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Abstract

Monocular depth estimation is a challenging task in complex compositions de-

picting multiple objects of diverse scales. Albeit the recent great progress thanks

to the deep convolutional neural networks (CNNs), the state-of-the-art monoc-

ular depth estimation methods still fall short to handle such real-world chal-

lenging scenarios.

In this paper, we propose a deep end-to-end learning framework to tackle

these challenges, which learns the direct mapping from a color image to the

corresponding depth map. First, we represent monocular depth estimation as

a multi-category dense labeling task by contrast to the regression based formu-

lation. In this way, we could build upon the recent progress in dense labeling

such as semantic segmentation. Second, we fuse different side-outputs from our

front-end dilated convolutional neural network in a hierarchical way to exploit

the multi-scale depth cues for depth estimation, which is critical to achieve

scale-aware depth estimation. Third, we propose to utilize soft-weighted-sum

inference instead of the hard-max inference, transforming the discretized depth

score to continuous depth value. Thus, we reduce the influence of quantization

error and improve the robustness of our method. Extensive experiments on

the NYU Depth V2 and KITTI datasets show the superiority of our method

compared with current state-of-the-art methods. Furthermore, experiments on

the NYU V2 dataset reveal that our model is able to learn the probability

distribution of depth.
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soft inference, dilated convolution.

1. Introduction

Depth estimation aims at predicting pixel-wise depth for a single or mul-

tiple images, which is an essential intermediate component toward 3D scene

understanding. It has been shown that depth information can benefit tasks

such as recognition [1, 2], human computer interaction [3], and 3D model recon-

struction [4]. Traditional techniques have predominantly worked with multiple

images to make the problem of depth prediction well-posed, which include N -

view reconstruction, structure from motion (SfM) and simultaneous localization

and mapping (SLAM) [].

However depth estimation from a monocular single viewpoint lags far behind

its multi-view counterpart. This is mainly due to the fact that the problem is ill-

posed and inherently ambiguous: a single image on its own does not provide any

depth cue explicitly (i.e., given a color image of a scene, there are infinite number

of 3D scene structures explaining the 2D measurements exactly). When specific

scene dependent knowledge is available, depth estimation or 3D reconstruction

from single images can be achieved by utilizing geometric assumptions such

as the “Blocks World” model [5], the “Origami World” model [6], shape from

shading [7] and repetition of structures [8]. However, these cues typically work

for images with specific structures and may not be applied to general scenarios.

Recently, learning based monocular depth estimation methods that predict-

ing scene geometry directly by learning from data, have gained popularity. Typ-

ically, such approaches recast the underlying depth estimation problem in a

pixel-level scene labeling pipeline by exploiting relationship between monocular

image and depth. Fully-convolutional neural network has been proved to be an

effective method to solve these kinds of problems. There have been considerable

progress in applying deep convolutional neural network (CNN) to this problem

and excellent performances have been achieved [7, 8, 9, 10, 11, 12, 13, 14].

Albeit the above success, state-of-the-art monocular depth estimation meth-
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ods still fall short to handle real world challenging complex decompositions

depicting multiple objects of diverse scales due to the following difficulties: 1)

the serious data imbalance problem due to the perspective effect, where sam-

ples with small depths are much more than samples with large depths; 2) there

are more rapid changes in depth value compared with other dense predictions

tasks such as semantic labeling and 3) long range context information is needed

handle the scale ambiguity in depth estimation. Even though there have been

various post-processing methods to refine the estimated depth from the deep

network map [7, 8, 9, 10, 11, 12, 13, 14], the bottleneck in improving monocu-

lar depth estimation is still the specially designed CNN architecture, which is

highly desired.

In this paper, we present a deep CNN based framework to tackle the above

challenges, which learns the direct mapping from the color image to the cor-

responding depth map in an end-to-end manner. We recast monocular depth

estimation as a multi-category dense labeling as contrast to the widely used

regression formulation. Our network is based on the deep residual network [15],

where dilated convolution and hierarchical fusion layers are designed to expand

the receptive field and to fuse multi-scale depth cues. In order to reduce the

influence of quantization error and improve the robustness of our method, we

propose to use a soft-weighted-sum inference. Extensive experimental results

show that even though we train our network as a standard classification task

with the multinomial logistic loss, our network is able to learn the the probability

distribution among different categories. The overall flowchart of our framework

is illustrated in Fig. 1.

Our main contributions can be summarized as:

• We propose a deep end-to-end learning framework to monocular depth

estimation by recasting it as a classification task, where both dilated con-

volution and hierarchical feature fusion are used to learn the scale-aware

depth cues.

• Our network is able to output the probability distribution among differ-

3



ent depth labels. We propose a soft-weighted-sum inference, which could

reduce the influence of quantization error and improve the robustness.

• Our method achieves the state-of-the-art performance on both indoor and

outdoor benchmarking datasets, NYU V2 and KITTI dataset.
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Figure 1: Flowchart of our monocular depth estimation framework, which is built upon deep

Residual network [15] and consists of dilated convolution and hierarchical feature fusion. Soft-

weighted-sum inference is used to predict continuous depth values from the discrete depth

labels. We also illustrate typical probability distribution of labels from the network, which

shows that our classification based framework is able to learn the similarity between labels.

2. Related work

In this section, we briefly review related works for monocular depth estima-

tion, which can be roughly categories as conventional MRF/CRF based methods

and deep learning based methods.

MRF/CRF Based Methods: Seminal work by Saxena et al. [16, 17] tack-

les the problem with a multi-scale Markov Random Field (MRF) model, with

the parameters of the model learned through supervised learning. Liu et al. [18]

estimated the depth map from predicted semantic labels, achieving improved
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performance with a simpler MRF model. Ladicky et al. [19] showed that per-

spective geometry can be used to improve results and demonstrated how scene

labeling and depth estimation can benefit each other under a unified frame-

work, where a pixel-wise classifier was proposed to jointly predict a semantic

class and a depth label from a single image. Besides these parametric methods,

other works such as [20, 21, 22] recast monocular depth estimation in a non-

parametric fashion, where the whole depth map is inferred from candidate depth

maps. Liu et al. [21] proposed a discrete-continue CRFs, which aims to avoid

the over-smoothing and maintain occlusion boundaries. Anirban et al. [] pro-

posed a Neural Regression Forest model for this problem. These works provide

important insights and cues for single image depth estimation problem, while

most of them utilized the hand-crafted features thus limited their performance

especially for complex scenarios.

Deep Learning Based Methods: Recently, monocular depth estimation

has been greatly advanced thanks to deep convolutional neural network (CNN).

Eigen et al. [23] presented a framework by training a large hierarchical deep

CNN. However, partly due to the fully connect layers used in the network model,

their network have to be trained with very large scale data. By contrast, Li et

al. [7] proposed a patch-based CNN framework and a hierarchical-CRF model

to post-process the raw estimated depth map, which significantly reduces the

number of training image needed. Liu et al. [8] proposed a CRF-CNN joint

training architecture, which could learn the parameters of the CRF and CNN

jointly. Wang et al. [9] proposed a CNN architecture for joint semantic labeling

and monocular depth prediction. Chen et al. [24] proposed an algorithm to

estimate metric depth using annotations of relative depth.

Very recently, Laina et al. [12] proposed using the Huber loss instead of the

L2 loss to deal with the long tail effect of the depth distribution. Cao et al. [11]

demonstrated that formulating depth estimation as a classification task could

achieve better results than regression with L2 loss, while insufficient analysis

is given for the success. In addition, different with our method, they used

hard-max inference in the testing phase. Xu et al. [13] proposed a Multi-Scale
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Continuous CRFs to better extract the hierarchical information and improve

the smoothness of the final results. Our hierarchical information fusion strategy

is much simpler than [13], while we also achieve comparable results.

Unsupervised monocular depth learning Besides the above methods

using ground truth depth maps to supervise the network learning, there is an-

other group of methods that using novel view synthesis to supervised the net-

work learning by exploiting the availability of stereo images and image sequences

[25] [14] [26] [27] citeUnsupervised-Depth-Motion. Garg et al.[25] proposed to

train a network for monocular depth estimation using an image reconstruction

loss, where a Taylor approximation is performed to linearize the loss. Go-

dard et al.[14] replaced the use of explicit depth data during training with

easier-to-obtain binocular stereo footage, which enforces consistency between

the disparities produced relative to both the left and right images, leading to

improved performance and robustness compared to existing approaches. Along

this pipeline, Zhou et al.[26] presented an unsupervised learning framework for

the task of monocular depth and camera motion estimation from unstructured

video sequences based on image warping to evaluate the image error. Kuznietsov

et al.[27] learned depth in a semi-supervised way, where sparse ground-truth

depth and photoconsistency are jointly used. Ummenhofer et al.[28] trained a

convolutional network end-to-end to compute depth and camera motion from

successive, unconstrained image pairs, where the architecture is composed of

multiple stacked encoder-decoder networks.

The key supervision signal for these “unsupervised” methods comes from

the task of novel view synthesis: given one input view of a scene, synthesize

a new image of the scene seen from a different camera pose. Essentially, pairs

of rectified stereo images or consecutive image frames have already encode the

depth information implicitly.

Our work is also related to the works on FCN (fully convolutional network)

based dense labeling. Long et al. [29] proposed the fully convolution neural

network for semantic segmentation, which is widely used in other dense labeling

problems. Hariharan et al. [30] presented that low-level CNN feature is bet-
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ter to the boundary preserving and object location. Recently, Yu et al. [31]

demonstrated that dilated convolution could expand the receptive field of the

corresponding neuron while keeping the resolution of the feature map. Chen [32]

successfully utilized the dilated convolution on the semantic problem and show

how to build them on the pre-trained CNN.

3. Our Framework

Targeting at handling the real world challenges with the current state-of-the-

art methods, we propose a deep end-to-end learning framework to monocular

depth estimation, which learns the direct mapping from a color image to the cor-

responding depth map. Our framework to monocular depth estimation consists

of two stages: model training with classification loss and inference with soft-

weighted sum. First, by recasting monocular depth estimation as multi-class la-

beling, we design an hierarchical fusion dilated CNN to learn the mapping from

an RGB image to the corresponding depth score map directly. Our network

architecture hierarchically fuses multi-scale depth features, which is important

to achieve scale-aware monocular depth estimation. Second, we propose a soft-

weighted-sum inference as contrast to the hard-max inference, which transfers

the discretized depth scores to continuous depth values. In this way, we could

reduce the influence of quantization error and improve the robustness.

3.1. Network Architecture

Our CNN architecture is illustrated in Fig. 2, in which the weights are initial-

ized from a pre-trained 152 layers deep residual CNN (ResNet) [15]. Different

from existing deep network [33], ResNet [15] explicitly learns residual functions

with reference to the layer inputs, which makes it easier to optimize with higher

accuracy from considerably increased network depth. ResNet [15] was origi-

nally designed for image classification. In this work, we re-purpose it to make

it suitable to our depth estimation task by

• Removing all the fully connect layers. In this way, we greatly reduce

the number of model parameters as most of the parameters are in the
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fully connect layers [10]. Although preserving the fully connect layers is

beneficial to extract long range context information, our experiments show

that it is unnecessary in our network thanks to dilated convolution.

• Taking advantage of the dilated convolution [31]. Dilated convolution

could expand the receptive field of the neuron without increasing the num-

ber of model parameters. Furthermore, with the dilated convolution, we

could remove some pooling layers without decreasing the size of receptive

field of correspondent neurons. In addition, we could keep the resolution

of the feature map and final results, i.e., the output resolution has been

increased.

• Hierarchal fusion. We concatenate intermediate feature maps with the

final feature map directly. This skip connection design could benefit the

multi-scale feature fusion and boundary preserving.

7×7, 64, /2

3×3,max pool, /2

Input:240×320

1×1,64

3×3,64

1×1,256

×2

1×1,64

3×3,64

1×1,256

concat, dropout=0.58×8, 200, *4

Output: 120×160

1×1,128

3×3,128

1×1,512

×7

1×1,128, 

/2

3×3,128

1×1,512

1×1,256

3×3,256

1×1,1024

×35

1×1,256

3×3,256

1×1,1024

1×1,512

3×3,512

1×1,2048

×2

1×1,512

3×3,512

1×1,2048

3×3, 200

dilation=4

L
3

L
2

L
1 dilation=2

L
4

Figure 2: Illustration of our network architecture. The detail of the basic residual block

could be referred to [15]. ×n means the block repeats n times. We present all the hyper-

parameters of convolution and pooling layers. All the convolution layers are followed by

batch normalization layer except for the last one. /2 means the layer’s stride is 2. ∗4 means

the deconv layer’s stride is 4. Dilation shows the dilated ratio of the corresponding parts.

L1, · · ·L6 are our skip connection layers.

Dilated Convolution: Recently, dilated convolution [31] has been success-

fully utilized in deep convolutional neural network, which could expands the

field of perception without increasing the number of model parameters. Spe-
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cially, let F : Z2 → R be a discrete function. Let Ωr = [r, r]
2 ∩ Z2 and let

k : Ωr → R be a discrete filter of size (2r + 1)
2
. The discrete convolution filter

∗ can be expressed as

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t). (1)

We now generalize this operator. Let l be a dilation factor and let ∗l be defined

as

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t). (2)

We refer to ∗l as a dilated convolution or an l-dilated convolution. The conven-

tional discrete convolution ∗ is simply the 1-dilated convolution. An illustration

of dilated convolution could be found in Fig. 3.

(a) (b) (c)

Figure 3: Systematic dilation supports exponential expansion of the receptive field without

loss of resolution or coverage. (a), (b), (c) are 1-dilated, 2-dilated, 4-dilated convolution

respectively. And the corresponding receptive fields are 3 × 3, 7 × 7, and 15 × 15. The

receptive field grows exponentially while the number of parameters is fixed.

Hierarchical Fusion: As the CNN is of hierarchical structure, which means

high-level neurons have larger receptive field and more abstract features, while

the low-level neurons have smaller receptive field and more detail information.

Thus, combining multi-scale informations for pixel-level prediction tasks have

received considerable interests.

We propose to concatenate the high-level feature map and the intermediate

feature map. The skip connection structure benefits both the multi-scale fusion

and boundary preserving. In our network, the L1, L2, L3, L4 layers are of the

same size, we concatenate them directly.
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In conclusion, we briefly summarize our final network design. Typically, the

pre-trained residual network is consisted of 4 parts. We remove the max-pooling

layer in the last 2 parts and expand the corresponding convolution kernel with

dilation 2 and 4 respectively. Then, a concatenation layer is added to fuse the

hierarchical multi-scale informations from layers L1 − L4. The last two layers

of our network are convolution layer and deconvolution layer. The parameters

setting is presented in Fig. 2.

3.2. Soft-Weighted-Sum Inference

We reformulate depth estimation as classification task by equally discretizing

the depth value in log space. Specifically,

l = round((log(d)− log(dmin))/q), (3)

where l is the quantized label, d is the continuous depth value, dmin is the

minimum depth value in the dataset or set to be a small value like 0.1. q is the

width of the quantization bin.

With the quantization label, we train our network with the multinomial

logistic loss.

L(θ) = −

[
N∑
i=1

K∑
k=1

1{y(i) = k} log
exp(θ(k)Tx(i))∑K
i=1 exp(θ(j)Tx(i))

]
, (4)

where N is the number of training samples, exp(θ(k)Tx(i)) is the probability of

label k of sample i, and k is the ground truth label.

In the testing stage, we propose to use the soft-weighted-sum inference. It is

worth noting that, this method transforms the predicted score to the continuous

depth value in a natural way. Specifically:

d̂ = exp{wTp}, wi = log(dmin) + q ∗ i, (5)

where w is the weight vector of depth bins. p is the output score. In our

experiments, we set the number of bins to 200.
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3.3. Data Augmentation

Although the training dataset is of ten thousands images, we still find the

data augmentation is important to improve the final performance. In this work,

we augment our dataset by 4 times for both the NYU v2 and the KITTI dataset.

The augmentation methods we utilized include:

• Color: Color channels are multiplied by a factor c ∈ [0.9, 1.1] randomly.

• Scale: We scale the input image by a factor of s ∈ [1.3, 1.5] randomly and

crop the center patch of images to match the network input size.

• Left-Right flips: We flip left and right images horizontally.

• Rotation: We rotate the input image randomly by a factor of r ∈ [−5, 5].

3.4. Implementation details

Before proceeding to the experimental results, we give implementation de-

tails of our method. Our implementation is based on the efficient CNN toolbox:

caffe [34] with an NVIDIA Tesla Titian X GPU.

The proposed network is trained by using stochastic gradient decent with

batch size of 1 (This size is too small, thus we average the gradient of 8 itera-

tions for one back-propagation), momentum of 0.9, and weight decay of 0.0004.

Weights are initialized by the pre-trained model from ResNet [15]. The network

is trained with iterations of 50k by a fixed learning rate 0.001 in the first 30k

iterations, then divided by 10 every 10k iterations.

4. Experimental Results

In this section, we report our experimental results on monocular depth esti-

mation for both outdoor and indoor scenes. We used the NYU V2 dataset, and

the KITTI dataset, as they are the the largest open dataset we can access at

present. We compared our method with the state-of-the-art methods published

recently.
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For quantitative evaluation, we report errors obtained with the following

metrics, which have been extensively used in [16, 18, 23, 19, 21].

• Threshold: % of di s.t. max
(

d̂i

di
, di

d̂i

)
= δ < thr

• Mean relative error (Rel): 1
|T |
∑

d∈T |d̂− d|/d

• Mean log10 error (log10): 1
|T |
∑

d∈T |log10 d̂− log10 d|

• Root mean squared error (Rms):
√

1
|T |
∑

d∈T ‖d̂− d‖
2

where d is the ground truth depth, d̂ is the estimated depth, and T denotes the

set of all points in the images.

4.1. NYU V2 dataset

The NYU V2 dataset [4] contains around 240k RGB-depth image pairs, of

which comes from 464 scenes, captured with a Microsoft Kinect. The official

split consists of 249 training and 215 testing scenes. We equally sampled frames

out of each training sequence, resulting in approximately 24k unique images.

After off-line augmentations, our dataset comprises of approximately 96k RGB-

D image pairs. We fill in the invalid pixels of the raw depth map with the

“colorization” method, which is provided in the toolbox of NYU V2 dataset [4].

The original image resolution is 480× 640. We downsampled the images to

240 × 320 as our network input. The resolution of the our network output is

120×160, which is half of the input size. In this dataset, we quantize the depth

value into 200 bins.

In Table 1, we compared our method with the recent published state-of-the-

art methods [10, 11, 12, 13].

In Fig. 4, we provide a qualitative comparison of our method with [12] and

[23]. (We compare with these methods due to they published their results and

they are the state-of-the-art methods at present). From Fig.4, it is clear to

observe that our results are of high visual quality, although we have not applied

any post-processing methods.
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Table 1: Depth estimation results on the NYU v2 dataset, ∗ represent the results are only

calculated on the valuable pixels

Method Train Num

Accuracy Error

(higher is better) (lower is better)

δ < 1.25 δ < 1.252 δ < 1.253 Rel log10 Rms

Eigen et al. [10] 120K 76.9% 95.0% 98.8% 0.158 - 0.641

Cao et al. [11] 120k 80.0% 95.6% 98.8% 0.148 0.063 0.615

Laina et al. [12] 12k 81.1% 95.3% 98.8% 0.127 0.055 0.573

Xu et al. [13] 95k 81.1% 95.4% 98.7% 0.121 0.052 0.586

Ours 12k 82.0% 96.0% 98.9% 0.139 0.058 0.505

4.2. KITTI dataset

The KITTI dataset [35] consists of a large number of outdoor street scene

images of the resolution 376 × 1242. We utilized the “Eigen” training/testing

split, which consists of 22600 training images and 697 testing images. We fill in

the invalid pixel of the raw depth map with the “colorization” method, which

is provided in the toolbox of NYU V2 dataset [4]. For the error calculation,

We only consider the lower crop of the image of size 256 × 1242. While in

the training phase, we input the entire image to the network for more context

information. We compare with the state-of-the-art methods Eigen et al. [23],

Garg et al. [25] and Godard et al. [14].

The original image resolution is 376 × 1240. We downsampled the images

to 188× 620 as our network input. The resolution of the our network output is

94×310, which is half of the input size. For this dataset, we quantize the depth

value into 50 bins.

In Table 2, we compared our method with the recent published state-of-the-

art methods [23, 25, 14].

In Fig. 5, we provide a qualitative comparison of our method with [10] and

[14]. (We compare with these methods due to they published their results and

they are the state-of-the-art methods at present). From Fig.5, it is clear to

observe that our results are of high visual quality, although we have not applied

any post-processing methods.
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(a)

(b)

(c)

(d)

(e)

Figure 4: Qualitative comparison of the estimated depth map on the NYU V2 dataset with

our method and some state-of-the-art methods. Color indicates depth (red is far, blue is

close). (a) RGB. (b) The Ground Truth. (c) Results of our proposed method. (d) Results of

[12]. (e) Results of [10]

5. Performance Analysis

In this section, we present more analysis of our model, where the experiments

are conducted on the NYU V2 dataset. First, we present a component analysis

of our network architecture design, i.e., the contribution of each component.

Second, we analyze the distribution of our network output, which demonstrates

the necessary of our soft-weighted-sum inference strategy.

Table 2: Depth estimation results on the KITTI dataset.

Method Train Num

Accuracy Error

(higher is better) (lower is better)

δ < 1.25 δ < 1.252 δ < 1.253 Rel log10 Rms

Eigen et al. [23] 22600 70.2% 89.0% 95.8% 0.203 - 6.307

Godard et al. [14] 22600 80.3% 92.2% 96.4% 0.148 - 5.927

Godard et al. [14] cap 50m 22600 81.8% 93.1% 96.9% 0.140 - 4.471

Ours 22600 85.6% 96.2% 98.8% 0.113 0.049 4.687

Ours cap 50m 22600 86.4% 96.4% 98.9% 0.109 0.047 3.906
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(a)

(b)

(c)

(d)

(e)

Figure 5: Qualitative comparison of the depth map estimated on KITTI dataset. Color

indicates depth (red is close, blue is far). (a) RGB. (b) The Ground Truth. (c) Results of

proposed method. (d) Results of [14]. (e) Results of [10]

5.1. Effect of Architecture Design

In order to explore the effectiveness of our hierarchical fusion dilated CNN,

we conduct the following component analyze experiments. First, we utilize the

normal convolution kernel instead of the dilated convolution kernel in the last

2 parts of our network. Second, we remove the skip connection structure. At

last, we use the network without dilated convolution and skip connection. The

corresponding experimental results are presented in Tab. 3. As we can see, both

dilated convolution and hierarchical fusion play important roles in achieving

improved performance.

Table 3: Component evaluation for our CNN architecture design and soft-weighted sum in-

ference.

method
Accuracy (%) Error

δ < 1.25 δ < 1.252 δ < 1.253 Rel log10 Rms

no dilation 78.02% 94.61% 98.52% 0.157 0.066 0.559

no concat layer 81.64% 95.9% 98.8% 0.141 0.059 0.509

ours hard-max 81.82% 95.53% 98.53% 0.142 0.060 0.531

ours soft-weighted sum 82.0% 96.0% 98.9% 0.139 0.058 0.505
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5.2. Effect of Soft-Weighted-Sum Inference

One important contribution of this work is the proposed soft-weighted-sum

inference. Here, we would like to elaborate the necessity and effectiveness of it.

Firstly, we give the probability distribution variation of randomly selected

positions along the training in Fig. 6. The most interesting thing is that: In the

training phase, we utilize the multinomial logistic loss, which means we don’t

specially discriminate the distance between the “nearby” and “further” classes.

While, the probability distribution is rather clustered. More interestingly, the

probability distribution roughly follow the Gaussian distribution, which means

it is symmetric. At last, as the training goes on, the distribution of probability

is becoming more concentrated, but always maintains symmetry similar to that

of Gaussian distribution.

Secondly, we use the hard-max inference and give the confusion matrix in

Fig. 7. The confusion matrix presents a kind of diagonal dominant and sym-

metric structure, which means most of the error prediction occurs in nearby

classes.

Thirdly, we increase the number of depth bins. Under the same training

setting, we present the variation of “pixel accuracy” and the relative errors in

Tab. 4. With the increase of number of bins, the “pixel accuracy” drop dra-

matically, while the relative error keeps stable. This trend presents that: 1) At

present, the network cannot distinguish the very detailed distance variation even

we train it with the very detailed “label”. In other words, “depth perception”

ability of the network is limited.

Table 4: Pixel-wise accuracy and Rel w.r.t. number of bins.

num of bins 50 100 200 500 1000

pixel accuracy (%) 67 41 25 12 7

Rel 0.182 0.142 0.139 0.138 0.140
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iteration 5000 10000 20000 30000 40000 50000

Figure 6: Typical score distribution variation of our network output. The points are randomly

selected from NYU2 dataset.

6. Conclusions

In this paper, we have proposed a deep end-to-end classification based frame-

work to monocular depth estimation. By using both dilated convolution and

hierarchical fusion of multi-scale features, our framework is able to deal with

the real world difficulties in multi-scale depth estimation. Extensive experi-

ments on both indoor and outdoor benchmarking datasets show the superiority

of our method compared with the current state-of-the-art methods. More im-

portantly, experiments also demonstrate that our model is able to learn a prob-

ability distribution among different depth labels, which inspires the proposed

soft-weighted-sum inference.
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Figure 7: Confusion matrix on the NYU2 dataset. Here, we merge the 200 bins to 50 for

better illustration.

Acknowledgments

This work was supported in part by Australian Research Council (ARC)

grants (DE140100180, DP120103896, LP100100588, CE140100016), Australia

ARC Centre of Excellence Program on Roboitic Vision, NICTA (Data61) and

Natural Science Foundation of China (61420106007).

References

[1] X. Ren, L. Bo, D. Fox, RDB-D scene labeling: Features and algorithms,

in: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2012, pp. 2759–2766.

[2] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,

M. Cook, R. Moore, Real-time human pose recognition in parts from single

depth images, Communications of the ACM 56 (1) (2013) 116–124.

18



[3] S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim, D. Sweeney, A. Cri-

minisi, J. Shotton, S. B. Kang, T. Paek, Learning to be a depth camera

for close-range human capture and interaction, ACM T. Graphics 33 (4)

(2014) 86.

[4] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and

support inference from rgbd images, in: European Conference on Computer

Vision, 2012, pp. 746–760.

[5] A. Gupta, A. Efros, M. Hebert, Blocks world revisited: Image understand-

ing using qualitative geometry and mechanics, in: Proc. Eur. Conf. Comp.

Vis., 2010, pp. 482–496.

[6] D. Fouhey, A. Gupta, M. Hebert, Unfolding an indoor origami world, in:

Proc. Eur. Conf. Comp. Vis., 2014, pp. 687–702.

[7] B. Li, C. Shen, Y. Dai, A. van den Hengel, M. He, Depth and surface normal

estimation from monocular images using regression on deep features and

hierarchical crfs, in: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2015, pp.

1119–1127.

[8] F. Liu, C. Shen, G. Lin, I. Reid, Learning depth from single monocular

images using deep convolutional neural fields, TPAMI 38 (10) (2016) 2024–

2039.

[9] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, A. L. Yuille, Towards unified

depth and semantic prediction from a single image, in: Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., 2015, pp. 2800–2809.

[10] D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture, in: ICCV, 2015, pp.

2650–2658.

[11] Y. Cao, Z. Wu, C. Shen, Estimating depth from monocular images as clas-

sification using deep fully convolutional residual networks, [Online]. Avali-

able: https://arxiv.org/abs/1605.02305.

19



[12] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, N. Navab, Deeper

depth prediction with fully convolutional residual networks, in: 3D Vision

(3DV), 2016 Fourth International Conference on, IEEE, 2016, pp. 239–248.

[13] D. Xu, E. Ricci, W. Ouyang, X. Wang, N. Sebe, Multi-scale continuous

crfs as sequential deep networks for monocular depth estimation.

[14] C. Godard, O. M. Aodha, G. J. Brostow, Unsupervised monocular depth

estimation with left-right consistency.

[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-

tion, in: CVPR, 2016, pp. 770–778.

[16] A. Saxena, M. Sun, A. Y. Ng, Make3d: Learning 3d scene structure from

a single still image, IEEE Trans. Pattern Anal. Mach. Intell. 31 (5) (2009)

824–840.

[17] A. Saxena, J. Schulte, A. Y. Ng, Depth estimation using monocular and

stereo cues, in: Proc. IEEE Int. Joint Conf. Artificial Intell., Vol. 7, 2007.

[18] B. Liu, S. Gould, D. Koller, Single image depth estimation from predicted

semantic labels, in: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2010, pp.

1253–1260.

[19] L. Ladicky, J. Shi, M. Pollefeys, Pulling things out of perspective, in: Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., IEEE, 2014, pp. 89–96.

[20] K. Karsch, C. Liu, S. B. Kang, Depth extraction from video using non-

parametric sampling, in: Proc. Eur. Conf. Comp. Vis., Springer, 2012, pp.

775–788.

[21] M. Liu, M. Salzmann, X. He, Discrete-continuous depth estimation from

a single image, in: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2014, pp.

716–723.

20



[22] J. Konrad, M. Wang, P. Ishwar, 2d-to-3d image conversion by learning

depth from examples, in: Proc. IEEE Conf. Computer Vis. & Pattern

Recogn. Workshops, IEEE, 2012, pp. 16–22.

[23] D. Eigen, C. Puhrsch, R. Fergus, Depth map prediction from a single image

using a multi-scale deep network, in: Proc. Adv. Neural Inf. Process. Syst.,

2014.

[24] W. Chen, Z. Fu, D. Yang, J. Deng, Single-image depth perception in the

wild.

[25] R. Garg, K. B. G. Vijay, G. Carneiro, I. Reid, Unsupervised cnn for single

view depth estimation: Geometry to the rescue.

[26] T. Zhou, M. Brown, N. Snavely, D. G. Lowe, Unsupervised learning of

depth and ego-motion from video, in: Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2017.

[27] Y. Kuznietsov, J. Stückler, B. Leibe, Semi-supervised deep learning for

monocular depth map prediction, in: Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2017.

URL http://arxiv.org/abs/1702.02706

[28] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy,

T. Brox, Demon: Depth and motion network for learning monocular stereo,

in: Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

URL http://lmb.informatik.uni-freiburg.de//Publications/2017/

UZUMIDB17

[29] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for seman-

tic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (4) (2017)

640–651. doi:10.1109/TPAMI.2016.2572683.

[30] B. Hariharan, P. Arbelaez, R. Girshick, J. Malik, Hypercolumns for object

segmentation and fine-grained localization, in: Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., 2015, pp. 447–456.

21

http://arxiv.org/abs/1702.02706
http://arxiv.org/abs/1702.02706
http://arxiv.org/abs/1702.02706
http://lmb.informatik.uni-freiburg.de//Publications/2017/UZUMIDB17
http://lmb.informatik.uni-freiburg.de//Publications/2017/UZUMIDB17
http://lmb.informatik.uni-freiburg.de//Publications/2017/UZUMIDB17
http://dx.doi.org/10.1109/TPAMI.2016.2572683


[31] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions,

in: ICLR, 2016, pp. 1–10.

[32] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, Semantic

image segmentation with deep convolutional nets and fully connected crfs,

Computer Science (4) (2014) 357–361.

[33] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, in: Proc. Int. Conf. Learning Representations,

2015.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast fea-

ture embedding, in: Proc. ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[35] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving?

the kitti vision benchmark suite, in: Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., 2012, pp. 3354–3361.

22


	1 Introduction
	2 Related work
	3 Our Framework
	3.1 Network Architecture
	3.2 Soft-Weighted-Sum Inference
	3.3 Data Augmentation
	3.4 Implementation details

	4 Experimental Results
	4.1 NYU V2 dataset
	4.2  KITTI dataset

	5 Performance Analysis
	5.1 Effect of Architecture Design
	5.2 Effect of Soft-Weighted-Sum Inference

	6 Conclusions

