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Highlights

e Subspace clustering is solved from nonlinear orthogonal NMF perspective.

General kernel-based multiplicative orthogonal updates for NMF are derived.

Explicit orthogonality constraint excludes the usual k-means clustering step.

The local geometric structure is included via fully connected graph regularization. &

A connection between spectral clustering and kernel orthogonal NMF is establishe
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Abstract

A recent theoretical analysis shows the equivalence between non-négative matrix factorization (NMF)
and spectral clustering based approach to subspace clustering. As NMF and many of its variants are
essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernel-
based orthogonal multiplicative update rules to\selve the subspace clustering problem. In nonlinear
orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based non-
negative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral
normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and
introduce a graph regularizationdo obtaina factorization that respects a local geometric structure of the
data after the nonlinear mapping. The’proposed NMF-based approach to subspace clustering takes into
account the nonlinear nature ofithe manifold, as well as its intrinsic local geometry, which considerably
improves the clustering peérformance when compared to the several recently proposed state-of-the-art
methods.

Keywords: stibspace ¢lustering, non-negative matrix factorization, orthogonality, kernels, graph

regularization

Introdueed in [1] as a parts-based low-rank representation of the original data matrix, non-negative
matrix factorization (NMF) has shown to be a useful decomposition of multivariate data [2, 3, 4]. The
most important feature of NMF is the non-negativity of all elements of the matrices involved, which
allows an additive parts-based decomposition of the data. This non-negativity is often encountered in

real world data, providing a natural interpretation in contrast to other decomposition techniques that
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allow negative combinations (such as SVD). Related NMF factorizations include convex NMF, orthogonal
NMF and kernel NMF [5, 6, 7, 8, 9, 10].

The key idea in subspace clustering is to construct a weighted affinity graph from the initial data set,
such that each node represents a data point and each weighted edge represents the similarity based on
distance between each pair of points (e.g. the Euclidean distance). Spectral clustering then finds the
cluster membership of the data points by using the spectrum of an affinity graph.

State-of-the-art methods in single view subspace clustering learn affinity graph matrix by imposing
sparseness [11], low-rank [12] or jointly sparseness and low-rank constraints [13] on représentation matrix.
In multi-view subspace clustering representation matrices across views can be learnt bysutilization of in-
dependence criterion which decreases redundancy between representations [14].4Jeint low-rank sparseness
constrained approach can be extended to multi-view clustering [15]. The NMF methods proposed herein
to handle single view subspace clustering problem can be extended toNME-baséd multi-view subspace
clustering [16]. Furthemore, the methods proposed by us could possibly improve perfomance further
through post-processing step that re-assigns samples to more suitable clusters [17].

Spectral clustering can be seen as a graph partition problem and solved by the eigenvalue decom-
position of the graph Laplacian matrix [18, 19, 20, 21, 22)s_In particular, there is a close relationship
between the eigenvector corresponding to the second eigenvalue of the Laplacian and the graph cut
problem [23, 24]. However, the complexity of optimizing graph cut objective function is high, e.g. the
optimization of the normalized cut (Ncut) is known to be an NP-hard problem [5, 25, 26, 27]. Spectral
clustering seeks to get the relaxed solution, whiech is an approximate solution for the graph partition.
Compared with conventional clustering algorithms, spectral clustering has advantages to converge to
global optimum and performs well for thesample space of arbitrary shape [26, 18, 19, 28].

Despite empirical success of spectral clustering, one drawback is that a mixed-signed result given
by the eigenvalue decomposition of the Laplacian may lack clustering interpretability or degrade the
clustering performance 2. The computational complexity of the eigenvalue decomposition is O(n?),
where n denotes“the number of points. To avoid the computation of eigenvalues and eigenvectors, a
recently established comnection of the spectral clustering and non-negative matrix factorization (NMF)
was utilizedin|[29, 30| and [31]. As pointed out in [30], the formulation of non-negative spectral clustering
is motivated by practical reasons: (i) one can use the update algorithms of NMF to solve spectral
clustering, and (ii) NMF framework can easily incorporate additional constraints to spectral clustering
algorithms.

It was shown in [30] that spectral clustering Ncut can be treated as a symmetric NMF problem of
the graph affinity matrix constructed from the data matrix. Similary, it was also proven that the Rcut
spectral clustering is equivalent to the symmetric NMF of the graph affinity matrix, introducing the

non-negative Laplacian embedding (NLE) [31]. Both results [30, 31| only factorize the graph affinity
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matrix, imposing the assumption that the input data comes in as a matrix of pairwise similarities. The
factorization of the graph affinity matrix was replaced with the factorization of the data matrix itself
in [29], and including an additional global discriminative regularization term in [32]. However, both
NMF-based NSC methods [29, 32], minimize data fidelity term in the linear input space.

In this paper we propose a nonlinear orthogonal NMF approach to subspace clustering. We estab-
lish an equivalence with spectral clustering and propose two non-negative spectral clustering algorithms,
named kernel-based non-negative spectral clustering KNSC-Ncut and KNSC-Rcut. To further explore the
nonlinear orthogonal NMF framework, we also introduce a graph regularization term, [4Jywhich captures
the intrinsic local geometric structure in the nonlinear feature space. By preserving theygeometric struc-
ture, the graph regularization term allows the factorization method to have more discriminating power
for clustering data points sampled from a submanifold which lies in a highér dimensional ambient space
[4].

Recently, a similar connection between kernel PCA and spectral methods has been shown in |33, 18,
28, 34]. Our method gives an insight into the connection between kernel NMF and spectral methods,
where the kernel matrix from multiplicative updates corresponds to*the nonlinear graph affinity matrix
in spectral clustering. Different from [29, 32, 30, 31|, our equivalence is established by directly factorizing
the nonlineary mapped input data matrix. To the best ofiour knowledge, this is the first approach to
non-negative spectral clustering that uses kernel orthogonal NMF.

By constraining the orthogonality of the clustering matrix during the nonlinear NMF updates, the
cluster membership can be obtained directly from the orthogonal clustering matrix, avoding the need
of usual k-means clustering [29, 30,431, 32].| The proposed approach has a total run-time complexity of
O(kn?) for clustering n data points te k cldsters, which is less than standard spectral clustering methods
O(n3) and the same complexity as the/state-of-the-art methods [29, 32, 35].

We perform a comprehensiveianalysis of our approach, including the convergence proofs for the kernel-
based graph regularizediorthogonal multiplicative update rules. We conduct extensive experiments to
compare our metheds/with’other non-negative spectral clustering methods and further perform the sen-
sitivity analygis of the parameters used in our approach. We highlight here the main contributions of the
paper:

1. We formulate a nonlinear NMF with explicitly enforced orthogonality to address the subspace
clustering problem.

2%, We derive kernel-based orthogonal multiplicative updates to solve the constrained non-convex
nonlinear NMF problem. We perform the convergence analysis for the multiplicative updates and give
the convergence proofs using an auxiliary function approach [36].

3. We formulate a nonlinear (kernel-based) orthogonal graph regularized NMF approach to subspace

clustering. The ability of the proposed method to exploit both the nonlinear nature of the manifold as
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well as its local geometric structure considerably improves the clustering performance.

4. The proposed clustering algorithms provide an insight into the connection between the spectral
clustering methods and kernel NMF, where the kernel matrix in the kernel-based NMF multiplicative
updates corresponds to the nonlinear graph affinity matrix in Ncut and Rcut spectral clustering.

The rest of the paper is organized as follows: in Section 1 we present a brief overview of the NMF-
based spectral clustering. In Section 2, we propose our framework and present three non-negative spectral
clustering algorithms, along with the theoretical results on the equivalence of our approach and non-
negative spectral clustering. In Section 3, we compare our methods to the 9 recently, proposed non-

negative spectral clustering methods on 6 data sets. Lastly, we give the conclusions in Section 4.

1. Related work

We denote all matrices with bold upper case letters, all vectors(with-bold lower case letters. AT
denotes the transpose of the matrix A, and A~! denotes the inverse of.the matrix A. I denotes the
identity matrix. The Frobenius norm is denoted as || - || p. The trace of/the matrix is denoted with Tr(-).

In Table 1 we summarize the rest of the notation.

Table 1: Notations

Notation Definition

m the dimensionality of a data set
n the number of data points

k the number of clusters

L the Lagrangian

K€ R%" the kernel matrix

X eR™*"™ the input data matrix

A € R"X” the graph affinity matrix

D R™X™ the degree matrix based on A
L € R™*" the graph Laplacian

Loym € R**™ the normalized graph Laplacian

o(X) € RP*™ the nonlinear mapping

H, Z € RFX" the cluster indicator matrices
V e RmXk the basis matrix in input space
F € R"*F the basis matrix in mapped space

1.1. Definitions

The task of subspace clustering is to find a low-dimensional subspace to fit each group of data points
[37, 38, 39, 40]. Let X € R™*" denote the data matrix m x n which is comprised of n data points x; € R™,
drawn from a union of k linear subspaces S; U Sy U ... U Sy, of dimensions {m;}¥_,. Let X; € R™*" be a

submatrix of X of rank m; with Zle n; = n. Given the input matrix X, subspace clustering assigns data
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points according to their subspaces. The first step is to construct a weighted similarity graph G(V, E)
from X, such that each node from the node set V' = {1,2,...,n} represents a data point x; € R™ and
each weighted edge represents a similarity based on distance (e.g. the Euclidean distance) between the
corresponding pair of nodes. Typical methods to construct the similarity graph are e-neighbourhood
graphs, k-nearest neighbour graphs and fully connected graphs with Gaussian similarity function [4, 41].
Spectral clustering then finds the cluster membership of data points by using the spectrum of‘the graph
Laplacian matrix. Let A € R"*" be a symmetric affinity matrix of the graph and A4;; > 0 be the pairwise
similarity between the nodes. The degree matrix D based on A is defined as the diagonal matrix with

the degrees dy, ..., d, on the diagonal, where the degree d; of a node i is

di =7 Ay (1)

j=1

Given a weighted graph G(V, E) its unnormalized graph Laplacian matrix Liissgiven as [42]

L=D-A (2)
The symmetric normalized graph Laplacian matrix Ly, is defined as

L.ym = D™ V/2LD"Y? =1 — D32AD /2 (3)

where I is the identity matrix.

1.2. Graph cuts

The spectral clustering can be seen as partitioning a similarity graph G(V, E) into a set of nodes S C V
separated from the complementary set Si='V'\S. Depending on the choice of the function to optimize,
the graph partition problem can be.defined in different ways. The simplest choice of the function is the
cut 5(S,S) defined as s(S,,5) = D e s,u;e8 Aij- To achieve a better balance in the cardinality of S and
S, the Ncut and Reut‘optimization functions are proposed [42, 43, 44]. Let h; be the indicator vector for

cluster Cy, i.e. hy(d) = if X; € Cj, otherwise h; (i) = 0, then |C}| = hlth. The cluster indicator matrix
H € R**" can’be defined as
h; hy hy, >
HT = ( i (1)
[ha[|” [Pha " [[hyl]

Evidently, HH" = I. Reut spectral clustering can be formulated as the following optimization problem

min'Tr (HLHT) sit. HH' =1 (5)
H

where Tr(-) denotes the trace of a matrix and L is the graph Laplacian. Similarly, define the cluster
indicator vector as zj, = D'/?h;, /| D/?h;|| and the cluster indicator matrix as Z' = (21, z2, ..., 2 ) where

Z € R**" Then Ncut is formulated as the minimization problem

min'Tx (ZLsymZT> sit. 227 =1 (6)
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By allowing the cluster indicator matrices (H, Z) to be continuous valued the problem is solved by

eigenvalue decomposition of the graph Laplacian matrix given in Egs. (2) and (3) [18, 19, 28].

1.3. NMF approach to non-negative spectral clustering

The connection between the Ncut spectral clustering and symmetric NMF has been established in
[30]
D '2AD Y2 =H'H, s.t. H>0. (7)

According to the Theorem 2 from [30], enforcing symmetric factorization approximately retains the
orthogonality of H. Similary, according to the Theorem 5 from [31] the Rcut spectral clustering has been

proved to be equivalent to the following symmetric NMF problem
A-D+ol=H'H, st. HH' =1, H>0 (8)

where o is the largest eigenvalue of the graph Laplacian matrix L¢and"the)matrix H € RF*™ contains
cluster membership information that data point x; belongs to the cluster ¢;
¢; = argmax Hy;. 9)
1<5i<k

In Egs. (7) and (8) a factorization of n x n symmetric, similarity matrix A has a complexity O(kn?) for
k clusters.

Based on the results [30, 31], in [29] it4s"proved that for non-negative input data matrix X, and
fully connected graph affinity matrix A _given a$ythe standard inner product A = X "X, Ncut spectral
clustering is equivalent to the NMF.of the sealed input data matrix (NSC-Ncut)

DX~ 2'Y st. 22" =1,Z >0 (10)

with cluster indicator matrix Z'%€ R¥*™. Similarly, the Theorem 2 [29] establishes the connection of Reut

non-negative spectral“clustering (NSC-Reut) and NMF problem
XT~H'Y st. HH' =TH>0 (11)

with cluster indicator matrix H € R**™. Both NMF-based approaches to non-negative spectral clustering
(10) and (11) are formulated in the input data space as a factorization of an input data matrix X € R™*"
with the complexity O(nmk) [29]. The matrix factorization in Egs. (10) and (11) is limited to the graph
affinity matrix defined as an inner product of the input data matrix.

Furthermore, the global discriminative NMF-based NSC model introduced in [32], includes an addi-
tional nonlinear discriminative regularization term to the NMF optimization function proposed in [29].
As shown in [32], the global discriminant information greatly improves the accuracy of NSC-Ncut and
NSC-Reut [29]. Although in [32] the nonlinear character of the manifold is taken into account through

the nonlinear discriminative matrix, the NMF data fidelity terms are still defined in the input data space.
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2. Nonlinear orthogonal NMF approach to subspace clustering

In this section we develop a nonlinear orthogonal NMF approach to subspace clustering and establish
its equivalence with Ncut and Rcut spectral clustering algorithms. We generalize the NMF objective
function to a nonlinear transformation of the input data and derive kernel-based NMF update rules with
explicitly imposed orthogonality constraints on the clustering matrix H (or Z). Enforcing the explicit
orthogonality into the multiplicative rules allows obtaining the cluster membership directly, from the
cluster indicator matrix. In this way, we obtain a formulation of the nonlinear NMP“that explicitly

addresses the subspace clustering problem.

2.1. Kernel-based orthogonal NMF mutiplicative updates

In this paper we emphasize the orthogonality of the nonlinear NMF t@ keep the clustering interpre-
tation while taking into account the nonlinearity of the space data are“drawnyfrem. We enforce rigorous
orthogonality constraint into the NMF optimization problem and séek to obfain kernel-based orthogonal
multiplicative update rules to solve it.

Let X = (x1,Xa2,...X) € R™*" be the data matrix of non-negative elements. The NMF factorizes X
into two low-rank non-negative matrices

X ~ VH (12)

where V. = (v, va,...,vy) € R™*k and H' = (hy, hy, ..., hy) € R"™™* and k is a prespecified rank
parameter. Generally, the rank of matrices V. and H is much lower than the rank of X (ie., k <
min(m,n)). The non-negative matrices  Vihand H are obtained by solving the following minimization
problem

. . 2
e IIX — VH|[z (13)

Consider now a nonlinear{transformation (a mapping) to the higher D-dimensional (or infinite) space
x; — ®(x;) or X = B(X) = (®(x1), P(x2), ..., P(x,,)) € RP*"™. The nonlinear NMF problem aims to
find two non-negativeymatrices W and H whose product can approximate the mapping of the original
matrix ®(X)

(X))~ WH (14)

For instance, we can consider nonlinear data set composed of two rings as in Fig. 1. The standard linear
NME, (13) [45] is not able to separate the two nonlinear clusters. Compared with the solution of Eq.
(17),¢the nonlinear NMF is able to produce the nonlinear separating hypersurfaces between the clusters.

We formulate the objective function for the nonlinear orthogonal NMF as

: _ 2 T _
Juin [8(X) ~ WH[}. s.t. HHT =1 (15)

Here, W is the basis in feature space and H is the clustering matrix. It is worth noting that since

® can be infinite dimensional, it is impossible to directly factorize ®(X) [22, 21, 7]. In what follows we
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Figure 1: Clustering with NMF (left) and nonlinear NMF (right). We apply the nonlineas, NMF (KNSC-Ncut) (35) with
Gaussian kernel (right) and linear NMF introduced in [1] to the synthetic data set composed of two rings and denote the
cluster memberships with different colors. The nonlinear NMF is able to produce.the nonlinear separating hypersurfaces

between the two rings.

will derive a practical method to solve this problem, and kéep the rigorous orthogonality imposed on
the clustering matrix. Following [7] we restrict W to be 4lifiear ecombination of transformed input data

points, i.e., assume that W lies in the column space 6f:2(X)

W = @(X)F (16)

The equation (16) can be interpreted as a simpléstransformation to the new basis, leading to the following
minimization problem

in"|[|[®X)A~ ®(X)FH|%, st. HH' =1 1
Hrf}?lgoll (X)~ o(X)FH|[3, st (17)

The optimization problem of Eq. (17) is convex in either F or H, but not in both, meaning that the
algorithm can only guarantee convergence to a local minimum [46]. The standard way to optimize (17)
is to adopt an iterative, two-step strategy to alternatively optimize (F,H). At each iteration, one of the
matrices (F, H) iS optimized while the other one is fixed. The resulting multiplicative update rules with

explicitly included orthogonality constraints are obtained as

0o . (aFTK + 2uH);; (18)
h “(aF"KFH + 2HH'H);;
KH'");
Fj Fjl(ilﬂ (19)
(KFHH");,

where K € R™™" is the kernel matrix [47, 48] defined as K = ®T(X)®(X), where ®(X) is a feature
matrix in a nonlinear infinite-dimensional feature space.
We discuss two issues: (i) convergence of the algorithm, (éi) correctness of the converged solution.

Correctness. The correctness of the solution is assured by the fact that the solution at convergence



will satisfy the Karush-Kahn-Tucker (KKT) conditions for (17). The Lagrangian £ of the the above

optimization problem (17) is
L =aTr[®(X)dT(X)] — 2aTr[®(X)FH® (X)] + oTr[®(X)FHH'F'0 T (X)] + u|[HH' — 1|2 (20)

By computing the partial derivatives of (20) with respect to H and F, we obtain

gTi = —2aFT®T(X)®(X) + 20F T (X)®(X)FH + 4pH(HH — I.x,,) (21)
% — —adT(X)B(X)H" + adT(X)®(X)FHHT (22)

Substituting the quadratic terms with the kernel matrix K = ®T(X)®(X) yields

oFTKFH - F'K) + 2yHHH —I,,,,,)=0 (23)

—20KH" 4+ 20KFHH". = 0 (24)

Defining the Lagrange multiplier matrix for constraint H*> 0 as ¥ = [¢);;] gives the KKT condition
¢i;H;; = 0. Similarly, the Lagrange multiplier matrix foryconstraint F > 0 is given by Z = [§;;] and

&i;Fi; = 0. We obtain

[a(FTKFH - FTK) % 2yHHH - 1,,..,,)]i; Hij = 0 (25)

[20KPHH' — 20KH'|;;Fj; =0 (26)

Separating positive and’ negative parts of the gradient leads to the multiplicative update rules (33)
and (32).

Convergence,/The convergence is proved by following the auxiliary function method in [7, 31]. As
shown in [7], these update rules guarantee the decrease of the error and eventual convergence to local
minima. Note that in[7] a more general proof of the convergence can be obtained, for semi-nonnegative
matrix factorization, where input data matrix is negative X < 0. We provide the proof for the convergence

in the Appendix B.

2.2. 'Kernel-based orthogonal NMF and spectral clustering

A connection between spectral clustering and factorization of the graph affinity matrix A was demon-
strated in [30] for Ncut spectral clustering, and for Rcut spectral clustering in [31]. It was also shown
that the spectral clustering can be viewed as a factorization of the (scaled) data matrix itself [29]. Our

question is whether the spectral clustering can be viewed as a non-negative factorization of the input

10



data matrix mapped to a nonlinear feature space. From Eq. (12) it can be seen that the Ncut spectral

clustering is equivalent to the optimization problem
max Tr (ZD’l/QAD’l/ZZT) sit. ZZT =1 (27)

Theorem 1. Let X > 0 denote the input data matriz. Let the similarity between the data points be defined
as the inner product in the nonlinear feature space, i.e. the graph affinity matriz A = ®7(X)®(X). Then
the k-way Neut spectral clustering (27) is equivalent to the non-negative matrix factorization: of the scaled
imput data matriz mapped to the monlinear feature space <I>(X)D_1/2 = WZ subject to ZZ" = 1, where
W = &(X)F and Z and F are two non-negative matrices, and the columns of Z_serve as'a clustering
indicator vector of each data point.

The proof of the Theorem 1 is given in the Appendix A. Theorem 1 shows that Ncut spectral clustering
can be viewed as a nonlinear orthogonal NMF problem with the scaling factor D~ '/2. For the Reut
spectral clustering we cannot obtain an exact equivalence. However, we can relax the Rcut spectral
clustering and get an equivalence between the relaxed Recut speetral clustering and nonlinear orthonormal
NMEF.

Theorem 2. Let X > 0 denote the input data matrixz. “Let the similarity between the data points be
defined by inner product in nonlinear feature space i.e, thesaffinity matriv A = ®7(X)®(X). Then the
k-way relazed Reut spectral clustering (11) is equivalent to the non-negative matriz factorization of the
data matriz ®(X) = WH subject to HH' = Tpawhere W = ®(X)F and H and F are two non-negative
matrices, and the columns of H serve assa clustering indicator vector of each data point.

The proof of the Theorem 2 is given in the Appendix A. Theorems 1 and 2 establish the nonlinear or-
thogonal NMF approach to nonsfiegative spectral clustering. Our assumptions include that the similarity
graph is fully connected and(the similarity matrix A is given by the kernel K = ®T(X)®(X). Similarly
to this result, it was shown in [30} that the standard inner-product matrix A = XTX can be extended
to any other kernel by amonlinear transformation to a higher dimensional space.

To solve Ncut and Raut spectral clustering we employ the kernel-based multiplicative update rules
with orthonormal constraints. Considering the equivalence and solving the two optimization problems
we obtain’ kernel-based non-negative spectral clustering for Neut (KNSC-Ncut)

: -1/2 _ 2 T_
Juin [ ®(X)D O(X)FZ||%, st ZZ'T =1 (28)

with ‘the following multiplicative update rule

 (oF"KD™'? + 2,27),

Zii — Zy; 29
! " (aF"KFZ + 2uZZ" 7);; (29)
KZ'),
Fj Fﬂ(i)gl (30)
(KFZZ");,

11
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The parameter p can be set so that the orthogonality of the matrix Z is preserved during the updates.
An exact orthogonality of the clustering matrix Z implies each column of Z can have only one non-zero
element, which implies that each data object belongs only to one cluster. This is hard clustering, such as
in k-means [30, 5]. Furthermore, KNSC-Ncut has a soft clustering intepretation [1, 31, 30] where a data
point could belong fractionally to more than one cluster. The soft clustering membership of data point
x; to cluster j can be defined as a probability distribution ¢; ; = Zj; />0 i Lii. We summarize the KNSC-
Ncut algorithm in the Algorithm 1. Similarly, the optimization problem for kernel-based non-negative
spectral clustering for Reut (KNSC-Rcut)

. _ 2 T _
uin [|2(X) — $(X)FH[}, st HH' =1 (31)

gives the multiplicative update rule for KNSC-Rcut

F'K + 2uH);;
Hl‘j — Hz‘j T(Ck *en )zl' (32)
(oF ' KFH + 2pHH H),,
KH');
Fjl <« Fjli( )-IJFI (33)
(KFHH 5

and summarize the KNSC-Rcut algorithm in Algorithm 2.

Algorithm 1 Kernel-based non-negative spectraliclustering for Ncut (KNSC-Ncut)
Input: X € R™*" K € R"*" A € R"*"gnumber of clusters k

Output: clustering matrix Z € R*¥*", vector'of cluster memberships ¢; = argmax Z;;
1<j<k
Initialize two non-negative matrices, Z € R**” and F € R"** with random numbers generated in the

range [0, 1].

Calculate the degree matrix D. = diag(dy, ...d,,)
di =Y Ay (34)
repeat

P (aFTKD Y2 4 247),;
Y T (aFTKFZ + 2422 Z),;

KZ"),
Fjl < Fjli( )_Igl
(KFZZ");,

until Stopping criterion is reached

The convergence of the multiplicative update rules (29)— (30), and (32)—(33), has been proved in

Appendix B by the auxiliary function method. These update rules guarantee the decrease of error and
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Algorithm 2 Kernel-based non-negative spectral clustering for Reut (KNSC-Rcut)
Input: X € R™*" K € R™ ™ number of clusters k

Output: clustering matrix H € R**”, vector of cluster memberships ¢; = argmax H;;
1<j<k
Initialize two non-negative matrices H € R**™ and F € R"** with random numbers generated in the

range [0, 1].
repeat .
F' K+ 2uH);;
Hij < H” T(Oé + K )]T
(oF 'KFH +2yHH' H),;
KH'");
Fji Fjl(i)%l
(KFHH');

until Stopping criterion is reached

eventually converge to a local minima [7]. In our experiments, we have set the maximum amount of
iterations to 300 (usually 100 iterations are enough) and weaise the convergence rule F; 1 — E; <
xmax(1, E;_1) in order to stop the updates when the reconstruction.error (E;) between the current and
previous update is small enough. We have set the x = 1072,

The two proposed algorithms have a run-time complexity 6f O(kn?) for clustering n data points to
k clusters, which is less than standard spectral ¢lustering methods O(n?®) and the same complexity as
the state-of-the-art methods [29, 32, 35]. The main advantage of the kernel-based NMF approach is
that it can be easily optimized to achieve higher, clustering accuracy for the data drawn from nonlinear

manifolds, avoiding the computation®f eigenvalues and eigenvectors.

2.3. Graph regularized kernel-based/orthogonal NMF

A non-negative matrix factorization that respects the geometric structure of the data in the nonlinear
feature space can be constructed by introducing an additional graph regularization term into the objective
function (17). Recall that our nonlinear NMF tries to find a set of basis vectors that can be used to best
approximate thédata ®(X) = WH. Let h; denote the j-th column of H, h; = [hj1, ..., hjz], then h; can
be regarded as the new representation of the j-th data point with respect to the new basis W = &(X)F.
The graph regularization term can be viewed as a local invariance assumption [41, 49, 50|, which states
that if two,data points ®(x;) and ®(x;) are close to each other in the original geometry of the data
distribution, then h; and hy, the low dimensional representations of these two points, are also close to
each other. This can be written as

1 & n n
R=3 > Iy —hy3A;; =Y hjhiD;; — > hjh/A;; = Tr(HLH') (35)
Gil=1 Jj=1 Jil=1
By minimizing the regularization term R with respect to H, we expect that when ®(x;) and ®(x;) are

close (i.e. when Aj; is large) the points h; and h; are also close with respect to the new basis. The

13



objective function for nonlinear orthogonal graph regularized NMF is given as
Jmin o 2(X) — ®(X)FH||%2 + \Tr(HLH'), s.t. HH' =1 (36)

By adopting the same iterative procedure to alternatively fix one of the matrices F and H, we solve the

minimization problem (36) and obtain the multiplicative update rules

(oF K + 2uH + \HA),;
Hz'j < Hij T T J (37)
(aF"KFH + 2pHH'H + \HD),;
KH'),
Fjl <— Fjli( )-Jrl (38)
(KFHH");,

where K is the kernel matrix. There are many choices to define the weight matrixsA of the graph.
For example, the scalar product weighting and the cosine similarity are most suitable for processing
documents, while for image data the heat kernel is commonly used b1, 4,%4d]” We will use the fully
connected affinity graph with the Gauss kernel weighting, as we de not treat different weighting schemes
separately.

Correctness. The correctness of the solution is assured by the fact that the solution at conver-
gence will satisfy the KKT conditions for the optimization problem (36). The Lagrangian £ of the the

optimization problem (36) can be written as

L= aTr[®(X)d"(X)] — 2aTr[®X)FHO(X)] + oTr[®(X)FHH F' 0" (X)]+

+u|HH = 1|2 + ATr[HDH'] — ATr[HAH] (39)

We calculate the partial derivatives of (39) with respect to H and F

% = —20F 0T (X)P(X)% 20F 3T (X)(X)FH + 4uH(HH — I,,,) + 2A\HD — 2A\HA  (40)
oL T T T T
oF = 0@ (X)2(X)H' +ad’(X)2(X)FHH (41)

Substituting the quadratic terms with kernel matrix gives

o(F T KFH - F'K) + 2uH(H'H — 1,,,.,,) + AHL = 0 (42)

—20KH'" +20KFHH' =0 (43)

Defining the Lagrange multiplier matrix for constraint H > 0 as ¥ = [1);;], the KKT condition is
¥;;H;; = 0. Similarly, the Lagrange multiplier matrix for constraint F > 0 is given by = = [{;;] and we
obtain

[a(FTKFH - F'K) + 2yH(HH — 1,,.,,) + \AHL];; H;; = 0

14



[20KFHH' — 20KH'];;Fj; =0 (44)

We separate positive and negative parts of the gradient and obtain multiplicative update rules (37) and
(38). By setting A = 0 the update rules in Eq. (37) and (38) reduce to the update rules of the KONMF.
We summarize the graph regularized kernel-based orthogonal NMF in the Algorithm 3.

Algorithm 3 Kernel-based orthogonal graph regularized NMF (KOGNMF)
Input: X € R™*" number of clusters k, K € R"*" A € R**"

Output: clustering matrix H, vector of cluster memberships ¢; = argmax Hj;
1<j<k

Initialize two non-negative matrices H € R**" and F € R™** with random wumbers generated in the

range [0, 1].

Calculate the degree matrix D = diag(dy, ...d,,)

repeat .

" (aF"KEH + 2/HH H + \HD),;

tj

KH'").
Fjl <= Fjl%
(KFHH')

until Stopping criterion is reached

The proposed algorithm has two additional matrix multiplications HA and HD with complexity of
O(kn?). Therefore, the total rin-time complexity is unchanged and equal to O(kn?) for clustering n data
points to k clusters. The ¢onvergence proof for the multiplicative updates (37)-(38)can be found in the

Appendix B.

3. Experiments

In this section we carry out extensive experiments on synthetic and real world data sets to illustrate
the\effeetiveness of the three proposed algorithms: KNSC-Ncut, KNSC-Rcut and KOGNMF. We compare
nine recently proposed non-negative spectral clustering algorithms [29, 31, 32] and traditional Ncut and
Rcut spectral clustering methods [19, 26]. Our experimental setting is similar to [29, 32]. For the purpose

of reproducibility we provide the code and data sets (see supplementary files).
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8.1. Data sets and the evaluation metric

We have used the same data sets as in [29, 30, 32]: five UCI [52] data sets and AT&T face database
[63]. The UCI datasets are Soybean, Zoo, Glass, Dermatology and Vehicle. The AT&T face database
consists of gray scale face images of 40 persons. Each person has 10 facial images under different light and
illumination conditions and the images from the same person belong to the same cluster. The important
statistics of these data sets are summarized in the Table 2, including the number of samples, dimensions

and the number of clusters.

Table 2: Features of the UCI and AT&T data sets

Datasets Samples Dimension Clusters
Soybean 47 35 4
Zoo 101 16 7
AT&T 400 10304 40
Glass 214 9

Dermatology 366 33

Vehicle 846 18

The clustering accuracy is evaluated by the common clustering accuracy measure [29, 31, 32|, which
computes the percentage of data points that are gorrectly clustered with respect to the external ground
truth labels. For each data point x; it’s label is denoted with ¢; and the ground truth cluster index with
gi- In order to calculate the optimal assignmentof labels to cluster indicies f(c¢;), the Hungarian bipartite
matching algorithm [52] is used, with.the éemplexity O(k?) for k clusters. The clustering accuracy can

be expressed as:

n

) (45)
where n denotes the total mumber of data points and the § function is defined as

1: gi = f(ci)7
0: g # f(ci)

5(9% ci) =

3.2. Comparedyalgorithms

We compare our methods to nine recently proposed non-negative spectral clustering approaches and

traditional spectral clustering Ncut and Rcut methods:

e Normalized cut (Ncut) and ratio cut (Reut) spectral clustering. Ncut spectral clustering exists
in different normalizations [19, 28]. Our implementation is according to Ncut from [19], where
eigenvectors of normalized Laplacian matrix Z are normalized such that the L, norm of each row

equals 1.

16



202

203

204

e Non-negative spectral clustering methods NSC-Ncut, NSC-Rcut, and non-negative sparse spectral

clustering methods NSSC-Ncut and NSSC-Reut from [29].

e Global discriminative-based nonnegative spectral clustering methods [32] GDBNSC-Ncut and GDBNSC-

Rcut.

e Symmetric NMF for spectral clustering [31] (NLE). This is the symmetric NMF of theé*pairwise
affinity matrix, which is originally implemented as the standard inner product linear kernel matrix

A=X"X.

3.8. Clustering results

We perform n = 256 independent runs with random initializations for each"of the proposed methods
KNSC-Ncut, KNSC-Rcut and KOGNMF. In each run, we randomly initialize matrices (H,Z,F) and
then iterate multiplicative update rules to achieve convergence and obtain‘cluster indicator matrix. In all
experiments we have used 300 iterations and the convergence occurred aftér approximately 100 iterations.
The cluster memberships for each data point i is obtained bytaking the index of the maximal value of
i-th column in the orthogonal clustering matrix H (or Z): For the Rcut and Ncut, the first k eigenvectors
are computed once and then 256 runs of k-means are'performed.

In Fig. 2 we plot the clustering performancefof thetNSC-Ncut and KNSC-Ncut on two-dimensional
synthetic examples. The synthetic example,demonstrates the ability of KNSC-Ncut to separate the
nonlinear clusters with high clustering accuracy.  In Fig. 3, 4 and 5 we plot the average clustering
accuracy over 256 runs on the six data sets. The average clustering accuracy is reported for independent
number of runs 2¢, where i = 1,2,/..,8. The/average clustering accuracy for the Ncut group of algorithms
is plotted in the Fig. 3. In the Fig. 4'the average clustering accuracy is plotted for the Rcut group.?
The average clustering accuracy. of KOGNMEF is shown in Fig. 5. We summarize the average clustering
accuracy results for the,Ncut and the Rcut group of algorithms in Table 3. On data sets Dermatology,
Glass, Zoo and AT& T, the”KNSC-Ncut clustering accuracy is improved and KNSC-Ncut outperforms
Ncut, NSC-Neut; NSSC/Ncut and GDBNSC-Ncut. On the high dimensional AT&T face database the
clustering aceuracy of the KNSC-Ncut algorithm shows considerable improvement. On the Soybean and
Vehicle/data sets the KNSC-Ncut is comparable with the GDBNSC-Ncut. Similary, on Dermatology,
Glass, Zooy*Vehicle and AT&T data set, KNSC-Rcut outperforms Rcut, NSC-Rcut, NSSS-Rcut and
GDBNSC-Rcut. In Fig. 5 we plot the average clustering accuracy for the KOGNMF algorithm. The
KOGNMF considerably outperforms all algorithms on every data set (Table 3).

2The results in Table 3 for the GDBNSC method are reported from original work [32], however in Fig. 3, 4 and 5
the results for this method were omitted due to the numerical instabilities in reproduction of this method with reported

parameters [32].
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of the KNSC-Ncut algorithm are plotted in the third row. The clustering accuracy over 256 independent runs is 0.5, 0.7

and 0.62

is a

NSC-Ncut, and 0.90, 0.85 and 0.82 for the KNSC-Ncut, for the three data sets respectively. The KNSC-Ncut

arate the nonlinear data set composed of two rings of points with high clustering accuracy.
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Table 3: The average clustering accuracy on 5 UCI and ATET data sets

Dermatology Glass Soybean Zoo Vehicle AT&T

Ncut 0.75 0.46 0.70 0.63 0.37 0.62
NSC-Ncut 0.71 0.25 0.71 0.61 0.39 0.35
NSSC-Ncut 0.71 0.34 0.71 0.66 0.41 0.02

GDBNSC-Ncut 0.82 0.41 0.79 0.65 0.46 0.38
KNSC-Ncut 0.87 0.50 0.78 0.80 0.45 0.70

Rcut 0.47 0.41 0.63 0.60 0.33 0.31
NSC-Rcut 0.66 0.25 0.69 0.61 0.38 0.35

NLE 0.34 0.25 0.47 0.49 0.28 0.20
NSSC-Rcut 0.67 0.26 0.69 0.61 0.38 0.35

GDBNSC-Rcut 0.73 0.36 0.80 0.64 0.388 0,36
KNSC-Rcut 0.87 0.45 0.75 0.65 0.45 0.69
KOGNMF 0.91 0.48 0.80 0.78 0.45 0.70

Table 3: The average clustering accuracy of KNSC-Ncut, KNSC-Rcut and KOGNMF compared with 9 recently proposed
NMF-based NSC methods on the 5 UCI [52] data sets and the AT&T face database [53]. KNSC-Rcut performs considerably
better on 4 data sets, and has a comparable accuracy on two data sets, KNSC-Nuct algorithm outperforms on 5 data sets,
and has a comparable clustering accuracy on one data set. KOGNMF algorithm has considerably better accuracy on 4 data
sets, including the difficult AT&T face images database,&nd is'¢omparable on two data sets. All three algorithms have

considerably higher clustering accuracy on the difficult AT&Tface database.

Tabled: The average clustering accuracy on the hold-out validation set

Datasets Dermatology Glass Soybean Zoo Vehicle AT&T
NLE 0.37 0.38 0.55 0.45 0.33 0.26
KNSC-Ncut 0.87 0.47 0.73 0.77 0.47 0.70
KNSC<Rcut 0.85 0.47 0.76 0.67 0.48 0.73
KOGNMF 0.89 0.49 0.76 0.78 0.48 0.73

Table 4: "The hold-out validation consists of randomly splitting each data set into two equally sized parts with the equally
distributed cluster membership. The grid search optimization is performed on the first half of the data set, while the second
half is/used as a hold-out validation where optimized parameters are used. For each data set, we measure the average score
over 256 independent runs on the hold-out data. We denote with bold our results that outperform the optimized clustering
accuracy scores of the state-of-the-art NSC methods without the hold-out validation. The KNSC-Ncut and KNSC-Rcut
algorithms have higher average clustering accuracy on the majority of data sets, while KOGNMF algorithm outperforms

on all six data sets.
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Figure 3:" The average clustering accuracy of KNSC-Ncut algorithm compared with Ncut, NSC-Ncut and NSSC-Ncut

alg on five UCI [52] data sets and AT&T face database [53]. The average clustering accuracy is plotted for the
indepéndent number of runs 2! = {2,4, ...,256}. The clustering accuracy of KNSC-Ncut is higher on the majority of data
sets. e clustering accuracy for the AT&T face database is considerably improved when compared with the state-of-the-art

non-negative spectral clustering methods.
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of data sets.
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outperforms all non-negative spectral clustering methods on every data set, including the difficult AT&T face database [53].
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3.4. The parameter selection

The kernel-based orthogonal NMF multiplicative rules have in total four parameters: «, y and A and
the Gaussian kernel width . The three parameters «, ;1 and A are a trade-off parameters which balance
the reconstruction error, orthogonality regularization and the graph regularization, respectively. In all
the experiments and data sets we have fixed the three trade-off parameters to the same constant values
a =10, p = 100 and A = 10. Furthermore, the three trade-off parameters can be reduced totwo, as the
NMEF objective functions given in the Egs. (17) and (36) can be divided by «. By fixing the trade-off
parameters throughout all of the experiments we effectively need to optimize only one parameter, which
is the kernel width. For the trade-off parameters we perform sensitivity analysis.to demonstrate that
the constant values of the trade-off parameters can be chosen in a wide range”of,values-(a few orders of
magnitude), as shown in Fig. 6 and 7.

In the experiments we use the Gaussian kernel defined as K(x;, x;) = exp(={x; — x;||?/0?), where o
is the kernel width. For the graph regularization term we use a fully connected affinity graph with the
Gaussian kernel weighting on the edges. To choose the parameter o we)perform a simple grid search for
the 40 values of o in the range of [0.1,4] with the step size Ao = 0.1 for data sets Dermatology, Glass,
Soybean and Zoo. For the AT&T face database we perform the grid search in the range o = [1000, 10000]
with the step size Ao = 250. For the Vehicle data set we perform the grid search in the range o = [10, 100]
with the step size Ao = 10. At the boundary valuesyof the ¢ intervals the clustering accuracy saturates.
For small values of o the similarity of the” datawpoints with large distance ||x; — x;|| goes to zero as
exp(—|x; — x;[|?/0?) — 0 when |x; — x41|?/0? is large. Therefore, for small distances, the affinity graph
captures the local Euclidean distancerand gives a good representation of the manifold structure. For
KNSC-Ncut algorithm we used.the same grid search to obtain a degree matrix D~ Y/2,

For each data set, we measure the average clustering accuracy out of 256 independent runs. We
perform a hold-out validation for-the parameter o, as shown in the Table 4. The hold-out validation
consists of randomly~splitting each data set into two equally sized parts with the equally distributed
cluster memberghip. /The grid search optimization is performed on the first half of the data set, while
the second half is used as a hold-out validation where optimized parameters are used. The results of the
hold-out/validatien’show robust average clustering accuracy for all three algorithms on all six data sets.

The'sensitivity analysis of the algorithms is performed for the three trade-off parameters «, p and
A, plotted in in Fig. 6 and 7. The ratio of the parameters p and « is fixed to a constant value in
all experiments. The near-orthogonality of the clustering indicator matrix H (Z) is preserved during
the multiplicative updates, as shown in Fig. 6 and 7. The near-orthogonality of columns is important
for data clustering interpretation. An orthogonal clustering matrix has an interpretation that each row
of H (Z) can have only one nonzero element, which implies that each data object belongs only to 1

cluster. We plot the average orthogonality over 256 runs of the clustering matrix H (KNSC-Rcut) for
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a wide range of values of the parameter u and fixed a. The average orthogonality per run is defined
as Ziizl(HHT)i,i/Ziij(HHT)i,j. For a wide range of values of the ratio u/a the orthogonality is
preserved during the updates. In Fig. 6 we plot the corresponding average clustering accuracy for
KNSC-Rcut. When p becomes a few order of magnitude larger compared to the reconstruction error
term, the objective function effectively becomes the optimization of the orthogonality term. At that
point the reconstruction error term loses it’s significance and the average clustering accuracy starts to
drop. In Fig. 6 we plot the clustering accuracy in a wide range of values of the parameter i. The graph
regularization \ is fixed to a constant value A = « for simplicity. The average orthogonality is plotted
for different values of A\ and p parameters in Fig. 6 and 7. The clustering accuracy is tobust for a wide

range of A\, A = [107% — 10?], and p, p = [10° — 107] throughout the experiments on all six data sets.

4. Conclusion

In this paper we study subspace clustering from nonlinear orthogenal.non-negative matrix factoriza-
tion perspective. We have constructed a nonlinear orthogonal NMF algorithm and derived three novel
clustering algorithms. We have formally shown that theiReutsspectral clustering is equivalent to the
nonlinear orthonormal NMF. The equivalence with the Ncut spectral clustering is obtained by introduc-
ing an additional scaling matrix into the nonlinear fagtorization. Based on this equivalence, we have
proposed two kernel-based non-negative spectral clustering methods, KNSC-Ncut and KNSC-Rcut. By
incorporating the graph regularization term into the nonlinear NMF framework we have formulated a
kernel-based graph-regularized orthogénal mon-negative matrix factorization (KOGNMF). To solve the
subspace clustering we have deriyéd gemeral kernel-based orthogonal multiplicative updates with com-
plexity O(kn?). The monotoni¢ convergence of all three algorithms is proven using an auxiliary function
analogous to that used for proving convergence of the Expectation-Maximization algorithm. Experimental
results show the effectizeness of our methods compared to state-of-the-art recently proposed NMF-based

clustering methods!
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Appendix A

Proof of Theorem 1. The factorization (I>(X)D71/2 = WZ can be solved by the following opti-
mization problem

Izn%r\}HfI)(X)D_l/Q ~WZ|2% st. ZZ" =1, (46)

where ZZT =1 is the orthogonality constraint which can be included in the optimization implicitly or

explicitly via Lagrange multipliers. Then objective function can be reformulated as J(Z, W)

%Tr ((@(X)D’”Q ~W2Z)T(®(X)D" /2 - WZ)) (47)
= %Tr ((D_1/2<I>T(X) ~ZTWT)(®(X)D" /2 - WZ)) (48)
= %Tr <<I>(X)D’1<I>(X)T —2WzZD V29(X)T + WWT) : (49)

The constraint ZZ" = I is used in the last equality. Calculafing the partial derivative of J (Z, W) with
respect to W and letting it be equal to 0, it follows

8.J(Z, W)

Os\a, W) _ “¥20T _
e X)DV/?Z" + W =0. (50)

From here, we have

W = &X)D /22T (51)

Substituting (51) back into (49), we obtain J(Z, W) =
1
5T (<I>(X)D'1<I>(X)T - 2<1>(X)D’1/2ZTZD’1/2<1>(X)T) . (52)
Since ®(X)D~'®(X)Xis not dependent on Z and W, the minimization problem is equivalent to
axTr (ZD_1/2<I>(X)T<I>(X)D_1/2ZT) st. ZZ7 =1L (53)
Z,W
For A = &1 (X)®(X) the objective function (53) is
maxTx (ZD’l/QAD’l/QZT) sit. ZZT = L (54)

Notey that the objective function for Ncut spectral clustering

minTr (ZLsymZT) st ZZT =1 (55)
zZ
can easily be transformed to (53).
min Tr (ZD’”Q(D - A)D’l/QZT) - (56)
Z,2Z7=1
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min Tr (ZD71/2DD’1/ZZT — ZD*1/2AD71/2ZT) _ (57)
7,277 =1

and since the term ZD™Y/?DD™Y/2ZT = I due to the orthogonality ZZ" = I this is equal to maximization
of the second term.

max Tr (ZD‘I/QAD‘1/2ZT) . (58)

Z,2Z7=I

which concludes the proof.

Proof of Theorem 2. For the Rcut spectral clustering we solve the factorizatiomy®(X) = WH,
with constraint HH' = I. The factorization ®(X) = WH can be solved by the optimization problem

min_ |®(X) - WH][Z, (59)
H,W,HH"=I

where HH' = I is the orthogonality constraint which can be includedin the optimization implicitly or

explicitly. The objective function (59) can be reformulated as

JH,W) = %Tr (®(X) - WH)"((X),— WH)) = (60)
- %Tr ((@T(X) — H W) (@ (X )= WH)) - (61)
= 2T ((X) 790, 200X) TWH + WTW) (62)

The constraint HH' = I is used in the last. equalify. Calculating the partial derivative of J (H, W) with

respect to W and letting it be equal te 0, it/ follows

0J(H,W) T _
= —POHT W =0, (63)
From here, we have
W =ao(X)H'. (64)
Substituting (64)-back into (62), we obtain
1
J(H) = 5T (CI’(X)T‘1>(X) - @(X)TQ(X)HTH) . (65)

Since the first.term is constant, not dependent on H and W, the minimization problem is equivalent to

max Tr (H@(X)%(X)HT) . (66)

H,W,HHT=
For A = ®T(X)®(X) the objective function (66) is the same as objective function (58) for the relaxed
Rcut spectral clustering. To see why, we start from the objective function of Rcut and come to the

relaxed Reut optimization function [29]:

min Tr (HLHT): min Tr (HDHTfHAHT). (67)
HHH =I HHH =I
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Now, the substitution is made Q = HD'/? which implies H = QDfl/Q, HH' = QD 'Q"and the

objective function can we written as:

min  Tr (QD’”QDD’WQT f QD’l/QAD’l/ZQT)
Q,QDh!'Q"=I

= min Tr (QQT — QD’l/zAD’l/ZQT) . (68)
Q,.QD'QT=I
The expression (68) is equivalent to
max  Tr (QD—I/QAD—WQT) st. QQT =1 (69)
Q.QD'Q"=I

Next, we release the orthonormality constraint QQT = I. The relaxation is justified by the fact that the
rows of Q are orthogonal to each other since QD 'Q" =1
max _ Tr (QD‘1/2AD‘1/2QT) (70)
Q.QD'Q"=I

and by substitution Q = HD'/? this becomes:

max Tr (HAH) (71)
H,HH =1

which is equal to objective function of (66), which,concludes the proof.

Appendix B

Proof 3. The convergence analysis of the proposed algorithms.

We now show the algorithm KOGNME converges to a feasible solution. We use the auxiliary function
approach, following [32, 7]. /The convergence of KNSC-Ncut and KNSC-Rcut can be proven in a similar
way.

The objective function’ of KOGNMF (36) is non-increasing under the alternative iterative updating
rules in (37) and’(38).

Definition. A(h,h’) is an auxiliary function for B(h) when the following conditions are satisfied:

A(h, 1) > B(h), A(h, ) = B(h). (72)

The\auxiliary function is useful because of the following lemma:

Lemma 1. If A is an auxiliary function of B, then B is non-increasing under the updating formula

R = arg }ILIlin A(h, D) (73)

the function B is non-increasing.

Proof. B(h(*tD) < A(ht+D) p1) < A(R®, h®)) = B(R®).
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310 We now rewrite the objective function £ of KOGNMF in Eq. (36) as follows

£ = af|®(X) ~ ®(X)FH|% + NTr(HLH") + | HHT - I, |3

D n k
SayY (w . z) A i 133 (z s — %) (71
=1

=1 j=1 m=1j=1 [=1 i=1 j=1 \l=1
320 Considering any element hyp, in H, we use By, to denote the part of £ relevant to hgpa Then it follows
: oL T T T
By = | =— = (QaF KFH — 2oF K +2)\HL + 4pHH H — I)) (75)
OH ab ab
321 Since multiplicative update rules are element-wise, we have to show that each B, is non-increasing

s22  under the update step given in Eq. (37).

Lemma 2. Function

(20E/KEH + 2)\HD),,;,
hrap

A(h, By = B + Bay () (h — 1Y) + (h — hty)?. (76)

323 is an auxiliary function for B, when p = 0.
Proof. By the above equation, we have A(h, h) = Ba,(h), so we only need to show that A(h,hf,) >

Bap(h). To this end, we compare the auxiliary function given in Eq. (76) with the Taylor expansion of

Bab(h)'

. (2L N
Buy = (@)ﬁ 4 (QaF KF + 2)\L)ab (77)
Bap(h) = Bap (b)) # Boy(h — b)) + [0FTKF + AL, (h — h))? (78)

s2a  to find that A(h, hl,) > Bap(h)'is equivalent to

a(F"KFH),, + A(HD)u,

o > (aF TKF + AL), (79)
ab

k
(FTKFH),, = » (F'KF)ahj, > (FTKF),.hl, (80)

I=1
(HD)a, = »_ hlyDip > hlyDyy > hly (D — Ay (81)

1=1
325 In summary, we have the following inequality

F'KFH + \HD),, 1.
(a MDD Ly (82)
hey,

[\

326 Then the inequality A(h,ht,) > B, (h) is satisfied, and the Lemma is proven.

s ab
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327 From Lemma 2, we know that A(h, h%,) is an auxiliary function of B,y (hep). We can now demonstrate

s2s the convergence of the update rules given in Egs. (37).

At = arg minA(h, h®) (83)
h
oF K + \HA),
gt =ty o (s1)
(oF 'KFH + A\HD),;
320 So the updating rule for H is as follows:
oF K + AHA),
Hab < Hab ( T ) b (85)
(oF ' KFH + AHD),,
330 Similarly, for 4 > 0, we use the following auxiliary function A(h, hl,) =

o(FTKFH),;, + A(HD),;, + u(HH H)

A(h, 18y = B(h{)) + Bap (%)) (h — b)) + (h —hty)%. (86)

gy
and by using this:
(HHH),, = Z H);, > hty (H H)p, (87)
we obtain the following inequality
F'KFH),, + A(HD), HH'H),
o Jab + ACHD)a» +9 Jab (W FTKF 4 ) HTH + AL), (88)

hap
which is used to prove that (86) is anauxiliary function of (74). Finally, we get the update rule

(oF K 4+ 2pH + \HA)

Hab - Hab T T
(oF ' KFH + 2pHH H + \HD),,

The proof of the, convergence for the F update rule (38) can be derived by following proposition 8

from [7]. The auxiliapy*function for our objective function L(F) (39) as a function of F is:

zk (KF'HH"), ,(F; 1)
AFJF) = =3 2(KH") 1 F, (1 +1ogF : + Z B , (90)
ik ? i,k 7y

The proof,that this is an auxiliary function of L(F) (39) is given in [7], with the change in notation
F=W,H=G' and (X) = X.
This auxiliary function is a convex function of F' and it’s global minimum can be derived with the following

update rule: .
KH'),
Foy  Fyp—EH Jab

abm- (91)

30



331

332

333

334

References

1]

2]

3]

[4]

[5]

[6]

7]

18]

H. S. Seung, D. D. Lee, Learning the parts of objects by non-negative matrix factorization, Nature
401 (6755) (1999) 788-791. doi:10.1038/44565.
URL http://dx.doi.org/10.1038/44565

C. Ding, T. Li, M. I. Jordan, Nonnegative matrix factorization for combinatorial optimization:
Spectral clustering, graph matching, and clique finding, in: 2008 Eighth IEEE International Con-
ference on Data Mining, Institute of Electrical and Electronics Engineers (IEEE), 2008. doi:
10.1109/icdm.2008. 130.

URL http://dx.doi.org/10.1109/icdm.2008.130

S. Yang, Z. Yi, M. Ye, X. He, Convergence analysis of graph regularized mon-negative matrix
factorization, IEEE Transactions on Knowledge and Data Engineering, 26/(9) (2014) 2151-2165.
doi:10.1109/tkde.2013.98.

URL http://dx.doi.org/10.1109/tkde.2013.98

D. Cai, X. He, J. Han, T. S. Huang, Graph regularized.nonnegative matrix factorization for data
representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (8) (2011) 1548
1560. doi:10.1109/tpami.2010.231.

URL http://dx.doi.org/10.1109/tpami.2010.231

S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Insti-
tute of Electrical and Electrenics Engineers (IEEE), 2008. doi:10.1109/ijcnn.2008.4634046.
URL http://dx.doi.org/10£1109/1jcnn.2008. 4634046

C. Ding, T. Li, W. Peng, H.zPark, Orthogonal nonnegative matrix t-factorizations for clustering, in:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining - KPD. 06, Association for Computing Machinery (ACM), 2006. doi:10.1145/1150402.
1150420

URL'https//dx.doi.org/10.1145/1150402.1150420

C. Ding,T. Li, M. Jordan, Convex and semi-nonnegative matrix factorizations, IEEE Transactions
on Pattern Analysis and Machine Intelligence 32 (1) (2010) 45-55. doi:10.1109/tpami.2008.277.
URL http://dx.doi.org/10.1109/tpami.2008.277

F. Pompili, N. Gillis, P.-A. Absil, F. Glineur, Two algorithms for orthogonal nonnegative matrix
factorization with application to clustering, Neurocomputing 141 (2014) 15-25. doi:10.1016/j.
neucom.2014.02.018.

URL http://dx.doi.org/10.1016/j.neucom.2014.02.018

31



364

369

370

371

372

379

380

381

382

386

387

388

389

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Lee, A. Cichocki, S. Choi, Kernel nonnegative matrix factorization for spectral EEG feature
extraction, Neurocomputing 72 (13-15) (2009) 3182-3190. doi:10.1016/j.neucom.2009.03.005.
URL http://dx.doi.org/10.1016/j.neucom.2009.03.005

B. Pan, J. Lai, W.-S. Chen, Nonlinear nonnegative matrix factorization based on mercer kernel
construction, Pattern Recognition 44 (10-11) (2011) 2800 — 2810, semi-Supervised Learning for

Visual Content Analysis and Understanding.

E. E., V. R., Sparse subspace clustering: Algorithm, theory, and applications, IEEE Trans. Patt.
Anal. Mach. Intel. 35 (1) (2013) 2765-2781.

L. G, Z. Lin, Y. S, S. J, Y. Y., M. Y., Robust recovery of subspace structures by low-rank
representation, IEEE Trans. Patt. Anal. Mach. Intel. 35 (1) (2013) 171-184.

L. C.-G., V. R., A structured sparse plus structured low-rank framework for subspace clustering and

completion, IEEE Trans. Sig. Proc. 64 (24) (2016) 6557-6570.

L. C.-G., V. R., Diversity-induced multi-view subspace clustering, IEEE Trans. Sig. Proc. 64 (24)
(2016) 6557-6570.

M. Brbic, I. Kopriva, Multi-view low-rank sparse subspace clustering, Pattern Recognition 73 (2018)
247-258.

L. W. Liu, G. C., H. J., Multi-view_clustering/via joint nonnegative matrix factorisation, Proc. STAM

Int. Conf. Data Mining (SDM’13),73 (2013) 252-260.

D.-S. Pham, O. Arandjelovic)S. Venkatesh, Achieving stable subspace clustering by post-processing

generic clustering results; IEEE/International Joint Conference on Neural Networks (LJCNN).

M. Filippone, E. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for
clustering, Pattern Recognition 41 (1) (2008) 176-190. doi:10.1016/j.patcog.2007.05.018.
URL http://dx.doi.org/10.1016/j.patcog.2007.05.018

A.X.Ng, M'T. Jordan, Y. Weiss, et al., On spectral clustering: Analysis and an algorithm, Advances

in neuraldnformation processing systems 2 (2002) 849-856.

Y. Liu, X. Li, C. Liu, H. Liu, Structure-constrained low-rank and partial sparse representation
with sample selection for image classification, Pattern Recognition 59 (2016) 5-13. doi:10.1016/
j.-patcog.2016.01.026.

URL http://dx.doi.org/10.1016/j.patcog.2016.01.026

32



303

394

398

399

400

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

S. White, P. Smyth, A spectral clustering approach to finding communities in graphs, in: Proceed-
ings of the 2005 SIAM International Conference on Data Mining, Society for Industrial & Applied
Mathematics (SIAM), 2005, pp. 274-285. doi:10.1137/1.9781611972757.25.

URL http://dx.doi.org/10.1137/1.9781611972757.25

F. R. Bach, M. I. Jordan, Spectral clustering for speech separation, in: Automatic Speech and
Speaker Recognition, Wiley-Blackwell, pp. 221-250. doi:10.1002/9780470742044 .ch13;
URL http://dx.doi.org/10.1002/9780470742044 .ch13

H. Jia, S. Ding, H. Ma, W. Xing, Spectral clustering with neighborhood attribute, reduction based
on information entropy, JCP 9 (6). doi:10.4304/jcp.9.6.1316-1324.
URL http://dx.doi.org/10.4304/jcp.9.6.1316-1324

H. Jia, S. Ding, X. Xu, R. Nie, The latest research progress on spectral clustering, Neural Computing
and Applications 24 (7-8) (2013) 1477-1486. doi:10.1007/s00521-013-1439-2.
URL http://dx.doi.org/10.1007/s00521-013-1439-2

J. Lurie, Review of spectral graph theory, ACM SIGACT News 30 (2) (1999) 14. doi:10.1145/
568547 .568553.
URL http://dx.doi.org/10.1145/568547.568553

U. von Luxburg, A tutorial on spectral clustering, Statistics and Computing 17 (4) (2007) 395-416.
d0i:10.1007/s11222-007-9033- 2«
URL http://dx.doi.org/10.1007/s11222-007-9033-2

W. Ju, D. Xiang, B. Zhang, L. Wang, 1. Kopriva, X. Chen, Random walk and graph cut for co-
segmentation of lung fumeor on pet-ct images, IEEE TRANSACTIONS ON IMAGE PROCESSING
25 (3) (2016) 1192-1192.

R. Langone; R./Mall,” C. Alzate, J. A. K. Suykens, Kernel spectral clustering and applications,
in: Unsupervised Learning Algorithms, Springer Science Business Media, 2016, pp. 135-161. doi:
10.4007/978~83-319-24211-8_6.

URL http://dx.doi.org/10.1007/978-3-319-24211-8_6

H. L, Z. Fu, X. Shu, Non-negative and sparse spectral clustering, Pattern Recognition 47 (1) (2014)
418-426. doi:10.1016/j.patcog.2013.07.003.
URL http://dx.doi.org/10.1016/j.patcog.2013.07.003

C. Ding, X. He, H. D. Simon, On the equivalence of nonnegative matrix factorization and spectral

clustering, in: Proceedings of the 2005 STAM International Conference on Data Mining, Society for

33



454

455

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Industrial & Applied Mathematics (STAM), 2005, pp. 606-610. doi:10.1137/1.9781611972757.70.
URL http://dx.doi.org/10.1137/1.9781611972757.70

D. Luo, C. Ding, H. Huang, T. Li, Non-negative laplacian embedding, in: 2009 Ninth IEEE Interna-
tional Conference on Data Mining, Institute of Electrical and Electronics Engineers (IEEE), 2009.
d0i:10.1109/icdm.2009.74.

URL http://dx.doi.org/10.1109/icdm.2009.74

R. Shang, Z. Zhang, L. Jiao, W. Wang, S. Yang, Global discriminative-based nonnegative spectral
clustering, Pattern Recognition 55 (2016) 172-182. doi:10.1016/j.patcog.2016:01.035.
URL http://dx.doi.org/10.1016/j.patcog.2016.01.035

Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement, P. Vincent, M. Ouimet, Learning eigenfunctions
links spectral embedding and kernel PCA, Neural Computatiog 16 (10y%(2004) 2197-2219. doi:
10.1162/0899766041732396.

URL http://dx.doi.org/10.1162/0899766041732396

C. Alzate, J. Suykens, A weighted kernel PCA formulation with out-of-sample extensions for spectral
clustering methods, in: The 2006 IEEE International Joint Conference on Neural Network Proceed-
ings, Institute of Electrical and Electronics{Engineers (IEEE), 2006. doi:10.1109/ijcnn.2006.
246671.

URL https://doi.org/10.1109%2Fijcnn 2006 .246671

P. Li, J. Bu, Y. Yang, R. Ji, C."Chen,/D. Cai, Discriminative orthogonal nonnegative matrix fac-
torization with flexibility for data representation, Expert Systems with Applications 41 (4) (2014)
1283-1293. doi:10.1046/j.eswa’.2013.08.026.

URL http://dx.doilorg/10.1016/j.eswa.2013.08.026

D. D. Lee, H/S. Seungy Algorithms for non-negative matrix factorization, in: In NIPS, MIT Press,
2000, pp./556-562.

X. Péng, H: Tang, L. Zhang, Z. Yi, S. Xiao, A unified framework for representation-based subspace
clustering of out-of-sample and large-scale data, IEEE Transactions on Neural Networks and Learning
Systems (2015) 1-14doi:10.1109/tnnls.2015.2490080.

URL http://dx.doi.org/10.1109/tnnls.2015.2490080

C. Hou, F. Nie, D. Yi, D. Tao, Discriminative embedded clustering: A framework for grouping
high-dimensional data, IEEE Transactions on Neural Networks and Learning Systems 26 (6) (2015)
1287-1299. doi:10.1109/tnnls.2014.2337335.

URL https://doi.org/10.1109%2Ftnnls.2014.2337335

34



485

486

487

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Y. Ma, H. Derksen, W. Hong, J. Wright, Segmentation of multivariate mixed data via lossy data
coding and compression, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (9)
(2007) 1546-1562. doi:10.1109/tpami .2007.1085.

URL https://doi.org/10.1109%2Ftpami.2007.1085

S. R. Rao, R. Tron, R. Vidal, Y. Ma, Motion segmentation via robust subspace separation in the
presence of outlying, incomplete, or corrupted trajectories, in: 2008 IEEE Conference oniComputer
Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers” (IEEE),72008.
doi:10.1109/cvpr.2008.4587437.

URL https://doi.org/10.1109%2Fcvpr.2008.4587437

M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and'data representation,
Neural Computation 15 (6) (2003) 1373-1396. doi:10.1162/089976603321780317.
URL http://dx.doi.org/10.1162/089976603321780317

J. Shi, J. Malik, Normalized cuts and image segmentationin:‘Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,sInstitute of Electrical and Electronics
Engineers (IEEE). doi:10.1109/cvpr.1997.609407.

URL http://dx.doi.org/10.1109/cvpr.1997.609407

C.-K. Cheng, Y.-C. Wei, An improvedstwo-way partitioning algorithm with stable performance
(VLSI), IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10 (12)
(1991) 1502-1511. doi:10.1109/43.108500.

URL http://dx.doi.org/10.1109/43.103500

P. K. Chan, M. D. F. Schlag, Jo7Y. Zien, Spectral k -way ratio-cut partitioning and clustering, in:
Proceedings of the/30th internhational on Design automation conference - DAC 93, Association for
Computing Machinery (ACM), 1993. doi:10.1145/157485.165117.

URL http://dx".doi.org/10.1145/157485.165117

N. Gillis;.S. A./Vavasis, Fast and robust recursive algorithmsfor separable nonnegative matrix fac-
torization, IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (4) (2014) 698-714.
doi:10+1109/tpami.2013.226.

URL http://dx.doi.org/10.1109/tpami.2013.226

A. N. Langyville, C. D. Meyer, R. Albright, Initializations for the nonnegative matrix factorization
(KDD 2006).

B. Scholkopf, A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond, MIT Press, Cambridge, MA, USA, 2001.

35



493

494

495

500

501

502

[48]

[49]

[50]

[51]

[52]

[53]

T.-M. Huang, V. Kecman, I. Kopriva, Kernel Based Algorithms for Mining Huge Data Sets: Su-
pervised, Semi-supervised, and Unsupervised Learning (Studies in Computational Intelligence),

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

D. Cai, X. Wang, X. He, Probabilistic dyadic data analysis with local and global consistency, in:
Proceedings of the 26th Annual International Conference on Machine Learning - ICML 09, Associ-
ation for Computing Machinery (ACM), 2009. doi:10.1145/1553374.1553388.

URL http://dx.doi.org/10.1145/1553374. 1553388

X. Niyogi, Locality preserving projections, in: Neural information processing systems, Vol. 16, MIT,

2004, p. 153.

J. J.-Y. Wang, J. Z. Huang, Y. Sun, X. Gao, Feature selection and multi-kernel learning for adaptive
graph regularized nonnegative matrix factorization, Expert Systefns with"Applications 42 (3) (2015)
1278-1286. doi:10.1016/j.eswa.2014.09.008.

URL http://dx.doi.org/10.1016/j.eswa.2014.09.008

A. Frank, A. Asuncion, Uci machine learning repository, http://archive.ics.uci.edu/ml/.

F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in:
Proceedings of 1994 IEEE Workshop on Applications’ of Computer Vision, Institute of Electrical and
Electronics Engineers (IEEE). doi:10.1109/acv.1994.341300.

URL http://dx.doi.org/10.11097acv.1994.341300

36



ACCEPTED MANUSCRIPT

Biographies of authors @
o

2015

. oY

2015

5HY

K

2015

1 8

2001 2005 2006

S
K



