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Highlights

• Subspace clustering is solved from nonlinear orthogonal NMF perspective.

• General kernel-based multiplicative orthogonal updates for NMF are derived.

• Explicit orthogonality constraint excludes the usual k-means clustering step.

• The local geometric structure is included via fully connected graph regularization.

• A connection between spectral clustering and kernel orthogonal NMF is established.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to
Subspace Clustering

Dijana Tolić1

Laboratory for Machine Learning and Knowledge Representations, Ruder Bošković Institute, Zagreb, Croatia, Bijenicka
cesta 54, 10000 Zagreb, Croatia

Nino Antulov-Fantulin

ETH Zürich, Swiss Federal Institute of Technology, Clausiusstrasse 50, COSS, CLU, 8092 Zürich, Switzerland

Ivica Kopriva
Laboratory for Machine Learning and Knowledge Representations, Ruder Bošković Institute, Zagreb, Croatia, Bijenicka

cesta 54, 10000 Zagreb, Croatia

Abstract

A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF)

and spectral clustering based approach to subspace clustering. As NMF and many of its variants are

essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernel-

based orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlinear

orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based non-

negative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral

normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and

introduce a graph regularization to obtain a factorization that respects a local geometric structure of the

data after the nonlinear mapping. The proposed NMF-based approach to subspace clustering takes into

account the nonlinear nature of the manifold, as well as its intrinsic local geometry, which considerably

improves the clustering performance when compared to the several recently proposed state-of-the-art

methods.

Keywords: subspace clustering, non-negative matrix factorization, orthogonality, kernels, graph

regularization

Introduced in [1] as a parts-based low-rank representation of the original data matrix, non-negative1

matrix factorization (NMF) has shown to be a useful decomposition of multivariate data [2, 3, 4]. The2

most important feature of NMF is the non-negativity of all elements of the matrices involved, which3

allows an additive parts-based decomposition of the data. This non-negativity is often encountered in4

real world data, providing a natural interpretation in contrast to other decomposition techniques that5

1Corresponding author - email: dijana.tolic@irb.hr, tel: +385 1 457 1352
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allow negative combinations (such as SVD). Related NMF factorizations include convex NMF, orthogonal6

NMF and kernel NMF [5, 6, 7, 8, 9, 10].7

The key idea in subspace clustering is to construct a weighted affinity graph from the initial data set,8

such that each node represents a data point and each weighted edge represents the similarity based on9

distance between each pair of points (e.g. the Euclidean distance). Spectral clustering then finds the10

cluster membership of the data points by using the spectrum of an affinity graph.11

State-of-the-art methods in single view subspace clustering learn affinity graph matrix by imposing12

sparseness [11], low-rank [12] or jointly sparseness and low-rank constraints [13] on representation matrix.13

In multi-view subspace clustering representation matrices across views can be learnt by utilization of in-14

dependence criterion which decreases redundancy between representations [14]. Joint low-rank sparseness15

constrained approach can be extended to multi-view clustering [15]. The NMF methods proposed herein16

to handle single view subspace clustering problem can be extended to NMF-based multi-view subspace17

clustering [16]. Furthemore, the methods proposed by us could possibly improve perfomance further18

through post-processing step that re-assigns samples to more suitable clusters [17].19

Spectral clustering can be seen as a graph partition problem and solved by the eigenvalue decom-20

position of the graph Laplacian matrix [18, 19, 20, 21, 22]. In particular, there is a close relationship21

between the eigenvector corresponding to the second eigenvalue of the Laplacian and the graph cut22

problem [23, 24]. However, the complexity of optimizing graph cut objective function is high, e.g. the23

optimization of the normalized cut (Ncut) is known to be an NP-hard problem [5, 25, 26, 27]. Spectral24

clustering seeks to get the relaxed solution, which is an approximate solution for the graph partition.25

Compared with conventional clustering algorithms, spectral clustering has advantages to converge to26

global optimum and performs well for the sample space of arbitrary shape [26, 18, 19, 28].27

Despite empirical success of spectral clustering, one drawback is that a mixed-signed result given28

by the eigenvalue decomposition of the Laplacian may lack clustering interpretability or degrade the29

clustering performance [2]. The computational complexity of the eigenvalue decomposition is O(n3),30

where n denotes the number of points. To avoid the computation of eigenvalues and eigenvectors, a31

recently established connection of the spectral clustering and non-negative matrix factorization (NMF)32

was utilized in [29, 30] and [31]. As pointed out in [30], the formulation of non-negative spectral clustering33

is motivated by practical reasons: (i) one can use the update algorithms of NMF to solve spectral34

clustering, and (ii) NMF framework can easily incorporate additional constraints to spectral clustering35

algorithms.36

It was shown in [30] that spectral clustering Ncut can be treated as a symmetric NMF problem of37

the graph affinity matrix constructed from the data matrix. Similary, it was also proven that the Rcut38

spectral clustering is equivalent to the symmetric NMF of the graph affinity matrix, introducing the39

non-negative Laplacian embedding (NLE) [31]. Both results [30, 31] only factorize the graph affinity40
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matrix, imposing the assumption that the input data comes in as a matrix of pairwise similarities. The41

factorization of the graph affinity matrix was replaced with the factorization of the data matrix itself42

in [29], and including an additional global discriminative regularization term in [32]. However, both43

NMF-based NSC methods [29, 32], minimize data fidelity term in the linear input space.44

In this paper we propose a nonlinear orthogonal NMF approach to subspace clustering. We estab-45

lish an equivalence with spectral clustering and propose two non-negative spectral clustering algorithms,46

named kernel-based non-negative spectral clustering KNSC-Ncut and KNSC-Rcut. To further explore the47

nonlinear orthogonal NMF framework, we also introduce a graph regularization term [4] which captures48

the intrinsic local geometric structure in the nonlinear feature space. By preserving the geometric struc-49

ture, the graph regularization term allows the factorization method to have more discriminating power50

for clustering data points sampled from a submanifold which lies in a higher dimensional ambient space51

[4].52

Recently, a similar connection between kernel PCA and spectral methods has been shown in [33, 18,53

28, 34]. Our method gives an insight into the connection between kernel NMF and spectral methods,54

where the kernel matrix from multiplicative updates corresponds to the nonlinear graph affinity matrix55

in spectral clustering. Different from [29, 32, 30, 31], our equivalence is established by directly factorizing56

the nonlineary mapped input data matrix. To the best of our knowledge, this is the first approach to57

non-negative spectral clustering that uses kernel orthogonal NMF.58

By constraining the orthogonality of the clustering matrix during the nonlinear NMF updates, the59

cluster membership can be obtained directly from the orthogonal clustering matrix, avoding the need60

of usual k-means clustering [29, 30, 31, 32]. The proposed approach has a total run-time complexity of61

O(kn2) for clustering n data points to k clusters, which is less than standard spectral clustering methods62

O(n3) and the same complexity as the state-of-the-art methods [29, 32, 35].63

We perform a comprehensive analysis of our approach, including the convergence proofs for the kernel-64

based graph regularized orthogonal multiplicative update rules. We conduct extensive experiments to65

compare our methods with other non-negative spectral clustering methods and further perform the sen-66

sitivity analysis of the parameters used in our approach. We highlight here the main contributions of the67

paper:68

1. We formulate a nonlinear NMF with explicitly enforced orthogonality to address the subspace69

clustering problem.70

2. We derive kernel-based orthogonal multiplicative updates to solve the constrained non-convex71

nonlinear NMF problem. We perform the convergence analysis for the multiplicative updates and give72

the convergence proofs using an auxiliary function approach [36].73

3. We formulate a nonlinear (kernel-based) orthogonal graph regularized NMF approach to subspace74

clustering. The ability of the proposed method to exploit both the nonlinear nature of the manifold as75
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well as its local geometric structure considerably improves the clustering performance.76

4. The proposed clustering algorithms provide an insight into the connection between the spectral77

clustering methods and kernel NMF, where the kernel matrix in the kernel-based NMF multiplicative78

updates corresponds to the nonlinear graph affinity matrix in Ncut and Rcut spectral clustering.79

The rest of the paper is organized as follows: in Section 1 we present a brief overview of the NMF-80

based spectral clustering. In Section 2, we propose our framework and present three non-negative spectral81

clustering algorithms, along with the theoretical results on the equivalence of our approach and non-82

negative spectral clustering. In Section 3, we compare our methods to the 9 recently proposed non-83

negative spectral clustering methods on 6 data sets. Lastly, we give the conclusions in Section 4.84

1. Related work85

We denote all matrices with bold upper case letters, all vectors with bold lower case letters. AT
86

denotes the transpose of the matrix A, and A−1 denotes the inverse of the matrix A. I denotes the87

identity matrix. The Frobenius norm is denoted as ‖ · ‖F . The trace of the matrix is denoted with Tr(·).88

In Table 1 we summarize the rest of the notation.89

Table 1: Notations

Notation Definition

m the dimensionality of a data set

n the number of data points

k the number of clusters

L the Lagrangian

K ∈ Rn×n the kernel matrix

X ∈ Rm×n the input data matrix

A ∈ Rn×n the graph affinity matrix

D ∈ Rn×n the degree matrix based on A

L ∈ Rn×n the graph Laplacian

Lsym ∈ Rn×n the normalized graph Laplacian

Φ(X) ∈ RD×n the nonlinear mapping

H, Z ∈ Rk×n the cluster indicator matrices

V ∈ Rm×k the basis matrix in input space

F ∈ Rn×k the basis matrix in mapped space

1.1. Definitions90

The task of subspace clustering is to find a low-dimensional subspace to fit each group of data points

[37, 38, 39, 40]. LetX ∈ Rm×n denote the data matrixm×n which is comprised of n data points xi ∈ Rm,

drawn from a union of k linear subspaces S1 ∪ S2 ∪ ...∪ Sk of dimensions {mi}ki=1. Let Xi ∈ Rm×ni be a

submatrix of X of rank mi with
∑k

i=1 ni = n. Given the input matrix X, subspace clustering assigns data
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points according to their subspaces. The first step is to construct a weighted similarity graph G(V,E)

from X, such that each node from the node set V = {1, 2, ..., n} represents a data point xi ∈ Rm and

each weighted edge represents a similarity based on distance (e.g. the Euclidean distance) between the

corresponding pair of nodes. Typical methods to construct the similarity graph are ε-neighbourhood

graphs, k-nearest neighbour graphs and fully connected graphs with Gaussian similarity function [4, 41].

Spectral clustering then finds the cluster membership of data points by using the spectrum of the graph

Laplacian matrix. Let A ∈ Rn×n be a symmetric affinity matrix of the graph and Aij ≥ 0 be the pairwise

similarity between the nodes. The degree matrix D based on A is defined as the diagonal matrix with

the degrees d1, ..., dn on the diagonal, where the degree di of a node i is

di =
∑

j=1

Aij (1)

Given a weighted graph G(V,E) its unnormalized graph Laplacian matrix L is given as [42]

L = D−A (2)

The symmetric normalized graph Laplacian matrix Lsym is defined as

Lsym = D−1/2LD−1/2 = I−D−1/2AD−1/2 (3)

where I is the identity matrix.91

1.2. Graph cuts92

The spectral clustering can be seen as partitioning a similarity graph G(V,E) into a set of nodes S ⊂ V
separated from the complementary set S̄ = V \S. Depending on the choice of the function to optimize,

the graph partition problem can be defined in different ways. The simplest choice of the function is the

cut s(S, S̄) defined as s(S, S̄) =
∑

vi∈S,vj∈S̄ Aij . To achieve a better balance in the cardinality of S and

S̄, the Ncut and Rcut optimization functions are proposed [42, 43, 44]. Let hl be the indicator vector for

cluster Cl, i.e. hl(i) = 1 if xi ∈ Cl, otherwise hl(i) = 0, then |Cl| = hlhT
l . The cluster indicator matrix

H ∈ Rk×n can be defined as

HT =

(
h1

‖h1‖
,
h2

‖h2‖
, ...,

hk

‖hk‖

)
(4)

Evidently, HHT = I. Rcut spectral clustering can be formulated as the following optimization problem

min
H

Tr
(
HLHT

)
s.t. HHT = I (5)

where Tr(·) denotes the trace of a matrix and L is the graph Laplacian. Similarly, define the cluster

indicator vector as zk = D1/2hk/‖D1/2hk‖ and the cluster indicator matrix as ZT = (z1, z2, ..., zk) where

Z ∈ Rk×n. Then Ncut is formulated as the minimization problem

min
Z

Tr
(
ZLsymZT

)
s.t. ZZT = I (6)
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By allowing the cluster indicator matrices (H, Z) to be continuous valued the problem is solved by93

eigenvalue decomposition of the graph Laplacian matrix given in Eqs. (2) and (3) [18, 19, 28].94

1.3. NMF approach to non-negative spectral clustering95

The connection between the Ncut spectral clustering and symmetric NMF has been established in

[30]

D−1/2AD−1/2 = HTH, s.t. H ≥ 0. (7)

According to the Theorem 2 from [30], enforcing symmetric factorization approximately retains the

orthogonality of H. Similary, according to the Theorem 5 from [31] the Rcut spectral clustering has been

proved to be equivalent to the following symmetric NMF problem

A−D + σI = HTH, s.t. HHT = I, H ≥ 0 (8)

where σ is the largest eigenvalue of the graph Laplacian matrix L and the matrix H ∈ Rk×n contains

cluster membership information that data point xi belongs to the cluster ci

ci = argmax Hji
1≤j≤k

. (9)

In Eqs. (7) and (8) a factorization of n× n symmetric similarity matrix A has a complexity O(kn2) for96

k clusters.97

Based on the results [30, 31], in [29] it is proved that for non-negative input data matrix X, and

fully connected graph affinity matrix A given as the standard inner product A = XTX, Ncut spectral

clustering is equivalent to the NMF of the scaled input data matrix (NSC-Ncut)

D−1/2XT ≈ ZTY s.t. ZZT = I,Z ≥ 0 (10)

with cluster indicator matrix Z ∈ Rk×n. Similarly, the Theorem 2 [29] establishes the connection of Rcut

non-negative spectral clustering (NSC-Rcut) and NMF problem

XT ≈ HTY s.t. HHT = I,H ≥ 0 (11)

with cluster indicator matrixH ∈ Rk×n. Both NMF-based approaches to non-negative spectral clustering98

(10) and (11) are formulated in the input data space as a factorization of an input data matrix X ∈ Rm×n
99

with the complexity O(nmk) [29]. The matrix factorization in Eqs. (10) and (11) is limited to the graph100

affinity matrix defined as an inner product of the input data matrix.101

Furthermore, the global discriminative NMF-based NSC model introduced in [32], includes an addi-102

tional nonlinear discriminative regularization term to the NMF optimization function proposed in [29].103

As shown in [32], the global discriminant information greatly improves the accuracy of NSC-Ncut and104

NSC-Rcut [29]. Although in [32] the nonlinear character of the manifold is taken into account through105

the nonlinear discriminative matrix, the NMF data fidelity terms are still defined in the input data space.106
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2. Nonlinear orthogonal NMF approach to subspace clustering107

In this section we develop a nonlinear orthogonal NMF approach to subspace clustering and establish108

its equivalence with Ncut and Rcut spectral clustering algorithms. We generalize the NMF objective109

function to a nonlinear transformation of the input data and derive kernel-based NMF update rules with110

explicitly imposed orthogonality constraints on the clustering matrix H (or Z). Enforcing the explicit111

orthogonality into the multiplicative rules allows obtaining the cluster membership directly from the112

cluster indicator matrix. In this way, we obtain a formulation of the nonlinear NMF that explicitly113

addresses the subspace clustering problem.114

2.1. Kernel-based orthogonal NMF mutiplicative updates115

In this paper we emphasize the orthogonality of the nonlinear NMF to keep the clustering interpre-116

tation while taking into account the nonlinearity of the space data are drawn from. We enforce rigorous117

orthogonality constraint into the NMF optimization problem and seek to obtain kernel-based orthogonal118

multiplicative update rules to solve it.119

Let X = (x1,x2, ...xn) ∈ Rm×n be the data matrix of non-negative elements. The NMF factorizes X

into two low-rank non-negative matrices

X ≈ VH (12)

where V = (v1,v2, ...,vk) ∈ Rm×k and HT = (h1,h2, ...,hk) ∈ Rn×k and k is a prespecified rank

parameter. Generally, the rank of matrices V and H is much lower than the rank of X (i.e., k �
min(m,n)). The non-negative matrices V and H are obtained by solving the following minimization

problem

min
V,H≥0

‖X−VH‖2F (13)

Consider now a nonlinear transformation (a mapping) to the higher D-dimensional (or infinite) space

xi → Φ(xi) or X → Φ(X) = (Φ(x1),Φ(x2), ...,Φ(xn)) ∈ RD×n. The nonlinear NMF problem aims to

find two non-negative matrices W and H whose product can approximate the mapping of the original

matrix Φ(X)

Φ(X) ≈WH (14)

For instance, we can consider nonlinear data set composed of two rings as in Fig. 1. The standard linear

NMF (13) [45] is not able to separate the two nonlinear clusters. Compared with the solution of Eq.

(17), the nonlinear NMF is able to produce the nonlinear separating hypersurfaces between the clusters.

We formulate the objective function for the nonlinear orthogonal NMF as

min
H,F≥0

‖Φ(X)−WH‖2F s.t. HHT = I (15)

Here, W is the basis in feature space and H is the clustering matrix. It is worth noting that since

Φ can be infinite dimensional, it is impossible to directly factorize Φ(X) [22, 21, 7]. In what follows we
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Figure 1: Clustering with NMF (left) and nonlinear NMF (right). We apply the nonlinear NMF (KNSC-Ncut) (35) with

Gaussian kernel (right) and linear NMF introduced in [1] to the synthetic data set composed of two rings and denote the

cluster memberships with different colors. The nonlinear NMF is able to produce the nonlinear separating hypersurfaces

between the two rings.

will derive a practical method to solve this problem, and keep the rigorous orthogonality imposed on

the clustering matrix. Following [7] we restrict W to be a linear combination of transformed input data

points, i.e., assume that W lies in the column space of Φ(X)

W = Φ(X)F (16)

The equation (16) can be interpreted as a simple transformation to the new basis, leading to the following

minimization problem

min
H,F≥0

‖Φ(X)− Φ(X)FH‖2F , s.t. HHT = I (17)

The optimization problem of Eq. (17) is convex in either F or H, but not in both, meaning that the120

algorithm can only guarantee convergence to a local minimum [46]. The standard way to optimize (17)121

is to adopt an iterative, two-step strategy to alternatively optimize (F,H). At each iteration, one of the122

matrices (F,H) is optimized while the other one is fixed. The resulting multiplicative update rules with123

explicitly included orthogonality constraints are obtained as124

Hij ← Hij
(αFTK + 2µH)ij

(αFTKFH + 2µHHTH)ij
(18)

Fjl ← Fjl
(KHT)jl

(KFHHT)jl
(19)

where K ∈ Rn×n is the kernel matrix [47, 48] defined as K ≡ ΦT(X)Φ(X), where Φ(X) is a feature125

matrix in a nonlinear infinite-dimensional feature space.126

We discuss two issues: (i) convergence of the algorithm, (ii) correctness of the converged solution.

Correctness. The correctness of the solution is assured by the fact that the solution at convergence
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will satisfy the Karush-Kahn-Tucker (KKT) conditions for (17). The Lagrangian L of the the above

optimization problem (17) is

L = αTr[Φ(X)ΦT(X)]− 2αTr[Φ(X)FHΦT(X)] + αTr[Φ(X)FHHTFTΦT(X)] + µ‖HHT − Ik‖2F (20)

By computing the partial derivatives of (20) with respect to H and F, we obtain

∂L
∂H

= −2αFTΦT(X)Φ(X) + 2αFTΦT(X)Φ(X)FH + 4µH(HTH− In×n) (21)

∂L
∂F

= −αΦT(X)Φ(X)HT + αΦT(X)Φ(X)FHHT (22)

Substituting the quadratic terms with the kernel matrix K = ΦT(X)Φ(X) yields

α(FTKFH− FTK) + 2µH(HTH− In×n) = 0 (23)

−2αKHT + 2αKFHHT = 0 (24)

Defining the Lagrange multiplier matrix for constraint H ≥ 0 as Ψ = [ψij ] gives the KKT condition

ψijHij = 0. Similarly, the Lagrange multiplier matrix for constraint F ≥ 0 is given by Ξ = [ξjl] and

ξijFij = 0. We obtain

[α(FTKFH− FTK) + 2µH(HTH− In×n)]ijHij = 0 (25)

[2αKFHHT − 2αKHT]jlFjl = 0 (26)

Separating positive and negative parts of the gradient leads to the multiplicative update rules (33)127

and (32).128

Convergence. The convergence is proved by following the auxiliary function method in [7, 31]. As129

shown in [7], these update rules guarantee the decrease of the error and eventual convergence to local130

minima. Note that in [7] a more general proof of the convergence can be obtained, for semi-nonnegative131

matrix factorization, where input data matrix is negativeX < 0. We provide the proof for the convergence132

in the Appendix B.133

2.2. Kernel-based orthogonal NMF and spectral clustering134

A connection between spectral clustering and factorization of the graph affinity matrix A was demon-

strated in [30] for Ncut spectral clustering, and for Rcut spectral clustering in [31]. It was also shown

that the spectral clustering can be viewed as a factorization of the (scaled) data matrix itself [29]. Our

question is whether the spectral clustering can be viewed as a non-negative factorization of the input

10
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data matrix mapped to a nonlinear feature space. From Eq. (12) it can be seen that the Ncut spectral

clustering is equivalent to the optimization problem

max
Z≥0

Tr
(
ZD−1/2AD−1/2ZT

)
s.t. ZZT = I (27)

Theorem 1. Let X ≥ 0 denote the input data matrix. Let the similarity between the data points be defined135

as the inner product in the nonlinear feature space, i.e. the graph affinity matrix A = ΦT(X)Φ(X). Then136

the k-way Ncut spectral clustering (27) is equivalent to the non-negative matrix factorization of the scaled137

input data matrix mapped to the nonlinear feature space Φ(X)D−1/2 = WZ subject to ZZT = I, where138

W = Φ(X)F and Z and F are two non-negative matrices, and the columns of Z serve as a clustering139

indicator vector of each data point.140

The proof of the Theorem 1 is given in the Appendix A. Theorem 1 shows that Ncut spectral clustering141

can be viewed as a nonlinear orthogonal NMF problem with the scaling factor D−1/2. For the Rcut142

spectral clustering we cannot obtain an exact equivalence. However, we can relax the Rcut spectral143

clustering and get an equivalence between the relaxed Rcut spectral clustering and nonlinear orthonormal144

NMF.145

Theorem 2. Let X ≥ 0 denote the input data matrix. Let the similarity between the data points be146

defined by inner product in nonlinear feature space i.e. the affinity matrix A = ΦT(X)Φ(X). Then the147

k-way relaxed Rcut spectral clustering (11) is equivalent to the non-negative matrix factorization of the148

data matrix Φ(X) = WH subject to HHT = I, where W = Φ(X)F and H and F are two non-negative149

matrices, and the columns of H serve as a clustering indicator vector of each data point.150

The proof of the Theorem 2 is given in the Appendix A. Theorems 1 and 2 establish the nonlinear or-151

thogonal NMF approach to non-negative spectral clustering. Our assumptions include that the similarity152

graph is fully connected and the similarity matrix A is given by the kernel K = ΦT(X)Φ(X). Similarly153

to this result, it was shown in [30] that the standard inner-product matrix A = XTX can be extended154

to any other kernel by a nonlinear transformation to a higher dimensional space.155

To solve Ncut and Rcut spectral clustering we employ the kernel-based multiplicative update rules

with orthonormal constraints. Considering the equivalence and solving the two optimization problems

we obtain kernel-based non-negative spectral clustering for Ncut (KNSC-Ncut)

min
Z,F≥0

‖Φ(X)D−1/2 − Φ(X)FZ‖2F , s.t. ZZT = I (28)

with the following multiplicative update rule156

Zij ← Zij
(αFTKD−1/2 + 2µZ)ij

(αFTKFZ + 2µZZTZ)ij
(29)

Fjl ← Fjl
(KZT)jl

(KFZZT)jl
(30)
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The parameter µ can be set so that the orthogonality of the matrix Z is preserved during the updates.

An exact orthogonality of the clustering matrix Z implies each column of Z can have only one non-zero

element, which implies that each data object belongs only to one cluster. This is hard clustering, such as

in k-means [30, 5]. Furthermore, KNSC-Ncut has a soft clustering intepretation [1, 31, 30] where a data

point could belong fractionally to more than one cluster. The soft clustering membership of data point

xi to cluster j can be defined as a probability distribution ci,j = Zji/
∑

k Zki. We summarize the KNSC-

Ncut algorithm in the Algorithm 1. Similarly, the optimization problem for kernel-based non-negative

spectral clustering for Rcut (KNSC-Rcut)

min
H,F≥0

‖Φ(X)− Φ(X)FH‖2F , s.t. HHT = I (31)

gives the multiplicative update rule for KNSC-Rcut

Hij ← Hij
(αFTK + 2µH)ij

(αFTKFH + 2µHHTH)ij
(32)

Fjl ← Fjl
(KHT)jl

(KFHHT)jl
(33)

and summarize the KNSC-Rcut algorithm in Algorithm 2.

Algorithm 1 Kernel-based non-negative spectral clustering for Ncut (KNSC-Ncut)

Input: X ∈ Rm×n, K ∈ Rn×n, A ∈ Rn×n, number of clusters k

Output: clustering matrix Z ∈ Rk×n, vector of cluster memberships ci = argmax Zji
1≤j≤k

Initialize two non-negative matrices Z ∈ Rk×n and F ∈ Rn×k with random numbers generated in the

range [0, 1].

Calculate the degree matrix D = diag(d1, ...dn)

di =
∑

j=1

Aij (34)

repeat

Zij ← Zij
(αFTKD−1/2 + 2µZ)ij

(αFTKFZ + 2µZZTZ)ij

Fjl ← Fjl
(KZT)jl

(KFZZT)jl

until Stopping criterion is reached

157

The convergence of the multiplicative update rules (29)– (30), and (32)–(33), has been proved in158

Appendix B by the auxiliary function method. These update rules guarantee the decrease of error and159
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Algorithm 2 Kernel-based non-negative spectral clustering for Rcut (KNSC-Rcut)

Input: X ∈ Rm×n, K ∈ Rn×n, number of clusters k

Output: clustering matrix H ∈ Rk×n, vector of cluster memberships ci = argmax Hji
1≤j≤k

Initialize two non-negative matrices H ∈ Rk×n and F ∈ Rn×k with random numbers generated in the

range [0, 1].

repeat

Hij ← Hij
(αFTK + 2µH)ij

(αFTKFH + 2µHHTH)ij

Fjl ← Fjl
(KHT)jl

(KFHHT)jl

until Stopping criterion is reached

eventually converge to a local minima [7]. In our experiments, we have set the maximum amount of160

iterations to 300 (usually 100 iterations are enough) and we use the convergence rule Ei−1 − Ei ≤161

κmax(1, Ei−1) in order to stop the updates when the reconstruction error (Ei) between the current and162

previous update is small enough. We have set the κ = 10−3.163

The two proposed algorithms have a run-time complexity of O(kn2) for clustering n data points to164

k clusters, which is less than standard spectral clustering methods O(n3) and the same complexity as165

the state-of-the-art methods [29, 32, 35]. The main advantage of the kernel-based NMF approach is166

that it can be easily optimized to achieve higher clustering accuracy for the data drawn from nonlinear167

manifolds, avoiding the computation of eigenvalues and eigenvectors.168

2.3. Graph regularized kernel-based orthogonal NMF169

A non-negative matrix factorization that respects the geometric structure of the data in the nonlinear

feature space can be constructed by introducing an additional graph regularization term into the objective

function (17). Recall that our nonlinear NMF tries to find a set of basis vectors that can be used to best

approximate the data Φ(X) = WH. Let hj denote the j-th column of H, hj = [hj1, ..., hjk], then hj can

be regarded as the new representation of the j-th data point with respect to the new basis W = Φ(X)F.

The graph regularization term can be viewed as a local invariance assumption [41, 49, 50], which states

that if two data points Φ(xi) and Φ(xj) are close to each other in the original geometry of the data

distribution, then hj and hl, the low dimensional representations of these two points, are also close to

each other. This can be written as

R =
1

2

n∑

j,l=1

‖hj − hl‖2FAjl =

n∑

j=1

hjhT
jDj,j −

n∑

j,l=1

hjhT
l Aj,l = Tr(HLHT) (35)

By minimizing the regularization term R with respect to H, we expect that when Φ(xi) and Φ(xj) are

close (i.e. when Ajl is large) the points hj and hl are also close with respect to the new basis. The
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objective function for nonlinear orthogonal graph regularized NMF is given as

min
H,F≥0

α‖Φ(X)− Φ(X)FH‖2F + λTr(HLHT), s.t. HHT = I (36)

By adopting the same iterative procedure to alternatively fix one of the matrices F and H, we solve the

minimization problem (36) and obtain the multiplicative update rules

Hij ← Hij
(αFTK + 2µH + λHA)ij

(αFTKFH + 2µHHTH + λHD)ij
(37)

Fjl ← Fjl
(KHT)jl

(KFHHT)jl
(38)

where K is the kernel matrix. There are many choices to define the weight matrix A of the graph.170

For example, the scalar product weighting and the cosine similarity are most suitable for processing171

documents, while for image data the heat kernel is commonly used [51, 4, 41]. We will use the fully172

connected affinity graph with the Gauss kernel weighting, as we do not treat different weighting schemes173

separately.174

Correctness. The correctness of the solution is assured by the fact that the solution at conver-

gence will satisfy the KKT conditions for the optimization problem (36). The Lagrangian L of the the

optimization problem (36) can be written as

L = αTr[Φ(X)ΦT(X)]− 2αTr[Φ(X)FHΦT(X)] + αTr[Φ(X)FHHTFTΦT(X)]+

+µ‖HHT − Ik‖2F + λTr[HDHT]− λTr[HAHT] (39)

We calculate the partial derivatives of (39) with respect to H and F

∂L
∂H

= −2αFTΦT(X)Φ(X) + 2αFTΦT(X)Φ(X)FH + 4µH(HTH− In×n) + 2λHD− 2λHA (40)

∂L
∂F

= −αΦT(X)Φ(X)HT + αΦT(X)Φ(X)FHHT (41)

Substituting the quadratic terms with kernel matrix gives

α(FTKFH− FTK) + 2µH(HTH− In×n) + λHL = 0 (42)

−2αKHT + 2αKFHHT = 0 (43)

Defining the Lagrange multiplier matrix for constraint H ≥ 0 as Ψ = [ψij ], the KKT condition is

ψijHij = 0. Similarly, the Lagrange multiplier matrix for constraint F ≥ 0 is given by Ξ = [ξjl] and we

obtain

[α(FTKFH− FTK) + 2µH(HTH− In×n) + λHL]ijHij = 0
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[2αKFHHT − 2αKHT]jlFjl = 0 (44)

We separate positive and negative parts of the gradient and obtain multiplicative update rules (37) and175

(38). By setting λ = 0 the update rules in Eq. (37) and (38) reduce to the update rules of the KONMF.176

We summarize the graph regularized kernel-based orthogonal NMF in the Algorithm 3.177

Algorithm 3 Kernel-based orthogonal graph regularized NMF (KOGNMF)

Input: X ∈ Rm×n, number of clusters k, K ∈ Rn×n, A ∈ Rn×n

Output: clustering matrix H, vector of cluster memberships ci = argmax Hji
1≤j≤k

Initialize two non-negative matrices H ∈ Rk×n and F ∈ Rn×k with random numbers generated in the

range [0, 1].

Calculate the degree matrix D = diag(d1, ...dn)

di =
∑

j=1

Aij

repeat

Hij ← Hij
(αFTK + 2µH + λHA)ij

(αFTKFH + 2µHHTH + λHD)ij

Fjl ← Fjl
(KHT)jl

(KFHHT)jl

until Stopping criterion is reached

The proposed algorithm has two additional matrix multiplications HA and HD with complexity of178

O(kn2). Therefore, the total run-time complexity is unchanged and equal to O(kn2) for clustering n data179

points to k clusters. The convergence proof for the multiplicative updates (37)-(38)can be found in the180

Appendix B.181

3. Experiments182

In this section we carry out extensive experiments on synthetic and real world data sets to illustrate183

the effectiveness of the three proposed algorithms: KNSC-Ncut, KNSC-Rcut and KOGNMF. We compare184

nine recently proposed non-negative spectral clustering algorithms [29, 31, 32] and traditional Ncut and185

Rcut spectral clustering methods [19, 26]. Our experimental setting is similar to [29, 32]. For the purpose186

of reproducibility we provide the code and data sets (see supplementary files).187
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3.1. Data sets and the evaluation metric188

We have used the same data sets as in [29, 30, 32]: five UCI [52] data sets and AT&T face database189

[53]. The UCI datasets are Soybean, Zoo, Glass, Dermatology and Vehicle. The AT&T face database190

consists of gray scale face images of 40 persons. Each person has 10 facial images under different light and191

illumination conditions and the images from the same person belong to the same cluster. The important192

statistics of these data sets are summarized in the Table 2, including the number of samples, dimensions193

and the number of clusters.194

Table 2: Features of the UCI and AT&T data sets

Datasets Samples Dimension Clusters

Soybean 47 35 4

Zoo 101 16 7

AT&T 400 10304 40

Glass 214 9 6

Dermatology 366 33 6

Vehicle 846 18 4

The clustering accuracy is evaluated by the common clustering accuracy measure [29, 31, 32], which

computes the percentage of data points that are correctly clustered with respect to the external ground

truth labels. For each data point xi it’s label is denoted with ci and the ground truth cluster index with

gi. In order to calculate the optimal assignment of labels to cluster indicies f(ci), the Hungarian bipartite

matching algorithm [52] is used, with the complexity O(k3) for k clusters. The clustering accuracy can

be expressed as:

ACC =

∑n
i=1 δ(gi, f(ci))

n
, (45)

where n denotes the total number of data points and the δ function is defined as

δ(gi, ci) =





1 : gi = f(ci),

0 : gi 6= f(ci).

3.2. Compared algorithms195

We compare our methods to nine recently proposed non-negative spectral clustering approaches and196

traditional spectral clustering Ncut and Rcut methods:197

• Normalized cut (Ncut) and ratio cut (Rcut) spectral clustering. Ncut spectral clustering exists198

in different normalizations [19, 28]. Our implementation is according to Ncut from [19], where199

eigenvectors of normalized Laplacian matrix Z are normalized such that the L2 norm of each row200

equals 1.201
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• Non-negative spectral clustering methods NSC-Ncut, NSC-Rcut, and non-negative sparse spectral202

clustering methods NSSC-Ncut and NSSC-Rcut from [29].203

• Global discriminative-based nonnegative spectral clustering methods [32] GDBNSC-Ncut and GDBNSC-204

Rcut.205

• Symmetric NMF for spectral clustering [31] (NLE). This is the symmetric NMF of the pairwise206

affinity matrix, which is originally implemented as the standard inner product linear kernel matrix207

A = XTX.208

3.3. Clustering results209

We perform n = 256 independent runs with random initializations for each of the proposed methods210

KNSC-Ncut, KNSC-Rcut and KOGNMF. In each run, we randomly initialize matrices (H,Z,F) and211

then iterate multiplicative update rules to achieve convergence and obtain cluster indicator matrix. In all212

experiments we have used 300 iterations and the convergence occurred after approximately 100 iterations.213

The cluster memberships for each data point i is obtained by taking the index of the maximal value of214

i-th column in the orthogonal clustering matrix H (or Z). For the Rcut and Ncut, the first k eigenvectors215

are computed once and then 256 runs of k -means are performed.216

In Fig. 2 we plot the clustering performance of the NSC-Ncut and KNSC-Ncut on two-dimensional217

synthetic examples. The synthetic example demonstrates the ability of KNSC-Ncut to separate the218

nonlinear clusters with high clustering accuracy. In Fig. 3, 4 and 5 we plot the average clustering219

accuracy over 256 runs on the six data sets. The average clustering accuracy is reported for independent220

number of runs 2i, where i = 1, 2, ..., 8. The average clustering accuracy for the Ncut group of algorithms221

is plotted in the Fig. 3. In the Fig. 4 the average clustering accuracy is plotted for the Rcut group.2222

The average clustering accuracy of KOGNMF is shown in Fig. 5. We summarize the average clustering223

accuracy results for the Ncut and the Rcut group of algorithms in Table 3. On data sets Dermatology,224

Glass, Zoo and AT&T, the KNSC-Ncut clustering accuracy is improved and KNSC-Ncut outperforms225

Ncut, NSC-Ncut, NSSC-Ncut and GDBNSC-Ncut. On the high dimensional AT&T face database the226

clustering accuracy of the KNSC-Ncut algorithm shows considerable improvement. On the Soybean and227

Vehicle data sets the KNSC-Ncut is comparable with the GDBNSC-Ncut. Similary, on Dermatology,228

Glass, Zoo, Vehicle and AT&T data set, KNSC-Rcut outperforms Rcut, NSC-Rcut, NSSS-Rcut and229

GDBNSC-Rcut. In Fig. 5 we plot the average clustering accuracy for the KOGNMF algorithm. The230

KOGNMF considerably outperforms all algorithms on every data set (Table 3).231

2The results in Table 3 for the GDBNSC method are reported from original work [32], however in Fig. 3, 4 and 5

the results for this method were omitted due to the numerical instabilities in reproduction of this method with reported

parameters [32].
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Figure 2: The optimized clustering results of the KNSC-Ncut algorithm comapred with the optimized clustering results of

the NSC-Ncut [29]. The two-dimensional data sets with 2 and 4 clusters are plotted in the first row, different clusters are

represented with different colors. In the second row we plot the clustering results of the NSC-Ncut. The clustering results

of the KNSC-Ncut algorithm are plotted in the third row. The clustering accuracy over 256 independent runs is 0.5, 0.7

and 0.62 for NSC-Ncut, and 0.90, 0.85 and 0.82 for the KNSC-Ncut, for the three data sets respectively. The KNSC-Ncut

is able to spearate the nonlinear data set composed of two rings of points with high clustering accuracy.
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Table 3: The average clustering accuracy on 5 UCI and AT&T data sets

Dermatology Glass Soybean Zoo Vehicle AT&T

Ncut 0.75 0.46 0.70 0.63 0.37 0.62

NSC-Ncut 0.71 0.25 0.71 0.61 0.39 0.35

NSSC-Ncut 0.71 0.34 0.71 0.66 0.41 0.02

GDBNSC-Ncut 0.82 0.41 0.79 0.65 0.46 0.38

KNSC-Ncut 0.87 0.50 0.78 0.80 0.45 0.70

Rcut 0.47 0.41 0.63 0.60 0.33 0.31

NSC-Rcut 0.66 0.25 0.69 0.61 0.38 0.35

NLE 0.34 0.25 0.47 0.49 0.28 0.20

NSSC-Rcut 0.67 0.26 0.69 0.61 0.38 0.35

GDBNSC-Rcut 0.73 0.36 0.80 0.64 0.388 0.36

KNSC-Rcut 0.87 0.45 0.75 0.65 0.45 0.69

KOGNMF 0.91 0.48 0.80 0.78 0.45 0.70

Table 3: The average clustering accuracy of KNSC-Ncut, KNSC-Rcut and KOGNMF compared with 9 recently proposed

NMF-based NSC methods on the 5 UCI [52] data sets and the AT&T face database [53]. KNSC-Rcut performs considerably

better on 4 data sets, and has a comparable accuracy on two data sets. KNSC-Nuct algorithm outperforms on 5 data sets,

and has a comparable clustering accuracy on one data set. KOGNMF algorithm has considerably better accuracy on 4 data

sets, including the difficult AT&T face images database, and is comparable on two data sets. All three algorithms have

considerably higher clustering accuracy on the difficult AT&T face database.

Table 4: The average clustering accuracy on the hold-out validation set

Datasets Dermatology Glass Soybean Zoo Vehicle AT&T

NLE 0.37 0.38 0.55 0.45 0.33 0.26

KNSC-Ncut 0.87 0.47 0.73 0.77 0.47 0.70

KNSC-Rcut 0.85 0.47 0.76 0.67 0.48 0.73

KOGNMF 0.89 0.49 0.76 0.78 0.48 0.73

Table 4: The hold-out validation consists of randomly splitting each data set into two equally sized parts with the equally

distributed cluster membership. The grid search optimization is performed on the first half of the data set, while the second

half is used as a hold-out validation where optimized parameters are used. For each data set, we measure the average score

over 256 independent runs on the hold-out data. We denote with bold our results that outperform the optimized clustering

accuracy scores of the state-of-the-art NSC methods without the hold-out validation. The KNSC-Ncut and KNSC-Rcut

algorithms have higher average clustering accuracy on the majority of data sets, while KOGNMF algorithm outperforms

on all six data sets.

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: The average clustering accuracy of KNSC-Ncut algorithm compared with Ncut, NSC-Ncut and NSSC-Ncut

algorithms on five UCI [52] data sets and AT&T face database [53]. The average clustering accuracy is plotted for the

independent number of runs 2i = {2, 4, ..., 256}. The clustering accuracy of KNSC-Ncut is higher on the majority of data

sets. The clustering accuracy for the AT&T face database is considerably improved when compared with the state-of-the-art

non-negative spectral clustering methods.
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Figure 4: The average clustering accuracy of KNSC-Rcut algorithm compared with Rcut, NSC-Rcut and NSSC-Rcut

algorithms on five UCI [52] data sets and AT&T face database [53]. The average clustering accuracy is plotted for the

independent number of runs 2i = {2, 4, ..., 256}. The KNSC-Rcut algorithm outperforms NSC algorithms on the majority

of data sets.
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Figure 5: The average clustering accuracy of KOGNMF algorithm on 5 UCI [52] data sets and AT&T face database. The

average clustering accuracy is plotted for the independent number of runs 2i = {2, 4, ..., 256}. The KOGNMF algorithm

outperforms all non-negative spectral clustering methods on every data set, including the difficult AT&T face database [53].
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Figure 6: Left: The average orthogonality of the clustering matrix H (KNSC-Rcut) over the 256 runs, plotted for fixed

reconstruction error parameter α = 10 and for a wide range of values of the orthogonality parameter µ on all six data sets.

Right: The average clustering accuracy of KNSC-Rcut for fixed α = 10 plotted for different values of the parameter µ. The

average orthogonality of the clustering matrix H increases up to 1 if the parameter µ is increased. The average clustering

accuracy is robust for all six data sets for a wide range of the trade-off parameter µ.

Figure 7: Left: The average orthogonality of the clustering matrix H (KNSC-Rcut) over the 256 runs, plotted for fixed

reconstruction error parameter α = 10 and orthogonality regularization parameter µ = 100 for different values of the graph

regularization parameter λ on all six data sets. Right: The average clustering accuracy of KNSC-Rcut for fixed parameters

α = 10 and µ = 100 plotted for different values of the parameter λ. The average clustering accuracy is robust for all six

data sets for a wide range of the trade-off parameter λ.
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3.4. The parameter selection232

The kernel-based orthogonal NMF multiplicative rules have in total four parameters: α, µ and λ and233

the Gaussian kernel width σ. The three parameters α, µ and λ are a trade-off parameters which balance234

the reconstruction error, orthogonality regularization and the graph regularization, respectively. In all235

the experiments and data sets we have fixed the three trade-off parameters to the same constant values236

α = 10, µ = 100 and λ = 10. Furthermore, the three trade-off parameters can be reduced to two, as the237

NMF objective functions given in the Eqs. (17) and (36) can be divided by α. By fixing the trade-off238

parameters throughout all of the experiments we effectively need to optimize only one parameter, which239

is the kernel width. For the trade-off parameters we perform sensitivity analysis to demonstrate that240

the constant values of the trade-off parameters can be chosen in a wide range of values (a few orders of241

magnitude), as shown in Fig. 6 and 7.242

In the experiments we use the Gaussian kernel defined as K(xi,xj) = exp(−‖xi − xj‖2/σ2), where σ243

is the kernel width. For the graph regularization term we use a fully connected affinity graph with the244

Gaussian kernel weighting on the edges. To choose the parameter σ we perform a simple grid search for245

the 40 values of σ in the range of [0.1, 4] with the step size ∆σ = 0.1 for data sets Dermatology, Glass,246

Soybean and Zoo. For the AT&T face database we perform the grid search in the range σ = [1000, 10000]247

with the step size ∆σ = 250. For the Vehicle data set we perform the grid search in the range σ = [10, 100]248

with the step size ∆σ = 10. At the boundary values of the σ intervals the clustering accuracy saturates.249

For small values of σ the similarity of the data points with large distance ‖xi − xj‖ goes to zero as250

exp(−‖xi − xj‖2/σ2)→ 0 when ‖xi − xj‖2/σ2 is large. Therefore, for small distances, the affinity graph251

captures the local Euclidean distance and gives a good representation of the manifold structure. For252

KNSC-Ncut algorithm we used the same grid search to obtain a degree matrix D−1/2.253

For each data set, we measure the average clustering accuracy out of 256 independent runs. We254

perform a hold-out validation for the parameter σ, as shown in the Table 4. The hold-out validation255

consists of randomly splitting each data set into two equally sized parts with the equally distributed256

cluster membership. The grid search optimization is performed on the first half of the data set, while257

the second half is used as a hold-out validation where optimized parameters are used. The results of the258

hold-out validation show robust average clustering accuracy for all three algorithms on all six data sets.259

The sensitivity analysis of the algorithms is performed for the three trade-off parameters α, µ and260

λ, plotted in in Fig. 6 and 7. The ratio of the parameters µ and α is fixed to a constant value in261

all experiments. The near-orthogonality of the clustering indicator matrix H (Z) is preserved during262

the multiplicative updates, as shown in Fig. 6 and 7. The near-orthogonality of columns is important263

for data clustering interpretation. An orthogonal clustering matrix has an interpretation that each row264

of H (Z) can have only one nonzero element, which implies that each data object belongs only to 1265

cluster. We plot the average orthogonality over 256 runs of the clustering matrix H (KNSC-Rcut) for266
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a wide range of values of the parameter µ and fixed α. The average orthogonality per run is defined267

as
∑k

i,i=1(HHT)i,i/
∑

i6=j(HHT)i,j . For a wide range of values of the ratio µ/α the orthogonality is268

preserved during the updates. In Fig. 6 we plot the corresponding average clustering accuracy for269

KNSC-Rcut. When µ becomes a few order of magnitude larger compared to the reconstruction error270

term, the objective function effectively becomes the optimization of the orthogonality term. At that271

point the reconstruction error term loses it’s significance and the average clustering accuracy starts to272

drop. In Fig. 6 we plot the clustering accuracy in a wide range of values of the parameter µ. The graph273

regularization λ is fixed to a constant value λ = α for simplicity. The average orthogonality is plotted274

for different values of λ and µ parameters in Fig. 6 and 7. The clustering accuracy is robust for a wide275

range of λ, λ = [10−4 − 102], and µ, µ = [100 − 107] throughout the experiments on all six data sets.276

4. Conclusion277

In this paper we study subspace clustering from nonlinear orthogonal non-negative matrix factoriza-278

tion perspective. We have constructed a nonlinear orthogonal NMF algorithm and derived three novel279

clustering algorithms. We have formally shown that the Rcut spectral clustering is equivalent to the280

nonlinear orthonormal NMF. The equivalence with the Ncut spectral clustering is obtained by introduc-281

ing an additional scaling matrix into the nonlinear factorization. Based on this equivalence, we have282

proposed two kernel-based non-negative spectral clustering methods, KNSC-Ncut and KNSC-Rcut. By283

incorporating the graph regularization term into the nonlinear NMF framework we have formulated a284

kernel-based graph-regularized orthogonal non-negative matrix factorization (KOGNMF). To solve the285

subspace clustering we have derived general kernel-based orthogonal multiplicative updates with com-286

plexity O(kn2). The monotonic convergence of all three algorithms is proven using an auxiliary function287

analogous to that used for proving convergence of the Expectation-Maximization algorithm. Experimental288

results show the effectiveness of our methods compared to state-of-the-art recently proposed NMF-based289

clustering methods.290
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Appendix A299

Proof of Theorem 1. The factorization Φ(X)D−1/2 = WZ can be solved by the following opti-

mization problem

min
Z,W
‖Φ(X)D−1/2 −WZ‖2F s.t. ZZT = I, (46)

where ZZT = I is the orthogonality constraint which can be included in the optimization implicitly or

explicitly via Lagrange multipliers. Then objective function can be reformulated as J(Z,W)

1

2
Tr
(

(Φ(X)D−1/2 −WZ)T(Φ(X)D−1/2 −WZ)
)

(47)

=
1

2
Tr
(

(D−1/2ΦT(X)− ZTWT)(Φ(X)D−1/2 −WZ)
)

(48)

=
1

2
Tr
(

Φ(X)D−1Φ(X)T − 2WZD−1/2Φ(X)T + WWT
)
. (49)

The constraint ZZT = I is used in the last equality. Calculating the partial derivative of J(Z,W) with300

respect to W and letting it be equal to 0, it follows301

∂J(Z,W)

∂W
= −Φ(X)D−1/2ZT + W = 0. (50)

From here, we have

W = Φ(X)D−1/2ZT (51)

Substituting (51) back into (49), we obtain J(Z,W) =302

1

2
Tr
(

Φ(X)D−1Φ(X)T − 2Φ(X)D−1/2ZTZD−1/2Φ(X)T
)
. (52)

Since Φ(X)D−1Φ(X)T is not dependent on Z and W, the minimization problem is equivalent to

max
Z,W

Tr
(
ZD−1/2Φ(X)TΦ(X)D−1/2ZT

)
s.t. ZZT = I. (53)

For A = ΦT(X)Φ(X) the objective function (53) is

max
Z

Tr
(
ZD−1/2AD−1/2ZT

)
s.t. ZZT = I. (54)

Note, that the objective function for Ncut spectral clustering

min
Z

Tr
(
ZLsymZT

)
s.t. ZZT = I. (55)

can easily be transformed to (53).

min
Z,ZZT=I

Tr
(
ZD−1/2(D−A)D−1/2ZT

)
= (56)
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min
Z,ZZT=I

Tr
(
ZD−1/2DD−1/2ZT − ZD−1/2AD−1/2ZT

)
= (57)

and since the term ZD−1/2DD−1/2ZT = I due to the orthogonality ZZT = I this is equal to maximization

of the second term.

max
Z,ZZT=I

Tr
(
ZD−1/2AD−1/2ZT

)
. (58)

which concludes the proof.303

Proof of Theorem 2. For the Rcut spectral clustering we solve the factorization Φ(X) = WH,

with constraint HHT = I. The factorization Φ(X) = WH can be solved by the optimization problem

min
H,W,HHT=I

‖Φ(X)−WH‖2F , (59)

where HHT = I is the orthogonality constraint which can be included in the optimization implicitly or

explicitly. The objective function (59) can be reformulated as

J(H,W) =
1

2
Tr
(
(Φ(X)−WH)T(Φ(X)−WH)

)
= (60)

=
1

2
Tr
(

(ΦT(X)−HTWT)(Φ(X)−WH)
)

= (61)

=
1

2
Tr
(

Φ(X)TΦ(X)− 2Φ(X)TWH + WTW
)
. (62)

The constraint HHT = I is used in the last equality. Calculating the partial derivative of J(H,W) with304

respect to W and letting it be equal to 0, it follows305

∂J(H,W)

∂W
= −Φ(X)HT + W = 0. (63)

From here, we have

W = Φ(X)HT. (64)

Substituting (64) back into (62), we obtain

J(H) =
1

2
Tr
(

Φ(X)TΦ(X)− Φ(X)TΦ(X)HTH
)
. (65)

Since the first term is constant, not dependent on H and W, the minimization problem is equivalent to

max
H,W,HHT=I

Tr
(
HΦ(X)TΦ(X)HT

)
. (66)

For A = ΦT(X)Φ(X) the objective function (66) is the same as objective function (58) for the relaxed

Rcut spectral clustering. To see why, we start from the objective function of Rcut and come to the

relaxed Rcut optimization function [29]:

min
H,HHT=I

Tr
(
HLHT

)
= min

H,HHT=I
Tr
(
HDHT −HAHT

)
. (67)
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Now, the substitution is made Q = HD1/2 which implies H = QD−1/2, HHT = QD−1QTand the

objective function can we written as:

min
Q,QD−1QT=I

Tr
(
QD−1/2DD−1/2QT −QD−1/2AD−1/2QT

)

= min
Q,QD−1QT=I

Tr
(
QQT −QD−1/2AD−1/2QT

)
. (68)

The expression (68) is equivalent to

max
Q,QD−1QT=I

Tr
(
QD−1/2AD−1/2QT

)
s.t. QQT = I (69)

Next, we release the orthonormality constraint QQT = I. The relaxation is justified by the fact that the

rows of Q are orthogonal to each other since QD−1QT = I.

max
Q,QD−1QT=I

Tr
(
QD−1/2AD−1/2QT

)
(70)

and by substitution Q = HD1/2 this becomes:

max
H,HHT=I

Tr (HAH) (71)

which is equal to objective function of (66), which concludes the proof.306

Appendix B307

Proof 3. The convergence analysis of the proposed algorithms.308

We now show the algorithm KOGNMF converges to a feasible solution. We use the auxiliary function309

approach, following [32, 7]. The convergence of KNSC-Ncut and KNSC-Rcut can be proven in a similar310

way.311

The objective function of KOGNMF (36) is non-increasing under the alternative iterative updating312

rules in (37) and (38).313

Definition. A(h, h′) is an auxiliary function for B(h) when the following conditions are satisfied:314

A(h, h′) ≥ B(h), A(h, h) = B(h). (72)

The auxiliary function is useful because of the following lemma:315

Lemma 1. If A is an auxiliary function of B, then B is non-increasing under the updating formula316

h(t+1) = arg min
h

A(h, h(t)) (73)

the function B is non-increasing.317

Proof. B(h(t+1)) ≤ A(h(t+1), h(t)) ≤ A(h(t), h(t)) = B(h(t)).318
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We now rewrite the objective function L of KOGNMF in Eq. (36) as follows319

L = α‖Φ(X)− Φ(X)FH‖2F + λTr(HLHT) + µ‖HHT − Ik‖2F

= α

D∑

i=1

n∑

j=1

(
Φ(x)ij −

k∑

l=1

wilhlj

)2

+ λ

k∑

m=1

n∑

j=1

n∑

l=1

hmjLjlhlm + µ

D∑

i=1

n∑

j=1

(
n∑

l=1

hikhkj − δij
)2

(74)

Considering any element hab in H, we use Bab to denote the part of L relevant to hab. Then it follows320

Ḃab ≡
(
∂L
∂H

)

ab

=
(

2αFTKFH− 2αFTK + 2λHL + 4µH(HTH− I)
)
ab

(75)

Since multiplicative update rules are element-wise, we have to show that each Bab is non-increasing321

under the update step given in Eq. (37).322

Lemma 2. Function

A(h, h
(t)
ab ) = B(h

(t)
ab ) + Ḃab(h

(t)
ab )(h− h(t)

ab ) +
(2αFTKFH + 2λHD)ab

htab
(h− htab)2. (76)

is an auxiliary function for Bab, when µ = 0.323

Proof. By the above equation, we have A(h, h) = Bab(h), so we only need to show that A(h, htab) ≥
Bab(h). To this end, we compare the auxiliary function given in Eq. (76) with the Taylor expansion of

Bab(h).

B̈ab ≡
(
∂2L
∂H2

)

ab

=
(

2αFTKF + 2λL
)
ab

(77)

Bab(h) = Bab(h
(t)
ab ) + Ḃab(h− h(t)

ab ) + [αFTKF + λL]ab(h− h(t)
ab )2 (78)

to find that A(h, htab) ≥ Bab(h) is equivalent to324

α(FTKFH)ab + λ(HD)ab
htab

≥ (αFTKF + λL)ab (79)

(FTKFH)ab =
k∑

l=1

(FTKF)alh
t
lb ≥ (FTKF)aah

t
ab (80)

(HD)ab =
n∑

l=1

htalDlb ≥ htabDbb ≥ htab(D−A)bb (81)

In summary, we have the following inequality325

(αFTKFH + λHD)ab
htab

≥ 1

2
B̈ab (82)

Then the inequality A(h, htab) ≥ Bab(h) is satisfied, and the Lemma is proven.326
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From Lemma 2, we know that A(h, htab) is an auxiliary function of Bab(hab). We can now demonstrate327

the convergence of the update rules given in Eqs. (37).328

ht+1 = arg min
h

A(h, h(t)) (83)

ht+1
ab = htab

(αFTK + λHA)ab

(αFTKFH + λHD)ab
(84)

So the updating rule for H is as follows:329

Hab ← Hab
(αFTK + λHA)ab

(αFTKFH + λHD)ab
(85)

Similarly, for µ > 0, we use the following auxiliary function A(h, htab) =330

A(h, h
(t)
ab ) = B(h

(t)
ab ) + Ḃab(h

(t)
ab )(h− h(t)

ab ) +
α(FTKFH)ab + λ(HD)ab + µ(HHTH)ab

htab
(h− htab)2. (86)

and by using this:

(HHTH)ab =

n∑

l=1

htal(H
TH)lb ≥ htab(HTH)bb (87)

we obtain the following inequality

α(FTKFH)ab + λ(HD)ab + µ(HHTH)ab
htab

≥ (αFTKF + µHTH + λL)ab (88)

which is used to prove that (86) is an auxiliary function of (74). Finally, we get the update rule

Hab ← Hab
(αFTK + 2µH + λHA)ab

(αFTKFH + 2µHHTH + λHD)ab
. (89)

The proof of the convergence for the F update rule (38) can be derived by following proposition 8

from [7]. The auxiliary function for our objective function L(F) (39) as a function of F is:

A(F,F
′
) = −

∑

i,k

2(KHT)i,kF
′

i,k(1 + log
Fik

F
′
ik

) +
∑

i,k

(KF
′
HHT)i,k(Fi,k)2

F
′
i,k

, (90)

The proof that this is an auxiliary function of L(F) (39) is given in [7], with the change in notation

F = W, H = GT and Φ(X) = X.

This auxiliary function is a convex function of F and it’s global minimum can be derived with the following

update rule:

Fab ← Fab
(KHT)ab

(KFHHT)ab
. (91)
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