

varies from 2 to 11.
As can be seen on Table 2, the best CDBA classification results (last column) are

greater or equal than DBA’s ones, except for one database: TwoPatterns. A closer look
to this particular databases shows that the corresponding signals have important delays
that cannot be corrected by CDBA, even when using a high slope Kp = 11. However,
we can notice that the higher Kp, the best CDBA results. Figure 10b presents the
classification rates according to Kp for the database TwoPatterns. The rates increase
with Kp and become closer to DBA results.

We can also remark that for many cases, high values of Kp lead to results close to
DBA’s ones. This is quite logical, because fewer constraints are then introduced (let us
recall that CDBA is a constrained version of DBA).

Finally, an important conclusion is that the optimal value for Kp depends on the
databases and more particularly, on the delay between signals inside the databases. A
low value for Kp is adapted to slightly delayed signals as for example the database FaceAll
(see Figure 10a) where the best recognition rate is obtained with Kp = 2. A high value
is more suitable for very delayed signals (see Figure 10b).
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Database DBA CDBA with Kp varying between 2 to 11 (%)
(%) 2 3 4 5 6 7 8 9 10 11 Kp opt

50Words 61,55 69,61 66,74 65,53 63,20 63,65 63,87 63,09 62,54 63,87 62,65 69,61
Adiac 46,10 48,66 47,50 47,25 46,48 46,22 46,48 46,35 46,35 46,74 46,48 48,66
Beef 25,00 25,00 26,67 28,33 30,00 30,00 30,00 26,67 26,67 25,00 26,67 30,00
CBF 96,45 94,09 96,13 95,27 94,19 95,38 96,13 96,13 96,45 96,56 96,56 96,56

Coffee 96,43 94,64 94,64 94,64 96,43 96,43 96,43 96,43 96,43 96,43 98,21 98,21
ECG 71,00 72,50 71,50 72,50 73,50 75,00 74,00 72,00 72,50 73,50 74,00 74,00
FISH 64,00 79,43 75,43 74,29 74,57 74,57 74,00 72,29 73,14 72,00 72,29 79,43

FaceAll 83,33 90,44 89,73 88,27 88,31 87,60 86,00 85,42 85,07 84,80 84,40 90,44
FaceFour 87,50 87,50 84,82 84,82 85,71 85,71 85,71 86,61 86,61 85,71 86,61 87,50
GunPoint 69,00 54,50 68,00 70,00 70,50 70,00 70,00 69,50 70,00 70,00 71,50 71,50
Lighting2 60,33 61,16 69,42 69,42 64,46 62,81 67,77 66,11 64,46 61,16 62,81 69,42
Lighting7 68,53 75,52 82,52 81,12 83,22 82,52 79,72 83,22 83,22 81,82 80,42 83,22
OliveOil 86,67 86,67 86,67 86,67 86,67 86,67 86,67 85,00 85,00 85,00 85,00 86,67
OSULeaf 45,25 45,70 43,21 42,31 38,69 40,05 40,50 39,59 37,78 36,88 38,69 45,70

SwedishLeaf 69,42 70,31 68,36 68,98 69,96 70,40 70,84 70,31 69,87 70,04 70,31 70,84
SyntheticControl 98,67 98,83 98,67 99,33 99,17 99,17 99,17 99,50 99,33 99,33 99,33 99,50

Trace 99,50 97,00 97,50 97,50 98,50 98,50 98,50 99,00 99,00 99,50 99,00 99,50
TwoPatterns 97,66 76,72 82,90 90,12 91,64 92,90 93,38 94,04 94,72 95,32 95,32 95,32

Wafer 41,14 66,43 65,01 69,36 73,42 72,26 72,93 69,44 67,66 63,51 61,96 73,42
Yoga 53,52 56,64 55,03 53,67 53,61 53,06 53,03 53,03 52,88 53,00 52,27 56,64

AVERAGE 71,05 72,67 73,52 73,97 74,11 74,14 74,26 73,69 73,48 73,01 73,22 76,36

Table 2: Time-series’ classification results obtained by DBA and CDBA with a slope constraint Kp

varying from 2 to 11. The last column gives the best CDBA results for each database.
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Figure 10: Classification rates according to Kp for two datasets: (a) FaceAll that contains slightly
delayed signals and (b) TwoPatterns that contains highly delayed signals. Note that the optimal Kp

value depends on delays between time-series inside the same class.
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To better understand this influence of Kp on the recognition rates, let us compare
in the rest of this section the behavior of CDTW and DTW for the two particular
databases (FaceAll and TwoPatterns).

(a) TwoPatterns (b) FaceAll

Figure 11: Signals used to compare CDTW and DTW behaviors. (a) Four signals of the same class in
the database TwoPatterns. (b) One signal of class C1 (in blue), the three others belong to class C2 (in
green, brown and red) in the dataset Lighting7.

Figure 11a illustrates four examples of time-series belonging to the same class C1 of
the database TwoPatterns. Note that some of them may be very delayed as for example
for the first and the second signals. Their alignments, obtained by DTW and CDTW
with a slope constraint Kp = 2, are presented in Figures 12a and 12b respectively. This
is important to notice that the CDTW-based algorithm is not able to manage the delay
due to its limited slope. Actually, the alignment is incorrect and the signals’ shapes are
badly aligned (Figure 12b). On the contrary, as DTW-based algorithm allows vertical
and horizontal displacements in the warping path, it can manage the delay and then
correctly align signals (Figure 12a).

These phenomena occur several times during the average computation. Thus, while the
average computed by DTW-based algorithm on 271 time-series keeps the signals’ shape
(Figure 12c), a poorer average, whose shape less corresponds to the original signals’ ones,
is given by CDTW-based algorithm (Figure 12d). However these bad cases occurred only
with large delays, on 2 databases out of 20 in our study. Let us now consider other signals
and highlight the interest of the CDTW-based method.

Figure 11b illustrates one time-series from a class C1 (in blue) and three other ones
belonging to another class C2 (in green, brown and red) of the FaceAll dataset. We are
now interested in the behavior of DTW and CDTW-based methods when aligning signals
belonging to different classes.

As the warping path of the DTW is not slope-constrained, it can contain vertical and
horizontal local displacements to obtain signals as similar as possible. Figure 13a shows
the DTW-based alignment for which one point of the first signal can match several points
of the other one (see the gray lines symbolizing the matching possibilities). In Figure 13c,
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(a) DTW (b) CDTW

(c) DBA (d) CDBA

Figure 12: Case of two delayed signals in TwoPatterns database. (a) The signals aligned with DTW
and (b) the signals aligned with CDTW. In both cases, the matching between points is symbolized by
grey lines. In second row are given the resulting signal averages obtained with respectively DBA (c) and
CDBA (d) processes.
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(a) DTW (b) CDTW

(c) DTW (d) CDTW

Figure 13: Illustration of the DTW and CDTW based alignments of signals belonging to different classes.
First row: alignment with DTW (a) and CDTW (b). Second row: resulting wrapped time-series obtained
by aligning signals with paths obtained by DTW (c) or CDTW (d).
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the warped signals are plotted in the temporal baseline of the warping path. They are
very similar and may lead to an incorrect classification. On the contrary, because of
its slope limitation, CDTW does not face the same issue and the warped signals are
very different (see Figures 13b and 13). This explains the higher classification results
of CDBA in comparison with DBA on the FaceAll dataset and on a large number of
databases (19 out of 20).

4.3.2. Improvements induced by the tolerancing
In this section, we compare classification results obtained with DBA, CDBA without

tolerance and CDBA with tolerance. For CDBA-based methods, results have been opti-
mized according to Kp for each database. Note that ideally, this value has to be optimized
on a validation dataset. This was not done here on all databases because the number
of examples was often too small to divide the learning dataset. The next paragraph
presents a protocol for Kp optimization for the largest databases (TwoPatterns,Wafer
and Yoga). Classification rates are shown in Table 3. For comparison purpose, Hidden
Markov Models (HMM) were also tested, with the number of states optimized between
1 and 14. The state density probability function is represented using a gaussian, as for
the proposed model. Moreover, the EM algorithm was used to estimate the parameter
of the HMM. A first conclusion is that CDBA with tolerance gives the highest average
classification results (81.13% with tolerance and 76.36% without). Thus, CDBA with
tolerance increases classification results by more than 10% compared to DBA’s ones.

For example, we can see in Figure 14a, for the SwedishLeaf database, that for all
Kp values, classification results for CDBA are always higher with tolerance. In some
particular cases, as for the Lighting7 database (see Figure 14b), introducing the tolerance
slightly decreases the classification results. However, we have noticed that only one class
of this dataset is badly classified, and we hypothesize that this could be due to the
distribution of the examples in this class, that is probably not Gaussian. The CDBA
classification approach outperforms widely the HMM.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.68

0.7

0.72

0.74

0.76

0.78

0.8

C
la

ss
ifi

ca
tio

n
ra

te
s

(%
)

DBA
CDBA

CDBA with tolerance

(a) SwedishLeaf

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.7

0.75

0.8

Kp

C
la

ss
ifi

ca
tio

n
ra

te
s

(%
)

DBA
CDBA

CDBA with tolerance

(b) Lighting7

Figure 14: Classification rates according to the tolerance for two datasets.
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Database HMM (%) DBA (%) CDBA (%) CDBA+tol (%)
50Words 10,39 61,55 69,61 73,26

Adiac 13,06 46,10 48,66 54,67
Beef 36,67 25,00 30,00 40,00
CBF 78,28 96,45 96,56 96,99

Coffee 55,36 96,43 98,21 100,00
ECG 64,00 71,00 75,00 76,50
FISH 27,71 64,00 79,43 88,29

FaceAll 39,60 83,33 90,44 95,24
FaceFour 43,75 87,50 87,50 96,43
GunPoint 67,50 69,00 71,50 88,00
Lighting2 67,77 60,33 69,42 80,99
Lighting7 46,85 68,53 83,22 82,52
OliveOil 33,33 86,67 86,67 91,67
OSULeaf 28,51 45,25 45,70 54,98

SwedishLeaf 36,80 69,42 70,84 79,73
SyntheticControl 87,00 98,67 99,50 98,50

Trace 81,50 99,50 99,50 99,00
TwoPatterns 53,36 97,66 95,32 96,02

Wafer 68,36 41,14 73,42 68,73
Yoga 54,52 53,52 56,64 61,00

AVERAGE 49,72 71,05 76,36 81,13

Table 3: Time-series’ classification rates obtained with DBA and CDBA without and with tolerance.
CDBA results are obtained after optimization of the slope constraint Kp on each database. CDBA with
tolerance gives the highest average classification results.

20



4.3.3. Optimization of the constraint parameter Kp

As mentioned above, for the largest databases (TwoPatterns,Wafer and Yoga), Kp can
be optimized accordingly to a validation set. For time measurement reasons, the k−fold
cross-validation was not considered here, and the initial training set was split into two
subsets: one is used to compute the model (average and eventually the tolerance), the
other one for the constraint parameter’s optimization. This explain why the results
are slightly different from those of the table 2. This optimization is made for both
classification tasks, with and without tolerance. Results of this study are presented
in Tables 4 and 5. We can note that for most of the cases, the optimized constraint
parameter (last column) actually corresponds to the best Kp value. If not, it is very
close to it.

Database DBA (%) CDBA (%)
2 3 4 5 6 7 8 Kp = (Kp)opt

FaceAll 77.28 84.20 82.84 81.42 80.06 78.46 79.17 78.64 82.84
TwoPatterns 96.85 71.63 83.30 86.93 88.75 90,00 90.40 90.38 90.4
Wafer 51.10 70.72 72.71 69.89 92.29 71.90 83.49 86.20 92.30

Table 4: Classification rates without tolerance

Database DBA (%) CDBA (%)
2 3 4 5 6 7 8 Kp = (Kp)opt

FaceAll 71.538 80.06 78.82 76.92 75.68 75.39 75.15 73.61 80.06
TwoPatterns 97.13 74.55 84.03 87.90 88.95 90.23 90.80 90.30 90.80
Wafer 72.05 76.48 72.99 64.59 80.13 80.39 76.09 76.35 76.48

Table 5: Classification rates with tolerance

4.3.4. Computation times
Table 6 gives the computation times for the classification of a time-series belonging

to the database 50Words (270 time steps as shown in table 1) obtained with DBA or
CDBA, with or without using the tolerance. DTW algorithms were written in C++ and
imported in Matlab R2016a as MEX-files in a Intel Core i7-4790 CPU 3.60 GHz. We
can see, for CDBA, that the computation time increases with Kp, but stay reasonable.

Tolerance DBA CDBA
2 3 4 5 6 7 8

Without 0.083 0.099 0.115 0.140 0.175 0.200 0.251 0.272
With 0.107 0.119 0.146 0.165 0.192 0.229 0.257 0.294

Table 6: Computational time (in seconds) of the classification task with and without tolerance.

DBA and CDBA with Kp = 2 get almost the same computational time because both
of them provide the same number of local displacements (3) at each timestep. We also
note that these computation times increase with Kp, i.e. with the addition of local
displacements.
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4.3.5. Summary and discussion
Results showed that our new methodology globally outperforms DBA.
On the one hand, depending on the signal’s shape, it can provide lower recognition

rates than those of DBA. This can be explained by the slope limitation of the CDTW:
it cannot correctly handle the alignment of two signals having a similar length and very
different timings because of its vertical and horizontal displacement constraints. If we
consider for example a signal delayed from another one, CDTW may fail to properly
align these two signals because of the delay that cannot be overtaken by CDTW that is
slope-limited (see database TwoPatterns). The DBA, on the contrary, is not affected in
this case as it is not slope-limited. Thus, an alternative is to increase the slope-constraint
Kp.

On the other hand, CDBA often outperforms DBA (see classification results for
databases 50Words, Adiac, Beef, FaceAll, FISH, Lighting2, Lighting7, OSULeaf, Swedish-
Leaf, Wafer...). Actually, DBA leads to an average signal with multiple singular points
introduced by pathological paths as shown previously. A consequence is that a lot of
signals (even those of other classes) can be aligned using DTW on this average signal.
This obviously leads to false recognitions that explain the poor classification rate. The
slope constraints introduced by CDBA lead to an average signal without singular point.
Each class is thus better modeled and confusions are avoided during recognition.

Finally, we can see that the tolerance added to CDBA average plays an important role
and often increases the classification rates.

5. Conclusion

In this paper, we proposed a modeling of time-series based on CDTW that outper-
forms the well-established DBA process in a classification task. It can be applied to any
time-series, even with different intra-class temporal lengths. Our process relies on an
average signal that preserves the shape and the length of the signals it represents, unlike
the methods proposed in the literature. When most of the works focusing on time-series
averaging are based on DTW, we proposed to use CDTW to avoid the problem of patho-
logical warping paths. Moreover, we added to this averaging a tolerance at each time
step that models time-series’ variations around it.

Our process was validated in a classification task on the UCR time-series Classifi-
cation Archive containing 20 databases containing different kinds of signals, of various
lengths, shapes and classes. Our CDBA algorithm obtained most of the time higher
global recognition rates than DBA ones, and even much higher when a tolerance based
on the training data is added. However, for some databases, the DBA method provides
higher results because of the slope limitation constraint of CDBA. This is the main limi-
tation of our method since it can lead to a wrong alignment when both input signals have
very different timings. To increase the performance of our method, a dedicated study of
the automatic computation of the slope constraint parameter depending on the signals
shapes must be done in future works. The influence of the initialisation step that fixes
the length of the average signal on the recognition rates of DBA and CDBA must also
be studied.

This research opens a wide range of perspectives in data mining process. Our approach
is very generic and can be adapted to multiple case studies. It could also be generalized to
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higher dimensions, considering covariance instead of standard deviation for the tolerance
computation.
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