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Abstract

This guest editorial introduces the twenty papers accepted for this Special Issue

on Articulated Motion and Deformable Objects (AMDO). They are grouped

into four main categories within the field of AMDO: human motion analysis

(action/gesture), human pose estimation, deformable shape segmentation, and

face analysis. For each of the four topics, a survey of the recent developments in

the field is presented. The accepted papers are briefly introduced in the context

of this survey. They contribute novel methods, algorithms with improved per-

formance as measured on benchmarking datasets, as well as two new datasets

for hand action detection and human posture analysis. The special issue should

be of high relevance to the reader interested in AMDO recognition and promote

future research directions in the field.

Keywords: Articulated Motion and Deformable Objects, Pose Estimation,

Action recognition, Gesture recognition, Face Analysis.

1. Introduction

Articulated motion and deformable objects (AMDO) is a challenging re-

search area which focuses on the automatic analysis of complex objects, such

as the human body, exhibiting high variabilities both in terms of spatial and

temporal dimensions. AMDO is of high interest in the fields of pattern recog-5
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nition, computer vision, computer graphics, biometrics, machine learning and

human-computer interface (HCI), to mention just a few.

In the late 2016, contributions to a special issue on AMDO had been in-

vited for possible publication in the Patter Recognition journal by an open

call for papers. The scope of the special issue had been defined so as to cover10

pattern recognition schemes on any AMDO related topics, including human mo-

tion analysis and tracking, human reconstruction, multimodal AMDO, 2D/3D

deformable models, and new pattern recognition applications in the field of

AMDO. All 48 manuscripts submitted to this SI were subject to the same rig-

urious review process assessing their overall quality and significance. A total of15

20 papers were accepted for publication in this special issue.

The rest of this guest editorial article is organized as follows. Section 2

provides a brief review of the state of the art in four AMDO subtopics, namely,

human motion analysis, human pose estimation, deformable segmentation, and

face analysis. Section 3 summarises the papers accepted for the Special Issue.20

We conclude with a brief outlook to the future in Sec. 4.

2. Articulated Motion and Deformable Objects

We structure the review of the AMDO literature into four main topics,

namely, human motion analysis, human pose estimation, deformable shape seg-

mentation, and facial analysis. For each subtopic, we review the commonly used25

benchmark datasets and the main state-of-the-art methods published in the last

two years. The papers published in this special issue are referred to by their

unique number, e.g. SI1, SI2.

2.1. Human Motion Analysis

The two main topics of human motion analysis are action and gesture recog-30

nition. Recently, the use of multimodal data in the context of human motion

analysis has received a lot of attention in the literature. RGB, depth, and skele-

tal information are the commonly considered modalities for multimodal action
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Table 1: Statistics of popular benchmark datasets for human motion analysis in the field of

AMDO. All datasets are used at least once by accepted manuscripts in this special issue.

index Dataset Year Modality #Class #Subjects #Samples

1
MSR Action3D, 2010 RGB

20 10 567
[1] skeleton

2
MSRC-12, 2012

skeleton 12 30 594
[2]

3
MSR DailyActivity3D, 2012 RGB-D

16 10 320
[3] skeleton

4
UTKinect , 2012 RGB-D

10 10 200
[4] skeleton

5
SBU Kinect, 2012 RGB-D

7 8 300
Interaction [5] skeleton

6
NTU RGB+D, 2016 RGB-D

60 40 56880
[6] skeleton

7
DHG-14/28, 2016 RGB-D

14 20 2800
[7] skeleton

8
Montalbano V2, 2014 Depth

20 27 13858
[8] skeleton

9
MIVIA action, 2014

RGB-D 7 14 500
[9]

10
NATOPS gesture, 2011

RGB-D 24 20 9600
[10]

and gesture recognition. In this section, first, we provide a brief introduction

to action and gesture recognition datasets. Then we review the state-of-the-art35

methods in this topic area.

2.1.1. Benchmark Datasets for action and gesture recognition

Table 1 shows the commonly used datasets for isolated or continuous action

and gesture recognition, and summarises the key statistical attributes of these

datasets, namely data modality, number of classes, number of subjects, and40

number of samples. Each dataset is used at least once in the manuscripts

accepted for this special issue.

MSR Action3D [1]. It includes 567 sequences , including twenty actions

(namely, high arm waving, horizontal arm waving, hammering, hand catching,

forward punching, high throwing, drawing x, drawing a tick, drawing a circle,45

hand clapping, two hand waving, side-boxing, bending, forward kicking, side

kicking, jogging, tennis serve, golf swing, pickup and throw), each action being
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performed three times by ten subjects. The data is recorded from a fixed point

of view while the subjects are facing the camera.

MSRC-12 [2]. It comprises thirty subjects performing twelve gestures. These50

gestures are grouped into two categories: iconic and metaphoric gestures. The

iconic gestures directly correspond to real world actions and represent first peo-

ple shooter (FPS) gaming actions. It contains six FPS gaming actions: crouch-

ing, shooting, throwing, using night goggles, changing weapon and kicking.

MSR DailyActivity3D [3]. This dataset contains sixteen daily human ac-55

tivities in a living room: drinking, eating, reading a book, calling a cellphone,

writing on a paper, using a laptop, using a vacuum cleaner, cheering up, sitting

still, tossing paper, playing a game, laying down on a sofa, walking, playing a

guitar, standing up, sitting down. Ten subjects are recorded performing these

actions while sitting on the sofa or standing close to the sofa. The camera is60

fixed in front of the sofa. The dataset also provides depth and skeleton data.

UTKinect [4]. Ten types of human action are recorded twice by ten subjects.

The actions include walking, sitting down, standing up, picking up, carrying,

throwing, pushing, pulling, waving, clapping hands. The actions were recorded

from a variety of views. The dataset is composed of 200 sequences, recording65

RGB-D data and skeleton joint locations.

SBU Kinect Interaction [5]. It has eight classes which are commonly used

in two-person interactions, namely, approaching, departing, pushing, kicking,

punching, exchanging objects, hugging, and shaking hands. This dataset is

challenging because of the similarity of some actions in terms of motion (e.g.,70

exchanging object and shaking hands). RGB and depth video with 15 frames

per second are provided, with an image resolution of 640× 480.

NTU RGB+D [6]. It is a large scale dataset for human action recognition,

which consists of 56,880 action samples with four different data modalities for

each sample: RGB videos, depth map sequences, 3D skeletal data, and infrared75

videos. It has 60 classes in total, which are divided into three major groups: 40

daily actions (i.e., drinking, eating, etc.), 9 health-related action (i.e., sneezing,

staggering, etc.), and 11 interactions (i.e., punching, kicking, etc.).
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DHG-14/28 [7]. The dynamic hand gesture dataset DHG-14/28 has fourteen

gesture classes. Each one is executed five times by twenty participants in two80

ways, resulting in 2800 sequences. Gestures are subdivided into the categories

of fine and coarse Grab (G, fine), Tap (T, coarse), Expand (E, fine), Pinch (P,

fine), Rotation CW (R-CW, fine), Swipe Right (S-R, coarse), Swipe Left (S-

L, coarse), Swipe Up (S-U, coarse), Swipe Down (S-D, coarse), Swipe X (S-X,

coarse), Swipe V (S-V, coarse), Swipe + (S-+, coarse), Shake (Sh, coarse).85

Montalbano V2 [8]. This dataset was released for the ChaLearn Looking

at People Challenge 2014. It contains about 14,000 samples from a vocabulary

of twenty Italian sign gesture categories in continuous data series. It provides

RGB, depth, mask body, and voice information for each sample.

MIVIA Action [9]. It consists of RGB-D videos of seven actions, namely,90

opening a jar, drinking, sleeping, random motion, stopping, interacting with a

table, and sitting, performed by fourteen subjects.

NATOPS gesture [10]. It consists of 24 aircraft handling signals from the

Naval Air Training and Operating Procedures Standardization (NATOPS) man-

ual. These gestures are captured using a Kinect sensor at 20 FPS with a resoul-95

tion of 320 × 240. The location of the skeletal joints in the upper body along

with the hand sign are available with the dataset. These 24 upper body gestures

were performed by 20 subjects for 20 times, resulting in 400 observations for

each (subject, gesture) pair.

2.1.2. The state-of-the-art in Human motion analysis100

Table 2 shows a comparison of different state-of-the-art methods on the ten

datasets used by the papers on human motion analysis accepted for the SI. Three

main tasks are considered, namely, action detection, isolated action/gesture

recognition, and continuous gesture recognition. For different tasks, the evalu-

ation metrics vary. They include accuracy for isolated action/gesture recogni-105

tion, F1-score for action detection and Jaccard index (JI) for continuous gesture

recognition. In Table 2, we show the performance of state-of-the-art methods

in different datasets and provide the details of the specific evaluation protocols

5



Table 2: A Comparison of state-of-the-art methods on the benchmark action/gesture datasets

listed in Table 1. All cited papers have been published in the last two years. Protocol A:

half of the subjects are used for training (i.e. odd subjects) and the rest for testing (i.e. even

subjects); Protocol B: average over all splits; Protocol C: leave-one-subject-out; Protocol D:

training with the first 5 subjects, testing with other 10 subjects; acc: accuracy; JI: Jaccard

Index.
Dataset Method Metrics Protocol and notes

MSR Action3D [1]

CNN+LSTM [SI1] acc(%) 95.7/96.0 A/ B

DSRF [SI3] acc(%) 95.24 no specific mention

Bag of Gesturelets [SI8] acc(%) 96.49 A

Pose and Kinematics [SI19] acc(%) 96.77 A

MIMTL[11], 2017 acc(%) 96.37 A

trajectorylet+exemplar-SVMs[12], 2017 acc(%) 97.9 A

DMMs[13], 2016 acc(%) 90.5 A

Riemannian Manifold[14], 2016 acc(%) 96.97 A

MSRC-12 [2]

DSRF [SI3] acc(%) 95.64/95.36 C/ A

Bag of Gesturelets [SI8] F1-score 89.8 C

Clustered Spatiotemporal Manifolds [SI9] F1-score 77.3 C

Enhanced Skeleton [SI11] acc(%) 96.62 A

Pose Lexicon [SI18] acc(%) 92.03 -

Pose and Kinematics [SI19] acc(%) 91.20 C

View Invariant Information+CNNs[15], 2017 acc(%) 96.62 A

Trajectorylet+Exemplar-SVMs[12], 2017 acc(%) 94.9/95.1 A/ C

Encoded Spatial-temporal Information+CNN[16], 2016 acc(%) 94.27 A

Joint Trajectory Maps+CNNs[17], 2016 acc(%) 93.12 A

MSR DailyActivity3D [3]

CNN+LSTM [SI1] acc(%) 63.1 no specific mention

DSSCA SSLM[18], 2017 acc(%) 97.5 A

Unsupervised training[19], 2017 acc(%) 86.9 no specific mention

MFSK+BOW [20], 2016 acc(%) 95.7 C

UTKinect [4]

CNN+LSTM [SI1] acc(%) 99.0 C

DSRF [SI3] acc(%) 97.85 A

Geometric Feature+LSTM[21], 2017 acc(%) 95.96 A

VLDA+LMNN+k-NN[22], 2017 acc(%) 98 C

JSG (top-K RVJRDs)+JSGK[23], 2017 acc(%) 98.3 C

Triplet motion+ LBP[24], 2016 acc(%) 98.0 3-fold cross-validation

Kinect Interaction [5]

Motion Information+CNN [SI5] acc(%) 90.98 5-fold cross validation

Geometric Feature+LSTM[21], 2017 acc(%) 99.02 5-fold cross validation

SkeletonNet [25], 2017 acc(%) 93.47 5-fold cross validation

Co-occurence feature+LSTM [26], 2016 acc(%) 90.41 5-fold cross validation

NTU RGB+D [6]

CNN+LSTM [SI1] acc(%) 67.5/76.21 cross-subject/cross-view

Enhanced Skeleton [SI11] acc(%) 80.03/87.21 cross-subject/cross-view

DSSCA SSLM[18], 2017 acc(%) 74.9 cross-subject

Joint distance maps+CNN [27], 2017 acc(%) 76.2/82.3 cross-subject/cross-view

Part-aware LSTM Network [6], 2016 acc(%) 62.03/70.27 cross-subject/cross-view

DHG-14/28 [7]
CNN+LSTM [SI1] acc(%) 85.6/81.1 C; acc of 14/28 gestures

Geometric shape+fisher vector+SVM[7], 2016 acc(%) 83.07/79.14 C; acc of 14/28 gestures

Montalbano V2 [8]
CNN+LSTM [SI1] JI 79.15 no specific mention;

Moddrop [28], 2016 JI 83 no specific mention;

MIVIA action [9]

Motion Information+CNN [SI5] acc(%) 93.37 C

Key poses+CNN[29], 2017 acc(%) 93.37 C

String kernel framework[30], 2016 acc(%) 95.4 C

NATOPS gesture [10]
Motion Information+CNN [SI5] acc(%) 72.58/86.58 D; top-1/top-2 accuracy

Random forest[31], 2017 acc(%) 88.1 no specific mention
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for each cited paper.

The listed methods in Table 2 can be grouped into two categories. The first110

category includes traditional methods for motion analysis, which consist of a

pipeline commencing with feature extraction, through feature encoding, to clas-

sification. In order to extrtact efficient features from image sequences/videos,

some heuristically designed descriptors are proposed, such as the Dual Square-

Root Function (DSRF) descriptor in SI3, Gesturelets in SI8, to complement115

trajectorylet [12], mixed features around sparse keypoints (MFSK) [20], co-

occurence feature [26], triplet motion and local binary pattern (LBP) [24].

For feature encoding, the representative methods include bag of visual words

(BoVW) [20], vector of locally aggregated descriptors (VLAD) [22] and fisher

vector (FV) [7]. For the decision-making stage, the popular classifiers applied120

to the datasets in the Table 2 include KNN [20, 22], SVM [12, 7] and random

forest [31].

The second category comprises the deep learning based methods. It consists

of Convolutional neural networks (CNNs), Long Short Term Memory networks

(LSTM) and mixed architecture based approaches. CNN-based methods typi-125

cally encode image sequences or skeletons as dynamic images that capture the

spatio-temporal or skeleton-based motion information [15, 16, 17, 27], and then

apply CNN for image-based recognition. LSTM-based methods extract geomet-

ric or co-occurence features [21, 26] from each frame and train a model which

encodes the spatio-temporal information content. Some approaches combine130

CNN and LSTM to realise an action recognition capability. For example, SI1

combines CNN and LSTM in a two-stage training strategy designed to optimise

the parameters of a CNN+LSTM framework.

For human motion analysis, there are many other CNN-based methods which

are not mentioned in this section. For a more detailed survey the reader is135

referred to [32, 33, 34, 35, 36].
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Table 3: Statistics of the HumanEva dataset used for benchmarking human pose estimation

algorithms.

Index Dataset Year Modality #Class #Subjects #Samples

1 HumanEva [37] 2010 RGB,skeleton 6 4 40000

2.2. Human Pose Estimation

2.2.1. Benchmark Datasets for Human Pose Estimation

Table 3 summarises the attributes of the human pose estimation dataset

used for evaluation by some of the work presented in this special issue.140

HumanEva [37]. This dataset contains six classes and about 40K samples

recorded by four subjects. It comprises synchronized images and motion capture

data and is a standard benchmark for 3D human pose estimation. The output

pose is a vector of 15 3D joint coordinates.

2.2.2. The state-of-the-art in Human pose estimation145

Table 4 shows some methods that use the HumanEva dataset. All the listed

papers have been published within the last two years. In SI4, the authors build

virtual humans via a professional free and open-source 3D computer graphics

software called Blender1 and a free software enabling the creation of realistic 3d

human makehuman2 data. These avatars can be animated to simulate realistic150

actions based on the motion capture data. One of the main advantages is that

one can automatically generate ground truth data. The software thus saves a

lot of effort by avoiding manual data collection and annotation. However, as

the authors said ”due to either the lack of motion capture file for importation

into the graphics software or the lack of 3D ground truth, this makes a quanti-155

tative evaluation and comparison on public datasets difficult”. Therefore, only

qualitative results on the HumanEva dataset are presented in SI4.

Table 4 lists the recently published papers based on deep learning. Federica

1https://www.blender.org/
2http://www.makehuman.org/
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et al.[38] present a SMPLify framework that falls within the classical paradigm

of bottom up estimation followed by top down verification (generative model).160

For the bottom-up estimation, a CNN-based method called DeepCut is used to

predict the 2D body joint locations. The role of the top-down strategy is to fit

the body shape to the 2D joints via SMPL [39]. The objective function penalizes

the error between the projected 3D model joints and detected 2D joints.

Zhou et al.[40] propose a sparseness meets deepness (SMP) algorithm to165

address the challenge of 3D full-body human pose estimation from a monocular

image sequence. It consists of a novel synthesis of a deep learning-based 2D

part regressor, a sparsity driven 3D reconstruction approach and a 3D temporal

smoothness prior. This joint consideration combines the discriminative power

of the state-of-the-art 2D part detectors, the expressiveness of 3D pose models170

and regularization by way of aggregating information over time.

Bugra et al.[41] propose a trainable fusion scheme to fuse 2D and 3D image

cues for monocular body pose estimation. It consists of two streams. The first

CNN stream is used to predict the 2D joint locations and the corresponding

uncertainties. The second one leverages all 3D image cues by processes applied175

directly to the input image. The outputs of these two streams are then fused to

obtain the final 3D human pose estimation.

The work in [42] presents a robust marker-less human motion capture algo-

rithm that can track articulated joint motion in challenging indoor and outdoor

scenes. It combines the strengths of a discriminative image-based joint detec-180

tion method with a model-based generative motion tracking algorithm through

a unified pose optimization energy. The discriminative part-based pose detec-

tion method is implemented using CNNs. It estimates unary potentials for

each joint of a kinematic skeleton model. These unary potentials serve as the

basis of a probabilistic extraction of pose constraints for tracking by using a185

weighted sampling from a pose posterior that is guided by the model. In the

final energy formula, it combines these constraints with an appearance-based

model-to-image similarity term.
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Table 4: A comparison of the state-of-the-art human pose estimation methods evaluated on

the HumanEva [37] dataset. The protocol used to obtain the results in this table involves

sequences S1, S2, S3, for training and the validation sequences of all subjects for testing. The

evaluation metric is the average joint error in centimeter (cm).

Method
Metrics:jont error (cm)

walking jogging boxing

Invariants moments [SI 4] only qualitative results provided

Marker-less Motion Capture [42], 2017 6.65 - 6.00

Trainable Fusion [41], 2017 2.44 - -

SMP [40], 2016 3.81 3.68 -

SMPLify [38], 2016 7.72 - 8.28

2.3. Deformable Shape Segmentation

2.3.1. Benchmark Datasets for Deformable Shape Segmentation190

Princeton Segmentation Benchmark (PSB) Dataset [43]. This dataset has

been intensively used to evaluate 3D shape segmentation and 3D shape retrieval

algorithms. It has 19 different object categories with 20 objects for each cate-

gory, which results in a total of 380 models (see Table 5).

In order to evaluate segmentation methods, some popular metrics are used195

including rand index, cut discrepancy, hamming distance and consistency error.

Rand index measures the similarity between two segmentations of the same

shape. From a mathematical point of view, rand Index is related to the accu-

racy, but is applicable even when class labels are not used. Rand index error

is equal to one minus the Rand Index. Cut discrepancy is a boundary-based200

method evaluating the distance between different cuts. It sums the distances

from points along the cuts in the computed segmentation to the closest cuts in

the ground truth segmentation, and vice-versa. Hamming Distance is a region-

based method which measures the number of substitutions required to change

the assignment of one region into another. Hamming Distance is directional,205

hence it includes underdetection rate (Rm) and false alarm (Rf) distances. Con-
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Table 5: Statistics of the key attributes of the popular benchmarking dataset for deformable

shape segmentation in the field of AMDO. The dataset is used at least once by the manuscripts

accepted for this special issue.

Dataset Year #Classes #Objects #Samples

PSB [43] 2004 19 20 380

Table 6: A comparison of the state-of-the-art methods on the PSB dataset [43]. The metrics

include (refer to [44] for more details): Cut Discrepancy (CD), Hamming Distance (HD), Rand

Index (RI) and Consistency Error (CE), Global Consistency Error (GCE), Local Consistency

Error (LCE). Hamming Distance is directional, hence it includes underdetection rate (Rm)

and false alarm (Rf) distances.

Paper Metrics

0.149 0.090 0.118 0.124 0.065

Multi-view RNN [45], 2017
CD HD Hamming-Run Hamming-Rf GCE LCE

0.144 0.075 0.061 0.089 0.060 0.041

Stacked auto-encoders [46], 2016 RI: 0.118

sistency Errors, whether the global version (GCE) or local version (LCE), are

used to compute the hierarchical differences and similarities between segmenta-

tions. They are based on the theory that the organisation of perceptual infor-

mation by humans imposes a hierarchical tree structure on perceived objects.210

For all four metrics, a smaller value indicates a better result. These metrics are

shown in Table 6.

2.3.2. State-of-the-art on Deformable Shape Segmentation

Table 6 shows a comparison of different methods on the PSB dataset [43].

Truc et al. [45] present a multi-view RNN (MV-RNN) algorithm for 3D mesh215

segmentation. It combines CNNs and a two-layer LSTM to yield coherent seg-

mentation of 3D shapes. The image-based CNN effectively generates the edge

probability feature map while the LSTM correlates the edge maps across dif-

ferent views and outputs a well-defined per-view edge image. From Table 6,

one can see that the performance of SI7 is comparable to that of MV-RNN for220
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Table 7: The statistics of key attributes of popular benchmarking datasets for face analysis in

the field of AMDO. All datasets are used at least once by accepted manuscripts in this special

issue.

Dataset Images Subjects Age groups Gender In the wild

Adience [51] 26,580 2,284 8 Yes Yes

IoG [52] 5,080 28,231 7 Yes Yes

MORPH II [53] 55,134 13,000 Accurate ages Yes No

different evaluation metrics.

The work [46] proposes an unsupervised method for 3D shape segmentation.

After over-segmenting the shapes into primitive shapes, it generates high-level

features from low-level features of each patch by using stacked auto-encoders.

High-level features are then used for segmenting a single shape or co-segmenting225

a group of shapes.

2.4. Face Analysis

In the area of computer vision and patter recognition, face analysis [47, 48,

49, 50] is a popular and hot research direction. However, in this section, we

limit the review techniques and datasets used in the papers contained in the230

special issue.

2.4.1. Benchmarking Datasets for Face Analysis

There are three popular benchmarking datasets related to age and gender

analysis: Adience [51], IoG [52] and MORPH II [53]. Some key statistics of

these three datasets are listed in Table 7.235

The face images of Adience and IoG datasets are collected in the wild. Both

datasets contain age group and gender information. For MORPH II dataset, 50

thousand images have been collected in a controlled environment. Different from

Adience and IoG datasets, MORPH II dataset provides accurate age information

for each face image.240
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Table 8: The key attribute statistics of popular benchmarking datasets used for age, gender

and ethnicity analysis in the field of AMDO.

Methods
Adience [51] IoG [52] Morph II [53]

Age Gender Protocol Age Gender Protocol Age Protocol

Deep Attention [SI10] 0.6108 0.9300 - 0.6 0.8690 - 2.56 80-204

AgeED1 [54], 2017 - - - - - - 2.52 80-20

MRNPE [55], 2017 - - - - - - 2.73 CBSR5

DEX2 [56], 2016 0.64 - - - - - 2.68 -

Soft softmax [57], 2016 - - - - - - 3.03 CBSR

Cascaded CNN [58], 2016 0.5288 - FF-SECV3 - - - - -

RoR[59], 2017 - 0.9059 FF-SECV3 - 0.9073 FF-SECV3 - -

OR-CNN[60], 2016, - - - - - - 3.27 -

[1] AgeED: Age Encoding + Decoding; [2] DEX: Deep EXpectation;[3] FF-SECV: five-fold,

subject-exclusive cross-validation protocol; [4] 80-20: 80% for training and 20% for testing; [5]

http://www.cbsr.ia.ac.cn/users/dyi/agr.html;

2.4.2. The state-of-the-art in Face analysis

There are many subtopics of face analysis, such as face verification and recog-

nition [61, 62], facial expression recognition [63], and face attribute analysis [57]

(i.e. age estimation, gender and ethnicity recognition), to mention just a few.

Some solutions already achieve very promising performance that in many re-245

spects exceeds that of human face perception [61, 62]. It is out of the scope

of this editorial to provide a comprehensive coverage of the recent advances

in the field of face analysis. We only focus on face attribute analysis, such

as age estimation, ethnicity and gender recognition. Some recently published

methods that were evaluated on the above three datasets are listed in Table 8.250

Unfortunately, there is a lack of standardisation and different publications of-

ten use different protocols for evaluation. For example, on MORPH II dataset,

MRNPE [55] and Soft softmax [57] evaluate their models with CBSR protocol

while SI10 and AgeED [54] use 80-20 protocol.

Tan et al. [54] propose a group-based method for accurate age estimation.255

First, they propose an age group-n encoding (AGEn) method, where adjacent

ages are merged into the same category. Note that ages merged into the same

group would be regarded as independent classes in the training stage. On this
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basis, authors transform the age estimation problem into a series of binary clas-

sification sub-problems. Subsequently, deep CNNs realising multiple classifiers260

are trained for age group classification. For testing, an age decoding stage is pro-

posed to deduce the estimated age from the age group classification result. As

shown in Table 8, this method achieves a MAE of 2.52 with the 80-20 protocol.

The work in [57] proposes a soft softmax loss function for age estimation,

where each face image is labeled with a Gaussian label distribution rather than265

a single label value in softmax loss function. Compared with the traditional def-

initions, the proposed soft softmax loss function considers not only the chrono-

logical age but also its adjacent ages. The authors show the effectiveness of their

proposal for age estimation achieving a MAE of 3.03 with a shallow network

(AlexNet) on the MORPH II dataset.270

Chen et al. [55] propose a Multi-Region Network Prediction Ensemble

(MRNPE) for high-accuracy age estimation by leveraging both global and lo-

cal context information. The model includes multiple sub-networks, where each

sub-network takes both a global face image and a local region as input, e.g., face

+ eye, face + mouth and face + nose. Then, the average over the predictions275

of all sub-networks is reported as the final predicted age. One disadvantage of

this work is that it needs an ensemble of networks to achieve high performance.

Rothe et al. [56] propose a DEX (Deep EXpectation) framework for real and

apparent age estimation. They regard age estimation as a deep classification

problem followed by a softmax expected value refinement. DEX is a very popular280

method for age estimation. It won the first place in the Chalearn LAP challenge

2015. In this paper, Rothe et al. also introduce the largest public dataset of

face images, IMDB-WIKI datatset, which contains age and gender information

for each face image. One drawback of this dataset is that its labels are noisy,

as a result of being calculated based on the date of birth of the corresponding285

celebrity and the year when the photo was taken. Thus, this dataset is usually

used for pretraining rather than evaluation.

The work in [58] presents a coarse-to-fine framework for age estimation in

unconstrained environment. First, age group classification is carried out to
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obtain a coarse age range, and then a fine-grained refinement and an error-290

correcting stage follows to obtain a more reliable prediction.

Zhang et al. [59] propose a residual network of residual networks (RoR) for

age group classification and gender classification. The proposed RoR architec-

ture shows better optimization ability for age group and gender classification

than alternative CNN architectures. The authors evaluate their model on Adi-295

ence and IoG datasets, achieving an impressive performance of 90.59% and

90.73%, respectively.

Niu et al. [60] define the problem of age estimation as an ordinal regression

(OR) problem and propose an OR-CNN framework to address it. In OR-CNN,

the ordinal regression problem is transformed into a series of binary classifica-300

tion sub-problems and then a CNN with multiple binary classifiers is proposed

to solve those sub-problems, where each binary classifier is trained to predict

whether the age is larger than a specific value. The authors evaluate their model

on MORPH II dataset and achieve a MAE of 3.27.

The work in [64] proposed a new APPA-REAL dataset. This dataset includes305

large face images with both real and apparent age annotations. The authors

studied the realtionship between real and apparent age, and developed a residual

age regression method to further improve the performance.

3. Special Issue Papers

In this section, we briefly introduce the 20 papers accepted for this special310

issue. The papers are grouped in the above mentioned four AMDO subtopoics

(14 papers on human motion analysis, three papers on pose estimation, one on

deformable shape, and two on face analysis).

3.1. Human Motion Analysis

SI1: The paper ”Convolutional Neural Networks and Long Short-Term315

Memory for Skeleton-Based Human Activity and Hand Gesture Recognition”

by Juan C. Núñez, Raúl Cabido, Juan J. Pantrigo, Antonio S. Montemayor and
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José F. Vélez, proposes a deep learning-based method for skeleton-based human

activity and hand gesture recognition. It combines CNN and Long Short-Term

Memory (LSTM) recurrent networks. A two-stage training strategy is applied320

to update CNN+LSTM framework parameters. An exhaustive experimental

evaluation on publicly available data benchmarks (i.e. MSR Action3D, MSR

DailyActivity3D, UTKinect, NTU RGB+D, DHG-14/28, and Montalbano V2)

is presented, showing the proposed method to be competitive in relation to

the state-of-the-art alternatives. It relates to the work in [65], which uses a325

CNN+LSTM architecture for activity recognition in video sequences, but only

using skeleton and achieving competitive results on five datasets.

SI2: The paper ”Hand Action Detection from Ego-centric Depth Sequences

with Error-correcting Hough Transform” by Chi Xu, Lakshmi N Govindara-

jan and Li Cheng, presents an effective and efficient solution for hand action330

detection from mobile ego-centric depth sequences. It proposes a novel error-

correcting mechanism to tackle the issue of incorrect votes generated by the

Hough transform. The authors also provide a comprehensive in-house anno-

tated ego-centric hand action dataset. We believe this will open new research

directions in ego-centric hand action detection. The proposed method delivers335

favorable performance in real time (about 112 frame/second) on their proposed

real-life dataset. It is related to the work in [66], which uses the concept ”snip-

pets” for action recognition, but applied to Ego-centric hand detection. More-

over, the released real-life dataset of this paper is also likely push the state of

the art in Ego-centric hand detection research.340

SI3: The paper ”A Flexible Trajectory Descriptor for Articulated Human

Action Recognition” by Yao Guo, Youfu Li and Zhanpeng Shao, proposes an

articulated skeleton representation by modeling the skeleton information as in-

terconnections of multiple rigid bodies for action recognition. In this method,

six-dimensional rigid body motion trajectories are represented by the invariant345

Dual Square-Root Function (DSRF) descriptor. The concept of Virtual Rigid

Body (VRB) configuration is introduced to produce compact mid-level features

for representing the movement of each body part. The Most Informative Part
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(MIP) trajectory is then used to select a subset of consistency and activity body

parts in the final skeletal representation. The experimental results obtained on350

three datasets (MSR Action3D, MSRC-12, and UTKinect) show that the pro-

posed method outperforms various existing skeleton-based representations in

terms of recognition accuracy. It is related to the Square Root Velocity Fucn-

tion [67] (SRVF), which is usually used in shape analysis, but here it is applied

to Articulated Human Action Recognition. The proposed DSRF descriptor in-355

cludes SRVF of the 3-D point trajectory and 3-D angular trajectory.

SI5: The paper ”Human Action Recognition in RGB-D videos using Motion

Sequence Information and Deep Learning” by Earnest Paul Ijjina and Chalavadi

Krishna Mohan combines motion sequence information and deep learning to

recognize human action from RGB-D data. It proposes a new motion represen-360

tation, which is computed in various temporal regions in the RGB and depth

video streams. The new representation puts emphasis on the key poses asso-

ciated with each action. The derived motion representation feeds into a CNN

to learn discriminative features. The proposed approach, extensively evaluated

on various action and gesture datasets, is shown to advance the state of the365

art. More specifically, it has achieved 93.37% accuracy (evaluation protocol:

leave-one-subject-out) on the MIVIA action dataset , and 86.58% top-2 accu-

racy on the NATOPS gesture dataset ( evaluation protocol:training on the first

5 subjects, testing on the other 10 subjects).

SI6: The paper ”A Deep Convolutional Neural Network for Video Sequence370

Background Subtraction” by Mohammadreza Babaee, Duc Tung Dinh and Ger-

hard Rigoll, proposes a deep CNN architecture (namely DeepBS) for background

subtraction from video sequences. The input frame along with the corresponding

background image are patch-wise processed. During training, the hypotheisised

foreground segmentation is compared with groundtruth segmentation and cross375

entropy is adopted as the loss function. In the test phase, after merging the in-

dividual patches into a single output frame, the output frame is post-processed,

yielding the final output segmentation. The proposed method is evaluated on

different data-sets, and shown to outperform the existing algorithms as mea-
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sured by the average ranking in terms of different evaluation metrics proposed380

in CDnet 2014. It is similar to the CNN-based work of [68] which uses a fixed

background model. However [68] is defined for a concrete video scenario and

will require re-training for other scenes with scene-specific data, while SI6 can

handle various video scenes.

SI8: The paper ”Motion Analysis: Action Detection, Recognition and Evalu-385

ation based on Motion Capture Data” by Fotini Patrona, Anargyros Chatzitofis,

Dimitrios Zarpalas and Petros Daras, presents a motion analysis framework for

real-time action detection, recognition and evaluation of motion capture data

based on the pose and kinematics information. First, automatically computed

dynamic weighting is applied, controling the joint data significance based on ac-390

tion involvement. Then the bag of gesturelets (BoG) model is employed for data

representation of each sample and kinetic energy based descriptor sampling is

performed before a codebook construction. The automatically segmented and

recognized action samples are subsequently fed into a framework evaluation

stage. The experimental results provide evidence that the proposed framework395

can effectively be used for unsupervised gesture/action training. This work is

similar to bag of visual words model [69, 20] widely used in video-based recog-

nition, but here being specifically designed for a motion analysis task.

SI9: The paper ”Linear Latent Low Dimensional Space for Online Early

Action Recognition and Prediction” by Victoria Bloom, Vasileios Argyriou, and400

Dimitrios Makris, utilizes joint motion data for recognizing actions in linear

latent spaces. It operates online and in real time. It is based on supervised

learning and dimensionality reduction techniques, which derive a representa-

tion for high dimensional nonlinear actions in a linear laten low dimensional

space. The proposed method is evaluated on well-know datasets. Compared405

to the state of the art methods, the proposed approach exhibits high accuracy

and low latency properties. Previous works [70, 71, 72] considered early ac-

tion recognition, online action recognition and action prediction as independent

events, while SI9 tackles these three tasks jointly with the proposed Clustered

Spatio-Temporal Manifolds.410
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SI11 : The paper ”Enhanced skeleton visualization for view invariant human

action recognition” by Mengyuan Liu, Hong Liu, and Chen Chen, proposes a

new enhanced skeleton visualization method for action recognition. The authors

develop a sequence-based view invariant transform, based on spatio-temporal

locations of skeleton joints to eliminate the effect of view variations based on415

spatio-temporal locations of skeleton joints. The method encodes the spatio-

temporal information conveyed by the transformed skeletons to generate a series

of color images. Last, a CNN model is adopted to extract robust and discrimi-

native features from the color images and the final predicted results are obtained

by decision level fusion of the deep features. The experimental evaluation car-420

ried out on challenging datasets demonstrates the superiority of the method. It

relates to the works in [17, 73] where skeleton sequences are described as color

images used by CNNs model for classification. Compared with [17, 73], SI11

can capture more of the abundant spatio-temporal cues, since the generated

color images extensively encode both spatial and temporal cues.425

SI13 : The paper ”Estimating 3D Trajectories from 2D Projections via

Disjunctive Factored Four-Way Conditional Restricted Boltzmann Machines”

by Decebal Constantin Mocanu, Haitham Bou Ammar, proposes a novel deep

learning-based method referred to as disjunctive factored four-way conditional

restricted Boltzmann machine (DFFW-CRBM). It introduces a novel tensor430

factorization capable of driving a fourth order Boltzmann machine for high

dimensional time series modelling to considerably lower energy levels. Its eval-

uation on both simulated and real-world data has shown its effectiveness in

predicting and classifying complex ball trajectories and human activities. It

is related to Factored Four-Way Conditional Restricted Boltzmann Machines435

(FFW-CRBMs) [74]. However, FFW-CRBMs require three-dimensional labeled

information for accurate predictions which is not typically available.

SI14 : The paper ”Spatio-Temporal Union of Subspaces for Multi-body Non-

rigid Structure-from-Motion” by Suryansh Kumar, Yuchao Dai, and Hongdong

Li, proposes a unified framework to jointly segment and reconstruct multiple440

non-rigid objects. It exploits the structure of the scene along the temporal and
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spatial directions, modelled in terms of 3D non-rigid deformations. The spatio-

temporal representation not only provides competitive 3D reconstruction but

also outputs a robust segmentation of multiple non-rigid objects. The resultant

optimization problem is solved using the Alternating Direction Method of Mul-445

tipliers (ADMM). The experimental results show the superiority of the method,

compared to the state-of-the-art. Compared with other similar methods [75, 76],

the proposed method of SI14 can learn the affinity matrices to exploit efficient

spatio-temporal clustering structures.

SI16 : The paper ”Adaptive Compressive Tracking based on Locality Sen-450

sitive Histograms” by Sixian Chan, Xiaolong Zhou, Junwei Li, and Shenyong

Chen, proposes an adaptive compressive tracking algorithm which is locality

sensitive, and thus robust to illumination variations. A new update mechanism

is used to preserve stable features while avoiding noisy appearance variations

during tracking. Furthermore it includes a trajectory rectification method to455

refine the tracking accuracy. The experimental results conducted on a bench-

marking dataset show that the tracker achieves the state-of-the-art performance.

It is related to the works [77, 78] on compressive tracking with color informa-

tion. Compared to [77, 78], SI16 presents an updating mechanism to preserve

stable features.460

SI18 : The paper ”Semantic Action Recognition by Learning a Pose Lexicon”

by Lijuan Zhou, Wanqing Li, Philip Ogunbona, and Zhengyou Zhang, proposes

a semantic representation, exploiting a pose lexicon, for action recognition. Each

action is represented by a sequence of semantic poses extracted from an associ-

ated textual instruction. A visual pose model, defined as a Gaussian mixture,465

is learned from training samples to characterize the likelihood of an observed

visual frame being generated by a visual pose. A pose lexicon model is learned

using an extended Hidden Markov Model (HMM) to encode the probabilistic

mapping between hidden visual poses and semantic poses sequences. With the

lexicon, action classification is formulated as a problem of finding the sequence470

of semantic poses that best fits the sequence of visual frames as measured in

terms of posterior probability. The efficacy of the proposed method is evaluated
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on different datasets (i.e. MSRC-12, WorkoutUOW-18, and Combined-17 ac-

tion datasets) using cross-subject, cross-dataset and zero- shot protocols. SI18

is an extension of the work in [79]. Compared with [79], SI18 jointly generates475

visual pose sequences and aligns them to semantic pose sequences.

SI19 : The paper ”Motion Analysis: Action Detection, Recognition and Eval-

uation based on motion capture data” by Fotini Patrona, Anargyros Chatzitofis,

Dimitrios Zarpalas, and Petros Daras, proposes a new framework for real-time

action detection and recognition. Automatic and dynamic weighting, altering480

the joint data significance based on the involved action, and Kinetic energy-

based descriptor sampling, are employed for efficient action segmentation and

labeling. The automatically segmented and recognized action instances are sub-

sequently fed to the action evaluation stage of the framework. It compares them

with the reference instances, estimating their similarity. The experimental re-485

sults obtained on MSR-Action3D and MSRC12 datasets, provide evidence that

the proposed method outperforms state-of-the-art methods by 0.5 − 6% in all

datasets. SI19 is similar to the work in [80]. Compared with [80], automatic

feature weighting at the frame level is employed in SI19 which also uses all 20

joints.490

SI20 : The paper ”Active garment recognition and target grasping point de-

tection using deep learning” by Enric Corona, Guillem Alenya, Antoni Gabas,

and Carme Torras, proposes a new method that first identifies the type of gar-

ment and then performs a search for the two grasping points that allow a robot

to bring the garment to a known pose. The experiments conducted with real495

robots show that most of the errors are due to unsuccessful grasps and not to

the localization of the grasping points, thus a more robust grasping strategy

is required. SI20 is similar to the work in [81] which makes use of a physics

engine to create a training database. However, SI20 aims at avoiding costly

re-grasping, which is not considered in [81].500
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3.2. Human Pose Estimation

SI4: The paper ”A Very Simple Framework for 3D Human Pose Estimation

Using a Single 2D Image: Comparison of Geometric Moments Descriptors” by

Dieudinné Fabrice Atrevi, Damien Vivet, Bruno Emile and Florent Duculty,

uses geometric moments to analyze the human silhouette from a single image.505

The proposed framework extracts the 3D human posture from a single 2D image

in real time. The approach makes use of the learned correspondences between

silhouettes and skeletons, extracted from synthetic 3D human models. The

main contribution of this paper is the proposed technique to estimate 3D human

motion via 3D synthesis software, which avoids the labour intensive manual data510

collection and annotation. Extensive experimental results on both synthetic

and real-world datasets demonstrate the superior performance of the proposed

framework compared with state-of-the-art methods. SI4 is similar to the works

in [82, 83] recovering 3D human pose from single 2D images. However SI4 uses

shape-from-silhouette method to find 3D pose from a single image, being robust515

even in the case of noisy silhouettes.

SI12 : The paper ”Generation of Human Depth Images with Body Part

Labels for Complex Human Pose Recognition” by K. Nishi and J. Miura, de-

velops a method for generating body-part annotated depth images of various

body shapes and poses. The method is guided by a flexible human body model520

and a motion capture system. Based on the proposed method, the authors con-

structed a dataset of 10K images with eight body types for various sitting poses.

The effectiveness of the generated dataset is verified by solving the part-labeling

tasks using a convolutional network (FCN). SI12 extends the work in [84] from

hand-level activities to finger-level hand activities analysis.525

SI15 : The paper ” A Hybrid Framework for Automatic Joint Detection of

Human Poses in Depth Frames” by Longbo Kong, Xiaohui Yuan, and Amar

Man Maharjan, proposes a novel framework to detect joints automatically by

using depth camera. The proposed method categorizes the joints into implicit

or dominant joints, where implicit joints are the torso (i.e., neck and shoulders)530

and dominant joints are elbows and knees. In this framework, a loose skeleton
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model is used to locate implicit joints and data-driven method is applied to

detect dominant joints. It uses a hierarchy of three CNNs with different levels

of specialization, trained both with synthetic and real images. The results

demonstrate that the proposed work can deliver stable and accurate detection535

results of joints. Overall, SI15 combines a human body model and geodesic

features of the human body together to detect and estimate the position of

joints, achieving more accurate joint detection than related works in [85, 86].

3.3. Deformable Shape Segmentation

SI7: The paper ”Scale Space Clustering Evolution for Salient Region Detec-540

tion on 3D Deformable Shapes” by Xupeng Wang, Ferdous Sohel, Mohammed

Bennamoun, Yulan Guo and Hang Lei, detects a salient region, based on clus-

tering of a data set in a scale space generated by an auto diffusion function.

The proposed method is called Scale Space Clustering Evolution (SSCE). It

consists of three parts: scale field construction, shape segmentation initializa-545

tion and salient region detection. The auto diffusion function is used to extract

shape features at multiple time scales. The initial segmentation of the shape

is obtained using persistence-based clustering. The salient regions are detected

during the evolution of the scale field. The experimental results obtained on

popular datasets show a very promising performance of the proposed framework.550

SSCE inherits the merits of persistence-based clustering [87] and clustering as-

sessment [88] for the benefit of salient region detection on 3D deformable shapes,

and thus improving accuracy.

3.4. Face Analysis

SI10: The paper ”Age and Gender Recognition in the Wild with Deep Atten-555

tion” by Pau Rodriguez López, Guillem Cucurull Preixens, Josep M Gonfaus,

Francesc Xavier Roca Marvá and Jordi González Sabaté, proposes a feedfor-

ward attention mechanism for age and gender classification. In this paper, a

model that consists of an attention network is employed to discover the most

informative and reliable patches for age and gender classification. These patches560
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are then further processed in a patch network in higher resolution to improve

accuracy. With such attention mechanism, the model is able to discover the

most informative and reliable parts in a face image even under deformation

and occlusion. Experimental validation on the Adience, IoG and MORPH II

dataset bemchmarks show that including attention mechanisms enhances the565

performance of CNNs in terms of robustness and accuracy. SI10 is biologically

inspired and benefits from the recent successes of attention mechanisms [89].

SI17 : The paper ”Gaussian Mixture 3D Morphable Face Model” by Paul

Koppen, Zhen-Hua Feng, Josef Kittler, William Christmas, Xiao-Jun Wu, and

He-Feng Yin, presents a Gaussian Mixture 3D Morphable Face Model (GM-570

3DMM) to represent a global population of 3D faces as a mixture of Gaussian

subpopulations. It extends the traditional 3DMM [90] naturally by adopting

a shared covariance structure to mitigate small sample estimation problems

associated with data in high dimensional spaces. Experiments in fitting the

GM-3DMM to 2D face images to facilitate their geometric and photometric575

normalisation for pose and illumination invariant face recognition demonstrates

the merit of the proposed multiple cohort 3D face model.

4. Conclusion

The aim of this guest editorial was to introduce this special issue on Ar-

ticulated Motion and Deformable Object Recognition. The 20 papers accepted580

for the special issue cover four of the main subtopics of AMDO: human motion

analysis (action/gesture), human pose estimation, deformable shape segmenta-

tion, and face analysis. The papers were introduced in the context of the recent

developments in the field reviewed in this editorial.

Limitations and Challenges of AMDO. Although the accepted papers push585

the boundaries of the state of the art, there are still some limitations and chal-

lenges. First of all, there is a scope for exploring hybrid deep learning networks,

as pioneered in SI1, to capture spatial-temporal structure information more

comprehensively. Second, the problem of fusing multiple modalities remains an
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open issue. Thanks to the recent trends in the development of cheap sensors,590

which provide complementary sources of information, multimodal data analy-

sis will continue to grow in importance. One can therefore expect that future

efforts in this direction will increase dramatically.

Finally, although deep learning-based methods have been demonstrated to

show impressive promise in the field of AMDO, the need to collect large scale595

labeled data is an unwelcome obstacle. Training from only a few samples is still

a challenging problem in machine learning. Although some previous works [20,

91, 69] have attempted zero/one-shot learning in the field of AMDO, the results

achieved are not yet accurate enough. Therefore, a few-shot (i.e. one-shot or

zero-shot) learning is a research direction where new advances can be expected600

in a foreseeable future.

We hope the contributed papers in this special issue, together with the survey

of the recent developments presented in this editorial, paint a broad picture of

the state of the art in the subject area of AMDO that will jointly promote future

developments in this exciting field.605
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López, X. Baró, I. Guyon, S. Kasaei, S. Escalera, Deep learning for action720

and gesture recognition in image sequences: A survey, in: Gesture Recog-

nition, Springer, 2017, pp. 539–578.

[37] L. Sigal, A. O. Balan, M. J. Black, Humaneva: Synchronized video and

motion capture dataset and baseline algorithm for evaluation of articulated

human motion, International journal of computer vision 87 (1) (2010) 4–27.725

29



[38] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, M. J. Black,

Keep it smpl: Automatic estimation of 3d human pose and shape from

a single image, in: European Conference on Computer Vision, Springer,

2016, pp. 561–578.

[39] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. J. Black, Smpl: A730

skinned multi-person linear model, ACM Transactions on Graphics (TOG)

34 (6) (2015) 248.

[40] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, K. Daniilidis, Sparse-

ness meets deepness: 3d human pose estimation from monocular video,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern735

Recognition, 2016, pp. 4966–4975.

[41] B. Tekin, P. Marquez Neila, M. Salzmann, P. Fua, Learning to fuse 2d

and 3d image cues for monocular body pose estimation, in: International

Conference on Computer Vision (ICCV), no. EPFL-CONF-230311, 2017.

[42] A. Elhayek, E. de Aguiar, A. Jain, J. Thompson, L. Pishchulin, M. An-740

driluka, C. Bregler, B. Schiele, C. Theobalt, Marconiconvnet-based marker-

less motion capture in outdoor and indoor scenes, IEEE transactions on

pattern analysis and machine intelligence 39 (3) (2017) 501–514.

[43] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The princeton shape

benchmark, in: Shape modeling applications, 2004. Proceedings, IEEE,745

2004, pp. 167–178.

[44] X. Chen, A. Golovinskiy, T. Funkhouser, A benchmark for 3d mesh seg-

mentation, in: Acm transactions on graphics (tog), Vol. 28, ACM, 2009,

p. 73.

[45] T. Le, G. Bui, Y. Duan, A multi-view recurrent neural network for 3d mesh750

segmentation, Computers & Graphics.

30



[46] Z. Shu, C. Qi, S. Xin, C. Hu, L. Wang, Y. Zhang, L. Liu, Unsupervised

3d shape segmentation and co-segmentation via deep learning, Computer

Aided Geometric Design 43 (2016) 39–52.

[47] D. Riccio, G. Tortora, M. De Marsico, H. Wechsler, Egaethnicity, gen-755

der and age, a pre-annotated face database, in: Biometric Measurements

and Systems for Security and Medical Applications (BIOMS), 2012 IEEE

Workshop on, IEEE, 2012, pp. 1–8.

[48] http://www.face-rec.org/databases/.

[49] M. Castrillón-Santana, M. De Marsico, M. Nappi, D. Riccio, Meg: Tex-760

ture operators for multi-expert gender classification, Computer Vision and

Image Understanding 156 (2017) 4–18.

[50] A. Dantcheva, P. Elia, A. Ross, What else does your biometric data reveal?

a survey on soft biometrics, IEEE Transactions on Information Forensics

and Security 11 (3) (2016) 441–467.765

[51] E. Eidinger, R. Enbar, T. Hassner, Age and gender estimation of unfiltered

faces, IEEE Transactions on Information Forensics and Security 9 (12)

(2014) 2170–2179.

[52] A. C. Gallagher, T. Chen, Understanding images of groups of people, in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-770

ference on, IEEE, 2009, pp. 256–263.

[53] K. Ricanek, T. Tesafaye, Morph: A longitudinal image database of normal

adult age-progression, in: Automatic Face and Gesture Recognition, 2006.

FGR 2006. 7th International Conference on, IEEE, 2006, pp. 341–345.

[54] Z. Tan, J. Wan, Z. Lei, R. Zhi, G. Guo, S. Z. Li, Efficient group-n encod-775

ing and decoding for facial age estimation, IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 2017.

31



[55] Y. Chen, Z. Tan, A. P. Leung, J. Wan, J. Zhang, Multi-region ensemble

convolutional neural networks for high-accuracy age estimation.

[56] R. Rothe, R. Timofte, L. Van Gool, Deep expectation of real and apparent780

age from a single image without facial landmarks, International Journal of

Computer Vision (2016) 1–14.

[57] Z. Tan, S. Zhou, J. Wan, Z. Lei, S. Z. Li, Age estimation based on a single

network with soft softmax of aging modeling, in: Asian Conference on

Computer Vision, Springer, 2016, pp. 203–216.785

[58] J.-C. Chen, A. Kumar, R. Ranjan, V. M. Patel, A. Alavi, R. Chellappa, A

cascaded convolutional neural network for age estimation of unconstrained

faces, in: Biometrics Theory, Applications and Systems (BTAS), 2016 IEEE

8th International Conference on, IEEE, 2016, pp. 1–8.

[59] K. Zhang, C. Gao, L. Guo, M. Sun, X. Yuan, T. X. Han, Z. Zhao, B. Li,790

Age group and gender estimation in the wild with deep ror architecture,

arXiv preprint arXiv:1710.02985.

[60] Z. Niu, M. Zhou, L. Wang, X. Gao, G. Hua, Ordinal regression with multi-

ple output cnn for age estimation, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 4920–4928.795

[61] Y. Sun, Y. Chen, X. Wang, X. Tang, Deep learning face representation

by joint identification-verification, in: Advances in neural information pro-

cessing systems, 2014, pp. 1988–1996.

[62] Y. Sun, D. Liang, X. Wang, X. Tang, Deepid3: Face recognition with very

deep neural networks, arXiv preprint arXiv:1502.00873.800

[63] C. A. Corneanu, M. O. Simon, J. F. Cohn, S. E. Guerrero, Survey on rgb,

3d, thermal, and multimodal approaches for facial expression recognition:

History, trends, and affect-related applications, IEEE transactions on pat-

tern analysis and machine intelligence 38 (8) (2016) 1548–1568.

32



[64] E. Agustsson, R. Timofte, S. Escalera, X. Baro, I. Guyon, R. Rothe, Ap-805

parent and real age estimation in still images with deep residual regressors

on appa-real database, in: Automatic Face and Gesture Recognition, 2006.

FGR 2006. 7th International Conference on, 2017.

[65] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-

gopalan, K. Saenko, T. Darrell, Long-term recurrent convolutional net-810

works for visual recognition and description, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 2625–

2634.

[66] K. Schindler, L. Van Gool, Action snippets: How many frames does human

action recognition require?, in: Computer Vision and Pattern Recognition,815

2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.

[67] A. Srivastava, E. Klassen, S. H. Joshi, I. H. Jermyn, Shape analysis of

elastic curves in euclidean spaces, IEEE Transactions on Pattern Analysis

and Machine Intelligence 33 (7) (2011) 1415–1428.

[68] M. Braham, M. Van Droogenbroeck, Deep background subtraction with820

scene-specific convolutional neural networks, in: Systems, Signals and Im-

age Processing (IWSSIP), 2016 International Conference on, IEEE, 2016,

pp. 1–4.

[69] J. Wan, Q. Ruan, W. Li, S. Deng, One-shot learning gesture recognition

from rgb-d data using bag of features, The Journal of Machine Learning825

Research 14 (1) (2013) 2549–2582.

[70] M. S. Ryoo, Human activity prediction: Early recognition of ongoing ac-

tivities from streaming videos, in: Computer Vision (ICCV), 2011 IEEE

International Conference on, IEEE, 2011, pp. 1036–1043.

[71] X. Zhao, S. Wang, X. Li, H. L. Zhang, Online action recognition by tem-830

plate matching, in: International Conference on Health Information Sci-

ence, Springer, 2013, pp. 269–272.

33



[72] A. Galata, N. Johnson, D. Hogg, Learning variable-length markov models

of behavior, Computer Vision and Image Understanding 81 (3) (2001) 398–

413.835

[73] Y. Du, Y. Fu, L. Wang, Skeleton based action recognition with convolu-

tional neural network, in: Pattern Recognition (ACPR), 2015 3rd IAPR

Asian Conference on, IEEE, 2015, pp. 579–583.

[74] D. C. Mocanu, H. B. Ammar, D. Lowet, K. Driessens, A. Liotta, G. Weiss,

K. Tuyls, Factored four way conditional restricted boltzmann machines for840

activity recognition, Pattern Recognition Letters 66 (2015) 100–108.

[75] Y. Dai, H. Li, M. He, A simple prior-free method for non-rigid structure-

from-motion factorization, International Journal of Computer Vision

107 (2) (2014) 101–122.

[76] M. Lee, J. Cho, C.-H. Choi, S. Oh, Procrustean normal distribution for845

non-rigid structure from motion, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2013, pp. 1280–1287.

[77] S. He, Q. Yang, R. W. Lau, J. Wang, M.-H. Yang, Visual tracking via

locality sensitive histograms, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 2427–2434.850

[78] M. Danelljan, F. Shahbaz Khan, M. Felsberg, J. Van de Weijer, Adaptive

color attributes for real-time visual tracking, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1090–

1097.

[79] L. Zhou, W. Li, P. Ogunbona, Learning a pose lexicon for semantic action855

recognition, in: Multimedia and Expo (ICME), 2016 IEEE International

Conference on, IEEE, 2016, pp. 1–6.

[80] M. Meshry, M. E. Hussein, M. Torki, Linear-time online action detection

from 3d skeletal data using bags of gesturelets, in: Applications of Com-

34



puter Vision (WACV), 2016 IEEE Winter Conference on, IEEE, 2016, pp.860

1–9.

[81] Y. Li, D. Xu, Y. Yue, Y. Wang, S.-F. Chang, E. Grinspun, P. K. Allen,

Regrasping and unfolding of garments using predictive thin shell modeling,

in: Robotics and Automation (ICRA), 2015 IEEE International Conference

on, IEEE, 2015, pp. 1382–1388.865

[82] D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev, J. Sivic, People

watching: Human actions as a cue for single view geometry, International

journal of computer vision 110 (3) (2014) 259–274.

[83] Y. Yang, D. Ramanan, Articulated pose estimation with flexible mixtures-

of-parts, in: Computer Vision and Pattern Recognition (CVPR), 2011870

IEEE Conference on, IEEE, 2011, pp. 1385–1392.

[84] J. Wang, Z. Liu, Y. Wu, Learning actionlet ensemble for 3d human action

recognition, in: Human Action Recognition with Depth Cameras, Springer,

2014, pp. 11–40.

[85] K. Buys, C. Cagniart, A. Baksheev, T. De Laet, J. De Schutter, C. Panto-875

faru, An adaptable system for rgb-d based human body detection and

pose estimation, Journal of visual communication and image representa-

tion 25 (1) (2014) 39–52.

[86] K. Nishi, J. Miura, Generation of human depth images with body part

labels for complex human pose recognition, Pattern Recognition.880

[87] F. Chazal, L. J. Guibas, S. Y. Oudot, P. Skraba, Persistence-based cluster-

ing in riemannian manifolds, Journal of the ACM (JACM) 60 (6) (2013)

41.

[88] B. Rieck, H. Leitte, Exploring and comparing clusterings of multivariate

data sets using persistent homology, in: Computer Graphics Forum, Vol. 35,885

Wiley Online Library, 2016, pp. 81–90.

35



[89] V. Mnih, N. Heess, A. Graves, et al., Recurrent models of visual attention,

in: Advances in neural information processing systems, 2014, pp. 2204–

2212.

[90] V. Blanz, T. Vetter, A morphable model for the synthesis of 3d faces,890

in: Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, ACM Press/Addison-Wesley Publishing Co., 1999,

pp. 187–194.

[91] P. Mettes, C. G. Snoek, Spatial-aware object embeddings for zero-shot

localization and classification of actions, ICCV (2017) 4443–4452.895

36


