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Abstract 

Face recognition across age progression remains as one of the most challenging tasks, 

as the aging process affects both the shape and texture of a face. One possible solution 

is to apply a probabilistic model to represent a face simultaneously with its identity 

variable, which is stable through time, and its aging variable, which changes with time. 

However, as the aging progress is different for different people, a person may look 

younger or older than another person, even though their ages are the same. 

Consequently, using the ‘real’ age labels given by existing face datasets for 

age-invariant face recognition will inevitably introduce ambiguity to learning 

algorithms. In this paper, an identity-inference model, based on age-subspace learning 

from appearance-age labels, is proposed. We first model human identity and aging 

variables simultaneously using Probabilistic Linear Discriminant Analysis (PLDA). 

Then, the aging subspace is learnt independently with the appearance-age labels, and the 

identity subspace is determined iteratively with the Expectation-Maximization (EM) 

algorithm. We found that the learned aging subspace is insensitive to the training face 

images used, and is independent on the identity model. Consequently, the recognition of 

aging faces becomes simpler as identity inference no longer needs to consider age labels. 

Furthermore, in our algorithm, different identity features learnt from the identity model 

are further combined using Canonical Correlation Analysis (CCA), where their 

correlations are maximized for face recognition. A thorough experimental analysis of 

face recognition is performed on three public domain face-aging datasets: FGNET, 

MORPH, and CACD. Experiment results show that the proposed framework can 

achieve a comparable, or even better, performance against other state-of-the-art methods, 

especially when the age range is large. 
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1. Introduction 

Face recognition, as a task to identify or verify a person from images and videos, 

has been intensively studied for decades. With the development of big data and better 

computational power, general face recognition methods dealing with real-life variations, 

like poses, expressions, lighting, etc., have achieved superior performances. Latest 

recognition rates [1] [2] [3] on the most difficult face dataset at present, i.e. Labeled 

Faces in the Wild dataset (LFW) [4], have been improved to over 99%, which are 

reported to be even better than human performance. However, face recognition, under 

age progression, still remains as one of the most challenging problems; the best 

performance [5], to date, on the most challenging age dataset FGNET [6] stays around 

76%. Among the previous related studies on human aging effects [7] [8] [9], it has been 

widely accepted that facial aging is a complex process, which affects both the shape and 

texture of a face. In the early growth of a face, from birth to teenager, the greatest 

change of age progression is in the craniofacial growth (shape change). As people grow 

older from adulthood to old age, progression of age mainly appears as skin aging 

(texture change). 

 

There are several reasons why face recognition under age variation is more 

challenging than other variations: (a). Age progression through life cannot be modeled 

using a simple progression, as mentioned before; (b). Aging effects are quite specific to 
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Fig. 1. Some face examples from the aging dataset FGNET [6] with real age labels. 



different individuals, so it is almost impossible to precisely define the cause of age 

progression. For example, healthy people who reach their old age will probably look 

quite different from those who have suffered from accidents or diseases in their lives; 

(c). Collecting suitable training data for studying the aging effects is also difficult, as it 

requires a much longer time period and greater effort. Aging datasets, collected from 

photos of different age stages, may undergo more serious distortion than other variations, 

as shown in Fig. 1; and (d). Last but not least, almost all the previous age-related 

research work is based on datasets where a real-age label is given to each individual. 

This makes the recognition task by machines incredibly tough, because most of the 

existing methods can only teach machines to learn from the facial-appearance 

information. Two people with similar real ages may look very different in appearance, 

as shown in Fig. 1(b) and 1(d). It will inevitably make the learning or classification 

process less accurate. 

In recent years, many age-related works have been proposed on age estimation [10] 

[11] [12] [13] [14], age simulation [15] [16] [17] [18], age-invariant face recognition or 

verification [5] [19] [20] [21] [22], etc. While they serve different application goals, the 

underlying theories and methods overlap and correlate extensively. Generally, all these 

approaches can be categorized into two groups. The first is the generative approaches 

[10] [15] [19] [21], which construct 2D or 3D generative models to compensate for the 

aging process, and synthesize face images that match the age of query face images. The 

second approach is based on discriminative models [20] [22] [23] [24] [25], which use 

robust facial features and discriminative learning methods to reduce the gap between 

face images captured at different ages. 

Age estimation and simulation both use similar approaches to age-invariant face 

recognition tasks. However, age estimation and simulation mainly focus on 

manipulating the aging information that varies with age progression, while age-invariant 

face recognition aims to seek the identity information that is stable for the same 

individual over age progression. This substantial difference inspires a new approach that 

attempts to separate a face into its aging factor and identity factor [18] [21] [26]. One of 

the earliest works on face recognition that describes a face with its within-individual 



and between-individual variations was introduced in [26] [27] [28]. Probabilistic Linear 

Discriminant Analysis (PLDA) [42] was employed to establish a generative linear 

model, and the optimal latent identity variable was iteratively derived by using the 

Expectation-Maximization (EM) [29] algorithm. This method was further applied to 

age-invariant face recognition in [21], where the within-individual variance was suitable 

for using the aging information, while the between-individual variation was suitable for 

using the identity information. Again, the EM algorithm is used to obtain both the latent 

variables simultaneously, and the identity factor is then used for recognition. 

Experiments showed that this method outperforms other existing methods. Later on, this 

idea was also applied to render aging faces, by modeling the aging layer as a linear 

combination of age-progression patterns while keeping the personalized layer invariant 

through time [18]. All these methods generate the aging subspace and the identity 

subspace using a single model at the same time. However, this approach has a high 

demand on the training datasets, because both the identity and the aging information 

must be learnt as thoroughly as possible. Unfortunately, it is a great challenge to obtain 

suitable datasets for age-invariant face recognition. For the three most well-known 

datasets for this task, they either suffer from lack of training samples (FGNET dataset 

[6]) or lack of samples with long time periods for learning aging patterns (MORPH [30] 

dataset and CACD dataset [31]). What’s worse, all the previous learning frameworks 

were based on real-age labels, which may be inconsistent with the corresponding 

appearance ages (people with the same real age may look different in age due to 

differences in individual skin care or health conditions). This means that the existing 

methods achieve limited performances on face recognition with age variations. One way 

to solve the age-gap problem is to seek the underlying sequential patterns [10] [32], and 

then apply manifold learning to analyze the age characteristics [11] [33]. It has been 

shown that applying the orthogonal Locality Preserving Projections (OLPP) [34] to an 

aging database, with ages ranged from 0 to 93 years, yields better statistical age 

estimation results. 

With the increasing interest in age-related topics, the corresponding tasks have 

become more and more demanding in recent years. The appearance age estimation 



challenge on the public ChaLearn dataset [35], with face images in the wild and labeled 

with the appearance age, is one of the great sources for learning age progression. In this 

paper, we propose an age-invariant face recognition framework, namely aging-guided 

identity inference model (AG-IIM), where the feature gap between two face images of 

the same person, captured at different ages, can be reduced. Similar to the method that 

deals with the aging and identity information separately [18] [21] [26], we establish a 

generative model based on PLDA. Unlike those previous works, which learnt and 

derived the aging and identity subspaces at the same time, we propose to learn aging 

subspace separately by using manifold learning on an aging dataset with appearance-age 

labels.  

The contributions of this paper are given as follows. First, we empirically show that 

our method can obtain a more discriminative identity subspace. Second, our method is 

the first to tackle the age-invariant face recognition problem based on appearance age, 

so that computers can both learn more effectively and more consistently. What’s more, a 

byproduct of this framework is to provide a much easier way to collect aging photos for 

face recognition, where only identity labels are required. The aging characteristics can 

be learnt by any aging dataset with appearance-age labels. Having obtained the identity 

and aging subspaces, as well as the underlying identity factors based on different 

features, an effective fusion mechanism based on Canonical Correlation Analysis (CCA) 

[36] is utilized to further boost the recognition performance. Extensive experiments on 

three different aging datasets show that our framework can achieve a great improvement 

in terms of the rank-1 recognition accuracy compared to other state-of-the-art methods, 

especially when the faces undergo large age variation. 

The remainder of the paper is organized as follows. In Section 2, the proposed 

aging-guided identity-inference model is introduced, where details of the independent 

aging subspace learning and model optimization will be presented. Section 3 describes 

the age-invariant face recognition framework, including the training stage, testing stage, 

and feature fusion for matching. Experimental results and analysis of face recognition 

with different age labels and on different aging datasets are given in Section 4. The 

conclusion and future work are outlined in Section 5. 



2. Aging-guided Identity-Inference Model 

In this section, the proposed identity-inference model, based on PLDA and 

independent aging subspace learning, is presented. Unlike the previous work that jointly 

learns the subspaces for aging and identity at the same time, we first derive a 

discriminative aging subspace by preserving the locality of the appearance-age 

information, and then the identity subspace with the assistance of the aging subspace 

through the PLDA model. This strategy makes optimization on the latent variables more 

efficient, and the collection of aging face images easier, as only the identity label is 

required. 

2.1 Identity-Inference Model 

Similar to [21] [26], which use PLDA for face recognition, we also model a face by 

incorporating both the within-individual variation (aging) and the between-individual 

variation (identity). Suppose that the nth image of individual m is denoted as mnx , then 

the identity-inference model can be presented as follows: 

mn m mn mn   E Ax u v  ,                 (1) 

where the first two terms are comprised of the identity components  and Eum, which 

depend only on the identity of the person, while the last two terms are comprised of the 

aging components Avmn and mn, which are different for images of the same individual 

and represent the within-individual noise. 

Generally,   represents the overall mean of the training set. The matrix E  is 

called the identity subspace, whose columns are the bases for cross-identity variations, 

and mu  can be viewed as the position of xmn in this subspace, which is also the identity 

factor required for recognition. Similarly, the matrix A  is the aging subspace to depict 

cross-age variations, and mnv is the corresponding aging factor. The term mn  

represents the remaining noise caused by pose, expression variations, etc., and can be 

modeled as a Gaussian function with diagonal covariance  . The goal of establishing 

this PLDA model is to compute the likelihood that two face images are generated from 



the same underlying identity factor mu  for age-invariant face recognition. 

The models in (1) can be re-written in terms of conditional probabilities as follows: 

 ( ) =mPr 0,Iuu G ,                    (2) 

 ( ) =mnPr 0,Ivv G , and                  (3) 

 ( ) =mn m mn m mnPr   E A , xx u ,v G u v ,               (4) 

where  ,aG    is a Gaussian distribution in a with mean   and covariance  . 

Both the latent variables mu  and mnv  are specified with priors. In the original PLDA 

model, the objective of the learning is to estimate the parameters { , , , }  E A  , based 

on training data { 1,..., 1,..., }d

mn mR m= M,n= N X x , where d is the dimension of x 

and mN  is the number of images for identity m. Both the model parameters   and 

latent variables are unknown. They can be jointly estimated by using the EM algorithm. 

 Before applying the EM algorithm, we can rewrite the model in (1) using matrix 

form: 

[ ]
m

mn mn

mn

mn mn
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 

  
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u
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z

 

 

               (5) 

In the E-step, the model statistics of the first two moments of zmn, which is Gaussian 

distributed, are computed as follows [26]: 

1 1 1[ ] ( ) ( )T T

m mE       z z       ,                 (6) 

1 1[ ] ( ) [ ] [ ]T T T T

m m m mE E E  z z z z     ,                 (7) 

where [ ]T

m m m, ,...,     , and m is the mean face vector of the mN  images 

belonging to the same identity m, and   is the diagonal matrix of  , where 

0
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

 


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In the M-step, we update the model parameters using the following rules: 
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where Diag[ ] represents the operation of retaining only the diagonal elements from a 

matrix, and the updated E and A are computed from the new B using the equivalence 

between (6) and (7). 

 When looking at the model in (1) again, both E and A can be viewed as the 

corresponding identity and aging subspaces. Thus, solving the probabilistic problem in 

(4) can obtain the two subspaces at the same time [21]. In order to recognize face 

images accurately, the training samples are required to have both correct identity labels 

and aging labels at the same time; this imposes great difficulty in labelling the collected 

face samples. What’s more, the desired identity and aging subspaces should be as 

independent of each other as possible, so as to separate the identity and aging factors as 

much as possible. However, using the identity and aging labels from the same dataset 

will inevitably lead to some correlation. These two practical problems push us to raise a 

bold question – can we obtain an ideal aging subspace, which is independent of the 

aging dataset being used? The answer is yes! We will show the details of establishing 

the aging subspace, and then compare it with the aging subspace, jointly learnt from the 

PLDA model in Section 2.2. 

After obtaining the desired aging subspace, we then aim at optimizing the model in 

(1) by finding the parameters { , , }  E   and the latent variables um  and vmn . As 

the aging subspace A is kept unchanged during the learning of the identity model, the 

EM algorithm can converge faster, with five to ten iterations only in our algorithm. We 

call this revised model as an identity-inference model. The algorithm for this part of 

model learning is summarized in Algorithm 1. 

 



Algorithm 1 Identity-inference model learning 

Input:  The independent aging dataset Z with age group label L, { 1,2,..., }z l l L  based on 

appearance age and training dataset X with identity label M, { 1,2,..., }x m m M . 

Output:  Independent aging subspace A and dataset-specific identity subspace E. 

% Independent aging subspace learning % 

1) Construct the adjacency graph within each age group using (12), where 

2
exp(- - / )z zij i jw t  if i is among the k nearest neighbors of j in the same age group, or if j 

is among the K nearest neighbors of i in the same age group, otherwise 0ijw . 

2) Compute the eigenvectors and eigenvalues for the generalized eigenvector problem in (13). 

3) Compute the orthogonal basis vectors iteratively using (14) - (16), to form the orthogonal 

aging subspace A in (1), where 1 2[ , ,..., ]kA a a a . 

% Identity subspace learning % 

1) Initialize the model parameter { , , , }  E A  , where rand(*)E , 0 1 1[ , ,..., ]a a a A p , 

1
x

 m

mn

m N

m

=
N

  and 2 0.1  . 

 

 

 

 

Iterate: 

2) E-step: update the latent variables zm  using (6) and (7). 

3) M-step: update the model parameters { , }  E  using (10) and (11). 

Until convergence 

2.2 Independent Aging Subspace Learning 

As mentioned in the previous biometric studies [32], faces can be considered as 

points in a high-dimensional space, where aging is reflected by the distance of the face 

from the average of all face samples. It has been proved in [11] [33] that human aging 

effects can be projected onto a discriminant subspace using manifold learning, where it 

has a significant trend for sequential patterns. These works also used this subspace for 

image-based human age estimation on their own aging datasets, with ages ranged from 

0 to 93 years. The findings enlighten us on the aging subspace learning with manifold, 

which can be later used in the identity-inference model. However, how to select a 

suitable aging face dataset and aging features for learning remains a difficult task. 



2.2.1 Aging dataset for aging subspace learning 

As mentioned before, the three most well-known aging datasets, FGNET, MORPH, 

and CACD, suffer from either lack of sufficient image data or lack of samples with time 

periods long enough for learning the sequential aging progression. Besides, all these 

datasets only have real-age labels, which are difficult for computers to learn, due to 

large individual variations as discussed before. All these facts make these datasets not 

ideal for aging subspace learning. 

 

Recently, a new age-related dataset named Chalearn [35], whose face images are 

labelled with appearance ages, has been released. It is known to be the first dataset 

labeled with the appearance age instead of the real age. It contains 8,000 images, where 

the age of the face in each image was labeled by multiple individuals, and the average is 

taken as the appearance age. All the images are in the wild environments with real-life 

variations, and some of them are shown in Fig. 2. At the time we conducted our 

experiments, only the training set with 4,113 images of ages ranged from 1 to 86 years 

old had been released. Therefore, we used all these images, labeled with appearance 

ages, for the aging subspace learning. 

2.2.2 Aging subspace learning 

Manifold learning is one of the most widely used methods for data modeling in 

machine learning and can be applied to various applications like image classification 

[36], alignment [37] [38] and face analysis [39]. Discriminative locality [37] [40] is a 

critical property when applying manifold learning to obtain distribution nonlinearity of 

measurement and preserve discriminative information of data. It has been shown in [11] 

[33] that Locality Preserving Projection (LPP) [43] and its orthogonal variant OLPP [34] 

are able to project faces onto a more discriminative subspace, and characterize the age 

Age 2 Age 10 Age 20 Age 30 Age 45 Age 65 

Fig. 2. Some face examples from the aging dataset Chalearn [35] with appearance age labels. 



manifold better than Principal Component Analysis (PCA) [44] and Locally Linear 

Embedding (LLE) [45]. Thus, OLPP is employed in our algorithm, which aims to 

preserve local structure based on the assumption that a nearest-neighbor search in the 

low-dimensional space will yield similar results to that in the high-dimensional space.  

In the LPP theory, the objective function is defined as: 

2
( )z z i j ij

ij

w .                   (12) 

The weight wij is defined as 
2

exp( / )z z  ij i jw t  when the two face features zi  

and z j  are the k nearest neighbors of each other, otherwise 0ijw . The weight matrix 

W=[wij] is symmetric, a diagonal matrix D=[dij], whose entries are the column sums of 

W, i.e. ii ijj
d w , and the corresponding Laplacian matrix L = D W , can be 

computed. Then, the optimal projections can be obtained by solving the following 

eigenproblem: 

a = aZLZ ZDZ
T T ,                  (13) 

where the solutions are the column vectors 0{ ,..., }a an , which are the eigenvectors of 

(ZDZT)-1ZLZT, with their eigenvalues in ascending order, i.e. 0 ...   n . 

Table 1. The partitioning of ages into groups for the Chalearn dataset. 

Group Age range #Image Group Age range #Image 

1 1-3 130 7 26-35 1222 

2 4-6 147 8 35-45 602 

3 7-10 96 9 46-55 367 

4 11-15 89 10 56-60 142 

5 16-20 396 11 61-65 71 

6 21-25 772 12 66-89 79 

 

In our algorithm, we apply OLPP to derive the orthogonal basis functions iteratively, 

which is denoted as 1 2{ , ,..., }ka a a . We define: 



( 1)

1 2[ , ,..., ]k

k

 A a a a  and              (14) 

( 1) ( 1) 1 ( 1)[ ] ( )k k T T k   
B = A ZDZ A .             (15) 

In this way, the orthogonal basis vectors 1 2{ , ,..., }ka a a  can be computed as: a. 

Compute 1a  as the eigenvector of (ZDZT)-1ZLZT associated with the smallest 

eigenvalues; b. Compute ka  iteratively, as the eigenvector of 

 1 ( 1) ( 1) 1 ( 1) 1( ) [ ] [ ] ( )k T k k k T T T       M = I ZDZ A B A ZDZ ZDZ
（ ）       (16) 

Associated with the smallest eigenvalue of k
M

（ ）. 

Since the appearance-age labels are given, we can further improve the learned 

manifold with supervised learning by utilizing the age-group label information. The 

weight wij is non-zero only for two face samples being the k nearest neighbors of each 

other and within the same age group, otherwise it is zero. The ages are partitioned into 

12 groups, with the groups for the younger and older ages having smaller age intervals, 

as shown in Table 1. 

 

For each face image in the Chalearn dataset, we first locate the two eyes and align 

(a) (b) 

Fig. 3. 2-D age manifold visualization. (a) The two manifolds based on the wLBP features by 

using our Independent Aging Subspace Learning (IASL) and PLDA, respectively; and (b) the 

two manifolds based on the HOG features by using IASL and PLDA, respectively. 



the face, based on the eye positions as in [52]. We crop the faces to include the face 

regions only, and normalize them to the size 126×126 pixels. In order to alleviate the 

illumination impact, we normalize all the faces to have zero mean and unit variance. 

Previous work on age estimation [11] [33] used the whole face for feature extraction, 

which is not suitable for images under real-life variations. What’s more, only using one 

feature is not sufficient for recognition tasks in the wild. In order to find the best 

features, supervised OLPP is applied to several state-of-the-art features, and the best 

two of these features, namely the multi-scale weighted Local Binary Patterns (wLBP) 

[46] and the Histogram of Oriented Gradients (HOG) [47] (specific configurations are 

given in the experimental session), are selected by using the same empirical mechanism 

as in [11]. As explained in [48], the LBP feature is able to capture the local texture 

information about a face, while the HOG feature represents the edge structure of a face 

well. In this sense, they are complementary to each other, and they are simple and fast to 

implement. We have studied the 2-D age manifolds on the different features to 

determine whether they can provide a distinct age progression. We have also applied 

PLDA on the Chalearn dataset to derive the aging subspace (where its basis are the 

columns of the matrix D  in (1)).  

 

Fig. 3 illustrates the corresponding 2-D age manifolds, which shows that our aging 

subspaces learnt from the two features have much more distinctive patterns of aging 

progression than those obtained from the PLDA model. Fig. 4 gives further 

(a) 

(b) 

Fig. 4. Visualization of the identity inference model. (a) The mean face of all the face images and 

the faces in four directions in the identity subspace, where all the images look like different 

persons; and (b) the mean face and the faces in four directions in the aging subspace, where all 

images look like the same person but at different ages. 



visualization of how the identity subspace captures the faces with different appearances 

(E varies while A stays constant) and how the aging subspace illustrates the faces with 

different ages (A varies while E stays constant). More experiment results are given in 

Section 4. 

 

3. Face Recognition Based on Aging-Guided Identity-Inference Model 

In this section, the overall framework of the age-invariant face recognition, based 

on the proposed identity-inference model, is presented. Fig. 5 shows the overall 

framework, which includes pre-processing steps, such as feature extraction and 

dimension reduction, face recognition after obtaining the identity subspace, and face 

matching based on different feature-fusion schemes. For the convenience of readers, the 

important notations used in this section have been summarized in Table 2. 

Table 2. The important notations used in Section 3. 

Notation Description Group Description 

A aging subspace HOGF  HOG feature 

B identity subspace   direction matrix for wLBPF  

px  input probe face image   direction matrix for HOGF  

Mx  gallery face image wLBPg  projected weighted LBP feature 

wLBPF  weighted LBP feature HOGg  projected HOG feature 

3.1 Feature Extraction 

As mentioned in previous section, local features, such as LBP and HOG, have been 

proven to have more discriminative power and are widely used in face recognition. 

Furthermore, they are easy and fast to implement. In our independent age subspace 

learning, we have also found that these two local features could achieve the best 

performance in terms of aging progression representation, as illustrated in Fig. 3. Thus, 

we use both wLBP and HOG as the feature descriptors in our experiments throughout 

the paper. 



For all the face images, we perform the same preprocessing steps as described in 

Section 2.2.2. The wLBP features are extracted with 7×7 windows, at three different 

radii {1, 3, 5} (due to the limited size of images), which has been found to achieve the 

best performance. As each of the windows has a different degree of importance, 

different weights are assigned to them, as illustrated in Fig. 6.  

 

Unlike the previous LBP features designed for face recognition [46] and face 

retrieval tasks [48], the weight mask used in our framework places greater importance 

on those regions that are more easily influenced by aging effects, such as the forehead, 

cheeks, and mouth corners [24]. For the HOG feature, by experiment, the best 

(a) (b) 

 
       

       

       

       

       

       

       

 
       

       

       

       

       

       

       

Fig. 6. (a) A cropped face partitioned into 7×7 windows for extracting the weighted MLBP 

features, and (b) the weights used for the MLBP features in each partition, where black, gray, 

and white represent the weights of 3, 2, and 1, respectively. 

Fig. 5. The overall framework of the proposed age-invariant face recognition algorithm based on 

identity inference with independent aging subspace learning: (a) the training phase and (b) the 

recognition phase. 
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performance can be achieved if the patch size is 2121 pixels, with an overlapping 

factor of 0.5 and 4 orientations. In order to facilitate dimensionality reduction for a 

small-size dataset, like FGNET, we use all the face images in the Chalearn dataset to 

determine the PCA subspace, with 95% variances retained. 

3.2 Face Recognition Based on AG-IIM 

By applying the supervised OLPP, we can independently learn a discriminative 

aging subspace that can better represent the aging progression. After obtaining the aging 

subspace A of the model shown in (5), we plug it into the model for the computation of 

the identity subspace E. It should be noticed that the composite matrix [ ]B E A  

needs to be updated as a whole in order to optimize the model statistics [ ]zmE  and 

[ ]z z
T

m mE . Our experiments show that fixing the aging subspace A can produce a better 

identity subspace E for face recognition. This is due to the fact that our proposed aging 

subspace is learnt by using face images with appearance ages. Thus, in the matrix B, 

only the identity subspace is updated, i.e. [ ] B E A . 

In the recognition stage, we calculate the predictive distributions between the input 

probe image xp  and each gallery image, i.e. 1( )x xr pp , 2( )x xr pp , …, and 

( )x xr p Mp , and then evaluate the likelihood for each of these distributions. As proved 

in [28], the likelihood between the probe and a gallery image takes in a Gaussian form, 

and can be simplified by projecting the data onto a subspace similar to the original LDA 

method. Suppose that the probe image xp  is put into the identity-inference model in 

(5), the output feature vector can then be computed as follows: 

1

1

( ) ( )

( ) ( ).

f x

x





  

  

E BB

E EE AA

T T

p p

T T T

p



 




                   (17) 

In this way, it is equivalent to projecting the input probe image into a discriminative 

subspace, where a distance metric can be used for face recognition. 

3.3 Feature Fusion Scheme for Face Matching 



In order to further improve the face recognition performance, both the wLBP and 

HOG features are used and fused in our framework. One way to perform feature fusion 

is to compute the z-score, where both feature vectors are normalized and then 

concatenated to form a long feature vector. This is the simplest way, but does not take 

the correlation between the two features into consideration. What’s more, concatenating 

two different types of features directly may cancel out their discriminative power, which 

leads to an even lower recognition rate. As the two features are extracted from the same 

identity, they should be correlated. Therefore, as in [53], CCA is used to project the two 

features into a coherent subspace, where the correlation between them is maximized. 

The projected features are then combined to form a single coherent feature vector for 

age-invariant face recognition. 

With the pairs of output features computed with the identity-inference model (17), 

denoted as FwLBP  and FHOG , we apply CCA to learn the pairs of directions   and   

that maximize the correlation between the projected features, i.e. g f T

wLBP wLBP  and 

g f T

HOG HOG , with the correlation between wLBPg  and HOGg  maximized. The 

direction matrices   and   can be derived by maximizing the following criterion 

function: 
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2 2

11 22

[ ]

[ ] [ ]

T

T T

g g

g g
  



C

C C

wLBP HOG

wLBP HOG

E

E E

 

   
,          (18) 

where 11C  and 22C  denote the covariance matrices of gwLBP  and gHOG , respectively, 

and 12C  is the covariance matrix of gwLBP  and gHOG . 

In the training stage, after FwLBP  and FHOG , whose columns are the feature vectors 

fwLBP  and fHOG , are computed by using (17), we normalize them to have zero mean 

and unit variance. Then, the projection matrices   and   are computed by using 

(18). It can be shown that the optimal direction matrices   and   are the 

eigenvectors of 11 12 22 2

1

1

1

1

 R C C C C  and 22 21 11 1

1

2

1

2

 R C C C C , respectively. When the 



pair of features, f p-wLBP  and f p-HOG , of an input probe image are obtained in the 

testing stage, we further project them into the corresponding CCA subspaces to form 

coherent features, as follows: 

[ ]g g gp p-wLBP p-HOG ,                 (19) 

where g f T

p-wLBP p-wLBP  and g f T

p-HOG p-HOG . Then, the Euclidean distance is 

computed, and the nearest-neighbor rule is used for face recognition. 

 

4. Experiments and Analysis 

To evaluate the performance of our proposed aging-guided identity-inference model 

(AG-IIM) for age-invariant face recognition, we compare it with several state-of-the-art 

methods on different datasets, namely the FGNET dataset [6], the MORPH dataset [30], 

and the CACD dataset [31]. FGNET is known to be the first popular face aging dataset 

and has been widely used for evaluating age-related facial image analysis tasks. It 

contains 1,002 images of 82 individuals, and the images were collected at ages ranging 

from 0 to 69. The MORPH dataset was proposed later, and contains a larger number of 

subjects. It has two sections, namely MORPH album one and MORPH album two. As 

album one is small (only 1,690 face images in total), most recent works use album two 

for experiments, as it has 55,134 facial images of 13,617 persons. The CACD dataset is 

the latest aging dataset, which contains 163,446 images of 2,000 celebrity individuals 

retrieved from the Internet. Some statistics and sample facial images are given in Table 

3 and Fig. 7, respectively. It can be seen that FGNET is the most challenging dataset, as 

it has the smallest number of images but the largest age gap, while all the photos are 

also taken under large variations. 

Table 3. Statistics of the face aging datasets. 

Dataset #Image #Identity Age range Age gap In wild 

FGNET 1,002 82 0-69 0-45 Yes 

MORPH 55,134 13,617 16-77 0-5 No 

CACD 163,446 2,000 16-62 0-10 Yes 

 



 

4.1 Face Recognition on the FGNET Dataset 

To fully evaluate our proposed model, we first present the parameters for the wLBP 

and HOG features used in feature extraction, the aging subspace learning, and the 

identity inference, in Table 4. All these parameters are empirically chosen with 

reference to previous related works and our own experiment results. It is noticeable that 

both wLBP and HOG features perform the best with similar dimension representation 

and nearest neighbors to learn aging subspace with OLPP. However, it seems that wLBP 

feature needs more eigenvectors to capture aging information while HOG needs more to 

capture identity information. 

Table 4. Parameter settings for FGNET dataset. 

Parameters wLBP HOG 

Feature Configuration 

PCA variance 95% 95% 

Feature dimension 1473 1371 

Aging Learning Model 

(Supervised OLPP) 

# Nearest neighbors 6 5 

Heat kernel coef. t 1 1 

Identity Inference Model in (1) 

#Aging eigenvectors 600 150 

#Identity eigenvectors 80 350 

 

(a) 

(b) 

(c) 

Fig. 7. Sample face images from the comparison datasets: (a) FGNET dataset, (b) MORPH 

dataset and (c) CACD dataset. 



One of the biggest advantages of our proposed method is that, during experiments, 

age labels of training samples are no longer needed, because we have independently 

learnt the aging subspace for the identity-inference model. Furthermore, as the FGNET 

dataset only has 1,002 images in total, while the feature dimensions are much higher, we 

have applied a simple but effective approach to solving the overfitting problem. Unlike 

the previous strategies [20] [21], which applied random subspaces and feature slicing, 

we use the ChaLearn images, together with the FGNET images, to learn the PCA 

subspace, with 95% of the variance retained. In this way, the more discriminative power 

of the training features can be preserved, while projecting to the same PCA subspace 

with aging images from the ChaLearn dataset also improves the aging pattern learning. 

Our algorithm is fine-tuned using the FGNET dataset. We will later show that the 

model, trained by using FGNET, can also be applied to recognize faces from other 

datasets. The performances are similar irrespective of whether or not the training and 

testing images are from the same dataset. We conducted a thorough evaluation and 

comparison with some recent, state-of-the-art age-invariant face recognition methods. 

These include: (a). one of the earliest frameworks on age-invariant face recognition [19], 

which establishes a 3D aging modeling scheme for age correction for recognition; (b). a 

discriminative model proposed in [20]; (c). a hidden factor analysis framework [21], 

which separates aging and identity at the same time; (d). a feature-aging model, which 

uses local Gabor feature and linear mapping to predict the aging of facial features [49]; 

and (e). a two-step framework [5], based on a maximum entropy feature descriptor, and 

identity factor analysis matching, which has achieved the best recognition performance 

on FGNET previously. Following the same experiment set-up, we evaluate all these 

methods, in leave-one-person-out fashion, based on the rank-1 recognition rates, as 

shown in Table 4. It should be noted that, except [49], all the results of the compared 

methods, reported in this paper, are based on the best results as reported in their 

respective papers. 

From Table 5, we can see that the proposed AG-IIM, based on independent aging 

subspace learning, achieves better performances than other methods. Furthermore, the 

HOG feature is more effective than the LBP feature for representing the aging factors. 



By fusing the two features using CCA, the recognition rate can be further improved 

significantly. To the best of our knowledge, this is the highest recognition accuracy that 

has ever been achieved on the FGNET dataset, which is known to be the most 

challenging dataset for age-invariant face recognition. 

Table 5. Rank-1 recognition rates on the FGNET dataset. 

Algorithms Recognition Rates 

3D aging model (2010) [19] 37.4% 

Discriminative aging model (2011) [20] 47.5% 

Hidden factor analysis model (2013) [21] 69.0% 

Feature-aging model (2015) [49] 71.3% 

Maximum entropy model (2015) [5] 76.2% 

AG-IIM with the MLBP feature only 80.8% 

AG-IIM with the HOG feature only 84.14% 

AG-IIM with feature fusion by CCA 88.23% 

 

In the experiments, we have also studied some of the failure cases, in which our 

proposed AG-IIM could not find the correct subject in the gallery. Among most of these 

cases, the failure is mainly due to the similar appearances of the query and the gallery 

faces, at similar ages (appearance ages), as shown in the first three columns in Fig. 8. 

We have also observed some interesting results, for which the input query images were 

matched to training images with a large age difference, as shown in the last three 

Age: 1 

Age: 0 

Age: 29 

Age: 43 

Age: 34 

Age: 17 

Age: 3 

Age: 54 

Age: 22 

Age: 5 Age: 34 

Age: 12 

(a) 

(b) 

Fig. 8. Some examples of the recognition failure cases on the FGNET dataset: (a) input query 

images, and (b) the corresponding retrieved images, based on Euclidean distance. 

Age: 22 



columns in Fig. 8. After a close-up analysis, some underlying similarities between these 

incorrect retrieved pairs can be observed, such as noses, mouths, facial structures, etc. 

This further shows that the proposed framework is seeking the substantial identity 

information, instead of being tricked by the superficial likeness. 

4.2 Face Recognition on the MORPH Dataset 

In this section, we extend the experiment on the MORPH dataset to examine the 

efficiency of the proposed method. Unlike FGNET, the MORPH dataset does not have a 

large age gap for each of its subjects. However, all its face images are still under large 

pose, lighting, and expression variations. For this dataset, we follow the same split rule, 

as the previous method [20], where 10,000 individuals are randomly selected. Then, the 

youngest face images of the selected subjects are used to form the gallery set, while the 

corresponding oldest images are used to form the probe set. In this way, both the gallery 

and probe sets have 10,000 images from the different individuals. All the images of the 

remaining 3,617 subjects are used for training the identity subspace based on the 

identity-inference model, where the aging subspace is still learnt independently. Same 

as FGNET, only the identity labels of the training images are used during the 

experiment, which makes the training process much simpler. 

For the proposed AG-IIM method, the same pre-processing steps, including eye 

detection, face alignment, and feature extraction, are applied to all the images in the 

MORPH dataset, as described in the previous section. Furthermore, in addition to using 

the MORPH images for training, we also use the identity subspace learnt from the 

FGNET dataset, i.e. the identity subspace is learnt without using the MORPH database, 

so that the generalization ability of our proposed algorithm can be tested. To fully 

evaluate the recognition performance of the proposed algorithm, we compare the rank-1 

recognition rate with some of the state-of-the-art methods: (a). the 3D aging model [19]; 

(b). the discriminative aging model [20]; (c). the hidden factor analysis model (2013) 

[21]; (d). the maximum entropy model (2015) [5]; (e). the cross-age reference coding 

(CARC) model, and (f). local pattern selection with the hidden factor analysis 

(LPS+HFA) model [50], which is an extension of [5] and has achieved the best 



recognition accuracy on MORPH, to date. The comparison results of the different 

methods are compared and shown in Table 6. 

Table 6. Rank-1 recognition accuracies on the MORPH dataset. 

Algorithms 
Recognition 

Accuracies 

3D aging model (2010) [19] 79.8% 

Discriminative aging model (2011) [20] 83.9% 

Hidden factor analysis model (2013) [21] 91.14% 

Maximum entropy model (2015) [5] 92.26% 

CARC model (2015) [31] 92.8% 

LPS+HFA model (2016) [50] 94.87% 

AG-IIM trained on FGNET 93.12% 

AG-IIM trained on MORPH 95.62% 

 

As some existing methods have already achieved impressive performance results on 

the MORPH dataset, the improvement of our method in terms of recognition accuracy is 

marginal, but our method is still comparable to the state-of-the-art methods. More 

importantly, we found that, even if we replace the training data with the 1,002 images 

from FGNET and with their identity labels, a similar recognition performance can still 

be obtained. This finding is exciting in the sense that, from Fig. 7, most of the images 

from the FGNET and the MORPH datasets have different races. However, because the 

subjects in the FGNET dataset have a wide range of age difference, our algorithm can 

capture more substantial identity information, which compensates for the difficulties of 

recognition across races. 

4.3 Face Verification on the CACD Dataset 

In order to fully examine the generalization power of our proposed framework for 

age-invariant face recognition, we further conducted face verification on the CACD 

verification subset (CACD-VS). It comes as a part of the CACD dataset, and contains 

2,000 positive pairs (images of the same person across ages) and 2,000 negative pairs. 

They are carefully selected and annotated to make sure that each of the images has a 



correct identity tag. To perform verification, we use the marginalized likelihood [28] as 

the metric learning for recognition. For each pair of face images, we compute the 

likelihood ( , )x xr p gp  that they belong to the same identity, and the likelihood 

( ) ( )x xr p r gp p  that they are from different identities. Then, we compute the likelihood 

ratio, and compare it to a threshold for face verification, as in [28]: 

( , )
( , )

( ) ( )

x xlikelihood
x x

likelihood x x
 

r p g

p g

r p r g

p(same)
R

(diff) p p
.           (20) 

Following the same experiment set-up in [31], we partition the whole subset into ten 

folds, with 400 image pairs (200 positive and 200 negative) in each fold. In order to test 

the generalization power of the proposed framework, we still use all the FGNET images 

for training to obtain the identity subspace. What’s more, we notice that, as all the 

subjects in CACD are celebrities retrieved from online, most of the women’s faces are 

wearing make-up, which makes the recognition across ages become more difficult. To 

further assist the model in adapting different variations, we also added 798 face images 

of 100 identities (which were chosen from one of the folders and then excluded from 

testing) from the CACD dataset. In this way, the training set size is increased to 1800 

images, in total. The threshold for (20) is learnt by using 3,200 pairs of images from 

eight of the folds, while the remaining single fold serves as the testing set. The 

experiments are repeated nine times, and the average verification results are shown in 

Table 7. The performance of our method is compared to several state-of-the-art methods, 

as well as the human voting reported in [31], in terms of the receiver-operating 

characteristic (ROC) curves, as shown in Fig. 9. 

From the results, the proposed method outperforms other methods and is better than 

the average performance of humans, although the number of training samples used in 

our method is fewer than the methods reported in [31]. However, the verification 

performance of our method is relatively low on the CACD-VS dataset, as the images 

have more variations besides age. It should also be noted that the voting-based human 

performance is still better than machine performance, especially when the faces not only 

have large age variations, but also variations in poses, expressions, illuminations, etc. A 



possible future work for our proposed method can investigate age-invariant face 

recognition under real-life challenges. 

Table 7. Verification accuracies on the CACD-VS dataset. 

Algorithms Verification Accuracies 

High Dimensional LBP (2013) [51] 81.6% 

Hidden factor analysis model (2013) [21] 84.4% 

CARC-NT model (2015) [31] 85.6% 

CARC model (2015) [31] 87.6% 

AG-IIM trained on FGNET 89.8% 

Human, Average 85.7% 

Human, Voting 94.2% 

 

4.4 Comparison of the use of real age and appearance age 

In order to verify the efficiency of using appearance age and independent learning 

of age subspace based on PLDA, we conducted controlled experiments on the three 

abovementioned aging datasets. 

Besides our proposed AG-IIM, we also use the real-age labels from the FGNET, 

MORPH, and CACD datasets. We compare and evaluate using real age and appearance 

age for learning the identity subspace in our proposed model. The algorithm based on 

real age is denoted as real-aging-guided identity-inference model (rAG-IIM). We also 

further test the efficiency of independent aging subspace learning using real age labels 

Fig. 9. ROC curves for verification task on CACD-VS dataset. 



and the PLDA model to jointly derive the aging and identity subspaces. This method is 

denoted as real-aging identity-inference model (rA-IIM). We apply face 

recognition/verification and summarize the performances of the three methods in Table 

8. 

Table 8. Verification accuracies of different models. 

         Datasets    

 Models 
FGNET MORPH CACD 

AG-IIM 88.2% 95.6% 89.9% 

rA-IIM 69.9%  90.8% 84.6% 

rAG-IIM 70.1%  91.2% 88.7% 

 

It is obvious that using appearance-age labels and independently learning the aging 

and identity subspaces can achieve the best verification accuracy for all the aging 

datasets. This also shows the potential of using an independent aging dataset with 

appearance-age labels for the age-invariant face recognition task, where we no longer 

need the real age labels from the experiment datasets. This approach can greatly 

alleviate the issue, where there are large variances for real-age faces, like those in 

FGNET, and there are only a few age differences among the faces collected within a 

short period, like those in CACD. 

 

5. Conclusions and Future Work 

In this paper, we have proposed an aging-guided identity-inference model 

(AG-IIM), based on independent aging subspace learning for age-invariant face 

recognition. Following the idea that a face can be separated into an identity 

representation, which is invariant to the aging influence, and an aging representation, 

which changes with age progression, we have applied the Probabilistic LDA (PLDA) 

model to obtain two distinctive subspaces. Unlike all the previous methods, which 

utilize real-age labels, we have proposed using appearance-age labels to learn the aging 

subspace independently. It has been shown that, using appearance-age information can 

help computers better understand the relationship between ages and the corresponding 



facial appearances. The performance of our proposed method on age-invariant face 

recognition can be improved. What’s more, learning the aging subspace independently 

enables experiments to rely only on the identity labels given by the datasets, which 

makes constructing a face-aging dataset much easier. Another contribution of this paper 

is using the projection of two efficient feature representations onto a more correlated 

subspace by using Canonical Correlation Analysis (CCA), where their correlation is 

maximized. Experimental results on different datasets have shown superior 

performances for our method in terms of recognition accuracy, especially on the most 

challenging aging dataset FGNET, where face images have the largest age range. 

As mentioned in experiment section, there is still a long way to go before 

computer-based age-invariant face recognition will surpass the human performance. Our 

future work will focus on the further improvements of the identity-inference model. 

More statistical analysis and constraints may be applied to make it more robust against 

variations other than age. 
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