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Abstract 

Handwritten word recognition and spotting of low-resource scripts are difficult as sufficient training 

data is not available and it is often expensive for collecting data of such scripts. This paper presents a 

novel cross language platform for handwritten word recognition and spotting for such low-resource 

scripts where training is performed with a sufficiently large dataset of an available script (considered as 

source script) and testing is done on other scripts (considered as target script). Training with one source 

script and testing with another script to have a reasonable result is not easy in handwriting domain due 

to the complex nature of handwriting variability among scripts. Also it is difficult in mapping between 

source and target characters when they appear in cursive word images. The proposed Indic cross 

language framework exploits a large resource of dataset for training and uses it for recognizing and 

spotting text of other target scripts where sufficient amount of training data is not available. Since, 

Indic scripts are mostly written in 3 zones, namely, upper, middle and lower, we employ zone-wise 

character (or component) mapping for efficient learning purpose. The performance of our cross-

language framework depends on the extent of similarity between the source and target scripts. Hence, 

we devise an entropy based script similarity score using source to target character mapping that will 

provide a feasibility of cross language transcription. We have tested our approach in three Indic scripts, 

namely, Bangla, Devanagari and Gurumukhi, and the corresponding results are reported. 

 

Keywords- Indic Script Recognition, Handwritten Word Recognition, Word Spotting, Cross 

Language Recognition, Script Similarity, Hidden Markov Model. 
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1. Introduction 

Handwritten word recognition has long been an active research area because of its complexity and 

challenges due to a variety of handwritten styles. There exist many research works towards handwritten 

word recognition in Roman [1, 6, 17], Japanese/Chinese [2, 3] and Arabic scripts [5]. To overcome the 

drawbacks of recognition approaches, word spotting technique [11, 14, 23, 25] is used for information 

retrieval purpose. Word spotting was developed as an alternative approach for knowledge retrieval 

from document images which avoids conventional recognition framework. Researchers have created 

numerous public datasets in different scripts for developing tasks, such as, word recognition, word 

retrieval, etc. [21, 24, 25]. 

 

Although a number of investigations have been made towards the recognition of isolated handwritten 

characters and digits of Indian scripts [8, 39], only a few pieces of work [7, 8, 17, 20] exist towards 

offline handwritten word recognition in Indian scripts. Recognition of Indian scripts [22, 38] is difficult  

due  to  their  complex  syntax  and  spatial variation  of  the  characters  when  combined  with  other 

characters to form a word. Modifiers are formed when vowels are connected to the consonant and these 

modifiers are placed at the left, right (or both), top or bottom of the consonant. Presence of ‘Matra’ and 

‘modifiers’ [22]  makes the recognition and spotting tasks of Indian script more difficult as compared 

to other non-Indian scripts. Hence most of the existing word recognition works in Indic script are 

performed based on the segmentation of characters from words. 

 

Dataset is a necessary and important resource which is required to develop any recognition system for 

benchmarking. It has been observed that the availability of training data for handwritten task of each 

Indian script is not uniformly distributed i.e. some scripts like Bangla, Devanagari, Tamil etc. have a 

lot of data compared to other scripts/languages in India. Generation of synthetic data was also 

attempted to increase the size of dataset [37]. Most of the text recognition systems available in Indic 

scripts are performed in few popular scripts like Bangla, Devanagari, Tamil, etc.   Due to the lack of 

proper datasets, research in other Indic scripts is not progressing. 
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To overcome the unavailability of datasets, researchers from the speech recognition community have 

developed speech recognition systems for low-resource languages with the help of large datasets of 

known language using cross language framework [9, 10]. There exist many pieces of work on cross 

language speech recognition. Generally, in these works, phoneme to phoneme mapping technique has 

been applied. Till date, several experiments have been performed in the field of cross language speech 

recognition. The spectral feature (like Mel Frequency Cepstral Coefficient (MFCC))  based baseline 

system for Mandarin and Arabic automatic speech recognition (ASR)  performance was outperformed 

by using feature extraction from an English-trained MLP in [12].  In [15] English-trained phone and 

articulatory feature MLPs was considered for a Hungarian ASR system to study the cross-lingual 

portability of MLP features from English to Hungarian. The work presented in [9], describes the 

development of a Polish speech recognition system using Spanish as the source language. This was 

done by using cross-language bootstrapping and confidence based unsupervised acoustic model 

training, in a combined manner. Also, in [10], it was proposed that to address lack of training resources, 

data from multiple languages can be used. Here a multi-language Acoustic Model (AM) was directly 

applied, as a language independent AM (LIAM) to an unseen language, considering limited training 

resource of target language. 

 

Inspired with the success in speech recognition, we attempt cross-language handwritten text 

recognition in this paper. Cross language handwriting recognition refers to the process of word 

recognition of a target language, by a system which has been already trained by different (source) 

languages. In this paper, we propose a novel approach of cross language handwritten word recognition 

by source to target language character mapping technique. To our knowledge, the task of cross 

language handwriting recognition has not been performed earlier. To address this problem, we propose 

a method in which the character models, trained using source language, are used for recognition of 

target script. The training models created from source language are used for mid-level transcription of 

target language. Next, a character mapping from source language to target language is performed to 

obtain the final transcription. Similarly the source language character models are used for word 

spotting in target language. 
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Our proposed cross-language framework uses the zone segmentation concept [20] in order to reduce 

the number of unique characters in Indic scripts. The major contributions of this paper are the 

following: 1) Use of cross language framework for word recognition and spotting: Although there are 

quite a few pieces of works in cross language speech recognition, the idea of cross language 

handwritten word recognition or spotting is a novel attempt in the handwriting recognition community. 

2) Target to source script mapping using majority voting: We propose a character mapping method in 

order to find a mapping between source to target characters. 3) Script similarity score calculation: A 

novel script similarity measure is proposed to evaluate the similarity between source and target scripts. 

This central idea of cross-language framework is general and can be extended to other low resource 

scripts where enough training date is not available. The proposed paradigm will help in developing 

recognition and spotting approaches for low resource scripts. There exists not much handwritten 

recognition work on Indic scripts such as Gurumukhi, Oriya, and Assamese etc. Thus, developing an 

efficient cross language will be useful for such low resource scripts using large resource scripts. 

 

The rest of the paper is organized as follows. In Section 2, we describe the similarities among Indic 

scripts. The advantaged of zone-wise word division for cross-language similarity is explained. We have 

reviewed the zone segmentation method [20] in Section 3. In Section 4, we detail our proposed 

framework on word recognition and spotting using cross-language scripts learning. In Section 5, the 

script similarity score computation approach is explained. We demonstrate the performance of our 

framework in Section 6 with different Indic scripts. Finally, conclusions and future work are presented 

in Section 7. 

 

2. Similarity in Indic Scripts 

The root of most Indian scripts is Brahmi. Over the years, Brahmi has slowly transformed into popular 

modern scripts namely Bangla, Devanagari, Gurumukhi, Gujarati, etc. This may be due to their same 

origin and successive evolution of the characters used in different parts of the country has resulted in 

the origin of new scripts. Most Indian languages are also descended from ancient Sanskrit language. 

Because of a single origin, the character names in many scripts, like Devanagari, Bangla, and 

Gurumukhi etc., are similar and shapes of the characters share similar appearance [22]. This can be 

elaborated by considering an example of the same character from three different scripts like the 
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character ‘ম’(Bengali),   ਮ(Gurumukhi) and म (Devanagari). Though they belong to different scripts, 

they are similar in appearance. The successive evolution of different major Brahmic scripts in India and 

Southeast Asia is discussed in [27]. It is mentioned that Bangla, Devanagari, Gujarati and Punjabi 

scripts have some shape similarities. Among the south Indian scripts, Kannada has some similarity with 

Telugu, and Malayalam has similarity with Tamil. Due to these similarities, proposals have been made 

to develop a general OCR engine encompassing all the scripts. On the other hand, the similarities create 

more difficulty in script identification tasks. Among these similar scripts, one or two scripts are used in 

communication by a large section of the country. Hence, OCR systems of such dominant scripts are 

being developed in recent years. But, many scripts are still remained unexplored due to lack of proper 

dataset. For transcription of such unexplored scripts, labelled training data is hard to get. 

 

Most of the Indic scripts are written from left to right. Unlike Latin, character-modifiers of Bangla, 

Devanagari, Gurumukhi and some other scripts are attached to the consonant (that appears only in 

middle zone) in any of the 3 zones: upper, middle or lower zones. Fig.1. shows an example of a Bangla 

word image and its 3 different zones. In these scripts, characters usually have “Matra” to which they 

are attached at the top. Often in such scripts, if a consonant is followed by a vowel, a vowel symbol is 

added to the consonant either to the left, right, top or bottom, depending upon the usage. A consonant 

or a vowel following a consonant sometimes takes a compound orthographic shape, which we call as 

compound character. 

 

Fig.1.Example of a Bangla word showing the 3 different zones 
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characters sit side by side to form a word, corresponding Matras generally touch and generate a long 

line. 

 

 
(a) 

 

(b) 

Fig.2. Some examples show similarity among (a) characters and (b) words in Bangla, Devanagari 
and Gurumukhi scripts. Similar portions of the characters in three scripts are marked in red dotted 

line.  

 

In spite of having much similarity among the characters of different Indic scripts, the recognition task 

becomes difficult due to appearance of characters in three different zones in Indic script during word 

formation. It is observed that the presence of modifiers reduces the cross language similarity more than 

the simple consonant characters which are situated only in middle zone. Although some of the 

consonant characters of the three scripts are structurally similar in appearance as discussed in the 

previous sections but when modifiers are attached to these characters, the shapes of the resultant 

characters differ to a greater extent in different scripts. A diagrammatic illustration of this fact is shown 

in Fig. 3. The similarity among modifiers is much less than the middle zoned characters among the 

scripts. Hence, we have used zone-wise word components of source scripts to train and the trained 

models are used to test zone-wise word images of target script. When the source script character 

models are applied to target word image, we obtain the transcription of target word using source script 

characters. We refer it as mid-level transcription. This mid-level transcription is then converted to the 

target script using character mapping.  
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(a)                                                        (b) 

Fig.3. Example showing that the maximum similarity lies in the middle zoned character among the 

scripts. Similarity of the characters in a single (same) zone is much significant than combining 

other zones, e.g., (a) with lower zone (b) with upper zone. 

 

3. Zone Segmentation in Indic Scripts 

Zone segmentation plays an important role in Indic script word recognition as proposed in [20]. As 

mentioned earlier, characters of most of the Indic scripts are written in upper, middle and lower zones. 

With morphological combination of characters with modifiers, the number of character classes 

becomes huge [20]. To overcome the problem of large number of characters classes, zone-wise 

character segmentation and combination approach significantly reduces the combination of characters 

with the modifiers. It was shown that zone-wise recognition method significantly improves the word 

recognition performance than conventional full word recognition system in Indic scripts [13, 20]. To 

make this document self-contained, we have briefly reviewed the zone segmentation method that was 

introduced in the works [13, 20]. 

 

To perform the zone segmentation approach in Indic script, the first step is to detect the proper region 

of Matra which is a challenging task due to complex writing style. Unlike printed word [22] where the 

row with the highest peak in horizontal projection analysis detects the Matra, it is rarely true in cursive 

handwritten words. The zone segmentation approach due to Roy et al. [20] showed good performance 

in Indic scripts. We have used similar approach for segmentation of the three zones in Indic scripts. A 

rule based approach was considered to detect the approximate location of Matra line. For this purpose, 

three different information namely,  highest peak of horizontal projection, regression line of depth-

points of water reservoirs and the projection profile in the upper half of the word are considered. Next, 

a window of Matra region is considered to find the upper zone components. The skeleton-segments of 
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the region are analysed to check if some of the segments are moving in the upward direction from the 

Matra region. The segments which move upwards are considered as upper-zone components of the 

word image. 

 

Lower zone components are also segmented from the word image. The lower zone segmentation by 

projection analysis does not perform well because of the irregular size of the characters within a word. 

To perform better segmentation of lower zone components a shape matching based algorithm is 

introduced [20]. Modifiers are searched in lower portion of the word image using a shape matching 

algorithm. The touching locations of lower zone modifiers are found out by the analysis of the skeleton 

of the image. If the residue shape components below those touching locations are matched with any of 

the lower zone characters with high matching confidence, those portions are separated from middle 

zone. Fig.4 shows examples of zone segmentation on Bangla, Devanagari and Gurumukhi. 

 

    

 Bangla 
  

 

Devanagari 
  

 

Gurumukhi  
   

Fig.4. Examples showing zone segmentation on Bangla, Devanagari and Gurumukhi word images.  

 

4. Proposed Cross-Language Framework 

We have used our proposed cross language technique in two state-of-the-art frameworks: word 

recognition and spotting from handwritten word images. Our technique is based on the character 

mapping between source and target scripts. The mapping of characters from source to target scripts 

depends on similarity. Fig.5 describes the architecture of the overall framework of the proposed 

system. The more the scripts are similar the recognition and spotting performance will yield better 

results. In this Section we discuss the cross-language recognition and spotting framework in details. 

The similarity index between two scripts is detailed in next Section. 

 

Script Full word 

image 

Middle zone Modifiers 
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For word recognition and spotting tasks, we have trained the character models using available data 

from source script. Next, these character models are used for target script word recognition and 

spotting tasks. The obtained recognition result is mid-level transcription, i.e. in the form of character 

sequence of source script. The mid-level transcription is then converted to target script using source to 

target character mapping. For word spotting, firstly, the query keyword of the target script (testing) is 

mapped to character sequence of source script. Then this mid-level query keyword is used to search 

similar words in target text lines. Due to the similar morphology of Bangla, Devanagari and 

Gurumukhi character set we have adopted the zone-wise matching approach in our framework. 

 

In the subsequent subsections, we describe our proposed methodologies in details. In Section 4.1, we 

describe the feature extraction process for character modeling of source and target scripts. In Section 

4.2, the mapping from source to target character is explained. This mapping is used for both cross 

language word spotting and recognition. Finally, we detail the complete framework for cross language 

word recognition and word spotting in Section 4.3 and Section 4.4, respectively.  

 

 

 

Fig.5. Proposed architecture of the cross-language technique 

 

4.1. Character Modeling using Source Scripts 
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Training of source script characters are performed using zone-wise components. Since, components in 

middle zone are cursive and touching they are trained using Hidden Markov Model to avoid 

segmentation of touching characters. For isolated components in upper and lower zones, SVM is used 

for corresponding component modeling. In both HMM and SVM classification, Pyramid of Histogram 

of Gradient (PHOG) feature has been used [13, 20]. In PHOG feature extraction approach, an image is 

divided into cells at several pyramid level and from each level (i.e. N=0, 1, 2,..), histogram of oriented 

features are extracted. In this work, with 2 levels of resolution, we obtained (1×8) + (4×8) + (16×8) = 

(8+32+128) = 168 dimensional feature vector for individual sliding window position. 

 

A. Middle-zone component modelling using HMM: The middle-zone word components from source 

script are considered for HMM [21] training. Except cursive and touching behavior of handwriting, 

another major reason behind choosing HMM is that it can model sequential dependencies. From 

middle-zone word image, a sliding window is moved from left to right direction with an overlapping. 

PHOG feature is extracted from each position of the sliding window. Next, training is performed using 

continuous density HMM [26]. 

 

B. Upper/Lower zone modifier modeling using SVM: The isolated components which are included 

in upper and lower zones are segmented using connected component (CC) analysis [36] and next they 

are recognized and labelled as text characters. After resizing the images to 150x150, here also PHOG 

feature of vector length 168 is extracted from the components of upper and lower zone modifiers. Next, 

Support Vector Machine (SVM) classifier [18, 32, 33] has been used to classify these components. 

Radial Basis Function (RBF) kernel is used in our experiment study to classify upper and lower zone 

modifiers (as shown in Fig.6). 
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Scripts Upper zone modifier 
Lower zone 

modifier 

Bangla   

Devanagari   

Gurumukhi   

Fig.6. Examples showing upper and lower zone modifiers in Bangla, Devanagari and Gurumukhi 

scripts. 

 

4.2. Look-up-Table from Source to Target Characters 

It is noted that similarity among characters in corresponding zone is much higher than considering the 

full zone information. The evaluation of script similarity is detailed in Section 4. In experiment section 

(Section 5), advantage of zone-wise character similarity is discussed. 

 

To utilize this script similarity, we have used character mapping procedure using majority voting. For 

this purpose, each zone-wise character component of target script is first recognized using the source 

script character models. During this recognition step, samples of a target character component may get 

recognized by more than one source script characters. It is due to non-availability of similar-shape 

character in source script. The source character by which the recognition is performed maximum is 

chosen for mapping, i.e., we select the source script character which appears highest number of times 

as recognition label of that target script character. The scheme of majority voting is explained in Fig. 7. 

The source character whose frequency is more is chosen for recognition. Character mapping helps us in 

replacing the character of the target script with that of the source script. For this purpose, few samples 

of each character of target script are required. An example of lookup table for Bangla as target script 

and Devanagari as source script is given in Table I. 
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Table I: Look-up table used for Bangla as target (testing) and Devanagari as source (training) 
scripts. 

 

A. Character mapping for middle zone: Each middle zone component of target script is recognized 

as one of the source script character. The recognition is performed using HMM and labeled by one of 

the source characters. Finally, a set of similar target characters is recognized and a majority voting 

based decision is considered for that target character class. In Fig.7 (a) Bangla character ‘ক’ and 

Gurumukhi character ‘ ’ are being recognized as different individual Devanagari (source script) 

character and next final mapping is performed based on majority voting.  

 

B. Character mapping for modifiers: As mentioned earlier, zone-wise character similarity among 

Indic scripts is more prominent, hence we use upper and lower zone modifiers separately for character 

mapping. Since, SVM was used for classification purpose; we have used this classifier for modifier 

mapping between source and target scripts. Upper and lower zone modifiers are mapped using SVM 

model trained by source script modifiers. Some examples of modifier mapping in both upper and lower 

zones are shown in Fig.7 (b). 

Target 

Script 

(Bangla) 

Source 

Script 

(Devanagari) 

Target 

Script 

(Bangla) 

Source 

Script 

(Devanagari) 

Target 

Script 

(Bangla) 

Source 

Script 

(Devanagari) 

ক क থ थ য य 

গ ग ন न স स 

ঘ घ ব व ল ल 

ড उ ম म হ र 

খ ध প प অ अ 

জ ज ফ फ ঙ ङ 

 ठ ষ  ष দ द 

ঝ बा ঢ ढ ণ ण 
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(a) 

 
(b) 

 

Fig.7.Majority voting examples using (a) Bangla character ‘ক’ and Gurumukhi character ‘

’(b)Bangla modifier ‘ ’ and Bangla modifier  ‘ ’. The y-axis shows the frequency of the 

recognition accuracy from source character to target character.  

 

4.3. Cross-Language Word Recognition 

After creating the character look-up-table from source to target characters, the word images from target 

scripts are recognized using cross-language framework. Here, given a word image from target script, 

zone segmentation is performed to separate middle zone portion and modifiers. Zone segmented word 

image is recognized using zone-wise classifier models trained from corresponding source script. 

Middle zone components are recognized using HMM, and modifiers in upper and lower zone are 

recognized using SVM. The recognition results thus obtained would be character sequences from 

source script. Hence, these labels of zone-wise components are mapped to target script characters using 

Source-to-Target Look-Up-Table (LUT). Then full word recognition is being done combining the 
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results of middle zone and modifiers. The detailed block-diagram of the propose cross-language 

recognition system is given in Fig.8. 

 

 

Fig.8. Detailed flow diagram of cross-language word recognition. 

 

4.3.1. Lexicon preparation for target script word recognition 

 

To recognize the target scripts of a set of lexicon (LT) using zone-wise combination, the lexicon needs 

to be modified. Since, the HMM of our framework is lexicon-based the middle zone components need 

to be recognized with a lexicon consisting middle zone components only. The lexicon modification for 

middle zone components is performed in two-steps.  

1. Lexicon (LM
T) containing middle zone components only from LT. 

2. A mapped lexicon (LM
S)LUT of  LM

T from source script by using LUT.   

 

In the first step, the lexicon (LT) of the target script is converted to its equivalent transcription 

containing middle zone components only. Here, the upper and lower zone characters are avoided to 

make lexicon (LM
T) containing middle zone characters only. In second step, middle-zone characters of 

target lexicon are mapped to the transcriptions of source script by character replacement. The character 

mapping is performed using Look-up-Table as discussed in Section 3.3. We call this lexicon (LM
S)LUT 

as Mid-Level target to source lexicon or simply mid-level lexicon.  
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The actual target lexicon (LT) is used in final word recognition result and the mid-level lexicon is used 

in middle zone recognition during HMM.  Fig.9. shows the translation of lexicon from (LT) to (LM
S)LUT  

through intermediate step of (LM
T).  

 

 
Fig.9. Example showing translation of lexicon along with its utility. 

 

4.3.2. Lexicon based middle zone word recognition and alignment: During middle-zone word 

mapping, one-to-one mapping is a trivial one, but problem arises when two or more target script 

characters are mapped to same source-script character. To solve this we adopted a lexicon-based 

middle-zone matching method for target script. For, one-to-many mapping situation, a single label of 

source character is replaced by a probable target script character serially and generated word is 

searched in the lexicon. If there exists any result in the lexicon, then that word is chosen as middle-zone 

recognition result. An illustration is given graphically in Fig.10. 
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Fig.10. Example showing alignment for zone segmented word ‘দুনিয়া’ where Devanagari is 

considered as training/source and Bangla as testing/target.  

 

4.3.3 Full word recognition by combining zone-wise information 

After computing the zone-wise recognition results (upper and lower zone modifiers are recognized by 

SVM and middle zone characters by HMM of a word (X) and recognized character labels are obtained) 

the labels of upper and lower zones are associated with labels of middle zone. Details of the upper 

lower zone information combination along with the middle zone result are provided in [20]. The 

association of character labels can be considered as a path-search problem to find the best matching 

word where each character label will be used only once. For estimating the boundaries of the characters 

in the middle zone of a word, Viterbi Forced Alignment has been used in the middle-zone of the word. 

With the embedded training of FA, the optimal boundaries of the characters of the middle-zone are 

found.  After obtaining the character boundaries in the middle zone, the respective boundaries are 
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extended in the upper and lower zones to associate characters present in upper and lower zones with the 

middle zones characters. Similarly, we generate N such hypothesis using N-best Viterbi list obtained 

from middle zone of the word. Now among these N-best choices, the best hypothesis is chosen 

combining upper and lower zone information discussed as follow. 

 

A middle zone character generally is associated to its corresponding upper and lower zone modifies. 

But, due to complex handwriting styles, some upper/lower zone modifiers may not appear exactly 

above and below of their middle zone character. To handle such situations, the association rule is made 

flexible. A middle zone character is associated not only to its exact upper and lower zone modifiers but  

it can also associate with one modifier with previous or next modifier from upper and lower zone. For 

each word a set of associated words may be obtained. Each associated word is matched with the 

lexicon (L) and the best matched associated word is the combined zone-wise result of the word. The 

similarity score in lexicon matching is obtained using string edit distance. Thus, we obtain a distance 

score for each associated word along with its word selected from lexicon. The scores are next sorted 

and the lexicon word with minimum score is considered as best result. We refer the work [20] for more 

details about the association rule.  

 

 4.4. Cross-Language Word Spotting 

Cross language word recognition framework uses a lexicon matching based approach which creates a 

problem when our number of query words is a bit high. Here we adapt our cross language framework 

for lexicon free information retrieval through word spotting by HMM based scoring [19]. The word 

spotting procedure is shown in Fig.11.  

 

Fig. 11. Word spotting procedure using zone segmentation. 
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Word image Scoring using HMM: Firstly, zone segmented word images from source script are used 

to train the character model of HMM. The probability of the character model of the text line is then 

maximized by Baum-Welch algorithm assuming an initial output and transitional probabilities. Using 

the character HMM models, a filler model [19] has been created which is shown in Fig.11. The filler 

model represents isolated character models. During training phase, character HMMs are trained for 

each character of the alphabet based on transcribed word images from source script. At the recognition 

stage, the trained characters HMMs are connected to a keyword text model in order to calculate the 

likelihood score of the input word image. This likelihood score is finally normalized with respect to a 

general filler model before it is compared to a threshold. The score s(X) of image X for keyword W is 

based on posterior probability P(W|X). From Bayes' rule it follows that 

𝑙𝑜𝑔 𝑝(𝑊|𝑋)  =  𝑙𝑜𝑔 𝑝(𝑋|𝑊)  +  𝑙𝑜𝑔 𝑝(𝑊)  −  𝑙𝑜𝑔 𝑝(𝑋)             (1) 

The prior p(W) can be integrated into a keyword specific threshold that is optimized at training stage. 

For arbitrary keywords that are not known at the training stage, we assume equal priors. p(X|W) is 

modelled using a HMM and p(X) is modelled using a Filler model. The score S(X) is then compared 

with a threshold T for word spotting.  

𝑆(𝑋)  =  𝑙𝑜𝑔 𝑝(𝑋|𝑊)  −  𝑙𝑜𝑔 𝑝(𝑋)             (2) 

The optimal value of T can be determined in the training phase with respect to the user needs. 

 

Word Spotting using zone wise information combination: Middle zone segmentation is very much 

effective to train the HMM character model because of significant reduction in the number of character 

sets. Zone-wise segmentation approach increases the word spotting performance for Indic scripts 

significantly. As we have adopted the approach of zone segmentation for our cross language word 

spotting framework, it demands a two-step mapping technique while searching for the testing target 

word images. In the first step, the ASCII keywords given by user (query keyword) are mapped to 

middle-zone based keywords. To do so, each character from full word level is mapped to middle zone 

level by a function according to a set of rules, e.g., the character modifiers "কৌ" and "কু" will be 

"কো" and "ক" respectively. In the next step, the middle zoned characters of the target script are 

mapped to source script character which will be used to generate the keyword model of HMM. Here, 
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the same mapping rule used in word recognition (discussed in Section 3.3) is applied. Few examples 

are shown in Fig. 12 for this two-step mapping.  

 
Fig.12: Example showing the two step mapping procedure from target script to source script 

through zone segmentation. (In this example we considered Bangla as target and Devanagari as 
source.) 

 

Due to reduced content from middle zone, the text component from middle zone may match with other 

words. For example, different words like ‘চলি’, ‘চালু’, ‘চাল’, ‘চীল’ will be reduced to ‘চাল’ using 

middle zone portion. Because, the middle zone portion of this word image is segmented, the 

distinguishing features from upper and lower zones are neglected. So, searching with similar middle-

zone mapped keywords will provide false positives which need special care while searching. Other 

zone-wise information will be useful to overcome this problem. Hence, combination of word-spotting 

performance using zone-based information is used in our system to overcome the shortcoming of 

middle-zone based spotting system. By combining zone information, the zone-wise information will 

complement each other for word retrieval. The combined system will be used for re-ranking the 

retrieval result obtained from middle zone based approaches. To combine the zone-wise information, 

we first recognize the upper lower zone modifier using the SVM-model trained by source script 

modifiers. Then Viterbi algorithm is used to get the character boundaries with in the testing word 

image. The recognition result of the upper-lower zone modifiers are combined along with its positional 

information for re-verification. For every searching keyword word, we have a look-up table containing 

the information about the modifiers. After recognizing the upper-lower zone modifiers of the testing 

word image, results are compared with that look-up table. Thus we eliminate the false positive cases 

obtained after using only middle zone information. In this re-verification context, we want to mention 

that even if we avoid the exact recognition results of the modifiers, we may use the information 

regarding number of modifiers in each zone of the testing word image and compare it to query keyword 
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correspondingly. That also provides another way to upper-lower zone information combination 

approach to re-verify the results after middle zone based word spotting. Fig. 13 gives the diagrammatic 

representation of the word spotting framework. Fig.14. explains the combination of zone information to 

re-rank the word spotting results. 

Fig.13. Cross Language word spotting 

 

 

Fig.14. True positive cases are being verified using Upper-Lower zone information and false 
positive cases are being eliminated using Upper-Lower zone information.  
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5. Evaluation of Script Similarity Score 

To effectively perform cross language handwriting performance evaluation, we need to determine the 

measure of similarity between two scripts such that character models trained using source script will 

perform well on target script. For this purpose, a script similarity score is needed that will measure the 

similarity of characters between two scripts. The score similarity score will approximately determine 

the extent to which target script is similar to source script. 

 

Our proposed script similarity calculation is based on capability of recognition of characters (of target 

script) using source script characters. The entropy of recognition score among various characters will 

be used for this purpose. To find the script similarity measure between two scripts, first we create 

character models from source script using HMM. Next, individual characters of the target script are 

recognized using these source character models. During recognition process, we check for each isolated 

character (say, XT) of the target script, the distribution of recognition probabilities among source 

characters. Next, we compute the entropy of XT. Entropy [28], which is the measure of uncertainty, 

provides a higher value if the randomness to which a particular character being replaced is high and a 

low value if the randomness is less. The measure of entropy is given as: 

H(X) = − ∑ 𝑃𝑛
𝑘=1 (𝑋𝑘)𝑙𝑜𝑔2P(𝑋𝑘)             (3)  

 

𝑃(𝑋𝑘) =  
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑋𝑇 𝑖𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑏𝑦 𝑎 𝑘𝑡ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙  𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑋𝑇
    (4) 

 

Where n is the number of characters of the source by which a particular test character is being replaced 

and P(Xk) is the corresponding probability due to each replacement and given by eqn. (4). Note that, 

every target character will be mapped by one of the source characters. 

 

In score similarity process, if the samples of a target script character (XT) get replaced by a source 

script character (using majority voting as discussed in section 3.3), then it is considered that target 

script character is mapped better with that source character. Hence, the corresponding entropy will be 

less with respect to that character and this gives an indication of better cross language performance. To 

map the value of entropy between 0 and 1, HN(X) is normalized by following equation, 
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𝐻𝑁(𝑋) =  
H(X)

1 + 𝑙𝑜𝑔2(𝐾)
             (5) 

where, K is the total number of characters of the source script by which a particular test character is 

being mapped. 𝑙𝑜𝑔2(𝐾) is the largest possible entropy [35] when all the source script characters are 

equiprobable for recognition of a target script character. 1 is added in denominator to avoid division by 

zero, which may happen when K=1. 𝐻𝑁(𝑋) will be maximum when the numerator H(X) is maximum. 

The maximum value of H(X) will be 𝑙𝑜𝑔2(𝐾) if the samples of a character (target script) can be 

mapped (using recognition) by all K characters of the source script. Thus, the recognition of target 

character is equiprobable to all source characters, which leads the maximum value of HN(X) as 

𝑙𝑜𝑔2(𝐾)

1+𝑙𝑜𝑔2(𝐾)
.  

The value of 𝐻𝑁(𝑋) is minimum when a target character is replaced always by a single source script 

character, i.e. 𝑃(𝑋𝐾) is 1 which ensures 𝐻𝑁(𝑋) = 0. 𝐻𝑁(𝑋) is a measure of dissimilarity, higher of 

which signifies more dissimilarity and vice-versa. To convert this dissimilarity value into script 

similarity measurement, the similarity value of a target character (X) can be defined as  

 𝑆(𝑋) =  1 − 𝐻𝑁(𝑋)             (6) 

 The similarity score can be refined by including occurrences of characters in that script. It is to include 

weightage to characters that appear frequently. The characters of less frequency will not affect much in 

the cross language recognition framework compared to that of characters of high frequency.  Hence, in 

our approach we calculated the script similarity by combining frequency of a character and the 

corresponding entropy of that character. The script similarity score (Ssim) is thus calculated using 

following equation. 

 𝑆sim =
∑  𝑆(𝑋𝑖)×𝑊𝑖

𝑀
𝑖=0

𝑀
             (7)        

where Wi = Frequency of occurrence of character 𝑋𝑖 and M is the total number of characters in the test 

script. From, Eq. (2), (3) and (5), the  𝑆sim can be written as 

 𝑆sim =
∑ 𝑊𝑖

𝑀
𝑖=0 − ∑

𝐻(𝑋𝑖)

1+ 𝑙𝑜𝑔2(𝐾𝑖)
×𝑊𝑖

𝑀
𝑖=0

𝑀
             (8)           

Eq. (6) can be simplified since, ∑ 𝑊𝑖
𝑀
𝑖=0 = 1. 
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 𝑆sim =
1− ∑

𝐻(𝑋𝑖)

1+ 𝑙𝑜𝑔2(𝐾𝑖)
×𝑊𝑖

𝑀
𝑖=0

𝑀
             (9)         

The script similarity  𝑆sim between two scripts,  𝑆sim(S,T) denotes the script similarity value when 

training has been done on source script S and test characters from target script T. A relative script 

similarity index  𝑆𝑠𝑖𝑚(𝑆,𝑇)
𝑅𝑒𝑙  is defined by normalizing 𝑆sim(S,T). This is performed by dividing the score 

by  𝑆sim(T,T) when training has been done using same target script T. 

 𝑆𝑠𝑖𝑚(𝑆,𝑇)
𝑅𝑒𝑙 =

 𝑆sim(S,T)

 𝑆sim(T,T)
              (10) 

From experimental calculations it is observed that the score of  𝑆𝑠𝑖𝑚(𝑆,𝑇)
𝑅𝑒𝑙 is maximum when the source 

and target are similar as the amount of uncertainty between the scripts is less. The value will be less 

when each character of target script is replaced by characters of the source script with equal 

probability. The score close to 1 signifies high similarity of the two scripts while a value towards 0 

signifies more uncertainty and less similarity. 

 

Algorithm 1. Calculation of script similarity value 

Require: Training data from source script and a set of isolated characters from target script 

Ensure: Script similarity Ssim between source and target script. 

Step 1: All characters (CS
1...CS

N) from source script are trained using HMM. 

Step 2: Target script characters (CT
1...CT

M) are recognized using training character (CS) models.  

Step 3: Let PTi
1 .. PTi

N   be the recognition probabilities for target character CT
i with source characters. 

Also, let Wi be the frequency of characters.  

Step 4: Entropy is calculated using  H(X) = − ∑ 𝑃𝑛
𝑘=1 (𝑋𝑘)𝑙𝑜𝑔2P(𝑋𝑘)  [from eq. (3)] 

Step 5: Finally, script similarity value is calculated by  𝑆sim =
1− ∑

𝐻(𝑋𝑖)

1+ 𝑙𝑜𝑔2(𝐾𝑖)
×𝑊𝑖

𝑀
𝑖=0

𝑀
 by Eq. (9) 

Step 6: The value of Ssim is normalized by  𝑆𝑠𝑖𝑚(𝑆,𝑇)
𝑅𝑒𝑙 =

 𝑆sim(S,T)

 𝑆sim(T,T)
  using Eq. (10). 
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6. EXPERIMENT RESULTS AND DISCUSSION 

 

6.1. Dataset Collection and Scripts used in Experiments 

To the best of our knowledge, there exists no standard database to evaluate cross language handwritten 

text recognition and spotting tasks. To check the performance of our cross language framework, we 

used three Indic scripts (north Indian), namely, Devanagari, Bangla and Gurumukhi respectively. 

Devanagari and Bangla are two most popular Indic scripts where pieces of research work [7, 8, 13, 20, 

22, 30] exist. A few datasets are available for evaluation purpose for these two scripts. In contrast, 

Gurumukhi is relatively a low resource script and does not have any available datasets (to our 

knowledge).  

 

The dataset of Indic script [20] contains a total of 11,253(10,667) Bangla (Devanagari) word image for 

training and 3,856(3,589) for testing. These word images were collected from handwritten document 

images of individuals of different profession. A part of this dataset is collected from publicly available 

cmaterdb dataset [29] which contains scanned handwritten documents for both Bangla and Devanagari 

scripts. We also included a subset of city-name dataset [30] in Bangla script dataset. For Gurumukhi 

dataset, we collected a total of 40 handwritten documents written by 12 different right handed males 

mainly from academic profession. The words are extracted by a line segmentation method followed by 

word segmentation [4]. A total of 12,385 word images were extracted, out of which 9,243 word images 

are considered for training and rest 3,142 as testing. All the word images are manually annotated. Note 

that, we have not considered any conjunct characters [22] in our datasets. The dataset contains 

consonants, vowels and modifiers (i.e. vowels are connected to the consonant). Since, we considered 

zone-wise components and did not consider any consonant conjuncts, the number of unique characters 

is found less compared to that mentioned in [31]. The numbers of unique word in our dataset are 2152, 

3981 and 2314 for Bangla, Devanagari and Gurumukhi scripts respectively. The number of word image 

considered for training and testing in cross-language framework is detailed in Table II. The cross 

language performance is tested for every combination among these three scripts. One of the scripts is 

used for training at a time and cross language performance is evaluated for other two scripts. We repeat 

this considering each script as source. The lexicons considered during the experiment are of sizes 1921, 

1953, 1934 for Bangla, Gurumukhi and Devanagari respectively. 
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Table II. Number of images used for training and testing 

Source Script 

(as Training) 

Training Word 

Image 

Testing Word Image 

Devanagari Bangla Gurumukhi 

Devanagari 10,667 3,589 3,856 3,142 

Bangla 11,253 3,589 3,856 3,142 

Gurumukhi 9,243 3,589 3,856 3,142 

 

6.2. Performance of Script Similarity 

In our cross language framework, the performance depends on the amount of similarity between the 

scripts considered as training (source) and testing (target). This similarity is evaluated based on the 

entropy measure between the source and target script. We have considered 3 Indic scripts namely, 

Bangla, Devanagari and Gurumukhi to evaluate the script similarity among each other. We have also 

included one Latin script, e.g. English, as one dissimilar script to check the entropy based similarity 

between English and three Indic scripts. Higher value of entropy ensures more dissimilarity between 

two scripts and results in low value of relative script similarity index 𝑆𝑠𝑖𝑚(𝑆,𝑇)
𝑅𝑒𝑙 . Relative script similarity 

index is assured to be value 1 when a single script is considered for both training and testing. This 

extent of similarity keeps on deceasing as the relative script similarity index reduces from 1. This 

relative script similarity index signifies the extent of similarity between two scripts. As discussed 

earlier, characters in Indic scripts appear in three different zones and thus, large number of compound 

character units is generated through combination of vowels, modifiers and characters. Hence, we have 

employed the concept of zone segmentation to reduce the number of character classes and utilize the 

zone wise similarity among the characters. Here, we have evaluated relative script similarity index 

among the Indic scripts using both with and with-out zone segmentation method. Fig. 15(a) and 15(b) 

show the script similarity values with 4 scripts among each other. By zone segmentation method, we 

mean that the characters are segmented intro three zone and similarity is measure among the character 

units from the same zone. Characters with all three zones are used in case of without zone segmentation 

based method for relative script similarity evaluation. From Fig. 15(a) and 15(b), it can be inferred that 

degree of similarity among the different Indic scripts is much higher when we use zone segmentation 

method. It is due to the fact that similar structural information lies in the middle zone among the 

scripts. Thus, zone wise word components are used in our cross-language framework. Note that, 

relative script similarity index between Bangla and Devanagari is larger than between Bangla and 
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Gurumukhi scripts. It is because characters of Bangla and Devanagari scripts share more similarity than 

other scripts. 

  

(a)                                                              (b) 

Fig.15. Relative script similarity index among Indic scripts (a) using zone segmentation (b) 

without using zone segmentation 

 

6.3. Word Recognition 

We used 32 Gaussian Mixture Models and 8 states during HMM training as it provides the optimum 

result for our case. In our experiment, we used one of the Indic scripts as source script to train the cross 

language model and tested the performance for other two scripts. This process is iterated for all three 

scripts and results are reported. We found 74.28% and 71.54% accuracy for middle zone word 

recognition with top 5 choices in Bangla and Gurumukhi as target script and Devanagari as a source 

script. When Bangla is used as a source script, the middle zone word recognition accuracies with top 5 

choices for Devanagari and Gurumukhi are found to be 75.21% and 72.03% respectively. The same for 

Devanagari and Bangla scripts using Gurumukhi as source script are 71.69% and 71.32% respectively. 

Fig. 16 shows cross language middle zone word recognition accuracies with different Top choices 

using Devanagari, Bangla and Gurumukhi as source script respectively.  
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Fig.16. Middle zone word recognition results (a) for Bangla and Gurumukhi using Devanagari as 
source (b) for Devanagari and Gurumukhi using Bangla as source (c) for Devanagari and Bangla 

using Gurumukhi as source.  

 

The recognition results of modifiers in upper and lower zones are given in Table III. We have collected 

a total of 1647, 1721 and 1494 upper zone modifiers from Devanagari, Bangla and Gurumukhi training 

dataset respectively. The same for lower zone modifiers are 1424, 1521, 1347 respectively. To check 

the performance we considered 500 modifiers of each zones for Devanagari, Bangla and Gurumukhi 

scripts during testing. Also, a comparative study of the performance of cross language framework with 

respect to traditional approach of training i.e. where training and testing is performed on the same 

script; in Section 5.5.  
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Table III: Recognition results of the upper & lower zone modifiers by SVM. 

 

 

Devanagari as Source 

Bangla Gurumukhi 

Top-1 Top-2 Top-1 Top-2 

Upper zone 72.31 79.35 68.25 75.23 

Lower zone 69.21 77.01 67.02 74.25 

 

 

Bangla as Source 

Devanagari Gurumukhi 

Top-1 Top-2 Top-1 Top-2 

Upper zone 74.01 81.23 67.91 76.39 

Lower zone 70.36 78.36 67.11 74.11 

 

 

Gurumukhi as Source 

Devanagari Bangla 

Top-1 Top-2 Top-1 Top-2 

Upper zone 70.12 75.38 69.31 74.98 

Lower zone 65.33 74.39 65.14 74.49 

 

After getting zone-wise results from three zones, the middle zone recognition results are combined with 

upper and lower zone modifiers to get the final word level. Zone segmentation and combination 

approach gives us the flexibility of re-ranking of recognition result using the information of upper-

lower zone modifiers and their corresponding position in the image. Because of this flexibility we have 

analysed the middle zone recognition results up to 5 top choices and considered all of them with 

combination of upper and lowers zone modifiers. Each possible associated word is matched with the 

lexicon using Levenshtein distance [34] and the lexicon word with minimum distance is considered as 

best result.  

 

The combination is performed according to the alignment performed in middle zone [13, 20]. Some 

qualitative results are shown in Fig.17.  The recognition performances at full word level are shown in 

Fig.18. We have achieved accuracy of 60.21% and 57.94% for top 1 in case of Bangla and Gurumukhi 

using Devanagari as source script respectively. The recognition performance increased to 74.28% and 

71.54% considering Top 5 choices for the same. Considering Bangla as source scripts, the full word 

recognition result for Devanagari and Gurumukhi become 61.14% and 57.49% for top 1 respectively. 
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The same for Devanagari and Bangla scripts using Gurumukhi as source script are 57.77% and 57.59% 

respectively. We have also tested the performance using lexicon of different sizes (see Fig.19). The 

words in lexicon are considered arbitrarily from different newspapers. 

 

 

(a) 

 
(b) 

 
                                 (c) 

Fig.17. Qualitative results for different (a) Bangla and (b) Devanagari and (c) Gurumukhi word 

images using cross script training. Correct and incorrect results are indicated by tick and cross 
labels.  
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Fig.18. Full word recognition result (considering 5 top choices) for (a) Bangla and (b) Devanagari 

and (c) Gurumukhi scripts using cross script training. Source script corresponding to each diagram 
is denoted by the color of the bar graph.  
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Fig.19. Performance evaluation of word recognition using lexicons of different sizes. Source and 
target scripts corresponding to each diagram are mentioned in legends of the each diagram (a-f). 

For better viewing, we refer to the electronic version of this paper. 

 

6.4. Performance on Word Spotting 

The input of our spotting system is query keyword and word images from testing script.  We have 

measured the performance of our cross language word spotting system using precision, recall and mean 

average precision (MAP). The precision and recall are defined as follows.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where, TP is true positive, FN is false negative and FP is false positive. MAP value is evaluated by the 

area under the curve of recall and precision. 

For our experiment we noted that 32 Gaussian mixture and 8 states of HMM provided optimum results. 

We adopted the same method to evaluate the cross language word spotting performance as used for 

cross language word recognition, i.e. we used one of the Indic scripts as source scripts to train the cross 

language model at a time and cross language word spotting performance is evaluated for other two 

scripts.We have considered a total of 200 query words for each of the scripts to evaluate the 
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performance of cross language word spotting method. Qualitative results are shown in Fig. 20 for 

Bangla, Gurumukhi and Devanagari word images using cross language training. Word spotting 

performance for middle zoned images and combination of upper-lower zone information is shown by 

the precision recall curve in Fig. 21 using global threshold [19]. We have obtained global mean average 

precision of 68.01 (67.21) and global average recall of 67.14 (66.08) for Bangla (Gurumukhi) as the 

target (or testing) script and Devanagari as the source script. When Bangla is used as the source script, 

the global average mean precision and global average recall were found to be 68.94 (66.79) and 68.04 

(66.19) respectively for Devanagari (Gurumukhi) script. The same for Devanagari (Bangla) script using 

Gurumukhi as the source script were found to be 66.87(66.42) and 66.14(65.97) respectively.   

 
(a) 

 
(b) 

 
(c) 

Fig.20: Example showing qualitative word spotting performance (i) without using zone 

segmentation (ii) using zone segmentation for (a) Bangla and (b) Gurumukhi (c) Devanagari 

scripts where cross language training method is utilized.  
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Fig.21: Comparison of word spotting performance using middle zone only (denoted as method 1) 
and modifiers combination (denoted as method 2) using (a) Devanagari (b) Bangla and (c) 

Gurumukhi as source script respectively. Target scripts are mentioned at the legends of each 

diagram. For better viewing, we refer to the electronic version of this paper. 
 

We evaluated precision-recall curve using different number of query words (keywords) (See Fig. 22). 

The global MAP values are evaluated for different length of keywords and a curve has been plot in Fig. 

23 to show the performance for keywords of variable length. The successive improvement in the MAP 

values is obtained due to implementation of zone segmentation based approach over full zoned based 

recognition. The improvement due to information combination from upper-lower zone modifiers is 

given in Table IV. From Table IV, it can be inferred that a significant improvement has been found due 

to inclusion of zone segmentation method in our cross language word spotting framework. Here, local 

MAP value signifies that single image has been considered for optimization of the threshold value 

whereas a global value has been used for all query keyword in case of standard MAP value evaluation. 
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Fig. 22: Comparative study of word spotting performance with different number of keywords. 
Source and target scripts are mentioned at the top of each diagram correspondingly.  

 

Fig. 23: Word spotting performance using keywords of different length using (a) Devanagari (b) 
Bangla and (c) Gurumukhi as source script respectively. Target scripts are mentioned at the 

legends of each diagram. For better viewing, we refer to the electronic version of this paper. 
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Table IV. MAP values using different method 

Approach Threshold 
Devanagari as Source Bangla as Source Gurumukhi as Source 

Bangla Gurumukhi Devanagari Gurumukhi Devanagari Bangla 

Without using zone 

segmentation 

Local 49.56 50.17 50.21 50.32 49.02 48.67 

Global 41.14 41.68 42.36 41.84 40.91 40.21 

Using Zone 

segmentation (middle 

zone only) 

Local 68.14 67.58 68.83 67.94 66.18 65.98 

Global 60.14 59.44 61.23 60.12 58.14 57.69 

Combination of middle 

zone and upper-lower 

zone modifiers 

Local 76.14 76.12 77.08 76.52 74.68 74.31 

Global 67.14 66.57 67.48 66.51 66.51 66.21 

 

6.5. Parameter Evaluation 

A comprehensive study is performed to find the optimum value of parameters used in our cross 

language framework. We used continuous density HMMs with diagonal covariance matrices of GMMs 

in each state. We evaluated both our cross language word recognition and word spotting framework 

with varying Gaussian mixtures (16, 32, 64, 128 and 256) and state numbers (6, 7, 8, and 9). For our 

experiment, we found that 32 Gaussian mixture and 8 states of HMM Training provided optimum 

results for both cross language word spotting and recognition. Table V shows the cross-language 

performance using varying Gaussian mixtures and state numbers. Also, the upper and lower zone 

modifiers are tested using SVM at different values of cost parameter (C). These values include the 

range from 0.1 to 1 with an interval of 0.1, from 1 to 10 with an interval of 1 which is followed by the 

range 10 to 100 with an interval of 10. The optimum value has been found experimentally as 1.  
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Table V. Cross language word recognition (% accuracy) and word spotting (global MAP value) 

performance using varying Gaussian number and State number 
W

o
rd

 R
ec

o
g
n

it
io

n
 

Gaussian 

Number 

Devanagari as Source Bangla as Source Gurumukhi as Source 

Bangla Gurumukhi Devanagari Gurumukhi Devanagari Bangla 

16 58.14 55.91 58.79 55.47 55.17 55.14 

32 60.21 57.94 61.14 57.49 57.77 57.59 

64 59.12 56.10 59.64 56.12 56.19 56.01 

128 53.17 51.69 54.97 51.69 52.36 51.96 

256 48.96 47.64 49.96 47.69 47.69 47.57 

State 

Number 

Devanagari as Source Bangla as Source Gurumukhi as Source 

Bangla Gurumukhi Devanagari Gurumukhi Devanagari Bangla 

6 58.48 55.91 59.47 55.17 55.91 55.79 

7 59.14 56.19 60.91 56.41 56.47 56.67 

8 60.21 57.94 61.14 57.49 57.77 57.59 

9 59.49 56.14 60.19 56.19 56.61 56.71 

W
o
rd

 S
p

o
tt

in
g
 

Gaussian 

Number 

Devanagari as Source Bangla as Source Gurumukhi as Source 

Bangla Gurumukhi Devanagari Gurumukhi Devanagari Bangla 

16 65.39 64.94 64.94 63.84 64.84 64.78 

32 67.14 66.57 67.48 66.51 66.51 66.21 

64 66.14 65.12 66.39 65.48 65.47 65.84 

128 63.17 61.47 63.64 62.19 61.49 61.57 

256 60.96 59.48 61.47 58.48 59.79 59.61 

State 

Number 

Devanagari as Source Bangla as Source Gurumukhi as Source 

Bangla Gurumukhi Devanagari Gurumukhi Devanagari Bangla 

6 65.49 64.14 65.94 64.97 64.87 64.76 

7 66.94 65.91 66.74 65.94 65.48 65.54 

8 67.14 66.57 67.48 66.51 66.51 66.21 

9 66.59 66.13 66.69 65.19 65.39 65.61 

 

6.6. Comparison with traditional training approach 

 

To the best of our knowledge, there exist no earlier works dealing with cross-lingual word recognition 

and spotting. To measure the performance of our cross language framework, we compare it with 

traditional word recognition/spotting method where training and testing are done on the same script. 

The number of word image considered for training and testing in each set of combination is mentioned 

in the Table II. The lexicons considered are of sizes 1921, 1953 and 1934 for Bangla, Gurumukhi and 

Devanagari respectively. For word spotting, we considered a total of 200 query keyword for each 

experiment. Results of word recognition and word spotting are given in Fig. 24 and Fig. 25. Here, we 

summarize the results of possible combinations of cross-language framework among these three 

scripts. Fig 26 Fig. 27 show comparative study of cross language framework with traditional training 

approach. 
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Fig.24. Word recognition accuracy using different script combination 

 

Fig.25. Global MAP values of word spotting for using different script combination 
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Fig.26. Comparative study of cross language word recognition framework where dotted horizontal 

line in each diagram shows the recognition accuracy obtained through traditional training 

approach.  The recognition performance corresponding to different source scripts are shown using 
color bars. For better viewing, we refer to the electronic version of this paper. 

 

 

Fig.27. Comparative study of cross language word spotting framework where dotted horizontal 

line in each diagram shows the Global MAP value obtained through traditional training approach. 
The MAP values corresponding to different source scripts are shown using color bars. For better 

viewing, we refer to the electronic version of this paper. 
 

6.7: Error analysis While mapping the characters from source to target script, although preference was 

given according to majority voting, it was noted that some characters from source script are matched 

very closely to target script during majority voting, hence confusion occurred. Thus, some words are 
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being recognized wrongly. Also, we noticed that during lexicon matching process more than one 

substitute can be possible during character mapping. Say for example Bangla character ‘ড’ and ‘ভ’ are 

both mapped with Devanagari character ‘उ’. So sometimes a word is recognized wrongly in those 

particular cases. Such errors are shown in Fig.28. We noted that such confusion also affect the word 

spotting system. Fig. 29 shows qualitative results of cross language word recognition and word spotting 

on full Bangla text line images. Fig. 29(a) and Fig. 29(b) show the recognition results of a Bangla text 

line using training with 3 Indic scripts, Bangla, Gurumukhi and Devanagari. Note that, though few 

words were not recognized properly the overall recognition performance is encouraging. Similarly, we 

show word spotting results using cross-language framework in Fig. 29(c). Two query words were 

searched in the dataset with training with different source scripts and the results were marked in 

bounding box in those text lines.  

 
Fig.28. (a) Close recognition rate of a character during majority voting. (b) More than one 

substitutes for lexicon matching. 
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(a) 

 
(b) 

 
(c) 

Fig.29: (a) and (b) show full sentence recognition result for Bangla text lines using different 

scripts for training (wrong recognition is indicated by red mark). (c) Word spotting performance 

for Bangla text lines using different scripts for training and  result is given by correct (by tick) and 
incorrect (by cross) label.  

 

7.   Conclusion & Future work 

In this paper we propose a novel method for cross-language handwritten text recognition and word 

spotting. There are many languages in India for which handwritten text recognition systems have not 

been explored due to lack of proper training data. Our approach deals with handwritten recognition of 

these low resource scripts where we use a script with higher number of available samples to train and 

test the script with lower available samples. The criteria for selecting the script with higher number of 
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samples to train the system for a particular low resource script depends on the script similarity score 

between the two scripts. The script similarity score indicates the accuracy to be obtained on testing 

with the low resource script. A higher script similarity score will give a better performance. Thus based 

on this script similarity score a character mapping was performed. Word spotting was also performed 

using this cross language approach. This is the first work of its kind and we hope this cross-language 

work will be a step forward for recognizing other such low-resource scripts. 

 

In this present work, we did not consider any consonant conjuncts in datasets. Thus, the script 

similarity scores of every script-pair may get reduced if consonant conjuncts are taken in account. Also, 

one of the limitations of the proposed framework is that the performance depends on the quality of 

zone segmentation output [20]. If the words are not properly segmented using zone segmentation 

method, the cross language framework may not work. These issues could be considered in future 

studies. However, a combination of with and without zone segmentation based method may be 

considered to avoid such limitation. In future we will work on a better character mapping approach to 

increase the recognition efficiency. This may improve the cross language recognition performance 

when the lexicon size is more. Also, we will test our framework in different non-Indic handwritten 

scripts. 
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