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Random Sampling for Fast Face Sketch

Synthesis
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Abstract

Exemplar-based face sketch synthesis plays an important role in both digital entertainment and law

enforcement. It generally consists of two parts: neighbor selection and reconstruction weight representa-

tion. The most time-consuming or main computation complexity for exemplar-based face sketch synthesis

methods lies in the neighbor selection process. State-of-the-art face sketch synthesis methods perform

neighbor selection online in a data-driven manner by K nearest neighbor (K-NN) searching. Actually, the

online search increases the time consuming for synthesis. Moreover, since these methods need to traverse

the whole training dataset for neighbor selection, the computational complexity increases with the scale

of the training database and hence these methods have limited scalability. In this paper, we proposed a

simple but effective offline random sampling in place of online K-NN search to improve the synthesis

efficiency. Extensive experiments on public face sketch databases demonstrate the superiority of the

proposed method in comparison to state-of-the-art methods, in terms of both synthesis quality and time

consumption. The proposed method could be extended to other heterogeneous face image transformation

problems such as face hallucination. We release the source codes of our proposed methods and the

evaluation metrics for future study online: http://www.ihitworld.com/RSLCR.html.
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I. INTRODUCTION

Face sketch synthesis mainly refers to generating a sketch given one input photo and some face sketch-

photo pairs as the training dataset. It has achieved wide applications in both digital entertainment and

law enforcement [1]. For example, since limited information about the suspect is available due to the

low quality of surveillance videos or even no video/image clues, a sketch drawn by the artist is usually

taken as the substitute for suspect identification. Then, face sketch synthesis bridges the great texture

discrepancy between face photos and sketches.

Exemplar-based face sketch synthesis generally proceeds in two steps: neighbor selection and recon-

struction weight representation. Given an input test photo, it is divided into some patches with even

size and adjacent patches have some overlap to guarantee the compatibility. Then for each test patch,

some number (e.g. K) of nearest photo patches are selected from the training photos. Sketch patches

corresponding to these nearest photo patches are taken as the candidates for sketch patch synthesis. The

prevalent way to represent the target sketch patch is the linear combination of selected candidate sketch

patches. The linear combination coefficients are usually calculated under the assumption that a photo

patch and its corresponding sketch patch share similar geometric manifold structure, i.e. if two photo

patches are similar, then their sketch patch counterparts are also similar.

Exemplar-based face sketch synthesis started from the work of Eigen-transformation of Tang and Wang

[2], [3]. In their work, there is no special neighbor selection process but all training images are utilized.

The linear combination coefficients are learned by projecting the input photo onto the training photos

through principal component analysis.

Considering that only learning one holistic reconstruction model is difficult to represent the nonlinear

mapping between face photos and sketches, Liu et al. [4] proposed to estimate the holistic nonlinear

mapping relationship with many piece-wise linear mappings, which are generally followed in subsequent

methods. This method works on the image patch level. K nearest photo patches are searched from the

training set in terms of Euclidean distance. Then the reconstruction weight is calculated in the spirit of

locally linear embedding [5]:

min
w
‖x−Xw‖22, s.t.

K∑
i=1

wi = 1 (1)

where w = (w1, w2, · · · , wK)T is the representation weight vector, x is the test photo patch in the form

of column vector and X is the matrix of column-concatenation of K selected training photo patches. The

target sketch patch corresponding to the test photo patch is reconstructed from the linear combination of

K training sketch patches weighted by w. Song et al. [6] casted the face sketch synthesis problem into
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a spatial sketch denoising (SSD) problem and calculated the reconstruction weight through conjugate

gradient solver. Gao et al. [7] proposed to adaptively determine the number of nearest neighbors by

sparse representation [8] rather than the fixed number (e.g. K) of nearest neighbors. Instead of using

sparse representation for neighbor selection, some dictionaries are learned through sparse coding and

sparse representation to substitute the role of nearest neighbors in the work [9].

Wang et al. [10] employed Markov random field (MRF) to model the dependency from two aspects: the

dependency between test photo patches and nearest photo patches and the dependency between adjacent

synthesized sketch patches which are neglected in the above methods. In their method, K nearest photo

patches and their corresponding sketch patches are selected from the training dataset. Only one single

nearest sketch patch is finally selected through MRF networks which is taken as the target synthesized

sketch patch. In other words, the weight reconstruction representation for this method can be seemed as

finding one most appropriate sketch patch and its weight is set to 1.

Zhou et al. [11] proposed to introduce the linear combination into the MRF model (namely Markov

weight field, MWF) to overcome the face deformation problem due to single sketch patch search strategy

in [10]. The difference between the MWF method and the LLE method [4] is the consideration of the

dependency between adjacent synthesized sketch patches as follows:

min
w
‖x−Xw‖22 + λ‖Oiw −O(i)wi‖,

s.t.

K∑
l=1

wl = 1, wl ≥ 0,
(2)

where the second term
∑4

i=1 ‖Oiw −O(i)wi‖ represents the dependency constraint between the syn-

thesized sketch corresponding to the test photo patch x and its four adjacent synthesized sketch patches.

Here the constraint is modeled by the distance of pixel intensity vector extracted from the overlapping

area between adjacent sketch patches. In equation (2), the column vector wi is the reconstruction weight

corresponding to the i-th adjacent sketch, O(i) denotes the pixel intensity vector extracted from the

overlapping area of adjacent sketch patch i, and Oi denotes the pixel intensity vector extracted from the

overlapping area of current target sketch patch. Wang et al. [12] further developed the MWF model from

the perspective of transductive learning. Peng et al. [13] extended the MWF model to a multi-view version

which improves the robustness against the cluttered background and lighting variations. Unlike the even

patch employed in aforementioned methods, super-pixel segmentation of image patches is employed and

the reconstruction representation model as in equation (2) is adopted in the work [14].

All aforementioned methods perform K nearest neighbor (K-NN) selection online, which heavily
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Fig. 1. A graphical illustration of the proposed RSLCR framework.

increases the time consuming for test. Moreover, with the increase of the scale of the database, the

computation complexity would also increase linearly. In addition, the reconstruction weight representation

model either in (1) or in (2) consider that all selected nearest neighbors contribute equally to the

reconstruction weight computation process, while the distinct distance between these neighbors and the

test patch are neglected.

In this paper, instead of online searching neighbors, we randomly sample some patches offline and

then these patches are used to reconstruction the target sketch patch. This random sampling strategy

greatly speeds up the synthesis process, which is much faster than K-NN based methods (e.g. the LLE

method [4]) under the same experimental settings. In addition, state-of-the-art methods consider that all

selected neighbors contribute equally to the reconstruction weight computation process while the distinct

similarity between the test patch and these neighbors are neglected. Since these random sampled patches

have distinct similarities with the test photo patch, we impose the locality constraint [15] to regularize their
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corresponding reconstruction weights. The locality constraint would restrain the contribution of patches

which distribute far from the test patch and excite the contribution of patches which distribute around

the test patch. Similar techniques appeared in image restoration tasks such as image super-resolution

[16], [17] and image denoising [18]. To further accelerate the synthesis process, we employ principal

component analysis (PCA) [19] to reduce the dimension of each patch vector. A graphical outline of the

proposed random sampling with locality constraint for face sketch synthesis method (RSLCR) is shown

in Fig. 1. In addition, we proposed a fast version of the proposed method by dropping out some random

sampled patches, namely Fast-RSLCR.

The contributions of this paper are twofold. Firstly, an offline random sampling strategy is employed

to reduce the time consuming for online neighbor selection. In addition, the proposed strategy has

stronger scalability than state-of-the-art methods due to the fact that the time-consuming does not depend

on the scale of training dataset for our proposed strategy while not the case for other methods. We

further imposed locality constraint to the reconstruction weight representation which takes the distinct

similarities between the test patch and random sampled patches into consideration. This improves the

quality of synthesized sketches. Secondly, both our proposed RSLCR method and its fast version

Fast-RSLCR achieve superior performance than state-of-the-art methods in terms of both synthesis

performance and synthesis efficiency. Specially, our proposed Fast-RSLCR could synthesize a sketch

using no more than 1.5 seconds on the Chinese University of Hong Kong (CUHK) face sketch FERET

database (CUFSF) under the MATLAB environment, which is the fastest exemplar-based face sketch

synthesis method.

In this paper, excepted when noted, a bold lowercase letter represents a column vector, a bold uppercase

letter denotes a matrix and regular lowercase and uppercase letters denotes scalars. The rest of this paper

is organized as follows. Section II introduces the proposed RSLCR method and Fast-RSLCR method.

Experimental results and analysis are given in section III and section IV concludes this paper.

II. RANDOM SAMPLING FOR FACE SKETCH SYNTHESIS

In this section, we would introduce how to sample ”neighbors” in an offline manner, i.e. random

sampling training image patches, and then how to represent the test photo patch using these random

sampled training photo patches, i.e. locality constraint (LCR) based weight representation model.
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Fig. 2. Illustration of search region

A. Random Sampling Image Patches

Supposing there are M pairs of training sketches and training photos which are geometrically aligned

according to three points: two eye centers and the mouth center. Each image is cropped to the size of

250 × 200. We first divide these photos and sketches into some patches with even size. There is some

overlapping (denoted as o) between adjacent patches. As shown in Fig. 1, each image is divided into

N = 40 × 31 patches where there are r = 40 patches in each column and c = 31 patches in each row

(the patch size p is set to 20 with o = 14 pixels overlapped between adjacent patches). We reshape each

image patch as a column vector. (i, j) denotes the location of the patch at the i-th row and the j-th

column, i ∈ {1, · · · , r}, j ∈ {1, · · · , c}.

Our target is to generate N clusters of photo-sketch patch pairs corresponding to the N locations

{(i, j)|i ∈ {1, · · · , r}, j ∈ {1, · · · , c}}. The most intuitive way is to put patches located at the same

position together. However, since images are aligned relying on only three points, there exist misalign-

ments between test photos and training photos, which may result in mismatch during the reconstruction

process. To alleviate the influence of misalignment, we enlarge the sampling area to allow more candidate

patches bo be sampled as shown in Fig. 2. Let s denote the search length and then there are (2s+ 1)2

patches in the search region. Therefore, for each location, we have (2s + 1)2M pairs of patches for

sampling. Let nrs denote the number of random sampled patches. In our implementations, we employ

the MATLAB function randperm() to sample training sketch-photo patch pairs. X(i,j) ∈ R3p2×nrs and
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Algorithm 1 Random Sampling Image Patches

Input: p, o, s, nrs

Step 1: According to the patch size p and overlap size o, compute

r, c, and the positions of all patches in an image;

Step 2: Within the search region of each patch position (i, j),

i ∈ {1, · · · , r}, j ∈ {1, · · · , c}, random sample nrs pairs

of photo patches X(i,j) and sketch patches Y(i,j) in all

training image pairs;

Step 3: Compute the PCA projection matrix E(i,j) for each cluster

of training photo patches and project the training photo

patches to the subspace spanned by E(i,j) as in equation

(3).

Output: X(i,j),Y(i,j), E(i,j), i ∈ {1, · · · , r}, j ∈ {1, · · · , c}.

Y(i,j) ∈ Rp2×nrs denote the sampled training photo patches and sketch patches in (i, j)-th cluster

respectively, i ∈ {1, · · · , r}, j ∈ {1, · · · , c}.

In order to improve the computation efficiency, we employ PCA to reduce the dimension of training

photo patches. 99% energy is preserved in the projection process. Let E(i,j) ∈ R3p2×D(i,j)

represent the

projection matrix and D(i,j) is the reduced dimension. The training photo patches are projected onto the

subspace spanned by the column vectors of E(i,j):

X′
(i,j)

= E(i,j)TX(i,j) (3)

where X′
(i,j) ∈ RD(i,j)×nrs is the newly projected training photo patches. For easy of notation, we still

use X(i,j) to denote the projected training photo patches in the following text. Algorithm 1 summarizes

the proposed random sampling method.

B. Reconstruction Weight Representation

Given a test photo P ∈ R250×200, it is divided into some patches x(i,j) ∈ R3p2×1 according to the same

way for training images, i ∈ {1, · · · , r}, j ∈ {1, · · · , c}. These patches are projected to the respective

subspace obtained in the training phase:

x′
(i,j)

= E(i,j)Tx(i,j) (4)

August 14, 2017 DRAFT



8

where x′
(i,j) ∈ RD(i,j)×1 is the projected training photo patch and for easy of notation, we still use x(i,j)

to represent the test photo patch. In order to take the correlations between different random sampled

patches into considerations, we impose a weight to the distances of the test photo patch and random

sampled photo patches. Then the reconstruction weight representation model is written as follows:

min
w(i,j)

‖x(i,j) −X(i,j)w(i,j)‖22 + λ‖d(i,j) �w(i,j)‖,

s.t.1Tw(i,j) = 1,∀i ∈ {1, · · · , r},∀j ∈ {1, · · · , c},
(5)

where � denotes the element-wise multiplication, w(i,j) ∈ Rnrs×1 is the weight representation for the

test photo patch x(i,j), λ balances the reconstruction error and the locality constraint, and d(i,j) ∈ Rnrs×1

is the Euclidean distance vector between the test photo patch x(i,j) and sampled training photo patches

X(i,j). It can be derived that the problem (5) has analytical solution:

w′
(i,j)

= (C(i,j) + λdiag(d(i,j))) \ 1,

w(i,j) = w′
(i,j)

/1Tw′
(i,j)

,

(6)

where 1 is a column vector of all 1s and its dimension can be determined in the context. C(i,j) =

(X(i,j) − 1x(i,j)T )(X(i,j) − 1x(i,j)T )T denotes the data covariance matrix and diag(d) extends the

vector d into a diagonal matrix. The target sketch patch y(i,j) is generated from the linear combination

of random sampled training sketches weight by the obtained representation vector w(i,j):

y(i,j) = Y(i,j)w(i,j). (7)

After obtaining all target sketch patches, they are arranged into a whole sketch with overlapping area

averaged.

Since the computation complexity in equation (6) mainly depends on the number of random sampled

patches, we could further accelerate the proposed RSLCR method by dropping out some random sampled

patches in the training phase. Actually we have already computed the distance between the test photo

patch and the random sampled training photo patches, we could drop out sampled patches whose distance

to the test photo patch are larger. In other words, we could retain K sampled patches whose distance to the

test photo patch are among the first K smallest. In comparison to equation (6), we only need to update the

data matrix X(i,j) with its subset, i.e. X(i,j)
s = X(i,j)(:, idx(1 : K)) and Y

(i,j)
s = Y(i,j)(:, idx(1 : K))

where idx stores the index to distances between the test photo patch and nrs sampled training photo

patches in an ascending order. We call this fast version as Fast-RSLCR. We summarize the proposed

RSLCR and Fast-RSLCR algorithm in Algorithm 2.

August 14, 2017 DRAFT



9

Algorithm 2 RSLCR & Fast-RSLCR

Input: P, p, o, K

Step 1: According to the patch size p and overlap size o, divide

P into patches x(i,j),i ∈ {1, · · · , r},j ∈ {1, · · · , c};

Step 2: For i ∈ {1, · · · , r}

For j ∈ {1, · · · , c}

Step 3 RSLCR: Compute C(i,j) with X(i,j);

Fast-RSLCR: Compute C(i,j) with X
(i,j)
s ;

Step 4: Compute w(i,j) as in equation (6);

Step 5: RSLCR: y(i,j) = Y(i,j)w(i,j);

Fast-RSLCR: y(i,j) = Y
(i,j)
s w(i,j);

Step 6: Arrange all target sketch patches into a whole sketch with

overlapping area averaged.

Output: the target sketch S.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Experimental results are conducted to illustrate the efficiency and effectiveness of the proposed RSLCR

method and Fast-RSLCR method. Two public available database are used: the CUHK face sketch database

(CUFS) [10] and the CUFSF database [20]. The CUFS database consists of face photos from three

databases: the CUHK student database [21] (188 persons), the AR database [22] (123 persons) and the

XM2VTS database [23] (295 persons). Persons in the XM2VTS database are different in ages, skins

(races) and hair styles. The CUFSF database includes 1194 persons from the FERET database [24].

There are one face photos and one face sketch drawn by the artist for each person in both CUFS and

CUFSF databases. Face photos in the CUFSF database are with lighting variation and sketches are with

shape exaggeration. All these face photos and sketches are geometrically aligned relying on three points:

two eye centers and the mouth center and they are cropped to the size of 250× 200. Fig. 3 gives some

examples from these two databases.

In the following context, we would first discuss the experimental settings (parameter settings) for

our proposed method on the CUHK student database. Afterwards, under the experimental settings, we

perform face sketch synthesis on the CUFS database and the CUFSF database to subjectively illustrate

the superiority of the proposed RSLCR method and the Fast-RSLCR method compared with state-of-
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Fig. 3. Example face sketch-photo pairs in the CUFS database (the first two rows) and the CUFSF database (the last two

rows). The first and the third row are face photos and the second and the last rows are corresponding face sketches drawn by

the artist. The first person, second person and the last three persons at the first two rows are from the CUHK student database,

the AR database and the XM2VTS database respectively.

the-arts. Then time consumption has discussed. Subsequently, objective statistic experiments (objective

image quality assessment and face recognition) are conducted to indirectly validate the superiority of

proposed methods.

A. Discussion on Experimental Settings

We employ the CUHK student database [21] to perform parameter adjusting in this sub-section. 88

pairs of face photo-sketch are taken as the training set and the rest 100 pairs of face photo-sketch are

taken for validation. To objectively assess the quality of synthesized sketches under different experimental

settings, structural similarity index metric (SSIM) [25] is adopted as the evaluation criterion. The 100

sketches drawn by the artist in the validation set are taken as the reference image and 100 photos in the

validation set are taken as the test image for face sketch synthesis. Under each experimental setting, the

average SSIM score of 100 synthesized sketches are taken as the final evaluation value.

There are five parameters (i.e. patch size p, overlap size o, search length s, the number of random

sampled patches rns and the trade-off parameter λ) for the proposed RSLCR method and one additional
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Fig. 4. Statistics of SSIM scores under different parameter settings: (a) patch size, (b) overlap size, (c) search length, (d)

number of random sampled patch pairs, (e) lambda, (f) number of nearest neighbors for Fast-RSLCR.

parameter (i.e. the number of selected neighbors) for Fast-RSLCR. All experiments are conducted using

MATLAB R2015a on Windows 7 system with i7-4790 3.6G CPU. Fig. 4 presents the SSIM scores against

different parameter settings.

1) Patch Size: We set patch size to 5, 10, 15, 20, 30 and 40 respectively and keep the overlap size

as 70% of the patch size. It can be seen from Fig. 4(a) that both RSLCR and Fast-RSLCR achieves the

highest SSIM score when the patch size is 20. When the patch size is 10, it has very close performance

with the patch size 20. However, smaller patch size means more patches to be synthesized and hence

it consumes much more time (78.84 seconds vs. 18.79 seconds for RSLCR and 21.07 seconds vs. 1.82

seconds for Fast-RSLCR).

2) Overlap Size: Given the patch size being 20, we set the overlap size to different values: 0, 2, 4,

6, 8, 10, 12, 14, 16 and 18. From Fig. 4(b) it can be seen that with the increase of the overlap size,

SSIM scores for both RSLCR and Fast-RSLCR are also increasing. However, the time-consuming is also

growing rapidly. In our following experiments, we set the overlap size as the trade-off value 14.
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3) Search Length: The search length is used in the training stage and hence it does not affect the

test phase. From Fig. 4(c) it can be seen that though the SSIM score of Fast-RSLCR always grows with

the increase of the search length, the SSIM score of RSLCR grows at first and then goes down. This is

because with the increase of the search length, some outliers may be sampled and these outliers would

bring noise to the RSLCR method. However, Fast-RSLCR does not subject to these outliers because it

selects the K nearest neighbors among random sampled patches which could filter these outliers. The

search length is set to 5 in our experiments.

4) Random Sampling: Fig. 4(d) presents the SSIM score corresponding to different number of random

sampled training face photo-sketch patches. It can be seen that generally the SSIM score grows with the

increase of random sampling number for the RSLCR method. However, it begins to decrease when the

number is bigger than 800 for the Fast-RSLCR method. We set it to 800 in our experiments.

5) Regularization Parameter: λ It should be noted that when λ = 0 (refer to equation (5)), the locality

constraint has no contribution to the reconstruction weight computation. Then equation (5) reduces to the

LLE model in equation (1). The difference is that the entries of the data matrix X for the LLE method [4]

is selected through K-NN while they are random sampled for RSLCR and Fast-RSLCR. From Fig. 4(e),

on the one hand, it can be seen that when λ = 0, SSIM scores for RSLCR and Fast-RSLCR are 0.6250

and 0.6150 respectively compared with 0.5990 of the LLE method [4]. In addition, RSLCR and Fast-

RSLCR run much faster than the LLE method (18.79 seconds for RSLCR, 1.82 seconds for Fast-RSLCR,

and 536.34 seconds for LLE). This illustrates the effectiveness of the proposed random sampling strategy.

On the other hand, when λ = 0.5, RSLCR and Fast-RSLCR achieve the best performance among all λ

values, which is much larger than SSIM socres for λ = 0. This validates that the locality constraint does

help to improve the performance. λ is set to 0.5 in this paper.

6) Number of Nearest Neighbors for Fast-RSLCR: K-NN is conducted in Fast-RSLCR to improve the

computation efficiency. Fig. 4(f) presents the SSIM score against different number of nearest neighbors.

Generally it grows with the increase of the number. To comprehensively comprise the time consuming

and the SSIM socre, it is set to 200 in our experiments. From Fig. 4(d) it can be seen that directly random

sampling 200 patches achieves an SSIM score of 0.6301 (at the time cost of 1.82s) while our proposed

Fast-RSLCR (also use 200 sampled patches) could achieve an SSIM score of 0.6339 (at the time cost of

1.89s). It demonstrates the effectiveness of the proposed Fast-RSLCR method.

7) Random Sampling Searching Vs. Accelerated Nearest Neighbor Searching: In order to illustrate the

effectiveness of the proposed the offline random sampling searching strategy in comparison to accelerated

nearest neighbor (ANN) searching strategies, we utilize two kinds of ANN approaches for online neighbor
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Input Photo KDTree+LC ITQLSH+LC Fast-RSLCR RSLCR

Fig. 5. Synthesized sketches by KDTree-LC, ITQLSH-LC, Fast-RSLCR, and RSLCR method respectively.

searching: iterative quantization based locality-sensitive hashing (ITQLSH) 1 [26] and the KDTree method
2 [27]. We substitute the random sampling strategy in our proposed method with these two KNN searching

method and they are denoted as ITQLSH-LC and KDTree-LC respectively. Table I gives the effect of the

number of nearest neighbors on these two methods. It can be seen that when the number of neighbors

is 20, these two methods achieve the best performance. Table II shows the comparison between the

proposed methods with these two ANN based methods. Fig. 5 presents the synthesized sketches by four

different methods. Table II and Fig. 5 illustrate that the random sampling strategy outperforms ITQLSH

and KDTree in terms of both time consumption and image quality.

8) Locality Constraint (LC): Locality constraint is firstly proposed for image classification and

it shows comparable performance with sparse constraint [15]. The non-local similarity constraint as

1The MATLAB/C++ mixed source codes are download from the website: https://github.com/RSIA-LIESMARS-WHU/

LSHBOX
2We use the open source implementation (MATLAB/C++ mixed programming) of this method in VLFeat: http://www.vlfeat.

org/
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TABLE I

THE EFFECT OF THE NUMBER OF NEAREST NEIGHBORS ON ITQLSH-LC AND KDTREE IN TERMS OF SSIM SCORE (%)

AND TIME CONSUMPTION (THE VALUE IN THE BRACKET IS IN SECONDS)

Number of Neighbors 5 20 50 100 200 400 800

KDTree-LC 60.72 (434.89) 61.27 (436.18) 61.13 (437.03) 60.72 (439.77) 60.36 (462.63) 60.34 (474.85) 60.50 (501.57)

ITQLSH-LC 58.80 (412.16) 59.30 (421.09) 58.96 (432.16) 58.58 (437.24) 58.53 (439.78) 58.65 (443.14) 58.76 (461.01)

TABLE II

COMPARISONS BETWEEN TWO ANN BASED METHODS AND THE PROPOSED METHODS IN TERMS OF SSIM SCORE (%)

AND TIME CONSUMPTION (SECONDS)

Method KDTree-LC ITQLSH-LC RSLCR Fast-RSLCR

SSIM 61.27 59.30 63.57 63.39

Time 436.18 421.09 18.79 1.82

a regularization term in [9] is also very similar with the locality constraint. Table III compares the

performance of different face sketch synthesis methods with or without locality constraint. It can be

found that locality constraint improves the performance of our proposed Fast-RSLCR method a lot and

it also improves the LLE method and the RSLCR method. However, this is not the case for the MWF

method. This is because the locality constraint is implicitly embedded in the neighboring constraint of

the MWF model (see the second term of equation (2)). In this paper, locality constraint is utilized to

distinguish the random sampled patches since these patches may be distributed in a scattered way, i.e.

it is especially appropriate for random sampling based methods where the random sampled patches may

distribute far away from each other.

TABLE III

THE EFFECT OF LOCALITY CONSTRAINT (IN TERMS OF SSIM SCORE (%)) ON DIFFERENT FACE SKETCH SYNTHESIS

METHODS

Method LLE MWF Fast-RSLCR RSLCR

With LC 61.00 62.31 63.39 63.57

Without LC 59.97 62.31 61.42 62.47
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Input Photo SSD MRF LLE MWF Fast-RSLCR RSLCRFCN GAN

Fig. 6. Synthesized sketches on the CUFS database by FCN [28], GAN [29], SSD [6], MRF [10], LLE [4], MWF [11], the

proposed Fast-RSLCR and RSLCR respectively. Face photos in the first two rows are from the CUHK student database and the

AR database respectively. The last four photos are from the XM2VTS database.

B. Face Sketch Synthesis

After the experimental setting for parameters, we set the patch size p = 20, overlap size o = 14, search

length s = 5, the number for random sampling nrs = 800, the regularization parameter λ = 0.5, the

number of nearest neighbors for Fast-RSLCR K = 200. For the CUHK student database, 88 pairs of face

photo-sketch are taken for training and the rest for testing (the data has been partitioned in this database).
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For the AR database, we randomly choose 80 pairs for training and the rest 43 pairs for testing. For the

XM2VTS database, we randomly choose 100 pairs for training and the rest 195 pairs for testing. Six

state-of-the-art methods are compared: the FCN method [28], the GAN method [29]3, the LLE method

[4], the SSD method [6], the MRF method [10], and the MWF method [11]. All synthesized sketches by

the SSD method and the MWF method are generated from the source codes provided by the authors. For

the MRF method, we use the codes from the implementation provided by authors of SSD [6]4. Results

of the LLE method and the FCN method are based on our implementations5. The full list of synthesized

sketches (both of our methods and all four compared methods) on these two databases is available on

our project website.

Fig. 6 presents some synthesized face sketches from different methods on the CUFS database. It can be

seen that the proposed RSLCR method and the Fast-RSLCR method could generate fine textures (e.g. hair

region) and structures (e.g. glasses). This is because more candidate patches in our proposed methods are

effectively incorporated through random sampling and locality constraint. Synthesized sketches on photos

from the XM2VTS database generated by SSD, MRF, LLE, and MWF are less satisfying than photos

from the CUHK student database and the AR database due to the fact that there are more variations such

as aging, race, and hair styles on faces of the XM2VTS database. However, RSLCR and Fast-RSLCR

achieve much better performance than these four comared methods and afford comparable performance

on face photos from three different databases. This illustrates the robustness of the proposed methods.

We have also investigated the robustness of the proposed methods against shape exaggeration and

illumination variations on the CUFSF database. We randomly choose 250 face photo-sketch pairs for

training and the rest 944 pairs for test. Fig. 7 shows the synthesized results on this database by various

methods. It is shown that there are some deformations on synthesized sketches by SSD and MRF, specially

for the mouth area. In addition, our proposed Fast-RSLCR and RSLCR method could handle glasses with

reflect light well while other methods cannot (see the third row of Fig. 7).

3 The source codes are availabe online: https://github.com/phillipi/pix2pix
4The source codes for both the MRF method and the SSD method are available online: http://www.cs.cityu.edu.hk/∼yibisong/

eccv14/index.html
5Available online: http://www.ihitworld.com/RSLCR.html. On this project website, we also release the source codes of both

our proposed methods and the evaluation codes (objective image quality assessment codes and face recognition codes).
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Input Photo SSD MRF LLE MWF Fast-RSLCR RSLCRFCN GAN

Fig. 7. Synthesized sketches on the CUFSF database by FCN [28], GAN [29], SSD [6], MRF [10], LLE [4], MWF [11], the

proposed Fast-RSLCR and RSLCR respectively.

C. Time Consumption

Given the experimental settings in III-B, we count the time consumption for the proposed methods.

Table IV compares the time consuming for different methods on different databases. There are 88, 80,

100, and 250 training photo-sketch pairs for the CUHK student, AR, XM2VTS and FERET database

respectively. It can be seen from the table that time consumptions for SSD, MRF, LLE, and MWF

are proportional to the scale of the training set because these methods search neighbors by traversing

the whole training dataset. However, our proposed RSLCR and Fast-RSLCR method costs comparable

time on these four databases. This validates the stronger scalability of the proposed RSLCR framework.

Moreover, it can be seen that RSLCR has comparable or even less time consuming compared with state-

of-the-art methods. Our proposed Fast-RSLCR is the most efficient method among all methods. It requires

less than 1.5 seconds to synthesize a sketch on the CUHK FERET database, which is dozens of times

faster than state-of-the-art methods.
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Fig. 8. Statistics of SSIM scores on (a) the CUFS database and (b) the CUFSF database.

TABLE IV

AVERAGE TIME CONSUMPTION (SECONDS) TO GENERATE ONE SKETCH ON DIFFERENT DATABASES

Methods SSD MRF LLE MWF RSLCR Fast-RSLCR

Programming language C++ C++ MATLAB C++ MATLAB MATLAB

CUHK Student 4.50 8.60 536.34 16.10 18.79 1.82

AR 4.10 8.40 496.47 15.33 19.10 1.73

XM2VTS 5.10 10.4 642.50 18.80 18.14 2.36

CUHK FERET 11.60 24.25 1591.95 45.20 17.66 1.44

TABLE V

AVERAGE SSIM SCORE (%) ON THE CUFS DATABASE AND THE CUFSF DATABASE

FCN [28] GAN [29] SSD[6] MRF[10] LLE[4] MWF[11] Fast-RSLCR RSLCR

CUFS (%) 52.14 49.39 54.20 51.32 52.58 53.93 55.42 55.72

CUFSF (%) 36.22 36.65 44.09 37.34 41.76 42.99 44.56 44.96
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TABLE VI

NLDA FACE RECOGNITION ACCURACY (%) BASED ON SYNTHESIZED SKETCHES FROM THE CUFS DATABASE AND THE

CUFSF DATABASE

Methods FCN GAN LLE SSD MRF MWF Fast-RSLCR RSLCR

CUFS (%) 96.49 (131) 93.48 (139) 91.12 (148) 90.24 (149) 87.29 (149) 92.13 (149) 98.35 (121) 98.38 (133)

CUFSF (%) 69.80 (237) 71.44 (164) 61.76 (274) 70.92 (266) 46.03 (223) 74.15 (299) 73.41 (287) 75.94 (296)

D. Objective Image Quality Assessment

We utilize SSIM to evaluate the quality of synthesized sketches by different methods on CUFS and

CUFSF. There are 338 (100 + 43 + 195) and 944 synthesized sketches for each method generated from

the CUFS database and CUFSF database respectively. Fig. 8 gives the statistics of SSIM scores on these

two databases respectively. The horizontal axis labels the SSIM score from 0 to 1. The vertical axis

means the percentage of synthesized sketch whose SSIM scores are not smaller than the score marked

on the horizontal axis. Table V presents the average SSIM score on the CUFS and CUFSF database

respectively.

It can be seen from Fig. 8 and table V that both Fast-RSLCR and RSLCR outperform four other

state-of-the-art methods. Comparable performance is achieved for SSD and MWF on the CUFS database

but SSD outperforms MWF on the CUFSF database which illustrates SSD could handle faces with

illumination variations better than the MWF method.

E. Face Sketch Recognition

Sketch based face recognition is always used to assist law enforcement. The sketch drawn by the artist

is generally taken as the probe image and synthesized sketches play the role of images in the gallery. Null-

space linear discriminant analysis (NLDA) [30] is employed to conduct the face recognition experiments.

For the CUFS database, we randomly choose 150 synthesized sketches and corresponding ground-truth

sketches drawn by the artist to train the classifier. The rest 188 sketches consists of the gallery. For the

CUFSF database, we randomly choose 300 synthesized sketches and corresponding ground-truth sketches

for training and the rest 644 synthesized sketches consist of the gallery. We repeat each face recognition

experiment 20 times by randomly partition the data.

Fig. 9 gives the face recognition accuracy against variations of the number of reduced dimensions

by NLDA on the CUFS database and CUFSF database respectively. Table VI presents the best face
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Fig. 9. Face recognition accuracy against variations of the number of reduced dimensions by NLDA on (a) the CUFS database

and (b) the CUFSF database.

recognition accuracy at some dimension (the number in bracket). It can be seen that on the CUFS database,

the proposed two methods outperform state-of-the-art methods a lot and on the more challenging CUFSF

database, our proposed RSLCR method also obtain the best performance with an accuracy of 75.94%.

The Fast-RSLCR method has comparable performance with MWF. As shown in table V, although SSD

achieves higher SSIM score than MWF, it has lower face recognition accuracy than MWF. This is because

though SSD could clear face sketches (much less noise than MWF) it generates face deformations (e.g.

mouth area as shown in Fig. 6 and Fig. 7).

IV. CONCLUSION

In this paper, we presented a simple yet effective framework for face sketch synthesis based on random

sampling and locality constraint. Random sampling in the offline stage could speed up the synthesis

process since there is no need to search neighbors online as done in existing methods. The locality

constraint could guarantee that similar sampled photo patches have similar reconstruction weights which

is neglected in existing works. Through experiments including subjective (perception on the quality of

synthesized sketches) and objective (image quality assessment and face recognition) evaluations illustrate

the effectiveness of the proposed methods. In addition, discussion on time consumption demonstrates that

the proposed Fast-RSLCR method is most efficient method in comparison to state-of-the-art methods.

In the future, we would further improve the robustness of our proposed methods by incorporating more
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robust features. The application of RSLCR framework on related fields is another mission on the schedule.
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