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Abstract—Recently neural networks and multiple instance
learning are both attractive topics in Artificial Intelligence
related research fields. Deep neural networks have achieved
great success in supervised learning problems, and multiple
instance learning as a typical weakly-supervised learning method
is effective for many applications in computer vision, biometrics,
nature language processing, etc. In this paper, we revisit the
problem of solving multiple instance learning problems using
neural networks. Neural networks are appealing for solving
multiple instance learning problem. The multiple instance neural
networks perform multiple instance learning in an end-to-end
way, which take a bag with various number of instances as
input and directly output bag label. All of the parameters
in a multiple instance network are able to be optimized via
back-propagation. We propose a new multiple instance neural
network to learn bag representations, which is different from
the existing multiple instance neural networks that focus on
estimating instance label. In addition, recent tricks developed in
deep learning have been studied in multiple instance networks,
we find deep supervision is effective for boosting bag classification
accuracy. In the experiments, the proposed multiple instance
networks achieve state-of-the-art or competitive performance on
several MIL benchmarks. Moreover, it is extremely fast for both
testing and training, e.g., it takes only 0.0003 second to predict a
bag and a few seconds to train on a MIL datasets on a moderate
CPU.

Index Terms—Multiple instance learning, neural networks,
end-to-end learning.

I. INTRODUCTION

Multiple instance learning (MIL) was originally proposed for
drug activity prediction [1]. Now it has been widely applied in
many domains and becomes an important problem in machine
learning. Many multimedia data have the multiple instance
(MI) structure, for example, a text article contains multiple
paragraphs, an image can be divided into multiple local regions,
and a gene expression data contains multiple genes. MIL is
effective to process and understand MI data.

MIL is a kind of weakly-supervised learning (WSL). Each
sample is in a form of labeled bags, composed of a wide
diversity of instances associated with input features. The aim
of MIL, in a binary task, is to train a classifier to predict
labels of testing bags, which is based on the assumption that a
positive bag contains at least one positive instance while a bag
is negative if it is only constituted of negative instances. Thus,
the crux of MIL is to deal with the ambiguity of instances
labels, especially in positive bags which have plenty of cases
with different compositions.

There are many algorithms have been proposed to solve
the MIL problem. According to the survey by Amores [2],
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MIL algorithms can be divided into three folds: instance-space
paradigm, bag-space paradigm and embedded-space paradigm.
Instance-space paradigm learns instance classifier and performs
bag classification by aggregating the responses of instance-level
classifier. Bag-space paradigm exploits bag relations and treats
bag as a whole; in particular, bag-to-bag distance/similarity is
calculated; then the nearest neighbor or Bayesian classifier is
able to do bag classification. Embedded-space paradigm embeds
a bag into a vocabulary-based feature space to obtain a compact
representation for the bag, e.g., a vector representation; then
classical classifiers can be applied to solve the bag classification
problem.

Deep neural networks have been applied to solve many
machine learning problems. For supervised learning, there
are several kinds of neural networks: Deep Belief Networks
(DBN) [3] use unsupervised pre-training and take a fixed
length vector as input for feature learning and classification;
deep Convolutional Neural Networks (CNN) [4], [5] take 2D
image as input and have dominated image recognition; deep
Recurrent Neural Networks (RNN) [6] and Long Short Term
Memory (LSTM) networks [7] take sequential data as input,
such as text and speech, and are good at dealing with sequential
prediction. Usually, training these deep networks requires a
large number of fully labeled data, i.e., each instance requires a
label. However, in MIL, only bag labels can be got. Meanwhile,
MI data have a more complex structure which is a set of
instances. The numbers of instances are different for different
bags. These problems make it hard to deal with MIL problem
by conventional neural networks.

Before the raising of deep learning, there were some research
works trying to solve the MIL problem using neural networks.
Ramon and Raedt [8] firstly proposed a multiple instance neural
network (MINN). The network estimates instance probabilities
before the last layer and calculates bag probability using a
convex max operator (i.e., log-sum-exp). The network can
be trained using back-propagation. Zhang and Zhou [9] also
proposed a multiple instance network which calculates bag
probability by directly taking the max of instance probabilities.

A MINN takes a various number of instances as input. For
each instance, its representation is gradually learned layer
by layer guided by multiple instance supervision. To inject
multiple instance supervision, there are two different network
architectures. Following the naming style in a classical MIL
work [10], we name the two networks as mi-Net and MI-
Net, which aim at the instance-space paradigm and embedded-
space paradigm [2] respectively. In mi-Net, there are instance
classifiers in the each layer. We are able to obtain instance
labels for both training and testing bags, which is an appealing
property in some applications. While in MI-Net, there is no
instance classifier. It directly builds a fixed-length vector as the
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bag representation and then learns bag classifier. Compared with
mi-Net, MI-Net can obtain better bag classification accuracy.
The previous works are in the category of mi-Net. We newly
propose MI-Net in this paper.

A key component in MINN is MIL Pooling Layer (MPL),
which aggregates either instance probability distribution vectors
or instance feature vectors into a bag feature vector. It bridges
MI data with conventional neural networks. Since it must
be differentiable, there are a few choices, such as max
pooling, mean pooling, and log-sum-exp pooling. These pooling
methods are compared and discussed in the experiments part.
Besides of MIL pooling layer, we use fully connected layers
with non-linear activations for instance feature learning. In MIL
benchmarks, instance features are hand-crafted and raw data
of instances are given. Even so, it is beneficial to do feature
transformation guided by the supervision of bag labels. In the
last of MI-Net, we use a fully connected layer with only one
neuron to match the predicted bag label with ground-truth in
training.

Training neural networks using complex MI data is a
challenging task. To learn good instance feature, we have
tried to adopt various recent progress of deep learning in
MINN, such as dropout [11], ReLU [12], deeply supervised
nets (DSN) [13] and Residual Connections [14]. We find DSN
is the most effective one. This is due to DSN is able to better
use hierarchical features in networks. Also, residual connections
do a great job in networks.

To summarize, we revisit the problem of solving multiple
instance learning using neural networks. This branch of MIL
algorithm is ignored by current MIL research community. But
it is highly effective and efficient. Different from most MIL
algorithms, it is able to learn instance features in an end-to-end
manner. This paper focuses on neural networks for end-to-end
MIL with comprehensive studies on MIL benchmarks. The
main contributions of this paper include two extremely fast
and scalable methods for MIL, i.e., mi-Net and MI-Net, and
introducing deep supervision and residual connections for MIL.

We organize the rest of this paper as follow. Section II
briefly reviews previous works on MIL. In Section III, we
propose end-to-end MIL networks. Our experimental results
are presented on several MIL benchmarks in Section IV. Some
discussions of experimental setups are presented in Section V.
Finally, in Section VI we conclude the paper with some future
works.

II. RELATED WORK

Previous works on solving MIL using neural networks
include [8], [9], [15], [16]. [8] introduced to use a log-sum-
exp as the convex max to calculate bag probabilities from
instance probabilities. [9] changed to a different loss function
and directly applied max function. [15] improved multiple
instance neural networks by feature selection using Diverse
Density and PCA. [16] showed that ensemble methods could
be integrated with multiple instance neural networks. Then,
solving MIL using neural networks has been ignored in machine
learning research. This paper revisits this problem, proposes
new network structures, and investigates recent neural network
tricks.

Multiple Instance Learning (MIL) has received a lot of
attentions since it helps to solve a range of real applications.
Till now, lots of MIL methods have been proposed to either
develop effective MIL solvers or apply MIL to solve application
problems. A comprehensive survey of MIL algorithms and
applications can be found in [2]. Here, we focus on give a
brief review of the most recent MIL algorithm, especially the
ones related to deep neural networks and feature learning.

From the view of embedded-space paradigm for MIL,
the most recent method is the scalable MIL algorithm, i.e.,
solving MIL using Fisher Vector (FV) coding [17], which
is called miFV [18]. miFV transforms instance feature into
high-dimensional space using a pre-trained Gaussian mixture
model and FV coding. The proposed MI-Net learns instance
feature using deep multiple instance supervision. And MI-Net
achieves better bag classification accuracy and is much faster
than miFV.

The idea of using neural networks for solving MIL problem
has been studied in some computer vision studies, such as [18],
[19]. Wu et. al [18] proposed deep MIL which uses max pooling
to find positive instances/patches for image classification and
annotation. Pinheheiro et. al [19] used log-sum-exp pooling in
deep CNN for weakly supervised semantic segmentation. The
proposed mi-Net follows the path of these two works; different
from them, mi-Net utilizes deep supervision, and focuses on
more general MIL problems. Besides of integrating MIL into
deep neural networks, Wang et. al proposed a method to
combine MIL with support vector machine using a relaxed MIL
constraint [20] and applied this for object discovery. However,
they pay more attention on vision applications (e.g., image clas-
sification, image annotation, and semantic segmentaion, etc.),
which are based on convolutional image features. Meanwhile,
they always finetune neural network models pre-trained on
other much larger datasets like ImageNet [21]. Moreover, they
also only focus more on instance-space MIL.Compared with
theirs, we focus on appling MIN structure for more general
MIL problems. Notice that for general MIL problems, there are
no available large datasets for pre-training like computer vision,
which makes it more difficult to train MINN efficiently. We
have shown many tricks to train our networks from scratch on
MIL benchmarks with limited training data, and achieved many
inspiring results. Meanwhile, we have investigated both mi-Net
and MI-Net, and experiments have shown that the MI-Net
outperforms mi-Net in more cases.

III. MULTIPLE INSTANCE NEURAL NETWORKS

In this section, we will firstly introduce the formulation of
MIL, then give various networks for MIL, and lastly study the
MIL pooling methods and training loss.

A. Notations

Here we first review the definition of MIL. Given a set
of bags X = {X1, X2, ..., XN} and instance features of ith
bag Xi = {xi1, xi2, ..., ximi

}, xij ∈ Rd×1, where N and mi

denote the number of bags and the number of instances in bag
Xi respectively. Suppose Yi ∈ {0, 1} and yij ∈ {0, 1} are the
label of bag Xi and instance xij separately, where 1 means
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positive and 0 means negative. In MIL, only bag labels are
given during training, and there are two MIL constraints:

• If bag Xi is negative, then all instances in Xi will be
negative, i.e., if Yi = 0, then all yij = 0;

• If bag Xi is positive, then at least one instance in Xi will

be positive, i.e., if Yi = 1, then
mi∑
j=1

yij ≥ 1.

Since instance label is not given in training phase, solving the
MIL problem is challenging. In MINNs, there are two strategies:
the first one is to infer instance label in the network, i.e., placing
instance probabilities of being positive as a hidden layer in the
network; the second one is to use learn bag representation in
the network and directly carry out bag classification without
calculating instance probability. The first strategy has been
studied in [8], [9], [18]. The second strategy is newly proposed
in this paper. In the following sub-sections, we will give the
descriptions of MINNs.

Let us consider a setting of a single bag Xi with multiple
instances xij that is passed through a MINN. A MINN is
made out of L layers, each of which consists of a non-linear
transformation H`(·), where ` indexes the layer. H`(·) can
be a composite of operations such as inner product (or fully
connection), or rectified linear units (ReLU) [22]. We denote
the output of the `th layer of an instance xij as x`

ij .

B. mi-Net: Instance-Space MIL Algorithm

At first, we review traditional multiple instance neural
networks [8], [9], [18], which are named as mi-Net. As shown
in Fig. 1, each instance in a bag is first fed into several fully
connected (fc) layers with activation function (in this paper
we use four fc layers and ReLU activation). Thus, we get the
instance feature denoted as xL−2

ij in the (L− 2)th layer and
instance probability denoted as pL−1ij . pL−1ij is a scalar in the
range of [0, 1]. In the last layer, there is a MIL pooling layer
(described in Section III-F) which takes instance probabilities
as input and outputs bag probability, denoted as PL(Xi).

These first L− 1 fc layers can learn some more semantic
instance features compared with original xiij (higher layer
corresponding to higher semantic features). After learning
these instance features, a fc layer which only has one neuron
with sigmoid activation, is used to predict the positiveness of
instances.

But unlike traditional neural networks, for mi-Net, we only
have bag labels for training but instance labels are not available.
To address this problem, we treat the instance labels as latent
variables and infer them during the network training. We design
a layer to aggregate instance scores into bag score. Here, a
MIL pooling layer is used to aggregate these instance scores
into the final the positiveness of bag.

The MIL pooling method satisfies the MIL constraints: If a
bag is positive, there should have at least one instance with large
positiveness. Otherwise, all instances in the bag should have
low positiveness. Since the pooling layer is integrated into the
neural network, the pooling function should be differentiable.
There typical MIL pooling will be introduced in Section III-F.

In summary, the mi-Net can be formulated as:{
x`
ij = H`(x`−1

ij ),

PL
i = ML(pL−1ij|j=1...mi

).
(1)

C. MI-Net: A new Embedded-Space MIL Algorithm

We propose a series of new multiple instance neural networks
which do not rely on inferring instance probability. The
networks directly learn bag representation and produce better
bag classification accuracy. These methods belong to the
category of embedded-space MIL algorithms defined in the
survey [2]. Following the naming style in [10], we name this
networks as MI-Net.

In Figure 2, we show a plain MI-Net with three fully
connected layer and one MIL pooling layer. The change of
network structure leads the network to focus on learning
bag representation, rather than predicting instance probability.
No matter how many input instances there are, the MIL
pooling layer aggregates them into one feature vector as a
bag representation. At last, a fc layer with only one neuron
and sigmoid activation takes the bag representation as input
and predicts bag probability. This plain MI-Net is formulated
as: {

x`
ij = H`(x`−1

ij ),

X`
i = M `(x`−1

ij|j=1...mi
).

(2)

D. MI-Net with Deep Supervision

Inspired by the Deeply-Supervised Nets (DSN) [13], we add
deep supervisions in MI-Net as shown in Figure 3. That is,
for each middle fc layer that can learn instance features, a fc
layer for predicting instance scores with a MIL pooling layer
follows it. During training, the supervision is added to each
level. And during testing, we compute the mean score for each
level. The MI-Net with deep supervision is formulated as:{

x`
ij = H`(x`−1

ij ),

X`,k
i = M `(xk

ij|j=1...mi
), k ∈ {1, 2, 3},

(3)

where the index k in X`,k
i means we learn multiple bag

features from all different levels of instance features by MIL
pooling. MI-Net with deep supervision is able to utilize multiple
hierarchies to get better bag classification accuracy. It can be
interpreted from two folds: (1) In training instance feature in
bottom layers can receive better supervision; and (2) in testing,
we can average multiple bag probabilities to get a more robust
bag label. In this paper, we set the weights of different levels
equally.

E. MI-Net with Residual Connections

Recently, deep residual learning was proposed in [14] and
showed the impressive improvement in image recognition by
utilizing very deep neural networks. We study the residual
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Fig. 1. A mi-Net with four fully connected layers. The number of output of fully connected layers are 256, 128, 64 and 1 respectively. The last layer is a MIL
pooling layer with instance probabilites as input and bag probability as output.
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Fig. 2. The proposed MI-Net with three fully connected layers and one MIL pooling layer. The number of output of fully connected layers are 256, 128 and
64 respectively.
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Fig. 3. The proposed MI-Net with deep supervision. There are three fully connected layers for learning instance features which are in the size of 256, 128 and
64 respectively. And there are three MIL pooling layers for generating bag feature and the bag features are connected to the bag label via a fully connected
layer with one neuron respectively.

connections in MI-Net as shown in Figure 4. MI-Net with
residual connections are formulated as:

x`
ij = H`(x`−1

ij ),

X1
i = M `(x1

ij|j=1...mi
),

X`
i = M `(x`

ij|j=1...mi
) +X`−1, ` > 1.

(4)

Different from the original residual learning in [14] which
learns representation residuals using convolution, batch normal-
ization and ReLU, we learn the bag representation residuals
via fully connected layers, ReLU and MIL pooling. In the end
of the network, final bag representation is connected to the bag
label via a fc layer with one neuron and sigmoid activation.

F. MIL Pooling Methods

As referred before, we use a MIL pooling layer to get
patch scores or patch representations. In this paper, we use
three popular used MIL pooling methods: max pooling, mean
pooling, and log-sum-exp (LSE) pooling, as shown in Eq. (5),
where fi is the input, o is the output, m is the number of
input, and r is a hyper-parameter. All these methods satisfy

the constraints referred in Section III-B. Actually the LSE [23]
is a smooth version and convex approximation of the max
function. The hyperparameter r controls how the smoothness
of approximation. That is, it is more approximate to max when
r is large and more approximate to mean when r is small.



max : M `(x`−1
ij|j=1...mi

) = max
j

x`−1
ij ,

mean : M `(x`−1
ij|j=1...mi

) = 1
mi

mi∑
j=1

x`−1
ij ,

LSE : M `(x`−1
ij|j=1...mi

) = r−1 log[ 1
mi

mi∑
j=1

exp(r · x`−1
ij )].

(5)

G. Training Loss

For both mi-Net and MI-Net, we can get the bag scores.
Here we will define the loss function during training. As we
are aiming at predicting labels of bags, it is natural to choose
the cross entropy loss function, as in Eq. (6), where Si is the
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Fig. 4. The proposed MI-Net with residual connections. The first fully connected layer produces a bag feature vector. The latter fully connected layers learn
the residuals of bag representation. The size of fully connected layers are all 128.

bag score of i bag. This loss is added to each bag scores level
for deep supervision.

Loss(Si, Yi) = −{(1− Yi) log(1− Si) + Yi logSi}. (6)

As all parts of our multiple instance network are dif-
ferentiable, we can train these networks by standard back-
propagation with Stochastic Gradient Descent (SGD).

IV. EXPERIMENTS

In this section, we perform experiments to test mi-Net, MI-
Net and its variations on different MIL benchmarks, including
molecule activity, image, and text categorization.

A. Datasets

We test these methods on three widely-used MILbenchmarks
in different applications, including drug activation prediction,
automatic image annotation and text categorization. For eval-
uation, we run five times 10-fold cross validation and report
the average results.

a) Drug Activation Prediction: MUSK [1] datasets are
used to predict whether a drug molecule can bind well to target
protein. Each molecule is exhibited as multiple shapes, which
are described as 166-dimension features. In the MIL problem,
we can regard a molecule as a bag and represent different
shapes belonging to the same molecule as instances of this bag.
476 instances are included in MUSK1 which is divided into
47 positive bags and 45 negative bags, while 6598 instances
are included in MUSK2 which is divided into 39 positive bags
and 63 negative bags.

b) Automatic Image Annotation: The Elephant, Fox and
Tiger datasets [10], are all composed of 100 positive bags
from the target class animal images and 100 negative bags
randomly chosen from other class animal images. Here, an
image is represented as a bag, which contains a set of regions
we called instances in MIL problems. When searching for
a target object, we use this network to obtain the keywords
of images. Moreover, each image is represented by 2 to 13
instances which are 230-dimension features that describe the
color, texture, and shape in regions of an image.

c) Text Categorization: Besides the above datasets, the
text categorization is another widely used application of MIL
problems. Here, we take twenty datasets derived from the
20 Newsgroups corpus [26]. In each category, 100 bags are
included among which half bags are positive and the rest of
bags are negative. Each positive bag contains 3% posts from
the target class and the rest from other categories, while the
instances of negative bags are all randomly drawn from other
categories. In addition, each instance is represented by the top
200 TF-IDF features.

Detailed characteristics of these datasets are summarized in
Table I.

B. Experimental Setup

These neural networks contain four fully connected (fc)
layers and first three fc layers are followed by a dropout layer
(0.5 dropout ratio). As referred in Section III, we present
the performance of the proposed multiple instance learning
approaches: (1) mi-Net:We learn instance scores from four fc
layers and aggregate instance scores into bag scores to predict
the label of the bag via MIL pooling layer. (2) MI-Net: Input
instances are aggregated into bag representation by first three
fc layers and MIL pooling layer, and then use the last fc layer
to predict bag probability. (3) MI-Net with Deep Supervision
(MI-Net with DS): Different from MI-Net, each middle fc layer
is followed by a MIL pooling layer and fc layer to compute
bag scores. The loss function of MI-Net with DS sums up
all middle entropy losses to do backpropagation with SGD
for training, and the average of each bag score is used for
testing. (4) MI-Net with Residual Connections (MI-Net with
RC): Residual connections are built between each middle bag
representation, and followed by a fc layer to obtain bag score.

As for the numbers of neurons in fc layers, there are 256,
128, 64, 1 in mi-Net, MI-Net and MI-Net with DS while 128,
128, 128, 1 in MI-Net with RC. Weights of fc layers are all
initialized using a glorot-uniform distribution [28]. Biases are
all initialized to be 0. For different datasets, the learning rate,
weight decay and momentum are set suitable values that you
can find in the configuration file of our code. All networks
are trained with SGD, and one bag is inputted as a batch for
training and testing. Moreover, about training and testing time,
e.g., it takes only 0.0003 second to predict a bag and 0.0008
second to train on MUSK1 dataset on a moderate CPU. Our
code is written in Python, based on Keras [29], and all of our
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TABLE I
DETAILED CHARACTERISTICS OF THE DATASETS. "# POSITIVE" ("#NEGATIVE") PRESENTS THE NUMBER OF POSITIVE(NEGATIVE) BAGS USED IN EACH

ROUND. FOR TEXT CATEGORY DATASET, BECAUSE IT CONTAINS 20 SUB-DATASETS, WE PRESENT THREE OF THEM IN IT.

# dataset # attribute # bag # instance

positive negative total min max total

MUSK1 166 47 45 92 2 40 476
MUSK2 166 39 63 102 1 1044 6598
Elephant 230 100 100 200 3 13 1391
Fox 230 100 100 200 2 13 1320
Tiger 230 100 100 200 1 13 1220
Text(Zhou) alt.atheism 200 50 50 100 22 76 5443
Text(Zhou) comp.graphics 200 49 51 100 12 58 3094
Text(Zhou) comp.os.ms-windows.misc 200 50 50 100 25 82 5175

TABLE II
AVERAGE PREDICTION ACCURACY (IN %) OF DIFFERENT METHODS FOR BAG CLASSIFICATION ON FIVE MIL BENCHMARKS.

Name MUSK1 MUSK2 Elephant Fox Tiger

mi-SVM [10] 0.780 0.702 0.822 0.582 0.784
MI-SVM [10] 0.779 0.843 0.814 0.578 0.840
EM-DD [24] 0.849 0.869 0.771 0.609 0.730
MI-Kernel [25] 0.880 0.893 0.843 0.603 0.842
MI-Graph [26] 0.900 0.900 0.851 0.612 0.819
mi-Graph [26] 0.889 0.903 0.868 0.616 0.860
miVLAD [27] 0.871 0.872 0.850 0.620 0.811
miFV [27] 0.909 0.884 0.852 0.621 0.813

mi-Net 0.889 0.858 0.858 0.613 0.824
MI-Net 0.887 0.859 0.862 0.622 0.830
MI-Net with DS 0.894 0.874 0.872 0.630 0.845
MI-Net with RC 0.898 0.873 0.857 0.619 0.836

experiments are running on a PC with Inter(R) i7-4790K CPU
(4.00GHZ) and 32GB RAM. The code for reproducing results
will be available upon acceptance.

C. Experimental Results

Experimental results are shown in Table II and Table III. The
best performance of each dataset is bolded. Notice that using
different pooling methods for these networks will produce
different results for each dataset. Here, we choose the best one
as the final result (for text categorization, the max pooling
achieves the best performance consistently). And we will
discuss the influence of pooling methods later. Particularly,
it achieves state-of-the-art performance on Elephant, Fox, and
text categorization, and nearly best accuracies on other datasets.
These results demonstrate the effectiveness of these multiple
instance networks. From these results, we can observe that
these networks achieve highly competitive results.

We can easily find that the embedded-space network MI-
Net seems more competitive than the instance-space network
mi-Net, which is consistent with other MIL algorithms. In
five benchmark datasets, MI-Net with DS achieves almost all
best results than other methods, which verifies the network
with deep supervision will be more robust to predict bag label.
Additionally, MI-Net with RC also gets good results on these
five benchmark datasets. In text categorization datasets, MI-
Net with DS achieves the superior performance and results of
MI-Net with RC is slightly worser than results of MI-Net. The
average accuracy of all 20 datasets as evaluation indicates that
MI-Net and its two variations outperform other five competing

algorithms, including MI-Kernel [25], miGraph [26], miFV
[27] and mi-Nets.

V. DISCUSSION

In this section, we discuss the influence of different pool-
ing methods, deep supervision, residual connections on the
networks. The width and depth of networks which may have
impact on the performance is also considered in discussion.

A. The Influence of Different Pooling Methods

There are three pooling methods applied to these networks,
including max pooling, mean pooling and LSE pooling. As
referred in Section III, in embedded-space, instance features
of the same bag are aggregated into the bag representation
through pooling methods; in instance-space, instance scores
of the same bag are aggregated into bag scores. We test the
influence of different pooling methods on MI-Net with DS.
From Table IV, we can observe that max pooling is preferable
compared with other methods.

B. The Influence of Deep Supervision

To illustrate the effectiveness of deep supervision, we
compare our MI-Net with deep supervision to the network
without deep supervision, which only do MIL pooling and bag
score prediction on the third fc layer. The effectiveness of deep
supervision is validated on five MIL benchmark datasets, as
shown in Table V. From the results, we can observe that the
performance is boosted by deep supervision for all datasets
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TABLE III
AVERAGE PREDICTION ACCURACY (IN %) FOR BAG CLASSIFICATION ON TEXT CATEGORIZATION.

Dataset MI-Kernel [25] miGraph [26] miFV [27] mi-Net MI-Net MI-Net with DS MI-Net with RC

alt.atheism 0.602 0.655 0.848 0.758 0.776 0.860 0.858
comp.graphics 0.470 0.778 0.594 0.830 0.826 0.822 0.828
comp.windows.misc 0.510 0.631 0.615 0.658 0.678 0.716 0.720
comp.ibm.pc.hardware 0.469 0.595 0.665 0.772 0.778 0.792 0.784
comp.sys.mac.hardware 0.445 0.617 0.660 0.746 0.792 0.794 0.810
comp.window.x 0.508 0.698 0.768 0.746 0.786 0.812 0.820
misc.forsale 0.518 0.552 0.565 0.580 0.652 0.686 0.696
rec.autos 0.529 0.720 0.667 0.746 0.774 0.776 0.792
rec.motorcycles 0.506 0.640 0.802 0.716 0.762 0.868 0.856
rec.sport.baseball 0.517 0.647 0.779 0.808 0.856 0.874 0.880
rec.sport.hockey 0.513 0.850 0.823 0.860 0.862 0.912 0.918
sci.crypt 0.563 0.696 0.760 0.608 0.694 0.812 0.796
sci.electronics 0.506 0.871 0.555 0.932 0.930 0.926 0.938
sci.med 0.506 0.621 0.783 0.792 0.818 0.848 0.842
sci.space 0.547 0.757 0.818 0.694 0.752 0.818 0.810
soc.religion.christian 0.492 0.590 0.814 0.718 0.782 0.820 0.822
talk.politics.guns 0.477 0.585 0.747 0.596 0.652 0.780 0.762
talk.politics.mideast 0.559 0.736 0.793 0.774 0.794 0.842 0.824
talk.politics.misc 0.515 0.704 0.697 0.602 0.654 0.776 0.736
talk.religion.misc 0.554 0.633 0.739 0.700 0.700 0.758 0.764

average 0.515 0.679 0.726 0.737 0.766 0.815 0.813

TABLE IV
THE INFLUENCE OF DIFFERENT POOLING METHODS FOR MI-NET WITH DS ON FIVE MIL BENCHMARKS.

Pooling Method MUSK1 MUSK2 Elephant Fox Tiger

max 0.894 0.874 0.870 0.630 0.826
mean 0.886 0.858 0.867 0.615 0.845
LSE 0.891 0.874 0.872 0.625 0.840

TABLE V
THE INFLUENCE OF DEEP SUPERVISION FOR MI-NET ON FIVE MIL BENCHMARKS, WHERE DS MEANS DEEP SUPERVISION.

Method MUSK1 MUSK2 Elephant Fox Tiger

MI-Net with DS 0.894 0.874 0.870 0.630 0.845
MI-Net without DS 0.887 0.859 0.862 0.622 0.830

TABLE VI
THE INFLUENCE OF RESIDUAL CONNECTIONS FOR MI-NET ON FIVE MIL BENCHMARKS, WHERE RC MEANS RESIDUAL CONNECTIONS.

Method MUSK1 MUSK2 Elephant Fox Tiger

MI-Net with RC 0.898 0.873 0.857 0.619 0.836
MI-Net without RC 0.887 0.859 0.862 0.622 0.830

and networks. Deep supervision is essential for learning good
instance features in multiple instance networks.

C. The Influence of Residual Connections

In order to show the improvement of residual connections,
MI-Net with Residual Connections which learns the bag
representation residuals, is compared to MI-Net. As referred
in Section VI, the influence of residual connections is proved
on five MIL benchmark datasets. The results of MI-Net
with Residual Connections are better than MI-Net without
Residual Connections, except for Elephant and Tiger. Residual
Connections may also have a positive impact on learning good
bag representation in multiple instance networks.

D. The Influence of network depth and width

As aforementioned,for mi-Net, MI-Net and MI-Net with
its variations, the number of layers and neurons for each
layer are fixed when training and testing. In table II and
table III, the proposed network both have four fc layers and
there are 256, 128, 64, 1 neurons for fc layers in MI-Net with
DS respectively while 128, 128, 128, 1 in MI-Net with RC.
However, in deep learning, the deeper and wider neural network
may get better performance. In this section, we will report the
results of proposed MI-Net with DS and MI-Net with RC with
different layer number and neuron number values on five MIL
benchmarks, respectively.

The depth and width analysis results of MI-Net with DS on
five MIL benchmarks are presented in Table VII. Note that,
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TABLE VII
THE INFLUENCE OF DEPTH AND WIDTH FOR MI-NET WITH DS ON FIVE MIL BENCHMARKS, WHERE NUMBERS IN BRACKETS MEAN THE NUMBER NEURONS

FOR EACH FC LAYER.

Structure MUSK1 MUSK2 Elephant Fox Tiger

(256, 256, 256, 1) 0.898 0.853 0.842 0.629 0.826
(256, 256, 128, 1) 0.881 0.877 0.844 0.602 0.836
(256, 128, 64, 1) 0.894 0.874 0.872 0.630 0.845
(128, 128, 128, 1) 0.887 0.871 0.840 0.616 0.836
(128, 128, 64, 1) 0.866 0.859 0.845 0.602 0.836
(64, 64, 64, 1) 0.891 0.857 0.861 0.592 0.824
(256, 256, 128, 128, 64, 1) 0.892 0.873 0.844 0.627 0.835
(256, 256, 256, 256, 256, 1) 0.884 0.853 0.838 0.609 0.835
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Fig. 5. Comparisons of depth for MI-Net with RC on five MIL benchmarks.
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Fig. 6. Comparisons of width for MI-Net with RC on five MIL benchmarks.

the neuron number of last fc layer is fixed to 1 in order to
output bag scores. As shown in Table VII, MI-Net with DS can
achieve the best performance in most cases when the depth is
4, and each fc layer has 256, 128, 64, 1 neurons respectively.
Although results of the deeper and wider network is superior to
the shallower and thinner one on some datasets, the advantage
of the deeper and wider network is not obvious to boost the
performance.

As referred in Section III-E, the neuron number of fc layers
should be same value to build residual connections except for

the last fc layer. Fixing the width of MI-Net with RC, we only
change the depth of the network. In Figure 5, results on five
MIL benchmarks are similar with the network deeper. So the
depth of MI-Net with RC is set to 4 during discussing the
influence of width on MI-Net with RC. Figure 6 illustrates that
the wider network is not necessary to boost the performance.
In addition, MI-Net with RC may get worse performance when
it is too thin.

This observation is not consistent with the performance of
deeper and wider neural networks to solve other problems.
That may be related to limited training data and simple MIL
pooling methods.

VI. CONCLUSION

In this work, we propose series of novel neural network
frameworks for MIL. Different from previous MIL networks,
our method focuses on bag level representation learning
instead of instance level label estimating. Experiments show
that our bag level networks show superior results on several
MIL benchmarks compared with the instance level network.
Moreover, we intergrate the most popular deep learning tricks
(deep supervision and residual connections) into our networks,
which can boost the performance further. What is more, our
method only takes about 0.0003 second for testing (forward)
and 0.0008 second for training (backward) per bag, which is
very efficient. According to these inspiring results, we believe
that deep learning can also solve the traditional MIL problem
well. In the future, we would like to study how to develop
more effective MIL pooling methods, and how to train deeper
and wider networks for MIL with limited training data.

REFERENCES

[1] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial
Intelligence, vol. 89, no. 1, pp. 31–71, 1997.

[2] J. Amores, “Multiple instance classification: Review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.

[3] G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–1105.

[6] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural computation, vol. 1,
no. 2, pp. 270–280, 1989.



9

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] J. Ramon and L. De Raedt, “Multi instance neural networks,” in
Proceedings of the ICML-2000 workshop on attribute-value and relational
learning, 2000, pp. 53–60.

[9] Z.-H. Zhou and M.-L. Zhang, “Neural networks for multi-instance
learning,” in Proceedings of the International Conference on Intelligent
Information Technology, Beijing, China, 2002, pp. 455–459.

[10] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines
for multiple-instance learning,” in NIPS, 2002, pp. 561–568.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[12] V. Nair and G. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010, pp. 807–814.

[13] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-Supervised
Nets,” in AISTATS, 2015, pp. 562–570.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[15] M.-L. Zhang and Z.-H. Zhou, “Improve multi-instance neural networks
through feature selection,” Neural Processing Letters, vol. 19, no. 1, pp.
1–10, 2004.

[16] M. Zhang and Z. Zhou, “Ensembles of multi-instance neural networks,” in
International Conference on Intelligent Information Processing. Springer,
2004, pp. 471–474.

[17] J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek, “Image
classification with the Fisher Vector: Theory and practice,” IJCV, vol.
105, no. 3, pp. 222–245, 2013.

[18] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep multiple instance learning for
image classification and auto-annotation,” in CVPR, 2015, pp. 3460–3469.

[19] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level labeling
with convolutional networks,” in CVPR, 2015, pp. 1713–1721.

[20] X. Wang, Z. Zhu, C. Yao, and X. Bai, “Relaxed multiple-instance SVM
with application to object discovery,” in ICCV, 2015, pp. 1224–1232.

[21] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009, pp. 248–255.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks.” in Aistats, vol. 15, no. 106, 2011, p. 275.

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[24] Q. Zhang and S. A. Goldman, “EM-DD: An improved multiple-instance
learning technique,” in NIPS, 2001, pp. 1073–1080.

[25] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance
kernels,” in ICML, vol. 2, 2002, pp. 179–186.

[26] Z. H. Zhou, Y. Y. Sun, and Y. F. Li, “Multi-instance learning by treating
instances as non-iid samples,” in ICML, 2009, pp. 1249–1256.

[27] X. S. Wei, J. Wu, and Z. H. Zhou, “Scalable algorithms for multi-instance
learning,” IEEE Transactions on Neural Networks and Learning Systems,
vol. PP, no. 99, pp. 1–13, 2016.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010, pp. 249–256.

[29] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

https://github.com/fchollet/keras

	I Introduction
	II Related Work
	III Multiple Instance Neural Networks
	III-A Notations
	III-B mi-Net: Instance-Space MIL Algorithm
	III-C MI-Net: A new Embedded-Space MIL Algorithm
	III-D MI-Net with Deep Supervision
	III-E MI-Net with Residual Connections
	III-F MIL Pooling Methods
	III-G Training Loss

	IV Experiments
	IV-A Datasets
	IV-B Experimental Setup
	IV-C Experimental Results

	V Discussion
	V-A The Influence of Different Pooling Methods
	V-B The Influence of Deep Supervision
	V-C The Influence of Residual Connections
	V-D The Influence of network depth and width

	VI Conclusion
	References

