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The nearest neighbor method together with the dynamic time warping (DTW) distance is
one of the most popular approaches in time series classification. This method suffers from
high storage and computation requirements for large training sets. As a solution to both
drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to
DTW spaces. The proposed LVQ scheme uses asymmetric weighted averaging as update rule.
Empirical results exhibited superior performance of asymmetric generalized LVQ (GLVQ)
over other state-of-the-art prototype generation methods for nearest neighbor classification.

1. Introduction

The nearest neighbor (NN) classifier endowed with the dynamic time warping (DTW) distance is one of the
most popular methods in time series classification [9, 44]. Application examples include electrocardiogram
frame classification [16], gesture recognition [2, 32], speech recognition [24], and voice recognition [23].

Two disadvantages of the naive NN method are high storage and computation requirements. Storage
requirements are high, because the entire training set needs to be retained for being able to execute
its classification rule. Computation requirements are high, because classifying a test example demands
calculation of DTW distances between the test and all training examples. One solution to both limitations
are data reduction methods that infer a small set of prototypes from the training examples [42]. These
methods aim at scaling down storage and computational complexity, while maintaining high classification
accuracy. Two common reduction approaches are prototype selection [10] and prototype generation [40].
Prototype selection methods choose a suitable subset of the original training set. Examples of prototype
selection algorithms that have been applied in DTW spaces are min-max centroids [30], k-Medoids
[18, 28, 29] and the DROP-family [42, 43].

Prototype generation methods infer new artificial prototypes from the training examples. We distinguish
between three directions to prototype generation methods for NN classification in DTW spaces:

1. Unsupervised prototype generation [1, 26, 29, 30, 31, 35, 39, 41]: Unsupervised methods cluster the
training examples of every class separately. Centroids of the clusters are computed by averaging
warped time series, which is non-trivial as compared to averaging vectors [27, 36]. The resulting
centroids form a reduced set of prototypes for NN classification.

2. Symmetric LVQ1 [38]: Symmetric LVQ1 is a supervised prototype generation method that extends
the LVQ1 algorithm [20] from Euclidean to DTW spaces by using a symmetric update rule. Starting
with an initial set of prototypes, LVQ1 repeatedly applies the following steps: (i) select the next
training example x; (ii) identify the prototype p closest to x; and (iii) attract p to x if the class
labels of both agree, otherwise repel p from x.
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3. Relational LVQ [11, 13, 14, 22]: Relational LVQ methods extend state-of-the-art LVQ methods
from Euclidean spaces to pseudo-Euclidean spaces via pairwise dissimilarity data. An important
example that has been extended to relational learning is generalized LVQ (GLVQ) [34]

An empirical comparison of different methods across the three directions is missing. Consequently,
it is unclear which direction is best suited for which situation. Relational methods are theoretically
best developed and the most general approach, because they can be applied to any distance space.
Unsupervised methods are currently the most popular direction in DTW spaces. Their usefulness has
been first demonstrated in the 1970ies for speech recognition [30, 31] and recently confirmed for general
time series classification tasks [29, 35]. Moreover, empirical result showed that k-means together with the
DBA algorithm for time series averaging exhibited the best generalization performance over different
prototype selection and unsupervised prototype generation methods [28, 29]. A limitation of unsupervised
methods is that they learn prototypes of every class separately without considering the decision boundaries
to the respective neighboring classes. In contrast to unsupervised methods, supervised approaches aim at
directly approximating the true but unknown decision boundaries. As far as we know, symmetric LVQ1
[38] is the only existing supervised prototype generation method that operates in DTW spaces. However,
there are two major issues related to symmetric LVQ1:

1. The update rule of the Euclidean LVQ1 method can be formulated as a weighted average of two
points. Averages in Euclidean spaces are unique minimizers of a sum of squared Euclidean distances.
In DTW spaces there are two forms of averages: a symmetric and an asymmetric form [21, 36].
The symmetric form computes the arithmetic mean of warped time series, whereas the asymmetric
form is a minimizer of a sum of squared DTW distance criterion [17, 36]. Symmetric LVQ1 uses
a symmetric form of weighted average as update rule, which has the semblance of the Euclidean
LVQ1 update rule but resists a theoretical justification.

2. Symmetric LVQ1 has been proposed as a heuristic without explicit link to a cost function. It
extends the first and simplest LVQ variant formulated in Euclidean spaces [20]. The Euclidean LVQ1
showed unsatisfactory generalization performance, slow convergence, and numerical instabilities.
Improved methods such as GLVQ define explicit cost functions that are minimized by stochastic
gradient descent. In principle, it is possible to extend cost-based LVQ methods to DTW spaces
using symmetric update rules. However, these update rules will fail to minimize the respective
extended cost functions in an analytically justified way (cf. Section 3.4).

Given both issues, it seems natural to ask whether asymmetric extensions of cost-based LVQ methods are
beneficial for supervised prototype generation in DTW spaces.

In this contribution, we propose an asymmetric LVQ scheme for DTW spaces. The proposed asymmetric
scheme is generic and theoretically better grounded than its symmetric counterpart. It is generic in the
sense that Euclidean LVQ algorithms can be directly extended to DTW spaces under mild assumptions.
As examples, we derive asymmetric versions of LVQ1 and GLVQ. The proposed scheme is theoretically
justified in the sense that asymmetric update rules are weighted averages that minimize a sum of squared
distance criterion. In addition, asymmetric cost-based LVQ are stochastic gradient descent method almost
surely. In experiments, we compared the performance of the proposed asymmetric LVQ methods against
prototype generation methods from the above three directions. The results suggest that asymmetric
GLVQ best trades classification accuracy against computation time by a large margin.

The implications of this contribution are twofold: First, asymmetric GLVQ is well suited for online
settings and in situations where storage and computation requirements are an issue. Second, the generic
asymmetric LVQ scheme can serve as a blueprint for directly extending unsupervised prototype learning
methods to DTW spaces, such as vector quantization, self-organizing maps, and neural gas.

The rest of this paper is structured as follows: Section 2 introduces LVQ in Eucldean space. Section
3 proposes asymmetric LVQ for DTW spaces. Section 4 presents and discusses experiments. Finally,
Section 5 concludes with a summary of the main results and an outlook to further research.

2. Learning Vector Quantization

This section introduces learning vector quantization in Euclidean spaces in such a way that most concepts
can be directly extended to other distance spaces.

2



2.1. Nearest Neighbor Classification

Let (X , δ) be a distance space with distance function δ : X ×X → R≥0. Furthermore, let Y = {1, . . . , C}
be a set consisting of C class labels. We assume that there is an unknown function

y : X → Y, x 7→ y(x)

that assigns every element x ∈ X to a class label y(x) ∈ Y. A nearest neighbor classifier approximates
the unknown function y by using a set C = {(p1, z1), . . . , (pK , zK))} of K reference elements pk ∈ X with
class labels zk = y(pk). The set C is called codebook and its elements pk are the prototypes. We demand
that y(C) = Y, that is there is at least one prototype for every class. For the sake of convenience, we
occasionally write p ∈ C instead of (p, z) ∈ C. Consider the function

p∗(x) = argmin
p∈C

δ(p, x)

that associates element x ∈ X with its nearest (best-matching) prototype p∗(x) ∈ C. Then the nearest
neighbor classifier with respect to codebook C is a function hC : X → Y of the form hC(x) = y (p∗(x)).
The function hC(x) assigns element x to the class of its nearest prototype p∗(x).

2.2. Learning Vector Quantization

Let X = Rd be the d-dimensional Euclidean space endowed with the Euclidean metric δ(x, y) = ‖x− y‖.
Suppose that D = {(x1, y1), . . . , (xN , yN )} ⊆ X × Y is a training set. The goal of LVQ is to learn a
codebook C of size K � N on the basis of the training set D such that the expected misclassification
error of the nearest neighbor classifier hC is as small as possible.

Learning can be performed in batch or incremental (stochastic) mode. Here, we focus on incremental
learning. During learning, prototypes p are adjusted in accordance with the distortion

Dx(p) = δ2(p, x),

where x is the current input example. The distortion Dx(p) is differentiable as a function of p and its
gradient is given by ∇Dx(p) = 2(p− x). Then the generic LVQ scheme is of the following form:

1. Initialize codebook C.
2. Repeat until termination:

a) Randomly select a training example (x, y) ∈ D.

b) For all prototypes (p, z) ∈ C do

p ← p− η · f(p, x) · (p− x), (1)

where η is an adaptive learning rate and f is a class-compatible force function.

c) Optionally adjust hyper-parameters.

The learning rate η in Eq. (1) absorbs the constant factor 2 of the gradient ∇Dx(p). Variants of LVQ
algorithms differ in the particular form of the force function. Note that the notation of the force function
is incomplete for the sake of simplicity. A force function f(p, x) depends on the class labels of both
arguments as well as on the entire codebook C.

The force function f(p, x) is a real-valued function that determines the direction and relative strength
with which prototype p is updated. A positive force f(p, x) moves p closer to the input x. A negative
force f(p, x) repels p from x. Finally, prototype p remains unchanged if the force f(p, x) is zero. We
demand that the force function f(p, x) is class-compatible in the sense that f(p, x) ≥ 0 if y(x) = y(p)
and f(p, x) ≤ 0 if y(x) 6= y(p).

Hyper-parameters need to be initialized and can be optionally adjusted during learning. Two common
hyper-parameters are the number K of prototypes and the learning rate η. Some force functions include
additional hyper-parameters.
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2.3. Examples of LVQ Algorithms

This section presents two examples of LVQ algorithms, the LVQ1 and the generalized LVQ algorithm.

Example 1: LVQ1

The LVQ1 algorithm proposed by Kohonen [20] is historically the first LVQ method. Its heuristically
motivated update rule is of the form

p ←


p− η (p− x) : p = p∗(x) and y(x) = y(p)

p+ η (p− x) : p = p∗(x) and y(x) 6= y(p)

p : p 6= p∗(x)

.

The update rule adjusts the best matching prototype p = p∗(x) of the current input x and leaves all other
prototypes unchanged. Prototype p is attracted to x if their class labels agree and repelled otherwise. To
express the update rule of LVQ1 in terms of Eq. (1), we define the force function f of LVQ1 as

f(p, x) =


+1 : p = p∗(x) and y(x) = y(p)

−1 : p = p∗(x) and y(x) 6= y(p)

0 : p 6= p∗(x)

.

Example 2: Generalized LVQ

The early LVQ1 algorithm suffered from sensitivity to initialization, instabilities during learning, and slow
convergence [25]. Therefore, several modifications of LVQ1 have been suggested [4, 25]. One example is
generalized learning vector quantization (GLVQ) proposed by Sato and Yamada [34]. During learning,
GLVQ maximizes the hypothesis margin [7, 12] by minimizing the cost function

E =

N∑
i=1

h(κ(xi)),

where h : R→ R is a monotonously increasing function and κ : X → R is the relative distance difference.
Here, we assume that h is the sigmoid function h(u) = 1/(1 + exp(−σu)), where σ is an adjustable

hyper-parameter that controls the slope. To describe the relative distance difference, we consider a
training example (x, y) ∈ D. Suppose that p+ is the closest prototype of x with y(p+) = y and p− is the
closest prototype of x with y(p−) 6= y. Then the relative distance difference of x is defined by

κ(x) =
d+ − d−

d+ + d−
,

where d± = δ(p±, x) are the squared distances of x from the prototypes p±. The relative difference κ(x)
as a function of the prototypes p± has the following analytical properties:

(i) κ(x) is undefined if x = p+ = p−.

(ii) κ(x) is locally Lipschitz continuous if d+ + d− 6= 0.

(iii) κ(x) is non-differentiable if one of the prototypes p± is not uniquely determined for x.

The function κ(x) is not continuously extendable at its discontinuity, which is a singleton. Otherwise,
from case (ii) follows that κ(x) is differentiable almost everywhere by Rademacher’s Theorem [8]. In
other words, we have zero probability that non-differentiability occurs. The same analytical properties
hold for the loss h(κ(x)) and the cost function E.

The GLVQ algorithm minimizes the cost function E incrementally according to the following update
rule for every prototype p ∈ C:

p ←


p− η φ+ (p− x) : p = p+

p+ η φ− (p− x) : p = p−

p : otherwise

,
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Figure 1: (a) Two time series x and y of length n = 4. The red and blue numbers are the elements of
the respective time series. (b) Warping path w = (w1, . . . , w5) of length L = 5. The points
wl = (il, jl) of warping path w align elements xil of x to elements yjl of y as illustrated in (a)
by black lines. (c) The 4× 4 grid showing how warping path w moves from the upper left to
the lower right corner as indicated by the orange balls. The numbers attached to the orange
balls are the squared-error costs of the corresponding aligned elements. (d) The cost Cw(x, y)
of aligning x and y along warping path w.

where

φ+ = h′(κ(x))
d−

(d+ + d−)
2 and φ− = h′(κ(x))

d+

(d+ + d−)
2

The derivative of the sigmoid function is given by h′(u) = h(u) (1− h(u)).
The update rule of GLVQ performs stochastic gradient descent if h(κ(x)) is differentiable as a function

of p, which is almost surely the case. If the exceptional case (i) occurs, we find that p−x = 0. In this case,
updating leaves the prototype p unchanged. Thus, the singularity of κ has no adverse effects. Critical
are continuous but non-differentiable points p corresponding to case (iii). There are two straightforward
strategies to cope with non-differentiability: The first strategy ignores the current input x and draws the
next training example. The second strategy breaks all ties if the closest prototypes p± of input x are not
uniquely determined and then proceeds as usual. Either of both strategies can be implemented into the
force function of GLVQ. The force function of GLVQ following the first strategy for case (iii) is of the
form

f(p, x) =


+φ+(x) : p = p+ and p+ is unique

−φ−(x) : p = p− and p− is unique

0 : otherwise

.

Substituting the force function f(p, x) into the generic Euclidean update rule (1) gives the update rule of
GLVQ.

3. LVQ in DTW Spaces

This section presents a generic asymmetric update rule for LVQ in DTW spaces and discusses its
relationship to the symmetric LVQ1 update rule proposed by Somervuo and Kohonen [38].

3.1. The Dynamic Time Warping Distance

We begin with introducing the DTW distance. We refer to Figure 1 for explanatory illustrations of the
concepts.
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A time series x of length m is a sequence x = (x1, . . . , xm) consisting of feature vectors xi ∈ Rd for
every time point i ∈ [m] = {1, . . . ,m}. By T we denote the set of all time series of finite length with
features from Rd. To define the DTW-distance, we first need to introduce warping paths.

Definition 3.1. Let m,n ∈ N. A warping path of order m × n is a sequence w = (w1, . . . , wL) of L
points wl = (il, jl) ∈ [m]× [n] such that

1. w1 = (1, 1) and wL = (m,n) (boundary conditions)

2. wl+1 − wl ∈ {(1, 0), (0, 1), (1, 1)} for all l ∈ [L− 1] (step condition)

The set of all warping paths of order m× n is denoted by Wm,n. A warping path of order m× n can
be thought of as a path in a [m]× [n] grid, where rows are ordered top-down and columns are ordered
left-right. The boundary conditions demand that the path starts at the upper left corner and ends in the
lower right corner of the grid. The step condition demands that a transition from one point to the next
point moves a unit in exactly one of the following directions: down, right, and diagonal.

A warping path w = (w1, . . . , wL) ∈ Wm,n defines an alignment (or warping) between time series
x = (x1, . . . , xm) and y = (y1, . . . , yn). Every point wl = (il, jl) of warping path w aligns feature vector
xil to feature vector yjl . Occasionally, we write W(x, y) instead of Wm,n to denote the set of all warping
paths aligning time series x and y.

The cost of aligning time series x and y along warping path w is defined by

Cw(x, y) =
L∑
l=1

‖xil − yjl‖
2
,

where ‖·‖ denotes the Euclidean norm. Then the DTW-distance between two time series minimizes the
cost of aligning both time series over all possible warping paths.

Definition 3.2. The DTW-distance between time series x, y ∈ T is defined by

δ(x, y) = min
{√

Cw(x, y) : w ∈ W(x, y)
}
.

An optimal warping path is any warping path w ∈ W(x, y) that satisfies δ(x, y) =
√
Cw(x, y).

The DTW-distance is not a metric, because it violates the identity of indiscernibles and the triangle
inequality.1 Instead, the DTW-distance satisfies the following properties for all x, y ∈ T : (i) δ(x, y) ≥ 0,
(ii) δ(x, x) = 0, and (iii) d(x, y) = d(y, x). Computing the DTW distance and deriving an optimal warping
path is usually solved by applying techniques from dynamic programming [33].

3.2. A Generic Asymmetric LVQ Update Rule

This section extends LVQ update rules from Euclidean spaces to DTW spaces using asymmetric averaging.

The basic idea for extending LVQ to DTW spaces is as follows: Replace the gradient of the squared
Euclidean distance by a suitable surrogate time series gp,x such that the corresponding update rule takes
the form

p′ = p− η · f(p, x) · gp,x, (2)

where x is the current input, p is the prototype to be updated, and p′ is the updated prototype. We
demand that g has the same length as p. In this case, the right hand side of update rule (2) can be
regarded as a valid algebraic expression of two vectors.

To construct the surrogate time series gp,x, we consider the squared DTW distortion

Dx : Rm → R, p 7→ δ2(p, x),

1The identity of indiscernibles demands that δ(x, y) = 0 ⇔ x = y for all x, y ∈ T .

6



Figure 2: Illustration of warping and valence matrix. Box (a) shows the warping path w of Figure 1. Box
(b) shows the warping matrix W of warping path w. The points wl = (il, jl) of warping path w
determine the positions of the ones in the warping matrix W . Box (c) shows the valence matrix
V = (vij) of warping path w. The matrix V is a diagonal matrix, whose diagonal elements vii
are the row sums of W . Box (d) interprets the valence matrix V . The valence vii of element xi
is the number of elements in time series y that are aligned to xi by warping path w. In other
words, the valence vii is the number of black lines emanating from element xi.

where x ∈ T is a time series of arbitrary length. Restricting the domain of Dx to time series of fixed
length m is owed to the principle of asymmetric averaging, which will be discussed later in Section 3.4.
Note that different prototypes pj may have different lengths mj , but the update p′j of a prototype pj has
the same length mj as pj .

The distortion Dx is a locally Lipschitz continuous function on Rm [36] and therefore differentiable
almost everywhere by Rademacher’s Theorem [8]. Every locally Lipschitz continuous function F : Rm → R
admits a concept of generalized gradient ∂F (p) at point p, called subdifferential henceforth [6]. The
subdifferential ∂F (p) ⊆ Rm of function F is a convex closed subset, whose elements are called subgradients.
At differentiable points p, the subdifferential ∂F (p) = {∇F (p)} coincides with the gradient of F .

To update prototype p, we pick a subgradient gp,x ∈ ∂Dx(p) as surrogate time series. The subgradients
we use for updating prototypes can be expressed by warping and valence matrices [36].

Definition 3.3. Let w ∈ Wm,n be a warping path.

1. The warping matrix of w is a matrix W ∈ {0, 1}m×n with elements

Wij =

{
1 : (i, j) ∈ w
0 : otherwise

.

2. The valence matrix of w is the diagonal matrix V ∈ Nm×m with elements

Vii =

n∑
j=1

Wij .

Figure 2 provides an example of a warping and valence matrix. The warping matrix is a matrix
representation of the corresponding warping path. The valence matrix is a diagonal matrix, whose
elements count how often an element of the first time series is aligned to an element of the second one.
The next definition introduces subgradients of squared DTW distortions.

Proposition 3.4 ([36]). Let x ∈ T be a time series and Dx : Rm → R be a squared DTW distortion.
Then the subdifferential ∂Dx(p) contains a subgradient of the form

2(V p−Wx) ∈ ∂Dx(p),

where W and V are the warping and valence matrix of an optimal warping path w ∈ W(p, x).
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Using the concept of subgradients as surrogate for gradients, the generic scheme of LVQ in DTW spaces
is as follows:

1. Initialize codebook C.
2. Repeat until termination:

a) Randomly select a training example (x, y) ∈ D.

b) For all prototypes (p, z) ∈ C do

i. Compute an optimal warping path w between p and x.

ii. Derive warping matrix W and valence matrix V of path w.

iii. Update prototype p according to the rule

p ← p− η · f(p, x) · (V p−Wx), (3)

where η is an adaptive learning rate and f is a class-compatible force function.

c) Optionally adjust hyper-parameters.

Update rule (3) is generic in the following sense: Every LVQ algorithm in Euclidean spaces whose
update rule fits into the form of (1) can be generalized to its corresponding counterpart in DTW spaces.
In particular, LVQ1 and GLVQ are examples that can be directly generalized to DTW spaces.

In addition, the update rule (3) in DTW spaces generalizes the update rule (1) in Euclidean spaces
in the following sense: Squared Euclidean distances between time series p and x of the same length m
correspond to the cost of aligning p and x along a warping path w = (w1, . . . , wm) with points wl = (l, l).
Then the valence and warping matrix of w are identity matrices and the subgradient of the squared DTW
distortion reduces to the gradient of the squared Euclidean distortion.

3.3. Stochastic Subgradient Update Rules

This section illustrates that stochastic gradient descent rules for minimizing differentiable LVQ cost
functions in Euclidean spaces extend to stochastic subgradient methods for minimizing their counterparts
in DTW spaces. The following analysis is restricted to the cost function of GLVQ, but can be easily
applied to other sufficiently well-behaved cost functions. By

Eδ =

N∑
i=1

h(κδ(xi)),

we denote the cost function of asymmetric GLVQ in DTW spaces, where

κδ(x) =
δ+ − δ−

δ+ + δ−

is the relative DTW distance difference at current input x. The distances δ+ and δ− in κδ(x) are the
DTW distortions

δ+ = δ2
(
p+ − x

)
and δ− = δ2

(
p− − x

)
,

The DTW distortion can be expressed as

Dx(p) = min
p
Cp(p, x),

where Cp(p, x) is the cost of aligning p and x along warping path p.
The relative difference κδ(x) as a function of the prototypes p± has almost the same analytical properties

as the relative difference κ in Euclidean spaces:

(i) κδ(x) is undefined if δ+ = δ− = 0.
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(ii) κδ(x) is locally Lipschitz continuous if d+ + d− 6= 0.

(iii) κδ(x) is non-differentiable if one of the prototypes p± is not uniquely determined for x.

(iv) κδ(x) can be non-differentiable if an optimal warping path between x and p± is not unique.

Case (i)–(iii) are as in the Euclidean space with a slight difference in case (i). The relative difference κ in
Euclidean spaces has a unique singularity for a given input x due to the identity of indiscernibles satisfied
by any metric (cf. Section 3.1). Since the DTW distance does not satisfy the identity of indiscernibles,
there are time series p+, p− and x that are pairwise distinct but nevertheless give δ+ = δ− = 0.

To show case (ii), observe that the cost function Cp(p, x) is differentiable and therefore locally Lipschitz
continuous [36]. Since local Lipschitz continuity is closed under the min-operation and rules of calculus,
we find that κδ(x) is also locally Lipschitz continuous, whenever d+ + d− 6= 0. Consequently and when
well-defined, the function κδ(x) is differentiable almost everywhere by Rademacher’s Theorem [8]. As in
Euclidean spaces, we again have zero probability that non-differentiability occurs. The difference is that
κδ(x) has ’more’ non-differentiable points than its counterpart in Euclidean spaces due to case (iv).

For minimizing the cost function Eδ, the strategy to cope with singularities of case (i) and non-
differentiabilities of case (iii) is as in the Euclidean space. We resolve non-differentiabilities of case (iv) by
breaking ties and choosing one optimal warping path between x and its closest prototypes p+ and p−.
Apart from the singularities, the GLVQ algorithm in DTW spaces has the form of a stochastic subgradient
method [3, 36].

3.4. Relationship to The Symmetric LVQ1 Algorithm

In 1998, Kohonen and Somervuo [19] laid the foundation for extending (un)supervised prototype learning
to arbitrary distance spaces. In a follow-up paper, Somervuo and Kohonen [38] generalized the LVQ1
algorithm to DTW spaces. The technical difference between the Somervuo-Kohonen method and the
proposed generic update rule (3) is that the former implements symmetric and the latter asymmetric
averaging.

To describe asymmetric and symmetric averaging, we first note that the generic Euclidean update rule
can be written as a weighted average of the form

p′ = p− α(p− x) = (1− α)p− αx,

where x is the current input, p is a prototype to be updated, p′ is the updated prototype, and α = ηf(p, x)
is a short-cut notation for the step size. The weighted average as update rule can be directly implemented
in DTW spaces in an asymmetric and in a symmetric form. To describe both forms of an average, we
assume that w = (w1, . . . , wL) is an optimal warping path between prototype p and input x with points
wl = (il, jl).

Asymmetric averaging. The warping path w aligns every element pi of prototype p with elements
xj+1 . . . , xj+v of input x, where v ≥ 1 is the valency of pi. Then the weighted asymmetric average p′ is
given by

p′i = (1− α) · v · pi + α ·
(
xj1 + · · ·+ xjq

)
for all time points i of prototype p. By construction, the length of p′ coincides with the length of p. The
asymmetric weighted average corresponds to the generic update rule (3) in element-wise rather than
matrix notation. Asymmetric averages are asymmetric, because the length of a prototype is determined
by choosing a reference time axis of predetermined and fixed length.

Symmetric averaging. To average time series independent of the choice of a reference time axis, Kruskal
and Liberman [21] proposed symmetric averages. The weighted symmetric average p′ is of the form

p′l = (1− α)pil + αxjl

for all points wl = (il, jl) of the optimal warping path w. The resulting prototype p′ has the same length
L as the warping path w. Repeated updating in symmetric form results in increasingly long prototypes.
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Somervuo and Kohonen applied an interpolation technique to adjust the length of the prototype p′. In
doing so, the complete Somervuo-Kohonen update rule is defined by

p′l = Πm

(
(1− α)pil + αxjl

)
where Πm : T → Tm denotes a (possibly non-linear) projection to the subset Tm. The symmetric update
rule is generally not based on a subgradient of the distortion. In this sense, symmetric LVQ1 lacks a
theoretical underpinning.

4. Experiments

The goal of these experiments is to assess the performance of asymmetric LVQ1 and GLVQ.

4.1. Data

We used 30 datasets from the UCR time series classification and clustering repository [5]. The datasets
were chosen to cover various characteristics such as application domain, length of time series, number of
classes, and sample size (see Table 1).

4.2. Algorithms

We considered the following nearest neighbor classifiers:

Notation Algorithm Reference

1-nn nearest neighbor classifier traditional
rglvq relational generalized LVQ [11]
kmeans k-means classifier [28, 29]
slvq symmetric LVQ1 [38]
alvq asymmetric LVQ1 proposed
glvq asymmetric generalized LVQ proposed

The codebook of the 1-nn classifier consists of the entire training set. All other algorithms use one
prototype per class to obtain fast NN classifiers. The rglvq classifier assumes as input a matrix of
pairwise DTW dissimilarities. Then rglvq learns prototypes in the dissimilarity space (without Nyström
approximation) [11]. The kmeans classifier refers to the nearest neighbor classifier whose prototypes were
learned by using the unsupervised k-means algorithm together with the DBA algorithm for recomputing
the centroids [28, 29]. The slvq method is the symmetric Somervuo-Kohonen extension of LVQ1 to DTW
spaces [38].

4.3. Experimental Protocol

To assess the performance of the nearest prototype classifiers, we conducted ten-fold cross validation
and reported the average classification accuracy, briefly called accuracy, henceforth. We preferred cross-
validation over hold-out validation via the supplied train-test splits for two reasons: first, to obtain better
estimates of the generalization performance; and second, to make sense of data reduction by increasing
the size of the training set to 90% of all data.

For the rglvq classifier, we used the default setting as provided by the publicly available matlab-
implementation.2 The default-setting has also been used in experiments and is justified, because rglvq is
not sensitive to its hyper-parameters [22].

The kmeans classifier applied the k-means clustering method to every class separately. Since the
codebook of kmeans consists of one prototype per class, k-means clustering reduced to averaging warped
time series of the same class. For time series averaging, we applied the DBA algorithm [27]. The DBA
algorithm terminated latest after 50 iterations.

2https://www.techfak.uni-bielefeld.de/~fschleif/software.xhtml (January 2017).
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Dataset N/K 1-nn rglvq kmeans slvq alvq glvq

Beef 12.0 53.3 41.7 43.3 40.0 51.7 63.3
CBF 310.0 99.9 93.9 96.6 93.6 96.1 99.6
ChlorineConcentration 1435.7 99.6 45.5 34.9 55.0 56.2 71.6
Coffee 28.0 100.0 96.7 96.4 96.4 96.4 98.2
ECG200 100.0 83.5 72.0 71.0 71.0 74.5 80.5
ECG5000 1000.0 93.3 80.8 83.1 89.4 91.1 94.3
ECGFiveDays 442.0 99.2 63.9 63.0 72.7 71.0 99.1
ElectricDevices 2376.7 79.2 63.5 56.5 57.4 64.8 78.2
FaceFour 28.0 92.9 88.4 86.6 87.5 87.5 92.0
FacesUCR 160.7 97.8 82.2 85.6 83.3 85.3 97.2
Fish 50.0 80.3 63.4 65.1 63.1 64.9 90.9
Gun Point 100.0 91.5 46.0 66.0 66.5 69.0 97.0
Ham 107.0 72.4 61.0 65.0 60.3 65.0 74.8
ItalyPowerDemand 548.0 95.8 82.6 85.0 77.0 86.4 95.3
Lighting2 60.5 89.3 57.1 64.5 76.9 62.0 76.0
Lighting7 20.4 71.3 79.1 76.2 59.4 79.0 82.5
MedicalImages 114.1 80.7 43.5 42.8 53.5 60.6 71.7
OliveOil 15.0 85.0 81.7 83.3 85.0 83.3 85.0
ProximalPhalanxOutlineAgeGroup 201.7 75.5 85.6 81.3 82.2 82.6 83.6
ProximalPhalanxOutlineCorrect 445.5 82.0 61.1 63.2 71.9 72.3 85.1
ProximalPhalanxTW 100.8 77.5 76.7 72.2 76.4 75.9 81.2
RefrigerationDevices 250.0 60.7 56.7 54.4 55.3 56.7 62.9
Strawberry 491.5 96.5 60.3 58.8 74.7 78.8 94.1
SwedishLeaf 75.0 82.0 68.5 69.2 69.6 68.4 87.6
synthetic control 100.0 99.2 93.5 99.3 98.5 99.2 99.5
ToeSegmentation1 134.0 85.8 68.7 73.1 65.7 75.8 92.5
Trace 50.0 100.0 95.5 99.0 100.0 99.5 100.0
Two Patterns 1250.0 100.0 99.8 97.9 96.9 98.1 99.9
Wafer 3582.0 99.4 63.2 45.0 89.6 91.7 96.5
Yoga 1650.0 93.9 56.0 58.5 55.0 66.0 73.2

green: rank 1 — yellow: rank 2 — orange: rank 3, 4, 5 — red: rank 6

Table 1: Average accuracies of six nearest neighbor classifiers on 30 datasets using 10-fold cross validation.
The second column N/K roughly shows the average number of elements per class.

All non-relational LVQ variants were intialized by the centroids of the kmeans classifier and terminated
latest after 1, 000 iterations. The hyper-parameters of the LVQ algorithms were selected from

σ ∈ {0.1, 0.5, 1, 5, 10, 25, 50}
η ∈ {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5},

where σ is the initial slope parameter of glvq and η is the learning-rate of slvq and alvq. The learning
rate of glvq was set to one. The slope parameter was adjusted by σ · t, where t is the number of epochs.
The respective hyper-parameter of a given LVQ algorithm A was selected for the i-th fold Di according to
the following procedure: (1) Train A with every hyper-parameter value on the i-th training set Di. (2)
Select the trained model with the lowest error rate on training set Di. (3) Test the chosen model on the
i-th fold Di.

4.4. Results

This section presents and discusses the results. Table 1 summarizes the 10-fold cross validation results of
the six classifiers on 30 datasets.
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Classifier rank 1 rank 2 rank 3 rank 4 rank 5 rank 6 avg std

1-nn 17 10 1 0 1 1 1.70 1.18
rglvq 1 1 5 2 13 8 4.63 1.33
kmeans 0 1 4 9 7 9 4.63 1.16
slvq 2 1 2 11 5 9 4.43 1.43
alvq 0 0 18 9 2 1 3.53 0.78
glvq 14 15 1 0 0 0 1.57 0.57

Table 2: Rank distribution, average ranks, and standard deviation. The average accuracy of every classifier
on a given dataset was ranked, where ranks go from 1 (highest accuracy) to 6 (lowest accuracy).

General Performance Comparison

To assess the generalization performance of the six classifiers, we compared their average classification
accuracies. In an overall comparison, glvq was ranked first with average rank 1.57 closely followed by
1-nn with average rank 1.70. The other four classifiers were left behind with nearly two- to three-rank
gaps (Table 2). The asymmetric LVQ variants glvq and alvq exhibited the most stable rankings with
standard deviation of 0.57 and 0.78, resp., whereas the symmetric Somervuo-Kohonen method slvq was
most unstable with standard deviation 1.43.

To assess the differences in accuracy between the six classifiers, we compared the results of Table 1 in a
pairwise manner. The mean percentage difference in accuracy between the two best performing classifiers
(1-nn, glvq) and the other four classifiers (rglvq, kmeans, slvq, alvq) ranged from 12.7% to 22.0%
(Figure 3, right panel). These results show that the accuracies of the two best performing classifiers were
substantially higher than the accuracies of the other four classifiers by a large margin.

A pairwise comparison of 1-nn and glvq exhibited slight advantages for the 1-nn classifier. The
1-nn classifier won more often than the glvq classifier (50% vs. 43.4%) but differences in classification
accuracy were marginal (0.3%) on average (Figure 3). The 1-nn and glvq classifier complement each
other in the sense that each of both classifiers substantially outperformed the other one on six datasets
by more than 10 percentage points (Table 1):

1. 1-nn outperformed glvq on ChlorineConcentration, Lighting2, and Yoga.

2. glvq outperformed 1-nn on Beef, Fish, and Lighting7.

The first item suggests that one prototype per class is insufficient for separating the classes of Chlorine-
Concentration, Lighting2, and Yoga. The second item indicates that the 1-nn classifier suffers from
noisy training examples that degrade its generalization performance on Beef, Fish, and Lighting7.

With regard to computation time, the four prototype generation methods kmeans, slvq, alvq, and glvq

are substantially faster than the 1-nn and rglvq classifier. When classifying a test example, computation
time is dominated by the number of DTW distance calculations. By construction, the four prototype
generation methods computed K distances, where K is the number of classes. In contrast, the 1-nn and
the rglvq classifier required N distance computations, where N is the number of training examples. In
this study, the average speed-up factor N/K of the four prototype generation methods over 1-nn and
rglvq ranged from one to three orders of magnitude (see Table 1 and compute 0.9 ·N/K due to 10-fold
cross-validation).

The results indicate that glvq best traded solution quality against computation time. The solution
quality of glvq and 1-nn were comparable, whereas the solution quality of rglvq, kmeans, slvq, and
alvq were not competitive. These findings suggest that glvq is a suitable alternative in online settings
and situations, where storage is limited and short classification times are required.

Unsupvervised vs. Supervised

Compared to other prototype selection and generation methods, the kmeans classifier showed convincing
results in time series classification [28, 29] using a pre-specified train-test split supplied by the contributors
of the datasets. To assess the effect of supervised prototype adaption, we compared the classification
accuracies of the kmeans classifier and the three LVQ classifiers in DTW space (slvq, alvq, glvq).
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Winning Percentage Mean Percentage Difference

Figure 3: Pairwise comparison of results. Left: Pairwise winning percentages wij , where classifier in row i
wins wij percentages of all competitions against the classifier in column j. Right: Pairwise mean
percentage difference aij in accuracy, where the accuracy of classifier in row i is aij percentages
better on average than the accuracy of the classifier in column j. A definition of both measures
is given in Appendix A.

The glvq classifier won all competitions against kmeans with 21.8 mean percentage difference in
classification accuracy. The other two LVQ methods (slvq, alvq) won more competitions than the
kmeans classifier with 4.9 and 9.4 mean percentage differences in accuracy, respectively (Figure 3). These
results suggest that LVQ methods are – on average – more suitable prototype generation methods for
constructing memory- and time-efficient nearest neighbor classifiers than the kmeans classifier. This
finding is in line with similar results in Euclidean spaces [15].

Relational vs. Non-Relational

To assess the effects of relational vs. non-relational prototype learning, we compared the results of
rglvq against the prototype generation methods kmeans, slvq, alvq, and glvq.

We made the following observations (Table 2 and Figure 3): (i) the rglvq classifier was ranked last
together with kmeans and both classifiers have comparable generalization performance; (ii) all non-
relational LVQ performed better than rglvq; (iii) the non-relational glvq classifier has substantially
higher accuracy than its relational counterpart rglvq with mean percentage difference of almost 22%;
(iv) all non-relational classifiers were one to three orders of magnitude faster than rglvq (cf. disscussion
on general performance comparison).

The rglvq classifier is neither competitive with 1-nn and also seems to be less suited for improving
storage and computational requirements of the naive NN method. In all cases, rglvq retained the entire
training set in order to embed a new test example into the pseudo-Euclidean space. Techniques such as
the Nyström approximation can considerably improve storage and computation requirement but may
compromise solution quality [11, 22]. These findings suggest that prototype learning in DTW spaces
should be preferred over relational prototype learning in a pseudo-Euclidean space.

Symmetric LVQ1 vs. Asymmetric LVQ1

To assess the effects of the different types of update rules on the generalization performance, we compared
the classification accuracies of slvq against alvq.

In an overall comparison, the average rank of alvq was almost one rank better than the average rank
of slvq (3.53 vs. 4.43, Table 2). The rankings of alvq were more stable than the rankings of slvq, which
was the most unstable classifier (std 0.78 vs. std 1.43, Table 2). Consequently, alvq was ranked last only
once, whereas slvq was ranked last 9 times. Finally, in a pairwise comparison, alvq won 73.3% of all
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Figure 4: Accuracy of 10-fold cross validation as a function of the number k of prototypes per class.

competitions against slvq with 4.5 mean percentage differences in accuracy (Figure 3).
These results indicate that the asymmetric update rule of LVQ1 gives better and more stable results on

average than its symmetric counterpart. These findings are in line with similar results on estimating the
sample variance of a set of time series using symmetric and asymmetric averaging of time series in DTW
spaces [27, 37]. As pointed out in [36], the reason for unstable and less accurate results of slvq can be
due to the projection step that may displace centroids in an uncontrolled manner. Nevertheless symmetric
averaging can but need not have negative effects as shown by the results of slvq obtained on Lighting2,
OliveOil, and Trace.

Varying the Number of Prototypes

To compare the dependence of the classification accuracy of glvq and kmeans on the number k of
prototypes per class, we considered seven difficult datasets for which the error rate of glvq was higher
than 10% for k = 1. We used the same experimental protocol as before. Figure 4 summarizes the results.

The main observation is that a careful selection of a small number k of prototypes per class was
sufficient for glvq to approach or even outperform the classification accuracy of the 1-nn classifier. We
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could not confirm this finding for the kmeans classifier. The second observation is that glvq performed
consistently better than kmeans for all k and all seven datasets. These findings suggest that glvq is a
substantially more efficient alternative to the 1-nn classifier and is capable to maintain or even surpass
the high classification accuracy often achieved by 1-nn.

5. Conclusion

In this article, we presented a generic scheme to extend LVQ methods to DTW spaces. The generic update
rule applies asymmetric averaging of warped time series. The asymmetric rule implements stochastic
subgradient updating, which places the proposed LVQ scheme on an analytical foundation. Empirical
results show that asymmetric GLVQ performed best compared to other state-of-the-art prototype
generation methods by a large margin. In addition, we found that asymmetric LVQ1 is more stable
and has higher generalization performance than its symmetric counterpart. As in Euclidean spaces,
the non-relational supervised prototype generation methods outperformed the unsupervised k-means
algorithm. The generalization performance of relational GLVQ is comparable with k-means. The results
suggest that asymmetric GLVQ is a strong candidate for nearest neighbor classification in online settings
and in situations where computation time and storage demands are an issue. The generic LVQ update
rule can serve as a blueprint for directly extending unsupervised prototype learning methods to DTW
spaces in a principled way, such as vector quantization, self-organizing maps, and neural gas. Finally,
future work aims at studying the theoretical properties of asymmetric LVQ in DTW spaces.

Acknowledgements. B. Jain was funded by the DFG Sachbeihilfe JA 2109/4-1.

A. Performance Measures

This section describes the pairwise winning percentage and pairwise mean percentage difference.

A.1. Winning Percentage

The pairwise winning percentages are summarized in a matrix W = (wij). The winning percentage wij is the
fraction of datasets for which the accuracy of the classifier in row i is strictly higher than the accuracy of the
classifier in column j. Formally, the winning percentage wij is defined by

wij = 100 · |{d ∈ D : accd(j) < accd(i)}|
|D|

where accd(i) is the accuracy of the classifier in row i on dataset d, and accd(j) is the accuracy of the classifier in
column j on d. The percentage weq

ij of ties between classifiers i and j can be inferred by

weq
ij = 100− wij − wji.

A.2. Pairwise Mean Percentage Difference

The pairwise mean percentage differences are summarized in a matrix A = (aij). The mean percentage difference
aij between the classifier in row i and the classifier in column j is defined by

aij = 100 · 2

|D|
∑
d∈D

·accd(i)− accd(j)

accd(i) + accd(j)
,

Positive (negative) values aij mean that the average accuracy of the row classifier was higher (lower) on average
than the average accuracy of the column classifier.
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