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Abstract

In this paper, we propose a simple but effective method for fast image segmentation.

We re-examine the locality-preserving character of spectral clustering by constructing

a graph over image regions with both global and local connections. Our novel approach

to build graph connections relies on two key observations: 1) local region pairs that co-

occur frequently will have a high probability to reside on a common object; 2) spatially

distant regions in a common object often exhibit similar visual saliency, which implies

their neighborship in a manifold. We present a novel energy function to efficiently

conduct graph partitioning. Based on multiple high quality partitions, we show that the

generated eigenvector histogram based representation can automatically drive effective

unary potentials for a hierarchical random field model to produce multi-class segmen-

tation. Sufficient experiments, on the BSDS500 benchmark, large-scale PASCAL VOC

and COCO datasets, demonstrate the competitive segmentation accuracy and signifi-

cantly improved efficiency of our proposed method compared with other state of the

arts.
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1. Introduction

Image segmentation is a challenging and critical computer vision task. Graph-

based algorithms have been shown as an effective approach for image segmentation

[1, 2, 3]. Among various graph based approaches, spectral clustering becomes a major

trend [4, 5].

Recent methods attempt to solve several primary issues of spectral clustering (re-

ferring to normalized cuts (NCut) [6]) based image segmentation to segment image

into meaningful partitions. First, NCut based methods tend to segment image into spa-

tially connected components [6, 7]. Multiscaling processing [8, 9] is a common way to

address this problem by building the affinity for distant pixel affinities [10, 9]. How-

ever, the usage of these methods for real large-scale datasets is not clear. Most current

cutting-edge methods do not follow this direction. Instead, recent methods, like gPb

[11] and MCG [12, 7] based methods [13] use the boundary-preserving property of

NCut to trace boundary orientation information rather than direct segmentation. Build-

ing effective affinity matrices [7, 4, 12] usually uses sophisticated low-level features

[11]. These features can effectively measure the local changes but are not effective

in capturing high-level knowledge for segmentation. They are not good options for

fast segmentation either due to high computational cost [11]. Different from previous

approaches, our method re-examines spectral clustering from a manifold learning per-

spective to construct a graph to model the high-level image knowledge (i.e., pixel pair

co-occurrence and saliency relationship) for unsupervised image segmentation. More

importantly, our method provides the possibility of enabling graph partitioning to di-

rectly segment challenging natural images rather than just boundary tracing.

To better illustrate the motivation, we first explain the latent relation of NCut to

manifold learning. Both NCut and Laplacian eigenmaps [14] take advantage of the

locality-preserving character [15] of graph Laplacian to conduct clustering and dimen-

sionality reduction. In fact, locality-based dimensionality reduction methods are im-

plicitly tied to clustering [14, 16]. Preserving locality is the key factor that drives effec-

tive clustering. Let’s assume pixels of an image lie on a certain manifold where pixels

belonging to a common object are adjacent (within a small range), but far away in the
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Figure 1: Illustration of the graph construction and partition procedures. The test image is first divided

into over-segmented regions (left). Each region is treated as a graph node (middle). Local connections

(black solid lines) link each region to its spatially adjacent regions in the image plane. When viewing those

regions in a certain manifold space, spatially distant regions in the same object will be adjacent; directed

global connections (red dotted arrows) link each region to its neighbors. We cut the graph to obtain multiple

partitions (right).

spatial image plane. These pixels supposed to have strong connections to be grouped

together, but these connections are not encoded in the sparse affinity matrix of NCut

due to their Euclidean distances. Although multi-scale affinity matrices [8, 10] can

alleviate this issue, increasing the range of an affinity matrix and connecting all pixel

pairs in the range also introduce unavoidable noises. The method to construct affinities

between spatially distant and adjacent pixels should be considered respectively in order

to better capture their respective characteristics in image statistics.

In this paper, we propose a novel approach to construct an image region graph to

address the aforementioned problems. The overall idea is illustrated in Figure 1. The

graph nodes are connected among both spatially adjacent and distant regions through

different and independent cues. We build local connections between spatially adjacent

regions with an affinity matrix. The estimation of the similarity between two regions is

based on an observation that adjacent region pairs co-occurring frequently often reside

on a common object. Oppositely, global connections are built among adjacent regions

in the manifold which might be spatially distant, with an objective to preserve their

relationships and encourage them to be clustered together. We introduce a simple cue

to discover the similar saliency of those regions as the global connection measurement.

We present a new energy function to partition the constructed graph, which formu-

lates the minimization problem as a single and efficiently solvable eigenvector system.
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Based on the generated high quality graph partitions, we present a simple eigenvec-

tor histogram based representation to represent image regions and automatically drive

effective unary potentials for the hierarchical random field of the Pylon model [17],

yielding high-quality multi-class segmentation.

In brief, the contributions of this paper are:

• We propose a sophisticatedly connected graph to build the connection of image

regions yet with very efficient graph partitioning capability.

• We exploit various simple and efficient cues to capture the high-level image in-

formation in order to segment objects with complex inner-variances and back-

ground.

• We present a multi-class segmentation strategy by utilizing graph partitions to

generate clear and smooth segmentation.

• Extensive experiments and comprehensive analysis are conducted, on BSDS500

[11], large-scale PASCAL VOC [18] and COCO [19] datasets, to validate the ef-

fectiveness of our proposed method, its generalization ability to different datasets

with diverse scenes, and the high efficiency compared with other state of the arts.

The rest of the paper are structured as follow: Section 2 discusses the related work.

Section 3 introduces the graph construction and partition of our method. Section 4

introduces the proposed multi-class segmentation by utilizing graph partitions. Finally,

Section 5 conducts experiments and detailed analysis. Section 6 concludes the paper.

2. Related Works

Image segmentation has been studied in the computer vision community for decades.

Shi et al. [6] propose normalized cuts (NCut), which advanced spectral clustering

based image region segmentation. [20] enables its multi-class segmentation. Among

the region based segmentation, diffusion based approaches [21, 22], GraphCut [23],

GrabCut [23], etc [24, 25, 26, 27], have been explored to partition images. Building

successful affinity matrices is critical [28]. Many subsequent approaches have com-

puted more effective affinity matrices using elaborately designed low-level features and
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metrics [4, 10, 11, 29]. To solve the limitation of NCut to capture affinities of distant

pixels, several methods [8, 9, 29, 30] have been proposed base on multi-scaling affin-

ity strategies. However, dense affinity suffers from optimization bottleneck, although

approximation algorithms are explored [10, 9, 12]. Our method is able to capture both

local and global affinities as well keeps the sparsity of the affinity matrix.

Contour driven image region segmentation is widely studied. Arbelaez et al. [11]

propose the globalized probability of boundary (gPb), which utilizes the boundary-

preserving characteristic of NCut with sophisticatedly designed features to detect ob-

ject boundaries and incorporate it into the oriented watershed transform and ultrametric

contour map (OWT-UCM) to conduct image segmentation. This approach becomes the

main support of many subsequent segmentation approaches [31, 4, 32, 33, 12, 13]. Kim

et al. [34] formulate a hypergraph-based model and perform correlation clustering for

image segmentation. Recently, Yu et al. [7] minimize an `1-normed energy function

of NCut to obtain piecewise smooth embeddings for gPb-owt-ucm [11], which obtains

state-of-the-art image segmentation performance. However, all these methods suffer

from expensive computations for feature extraction or optimization. Speed issues are

considered in several following work. Multiscale combinatorial grouping (MCG) [12]

segment images with multi-scale UCMs and it uses more advanced edge detection

methods [35] to largely reduce the computation bottleneck of NCut used by gPb-owt-

ucm. Chen [13] provides a solution to the scale-alignment in MCG. However, all these

methods suffer from expensive computations for feature extraction or optimization.

Sometimes several minutes are required to process a single 321 × 481 image, which

significantly limits their practical usages. On the other hand, Pont-Tuset et al. [36] pro-

pose a downsampled approximating algorithm to accelerate the graph partitioning and

use richer information in multiscale UCMs. Tayor et al. [37] and many others [4, 34]

reduce the size of the affinity matrix using superpixel techniques. In this paper, we de-

velop a method that is much faster than the aforementioned methods with competitive

accuracy.

Edge detection plays an extreme importantly role in region based image segmen-

tation [38, 39, 40, 41, 42]. For example, Convolutional Oriented Boundaries (COB)

proposes an accurate boundary detection method using convolutional neural networks
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(CNNs) and combines with [36] to perform image and object segmentation. Another

popular image segmentation direction is semantic segmentation. Current methods use

CNNs [43, 44, 45] to predict the semantic label of each pixel. These methods rely on

large-scale training data. In contrast, our method aims at partition images into regions

that can accurately segment objects from an image by observing its internal statistics

in an unsupervised manner.

Designing feature to build the affinity between pixels/regions is important. Several

studies have explored different cues, such as sophisticated combination of mixed image

features [11], texture information [46], or saliency [47]. Different from these low-level

image features, we argue that high-level cues are equally important and sometimes even

more effective. For example, co-occurrence statistics have been used to capture the

semantic object context knowledge based on training data to help the inference in, for

example, condition random field (CRF) [48]. Different from this direction of research,

our approach models region-wise co-occurrence probability based on pointwise mutual

information [49] to build local connections of our proposed graph learned from the

image itself.

Laplacian eigenmaps [50] computes a low-dimensional embedding to preserve the

pairwise affinity of data points in the manifold. Local linear embedding (LLE) [51],

alternatively, preserves the linear structure among the local neighboring points. The

locality-preserving character of these two methods implicitly encourages the clustering

of data. However, Isomap [52], which preserves global data geodesic distances, does

not possess the nature of clustering. Our method shows a distinct point of view on the

side of manifold learning to enhance spectral clustering for image segmentation.

3. Global-local Connected Graph Partitioning

In this section, we present the approach to build the local and global connections of

the graph. Then we introduce the proposed energy function to partition the constructed

graph.
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3.1. Local connection with co-occurrence cues

Our proposed method begins with an over-segmentation with a set of regions, de-

fined as S = {S1, ..., SN}. The over-segmentation is favorable considering its lo-

cal spatial consistency and computational efficiency. Denote the graph by Glocal =

{S,W}, where W ∈ RN×N is the affinity matrix with each entry Wij representing

the affinity between regions Si and Sj . W is sparse such that only spatially adjacent

region pairs within a small range have nonzero values. Given a test image with large

appearance variations inside the object (see Figure 2), a desirable affinity matrix should

be able to discover the strong affinity between two visually different neighboring re-

gions belonging to the common object. However, it is difficult for low-level features to

achieve this goal because of their limitations in learning high-level knowledge.

One type of high-level knowledge comes from the fact that a neighboring region

pair residing on an object is more likely to co-occur (i.e., have a high joint probability)

due to the color patterns inside the object [31], such as the strip patten on the clothes

of the images in Figure 2. If we treat regions {Si|i = 1, ..., N} as random variables,

we can define the co-occurrence of two regions as

CO(Si, Sj) = log
1

A
P (Si, Sj), (1)

where P (Si, Sj) is the joint probability over Sj and Sj . Let A = P (Si)P (Sj) rep-

resent a normalization term, which is crucial to penalize the biased-high P (Si, Sj)

of background region pairs against foreground object region pairs, because the back-

ground area usually has larger proportion than foreground objects. This normalization

term will eliminate this unbalance accordingly. In addition, CO also contains infor-

mation about object boundaries, because a region pair across the object boundary is a

small-probability event [31].

We estimate P (Si, Sj) and marginal distribution P (Si) by using a nonparametric

kernel density estimator [53] following [31]. But differently, we densely sample region

pairs of each region and its adjacent regions within a certain (denoted as e1) distance

apart without repetition (which means P (S1, S2) = P (S2, S1)). Basically, we place

estimator kernels on all regions {Si}, and compute the image feature (gray values) co-

7



occurrence probability over all region pairs. So for each feature value pair, we have a

co-occurrence frequency. Then we can simply normalize them and obtain P (Si) and

the final co-occurrence cue CO(Si, Sj).

Our approach shares some similarities with [31] (denoted as PMI) for using point-

wise mutual information, but is different from PMI in several perspectives. PMI in-

terests in low pixel-wise joint probability to discover the rare boundaries, but we are

interested in high region-wise probabilities and simultaneously maintain the boundary

detection ability of PMI. PMI relies on raw image pixels, the probability in Eq. (1)

is estimated over limited number of randomly sampled pixels. We rely on coherent

regions to estimate this probability over most of adjacent region pairs, which yields

probability distribution estimation closer to the actual distribution for the regions, and

the estimation process is much less computational expensive.

Energy function: The first term Elocal in our proposed energy function will encour-

age frequently co-occurring region pairs to be clustered into a group, and vice versa.

Minimizing Elocal is defined as the following:

min
y

N∑
i=1

N∑
j=1

||yi − yj ||2Wij , s.t. yTDy = 1, (2)

where D is a diagonal matrix and its i-th diagonal element is dii =
∑

j Wij . The

constraint is the key to normalize the cut of the graph. Minimizing Elocal enforces yi

and yj to take a similar value when Wij is large. y = [y1, ..., yN ]T is a real-valued

vector, which is interpreted as a binary graph partition in NCut or an one dimensional

embedding in Laplacian eigenmaps. Wij is defined as

Wij = exp

(∑
o

CO(Sfo
i , S

fo
j )

)
, (3)

where the superscript fo specifies a feature representation of the corresponding region.

For each region, we calculate the pixel mean of Lab color space and the diagonal values

of the RGB color covariance matrix in a 3 × 3 window. Wij is computed between Si

and Sj within a certain distance apart, denoted as e2 (e2 > e1).

The affinity matrix W is designed to measure the similarity between spatially adja-

cent region pairs based on their latent co-occurrence statistics. In order to preserve the
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ignored relationships among spatially distant regions in the common object, we pro-

pose an additional energy term by building the global connections of the graph in the

following section.

3.2. Global connection with saliency cues

The graph associated with global connections is denoted by Gglobal = {S,K}.

Our approach strengthens the locality-preserving character by discovering the under-

lying linear structures among spatially distant regions (i.e., each region can be linearly

represented by several neighboring regions so that the global connections are directed)

belonging to a common object, while these regions are adjacent on a certain manifold.

This goal is achieved by minimizing the second energy term Eglobal:

min
y

N∑
i=1

||yi −
∑
j 6=i

Kijyj ||2, s.t. yTy = 1, (4)

where K ∈ RN×N is the coefficient matrix with R non-zero entries in each row to

specify the linear combination coefficients of the representing neighbors. The con-

straint avoids degenerated solutions. y is interpreted as an embedding in the original

locally linear embedding (LLE) [51] method. Note that both y and K are unknown;

minimizing this energy function consists of three steps: 1) findingR neighbors for each

region, 2) computing coefficient matrix K, and 3) computing y.

Geodesic distance based neighbors: For each region, we consider its candidate neigh-

bors from all regions within a large range of the defined geodesic distance, such that

the distance (sij) between regions Si and Sj is defined as follows:

sij =
(

min(|wSi
− wSj

|, Iw − |wSi
− wSj

|)2

+ min(|hSi − hSj |, Ih − |hSi − hSj |)2
) 1

2 ,
(5)

where wSi
and hSi

denote the spatial x- and y-coordinates of region Si, respectively.

Iw and Ih denote the width and height of the image, respectively. Intuitively, this

metric treats the image as if it was wrapped along its four corners into a sphere and

describes the geodesic distance along this resulting surface. The measurement can

trace the connections of the regions belonging to foreground objects or background

with an arbitrary shape and range.
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For a region Si, we select R nearest regions with each region represented as a

feature vector calculated by a saliency cue mapping σ. Then we find its coefficients Ki

by

min
Ki

||σ(Si)−
∑
j 6=i

Kijσ(Sj)||2 + αTr(KT
i Ki), s.t.

∑
j

Kij = 1. (6)

The regularization term is necessary to prevent ill-conditioned solutions when neigh-

boring regions have similar feature values (i.e., making the Gram matrix singular). The

regularization parameter is chosen as α = 1e−10. The constraint ensures the transla-

tion invariance.

Saliency cue complying linearity: Spatially distant regions inside the same object

may have large appearance variances, for example, the face, hairs, and clothes of a

person exhibit totally different appearances (see Figure 2). Therefore, it is difficult to

measure their latent similarity with traditional cues. However, those visually different

regions usually exhibit similar saliency degree in the human visual system [54]. This

characteristic remedies the “imperfection” of pairwise co-occurrence affinity and sat-

isfies the requirement to build global connections. We take advantage of the empirical

knowledge that salient objects in images have distinctive colors from the background

under a certain linear combination of mixed color spaces [55]. To this end, we choose

RGB, Lab, and hue and saturation channels of HSV (8 channels) and their nonlinear

transformations with gamma correction (with three gamma values, [0.5, 1.5, 2.0]) to

consider the human vision’s nonlinear responses, thereby yielding a 24-dimensional

feature vector for each region, σ : S 7→ R24.

Our method to incorporate saliency in the graph connection is elaborate. Unlike

saliency detector [55], we do not compute the coefficient explicitly based on any su-

pervised information. Since the correlation of each region feature vector σ(S) is con-

sistent under arbitrary linear transformation, its saliency characteristic between regions

will be implicitly expressed in Eq. (4).

3.3. Proposed energy function to partition graph

Overall, the proposed full graph is defined as G = {S, (W,K)}, whereW specifies

the local undirected connections and K specifies the global directed connections. Our
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NCut

Ours

Image

Figure 2: The first row shows two sample images exhibiting large object internal appearance variances. The

second and third row shows the graph partitioning results of NCut and ours, respectively. As can be observed,

NCut preserves the edge information but segments images into the connected components (middle). Our

approach is able to separate the entire object from its background (bottom).

goal is to pursue global partitioning of the graph G, i.e., minimizing the two energy

terms simultaneously. Therefore, the energy function E can be defined and derived as

follows (detailed derivations are skipped):

E = Elocal + µEglobal

=

N∑
i=1

N∑
j=1

||yi − yj ||2Wij + µ

N∑
i=1

||yi −
∑
i 6=j

Kijyj ||2

= yT (D −W + µM)y,

(7)

where (D −W ) ∈ RN×N is the Laplacian matrix and M = (I − K)T (I − K) ∈

RN×N . µ is a regularization parameter to balance Eglobal and Elocal. How to select

the optimal value of µ is discussed in the experimental section.

It is straightforward to see that minimizing E is to solve a generalized eigenvector
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system:

(D −W + µM)y = λDy, (8)

which produces a set of eigenvectors Ŷ , where each column is an eigenvector represent-

ing a binary partition of the graph. In practice, the number of segments of an arbitrary

test image is unknown and the expected partition is not guaranteed to be the eigenvec-

tor associated with the second smallest eigenvalue [6]. In Section 4, we present a novel

approach to address this issue for multi-class segmentation.

LeverageElocal andEgloal: The two energy terms are designed for different purposes.

Elocal preserves the pairwise similarity of spatially adjacent region pairs, whileEglobal

preserves the linear structure of spatially distant regions in the common object. Both

emphasize the locality-preserving for the purpose of clustering (or graph partitioning).

Compared with the hard constraint of Elocal, Eglobal encourages soft (i.e., likelihood)

clustering of the regions [14]. In Figure 2, we visualize several graph partition results

of the proposed approach and compare it to NCut. As can be observed, the signifi-

cantly improved graph partitioning quality demonstrates the effectiveness of the global

connections introduced in Eglobal.

4. Multi-class Segmentation

In this section, we introduce the approach to use graph partitions for multi-class

segmentation.

4.1. EigenHistogram

We have computed a set of eigenvectors (i.e., image partitions) Ŷ = [ŷ1, ..., ŷd] ∈

RN×d corresponding to the first d smallest eigenvalues (excluding the zero eigenvalue)

using Eq. (8). The i-th region can now be represented as a d-dimensional vector SŶ
i .

The k-means algorithm is applied to group regions into L segments, Z = {Zk}Lk=1, to

produce a hard partition [4, 6]. To obtain more reliable multi-class segmentation that

can be generalized to arbitrary images with different number of classes, we treat it as

a prior segmentation to provide the class likelihood for the multi-class segmentation.
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Figure 3: In the merged binary segmentation tree, each leaf node representing an initial image region has an

EigenHistogram while the EigenHistograms of the inner nodes are accumulated and normalized from that of

their descendant nodes. Each node computes its class likelihood based on the EigenHistograms of the prior

segmentation Z .

Note that our method can deal with the number of segments regardless of pre-defined

L. We will discuss this in the experiments.

For each dimension of SŶ
i , we compute a histogram with L bins uniformly spaced

between [0, 1] based on the corresponding normalized eigenvector. As a consequence,

a region will be represented as a (d×L)-dimensional concatenated histogram (we set

d=6 empirically and we will discuss the parameter L in the experimental section). For

each segmentZk, we accumulate and normalize the histograms of all regions belonging

to this segment. We term this region representation as EigenHistogram (see Figure 3).

4.2. Multi-class segmentation

Considering the image regions as a random field, we are interested in incorporating

the unary potential (the class likelihood) of each region based on the prior segmen-

tation Z and pairwise potentials between neighboring regions into a unified energy

function, to achieve a holistic multi-class segmentation. Numerous literatures have

investigated to learn effective unary potentials for random field based algorithms via

structured support vector machine [56, 17] or convolution neutral network [57, 58] to

perform semantic segmentation. In contrast, EigenHistogram can be treated as a high-

level representation which possesses spatial consistency, thereby intrinsically scalable

to image segments of arbitrary size. Furthermore, it is easy and fast to compute without

any supervision as other methods [56, 17, 57] conduct.
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Following the Pylon model [17], we can configure the regions into a hierarchical

binary segmentation tree. Different from the traditional “flat” random field models

[59, 2], each node in our tree structure stands for a region nested from bottom to top,

which enables the features to be extracted at different levels of the hierarchy to enrich

the feature representation of the segments. In total, the constructed tree has 2N+1

regions (the root node is the whole image), S+ = {Si|i = 1, ..., 2N+1}, which define

a hierarchical random field.

Our goal is to assign labels p = [p1, ..., p(2·N+1)]
T to all regions in S+. Therefore,

we minimize the following object function:

Θ(p) =

2·N+1∑
i=1

U(pi) +
∑

(i,j)∈N (S)

B(Si, Sj), pi ∈ {0, 1, ..., L}, (9)

where U(pi) is the unary potential of the region Si ∈ S+ to specify the cost of as-

signing label pi to Si, and B(Si, Sj) is the pairwise potential to specify the bound-

ary cost (exponentiated boundary strength [56]) between any two neighboring regions

(i, j) ∈ N (S) in the child nodes, which is used to encourage the spatial smoothness.

Note that pi is allowed to take a zero label such that it satisfies the non-overlapping

requirement [17] by using the constraint:

∀i 6= j, Si, Sj ∈ S+, if Si ∩ Sj 6= ∅, then pi · pj = 0, (10)

which ensures that any subtree can have only one single non-zero label.

Since we have clustered image regions into L segments, the unary potential of

region Si assigned to the k-th segment has the cost:

Upi=k = −β · 〈H(Si),H(Zk)〉, Si ∈ S+, Zk ∈ Z, (11)

where Upi is the unary potential of the region Si ∈ S+ to specify the cost of assigning

label pi to Si. β determines the weight of the unary potential against the pairwise

potential. H transforms a region into the EigenHistogram representation, where the

class likelihood is calculated for each region in the tree. Following [17], we compute

the pairwise potentials as the exponentiated boundary strength.

EigenHistograms of the internal nodes of the binary segmentation tree are accumu-

lated and normalized from that of the corresponding descendant nodes (see Figure 3).
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Figure 4: Segmentation evaluation with different parameters on the training dataset. The top, middle, and

bottom rows show the segmentation results by varying L, R, and µ, respectively, as indicated in x-axis. It

can be observed that the proposed method is insensitive to variations of the parameters.

Therefore, the partial non-smoothness effects of the eigenvectors (i.e., isolated regions

as visualized in the right panel of Figure 2) reflected in the EigenHistograms of top-

level nodes will be suppressed. Finally, we can leave the rest computation to the whole

inference procedure to produce a holistic multi-class segmentation as the final output,

by using the alpha-expansion based graph cut [2].

5. Experimental Results

This section evaluates the segmentation performance of the proposed method. We

first analyze the parameter settings. Then we evaluate and demonstrate the segmenta-

tion results, and compare to several state-of-the-art methods.

We mainly evaluate the proposed segmentation approach using the challenging

Berkeley Segmentation Dataset (BSDS500) [11]. BSDS500 is widely used as the

benchmark for image segmentation and boundary detection, which contains 200 train-

ing, 100 validation, and 200 test images. We use several standard evaluation criteria

[11] to conduct quantitative analysis: Segmentation Covering, Probability Rand Index
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Table 1: The comparison of segmentation results and runtime on the BSDS500 dataset.

Method
Covering PRI VoI

Time(s)
ODS OIS ODS OIS ODS OIS

NCut [6] .45 .53 .78 .80 2.23 1.89 -

Felz-Hutt [1] .52 .57 .80 .82 2.21 1.87 -

Mean Shift [60] .54 .58 .79 .81 1.85 1.64 -

ISCRA [61] .59 .66 .82 .85 1.60 1.42 30

gPb-owt-ucm [11] .59 .65 .83 .85 1.69 1.48 240

cPb-owt-ucm [4] .59 .65 .83 .86 1.65 1.45 >240

red-spectral [37] .56 .62 .83 .85 1.78 1.56 ∼12

DC-Seg [33] .58 .63 .82 .85 1.75 1.59 6

DC-Segfull [33] .59 .64 .82 .85 1.68 1.54 144

PMIlow [31] .61 .66 .83 .86 1.58 1.42 30?

MCG [12] .61 .66 .83 .86 1.57 1.39 18

PFE+ucm [7] .61 .66 .83 .86 1.64 1.46 >900·b†

PFE+MCG [7] .62 .68 .84 .87 1.56 1.36 >900·b†

Ours .62 .66 .83 .86 1.59 1.43 9

?Time is tested on half-sized images. †b={4, 8, 16} is the number of the embedding

needs to compute.

(PRI), and Variation of Information (VoI), which measure per-pixel segment overlap-

ping, pairwise pixel matching, and segmentation-wise entropy, respectively. For each

measurement, we report the values with the optimal dataset scale (ODS) and optimal

image scale (OIS). We further evaluate our method on large-scale PASCAL VOC and

COCO datasets to show the generalization ability of our method for object segmenta-

tion and compare to two state-of-the-art methods.
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Test image Groundtruth gPb-owt-ucm DC-Seg-full Ours MCG

Figure 5: Segmentation results on BSDS500. The first and second columns show the test images and the

ground truth, respectively. The third to the sixth columns show the results obtained by gPb-owt-ucm [11],

DC-Segfull [33], MCG [12] and our method, respectively. All results are visualized with the optimal scale

(ODS) of the corresponding methods used for quantitative evaluation. Figure 6 presents one graph partition

result of the proposed method.

5.1. Implementation details

We investigate the parameter sensitivity of the proposed method and select the op-

timal values based on the training set. Then we apply these values to the independent
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Test image Partition Test image PartitionSegmentation Segmentation

Figure 6: The graph partition results of the proposed method on the test images in Figure 5. As can be

observed, our graph partition is able to segment the objects from the background on the challenging images,

where the objects have similar color or texture with that of background.

test set.

Figure 4 shows the performance of the proposed method with respect to L for clus-

tering, R for selecting nearest regions in Eq. (6), and µ for graph partitioning. The

selection of the optimal value of the number of segments L is dependent on the test set,

but we do not select the best L based on the test set, by which we aim to demonstrate

the strong generalization ability of the proposed method. For the parameter µ, com-

pared with µ = 0, which means that only Elocal is considered in the energy function,

Eglobal with µ = 8 improves the accuracy by >.1ODS (Covering). Section 5.4.2 fur-

ther validates the effectiveness of Eglobal. As can be observed, the proposed method

is insensitive to the three parameters. As a result, we set L = 6, µ = 8, and R = 14

throughout the following experiments.

We empirically set e1 = 20 for kernel density estimation in Eq. (1) and e2 = 40 for

computing W in Eq. (3). Since the test set has approximately equal image sizes, we

can assume that these two values can be generalized to all test images. We empirically
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Table 2: The running time (in second) of each phase of the proposed method.

Phase Min Max Mean Var.

1: Region structure generation 2.60 3.73 3.08 0.05

2: Graph construct. and partition 3.30 6.89 4.51 0.56

3: Multi-class segmentation 1.39 2.26 1.71 0.03

Total 7.54 12.6 9.30 1.00

found that the parameter β in Eq. (11) varies from images to images. In practice, we

run the inference procedure to obtain multiple segmentations by varying the β value

between [200, 300, ..., 800] with an interval equal to 100, and take the average of all

these outputs and the superpixel map as the final segmentation.

We use the toolbox provided by Dollár et al. [35] to generate the superpixel map

(i.e., the structured edge (SE) detector followed by UCM) with roughly uniform region

sizes. Our implementation is based on Matlab running on a standard Intel i7 desktop.

5.2. Segmentation result comparison

We evaluate the performance and efficiency of the proposed method, and compare

it to several state-of-the-art methods.

In Table 1, we compare the proposed approach to several state-of-the-art methods

in terms of segmentation accuracy and running time on the BSDS500 test set. As

one can see, the proposed method significantly outperforms most of the comparative

methods. PMIlow [31] is a boundary detection method, which embeds the edge map

into OWT-UCM [11] to obtain accurate segmentation. We report its the best accu-

racy, which is achieved on low resolution images. The recently proposed multiscale

combinatorial grouping (MCG) [12] and piecewise flat embedding (PFE) [7] obtain

significant improvement compared with the early method, such as red-spectral [37]

and DC-Seg [33] (see Table 1). MCG uses hierarchical UCMs to boost the segmenta-

tion performance. PFE integrates its computed graph partitions into the gPb-owt-ucm

[11] and MCG, which achieves good segmentation performance. However, PFE suf-

fers from the computationally expensive optimization. The proposed method outper-
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Figure 7: Pairwise segmentation comparison between gPb-owt-ucm [11] and our method on the 200 test

images. In the left figure, × above the diagonal indicates the image our method wins, and • below the

diagonal indicates gPb-owt-ucm wins (best viewed in electronic form). We also highlight several extreme

cases corresponding to two with the largest discrepancy and the worst and the best cases. Each is marked

with an unique colored rectangular. In each rectangular of the right slide containing four images, from left

to right, shows the test image, ground truth, the gPb-owt-ucm result, and our result, respectively.

forms PEF+owt-ucm and it achieves close segmentation performance compared with

PFE+MCG. More importantly, the proposed method is hundreds of times faster than

the PFE based methods. DC [33] and red-spectral [37] also emphasize on fast image

segmentation, but their segmentation accuracy is not as accurate as ours.

Figure 5 shows the qualitative segmentation results. Figure 6 presents the graph

partitioning result obtained by the proposed method, which provides good initial seg-

mentation proposals. Compared with other methods, the proposed method is able to re-

sist the object internal variances to avoid small segments, so that the segments are much

more spatially consistent. In addition, the proposed method can implicitly figure out the

best number of segments regardless of the pre-defined L value. It is because that Eigen-

Histogram can penalize over-segmentation since homogeneous segments have similar

EigenHistogram and thus proximate unary potentials, encouraging them to be merged.

The first three rows of Figure 5 particularly highlight the above-mentioned capability.

To provide more detailed comparison, in Figure 7, we show the pairwise segmentation

results obtained by our proposed method compared to the classical gPb-owt-ucm [11]

method. As can be observed, the proposed method shows obvious improvement on a

large number test images.
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Time Efficiency: The comparison of running time is shown in the rightmost column

of Table 1. The test image size is 321× 481. The proposed method is much faster than

other competing methods because of several important aspects:

1. The proposed method does not need complex feature computation, which is su-

perior than gPb based methods [7, 11].

2. We construct the graph model based on superpixels rather than raw pixels. Al-

though we incorporate multiple cues into a graph with complicated constraints,

the graph partitioning is a single eigenvector system. While in the PFE method

[7], performing graph partation is particularly computationally expensive.

3. EigenHistogram is efficient to compute and very scalable to regions with arbi-

trary size for hierarchical multi-class segmentation.

The proposed method is executed in three phases: 1) generating the superpixel map

and constructing the hierarchical segmentation tree, 2) constructing and partitioning

the graph, and 3) conducting multi-class segmentation. Given an H×W resolution im-

age, phase 1 takes low logarithmic time of random forest tree depth to predict edge

map with a random forest, O(HW + N) to compute superpixels with N regions,

and (logN) to construct the hierarchical binary tree. Phase 2 takes up to a factor of

O(HW+N) to compute all image features with respect to pixels and regions and ap-

proximately O(fN2) to compute the affinity matrix, where f is the feature dimension.

Since (D −W + µM) in Eq. (8) is sparse, solving the eigen decomposition problem

with a N ×N affinity matrix takes O(N(R̃+R)) using a Lanczos algorithm according

to [6], where R̃+R�N is the adjacencies from both local (R̃) and global connec-

tions (R) in the graph. Phase 3 optimizes Eq. (9) with L classes with approximately

O(N2L) using graph cut with alpha-expansion [59, 17]. Therefore, the overall method

has approximate time complexity O(HW+fN2), bounded by phase 2.

We also evaluate the detailed running time of the proposed method on the 200

BSDS500 test images. Table 2 shows the detailed time cost of each phase. Compared

with most comparative methods, the proposed method is more scalable for practical

usages.
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Figure 8: Object segmentation evaluation on PASCAL VOC 2012. The different lines in the same color

indicates results under different Jaccard overlapping thresholds. [36] introduces detailed evaluation metrics.
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Figure 9: Object segmentation evaluation on COCO. See text for explanations.

Figure 10: Qualitative evaluation of the segmentation on COCO. Our method (right column) generates ob-

viously clearer segmentation results with significantly reduced over-segmentation (e.g. the flower and vase

in the left images and swimwear in the right images) than the comparing method (middle column) [36].

22



5.3. Towards large-scale object segmentation

This section further demonstrates our proposed method on the large-scale PASCAL

VOC [18] and COCO [19] segmentation datasets1. Since our method generates region

segmentation composed by a set of connected regions (the same as UCMs), we can

fully use our method to generate object proposals by training an object proposal group-

ing classifier following [36]. We closely follow its training procedure and evaluation

settings. In brief, Jaccard Index J , i.e. the size of the intersection of the pixel union

of two regions, is used to evaluate the accuracy of generated objects compared with

groundtruth.

Figure 8 shows the comparing results for PASCAL VOC. We compare with a

method proposed by [36], denoted as singlescale combinatorial grouping (SCG). As

can be observed on the two evaluation metrics, our method improves the performance

of SCG on the recall evaluation metrics consistently. We also compare with a recent

deep learning based method COB [39] which aims at detecting accurate object bound-

aries. It combines with MCG [36] to perform object segmentation and achieved sig-

nificant improvement. Note that region segmentation highly relies on the quality of

boundary detection (it is out of the focus of this paper). As will demonstrated in Sec-

tion 4.1, our method is flexible to be an extension of arbitrary baseline methods. Hence,

we use the edge maps generated by COB (denoted as Ours (COB)). As can be ob-

served, our method improves a substantial margin compared with our original method

and achieves competitive results compared with COB. Figure 9 compares the results on

COCO. Our method shows better results than SCG (right) at low numbers of proposals

and competitive results on the recall with respect to the number of candidates.

SCG is designed for generate image object candidates, so its generated UCMs con-

tain very fine and small region segments, which is an advantage when computing eval-

uation metrics for images with multiple objects. However, our method does not have

1According to the experiment settings of [36], for PASCAL, 1,464 training images and 1,449 validation

images are used. COCO totally contains 82,783 training images and 40,504 validation images in total. In

our experiments, we randomly select 5,000 and 2,500 from the training and validation set, respectively for

evaluation.
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Table 3: The segmentation results under different configurations. Different region generation baselines

which are used by our method are indicated in (·). The last row is the result of our method (SE+ucm) when

Eglobal is not applied. Please see text for detailed explanations.

Method
Covering PRI VoI

ODS OIS ODS OIS ODS OIS

SemiContour+ucm .56 .63 .82 .85 1.79 1.57

Ours (SemiContour+ucm) .60 .64 .83 .85 1.68 1.50

MCG .61 .66 .83 .86 1.57 1.39

Ours (MCG) .62 .66 .84 .86 1.57 1.40

SE+ucm .59 .64 .83 .86 1.71 1.51

Ours (SE+ucm) .62 .66 .83 .86 1.59 1.43

designs for this goal. Compared with it, our method is significantly more proficient

at segmenting the salient objects in images. We will further analyze this behavior in

the next section. The PASCAL dataset is mainly collected for image and object seg-

mentation tasks. According to our observation, PASCAL images usually contain def-

inite and salient objects. Therefore, our method performs better and largely improves

SCG. While in COCO, most of images are outdoor scenes that usually contain many

small and indefinite objects. That is the reason why the improvement on COCO for

our method is not as large as that in PASCAL, compared with SCG. We qualitatively

compare with SCG on COCO images with relatively definite objects. As can be seen

in Figure 10, our method can significantly reduce over-segmentation and give rises to

clearer segmentation results. Nevertheless, the shown results on the two large-scale

datasets are sufficient to demonstrate the generalization ability of our proposed method

to different datasets with diverse scenes 2.

2Note that we did not select the parameters of our method on the targeting training datasets following

Section 5.1 but used the unique one selected using the BSDS500 training set. We believe there is still room

for improvement with careful fine-tunning.
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Components Covering

El Eg MS kM ODS OIS

X X .43 .50

X X X .52 .52

X X .60 .65

X X X .62 .66

Row 1 Row 2 w/o MS

Row 3, w/o Eg Row 4, full method

Figure 11: Ablation study to analyze the effectiveness of each component of the proposed method. Left:

Each row shows the result of a combination of the components. El, Eg , MS, and kM denote Eglobal,

Elocal, multi-class segmentation, and k-means, respectively. To evaluate the effectiveness of MS, we

simply use k-means to cluster eivenvectors (11 classes), as an alternative to performMS. The 4th row is our

full method. Right: The qualitative results corresponds to each row of the left side table. As can be observed

from both quantitative and qualitative results, the proposed Eg and MS components play important roles in

generating clear segmentation and better scores.

5.4. Analysis

5.4.1. Serving as an extension to improve baseline methods

We consider the cases of using different methods to generate superpixel maps as

the input of the proposed method, which allow us to conduct more detailed analy-

ses. It is necessary to notice that, although the proposed method is flexible to build

upon these methods, it is not an extension of the underling methods. In contract, the

proposed method is a new exploration of accurate and fast spectral clustering based im-

age segmentation. In addition, many state-of-the-art methods use accurate supervised

edge detectors and other trained classifiers [12, 13]. We are particularly interested

in reducing number of training data with an aim to completely unsupervised image

segmentation. Either unsupervised [62] or semi-supervised SE detector [41] can be

used as the underlying edge detectors. We consider using the latter, namely Semi-

Contour [41] (3 training images are used), as an alternative to the originally used SE.

We compare the performance in Table 3. The obtained segmentation results consis-

tently improve the segmentation accuracy of different baseline methods. Particularly,

we observe .4ODS (Covering) improvement over SemiContour+ucm and .3ODS im-
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MCG baseline SE+ucm baseline

Our result Our result

Test image

Figure 12: The segmentation results (shown in the second row of right slide) of the proposed method which

using MCG and SE+ucm to generate superpixel maps as candidate regions (the first row), respectively. Note

that MCG sharpens noisy edges below the bear (upper left), resulting in worse segmentation (bottom left).

provement over SE+ucm.

5.4.2. Ablation study

We analyze the effectiveness of each component of the proposed method. The pro-

posed global connection (Section 3.2) is very effective at capturing the affinity between

spatially distant regions belonging to the same objects. And the proposed multi-class

segmentation is critical to generate smooth and clear segmentation map and makes our

method robust to arbitrary images. Figure 11 evaluates each components both qual-

itatively and quantitatively. Comparing with our method without using Eglobal, we

observe obvious improvement (comparing the 3rd row against 4th row and the 1st row

against the 2nd row), which indicates the effectiveness of the proposed energy term

Eglobal. To validate our multi-class segmentation, we conduct an experiment by sim-

pling clustering the generated graph partitions (i.e. eigenvectors) using k-means to L

classes and evaluate the performance. Simple hard clustering strategy can not adapt to

arbitrary images with different number of classes and does not guarantee local smooth-

ness, these two factors have large penalty on the evaluation metrics as shown in the first

and second rows of Table 11. Therefore, we argue that our strategy to use eigenvectors
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Figure 13: The Precision-Recall curves obtained by the proposed method and competing methods for bound-

aries on the BSDS500 dataset. (·) indicates the baseline method used by the proposed method.

for multi-class segmentation is very effective (as explained in Section 4.2).

5.4.3. Edge information

The improvement using MCG as the baseline is a small margin (i.e., .1ODS) com-

pared with cases of using the other two methods as the baselines. In fact, MCG uses

SE to detect edges while it also sharpens edges. Nevertheless, we observe MCG some-

times sharpens irrelevant edges as well, such that the sharpened noisy edges will have

a large penalization through pairwise potentials against unary potentials in our multi-

class segmentation procedure, leading to undesirable results. Figure 12 illustrates this

situation. The above results indicate that the proposed method relies less on strong

edge information compared with MCG.

Additionally, since the proposed method relies less on edges, one potential weak-

ness of the graph partitioning procedure could result in the fragmentation of homoge-

neous regions, which decreases the precision of the boundary detection. We compare

the boundary precision-recall curve in Figure 13, from which we can see that the pro-

posed method maintains nearly the same precision as the baseline methods, i.e., MCG

and SE+ucm (though negligible 0.03 decrease for SE+ucm).
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Ours better MCG better

Figure 14: Each sample shows the segmentation results of our proposed method with SE+ucm baseline

(right) and MCG (middle) [12]. The left side shows images that our method wins and the right side shows

images that MCG wins.

5.4.4. Strengths and limitations

The proposed method is effective in discovering complex image knowledge among

regions from challenging natural images and segmenting objects even when objects

have weak boundaries. The proposed method is significantly better than MCG in those

samples shown in Figure 14(left). However, we found that the proposed method is

not that effective at images without definite objects, because our graph design empha-

sizes the high-level discriminative image knowledge of objects against the background.

MCG outperforms ours in those samples (see Figure 14(right)).

6. Conclusions

In this paper, we present a fast yet accurate image segmentation method, which is

a novel re-examination of spectral clustering based image segmentation for unsuper-

vised image segmentation. We construct an image region graph with both local and

global connections based on simple but effective high-level cues, and formulate the

graph partitioning as a simple generalized eigenvector system. The high quality graph

partitions are used to compute effective unary potentials of Pylon model for multi-class
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image segmentation. Extensive experiments, on the BSDS500 benchmark, large-scale

PASCAL VOC and COCO datasets, show that the proposed method achieves signifi-

cantly faster speed and competitive performance when it is compared to state-of-the-art

segmentation methods.
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