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Abstract

Multimodal learning has been an important and challenging problem for decades, which aims to

bridge the modality gap between heterogeneous representations, such as vision and language. Un-

like many current approaches which only focus on either multimodal matching or classification,

we propose a unified network to jointly learn Multimodal Matching and Classification (MMC-Net)

between images and texts. The proposed MMC-Net model can seamlessly integrate the matching

and classification components. It first learns visual and textual embedding features in the match-

ing component, and then generates discriminative multimodal representations in the classification

component. Combining the two components in a unified model can help in improving their perfor-

mance. Moreover, we present a multi-stage training algorithm by minimizing both of the matching

and classification loss functions. Experimental results on four well-known multimodal benchmarks

demonstrate the effectiveness and efficiency of the proposed approach, which achieves competitive

performance for multimodal matching and classification compared to state-of-the-art approaches.
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1. Introduction

The problem of multimodal analytics has attracted increasing attention due to a drastic growth

of multimedia data such as text, image, video, audio, and graphics. Consequently, it has aroused

new challenges in unifying different modalities and bridging their semantic gap. Prior work has been

dedicated to developing computational models to simulate the human-brain mechanism regarding5

unifying and processing the multimodal data. In this work, our focus is on jointly modeling the

multimodal matching and classification between vision and language. The multimodal research

underpins many critical applications in the computer vision field, including image captioning [1, 2,

3], cross-modal retrieval [4, 5, 6], and zero-shot recognition [7, 8, 9, 10].

Specifically, multimodal matching has been studied for decades, with the aim of searching for10

a latent space, where visual and textual features can be unified to be latent embeddings. The

hypothesis is that different modalities have semantically related properties that can be distilled

into a common latent space. Early approaches that attempt to learn latent embeddings are mainly

developed based on the Canonical Correlation Analysis (CCA) [11], which is effective at maximizing

the high correlation between visual and textual features in the latent space. Driven by the increasing15

progress of deep learning, many works [12, 13, 14, 15] have been dedicated to developing deep

matching networks to learn discriminative latent embeddings and train the networks by using a

bi-directional rank loss function. They have achieved state-of-the-art performance on many well-

known multimodal benchmarks [6, 16, 17, 18].

However, learning latent embeddings is influenced by the notable variance in images or texts.20

For example in Fig. 1, five sentences annotated by humans are provided to describe the same image.

The input image and five sentences are projected into a latent space based on a two-branch network

(see Fig. 3). One can observe that these sentences have significant variance on representing the

visual content. Although they can consistently describe the main objects in the scene such as ‘girl’

(or ’child’) and ‘bicycle’ (or ’bike’), they still present great variance in terms of other objects, e.g.25

‘bench’, ‘table’ and ‘leaves’. Likewise, the potential variance is also existing in visual embedding

features. Consequently, it becomes more difficult to model image and text matching.

To address this issue, we aim to introduce a classification component to learn more robust latent

embeddings. Our motivation is that object labels can typically provide more consistent and less

biased information than sentences. As can be seen in Fig. 1, object labels contain the most important30

concepts in the image, for example ‘Person’ and ‘Bicycle’ which are commonly mentioned in all of

the five sentences. On the other hand, some visual concepts, which are subjectively described

in some of the sentences (e.g. ‘leaves’ and ‘sweater’) will not appear in the ground-truth labels.

Hence, using the object labels as additional supervisory signals is beneficial to correct the biased

descriptions and improve the matching between images and texts.35
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Multimodal Input Matching

Latent space

Person, 
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table

Classification

Label space

little girl looking down at leaves with her bicycle

with training wheels parked next to her.

small child next to a picnic table and tricycle.

a little girl in a red jumpsuit and sweater is near a 

red bike and red table.

a young child in a park next to a red bench and 

red bicycle that as training wheels.

a little girl standing next to a red bike near leaves.

Figure 1: Example of joint multimodal matching and classification. Given one image and its descriptive sentences,
they are first co-embedded into a latent space for matching (in red and blue). Then, the visual and textual embedding
features are integrated to be a multimodal representation for classification. In the input sentences, the words related
to the ground-truth object labels are highlighted in green.

In this work, we propose a unified network for joint Multimodal Matching and Classification

(MMC-Net) as illustrated in Fig. 3. First, the matching component transforms the input visual

and textual features, respectively, via a couple of fully-connected layers and a fusion module. The

matching loss is imposed on the outputs of the two fusion modules to maximize their correlation.

Then, the classification component is built upon the visual and textual embedding features. A40

compact bilinear pooling module is used to generate a multimodal representation vector, based

on which the classification loss is computed to predict object labels. In this way, the proposed

MMC-Net can jointly learn the latent embeddings and the multimodal representation in a unified

model. On the one hand, the classification component is beneficial to alleviate the biased input,

so that the model can learn better robust latent embeddings. On the other hand, the matching45

component is able to bridge the modality gap between vision and language, and therefore combining

visual and textual embedding features can produce a discriminative multimodal representation for

classification.

The contributions of this work are summarized as follows:

• We propose a novel deep multimodal network (i.e. MMC-Net), where the matching and50

classification components can be seamlessly integrated and help promote each other jointly.

MMC-Net is a general architecture that is potentially applicable to diverse multimodal tasks

related to matching and classification.

• We present a multi-stage training algorithm by incorporating the matching and classification

loss. It can make the matching and classification components more compatible in a unified55

model.
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(a) MM-Net (b) MC-Net (c) MMC-Net 

Figure 2: Illustration of three multimodal networks. (a) Multimodal Matching Network. (b) Multimodal Classifi-
cation Network. (c) Multimodal Matching and Classification Network. Note that, the parameters in the image and
text branches are unshared, as drawn in blue and green.

• Results on four well-known multimodal benchmarks demonstrate that MMC-Net outperforms

the baseline models that are built for either matching or classification (i.e. MM-Net and

MC-Net). In addition, our approach achieves competitive performance compared to current

state-of-the-art approaches.60

The rest of this paper is organized as follows. Sec. 2 summarizes the related work about mul-

timodal matching and classification. We introduce the details of the proposed MMC-Net model

in Sec. 3, and the training algorithm in Sec. 4. Comprehensive experiments in Sec. 5 are used to

evaluate the approach. Finally, Sec. 6 concludes the paper and discusses the future work.

2. Related Work65

In this section, we introduce the use of multimodal fusion, and then revisit recent works related

to the research of image-text based multimodal matching and classification.

2.1. Multimodal Fusion

Human can see, hear and speak simultaneously. Motivated by this, it is beneficial to integrate

different modality-specific representations, which can help compensate the limitation of one single70

modality. Based on various conditions (e.g. detectors, sensors and equipments), we can represent the

same phenomenon with multimodal representations (e.g. image, video, text and audio). In recent

years, the growing availability of multiple modalities has triggered a large amount of research

efforts on multimodal fusion. Consequently, a wide range of multimodal applications, including

action recognition [19, 20, 21], image captioning [1, 2, 3], cross-modal retrieval [4, 5, 6] and zero-75

shot recognition [7, 8, 9, 10], have been of primary importance in the field of computer vision. For

example, Simonyan et al. [19] developed a two-stream ConvNet architecture for action recognition

in videos, which could integrate spatial and temporal information based on multi-frame dense

optical flow. The work of Hu et al. [20] presented a joint learning model to simultaneously learn
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heterogeneous features from different channels (i.e. RGB, depth) for RGB-D activity recognition.80

In this work, our focus is on the applications regrading both vision and language, which will be

detailed as follows.

2.2. Multimodal Matching

Typically, multimodal matching is posed as a feature embedding problem, which aims to project

heterogeneous representations into a common space. As the multimodal generalization of PCA,85

CCA [11] learns a pair of linear transformations to maximize the correlation matrix between different

modalities. Many extensions [22, 23, 24] were developed to augment the effectiveness of CCA. For

instance, Gong et al. [25] added a third view with the two-view CCA using high-level image

semantics in order to gain a better separation for multimodal data. Ranjan et al. [26] proposed a

multi-label CCA approach by introducing multi-label information while learning the cross-modal90

subspaces. In addition, it is beneficial to build deep CCA models for learning better non-linear

projections end-to-end [27, 28]. To promote the linear transformations in CCA, Andrew et al. [27]

developed a deep CCA model to directly learn a flexible nonlinear mapping. In recent literature,

A number of approaches [29, 15, 16, 18] have been dedicated to designing diverse deep matching

networks to search for a more discriminative latent space. Ma et al. [15] used multimodal CNNs95

for encoding both images and sentences, to learn the matching relation between the image and

the word fragments. Karpathy et al. [14] proposed a novel ranking model that aligned visual and

language modalities using a multimodal latent embedding. Wang et al. [6] built a simple and

efficient matching network that focused on preserving the structure relation of images and texts

in the latent space. Nam et al. [17] developed visual and textual attention models and jointly100

trained them to capture the shared semantics between images and sentences. In Fig. 2(a), we show

a general pipeline of multimodal matching networks (MM-Net). It is composed of feature encoders,

hidden layers, a latent embedding space, and a matching loss function.

2.3. Multimodal Classification

Multimodal classification aims to combine visual and textual features as a multimodal repre-105

sentation, and then uses it to predict class labels. Early studies attempted to use simple fusion

modules such as element-wise sum or product. In the work by Ba et al. [7], they used a dot product

to integrate two features in the last layer, and produced a set of classifier weights for fine-grained

classification. Ma et al. [30] developed an auto-encoder with the structured regularization to en-

hance the interactions while integrating different modality-specific features. Recently, Bai et al.110

[31] presented an end-to-end trainable neural network for fine-grained image classfication through

capturing scene textual and visual cues from images. Besides, visual question answering [32, 33, 34]
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that is often cast as a multimodal classification problem, relies on an element-wise sum operation to

incorporate visual and textual features. To achieve better fused feature, Fukui et al. [35] exploited

a multimodal compact bilinear pooling [36] for visual question answering and visual grounding.115

Compact bilinear pooling is able to capture high-order correlated information between visual and

textual features, while using much less parameters than the standard bilinear pooling [37, 38].

One recent work [39] merged the prediction scores from the vision and language streams in a late-

processing manner. Figure 2(b) describes the pipeline of multimodal classification networks based

on the bilinear pooling.120

2.4. Multimodal Matching and Classification

Unlike the above work, our purpose is to model the multimodal matching and classification

tasks in one network. As illustrated in Fig. 2(c), the proposed MMC-Net builds the classification

component upon the matching component. Consequently, the whole network can be used for both

matching and classification. Zhang et al. [40] developed a deep matching framework that can125

jointly optimize both classification and similarity constraints for fine-grained image classification.

However, their work focused solely on the visual domain without introducing the textual domain.

One recent work [41] for zero-exemplar event detection developed a three-branch network that aimed

to classify event categories based on the input video and its textual title, by learning to embed the

video feature and the event article feature in the matching component. However, their classification130

component was only based on the textual embedding, but did not use the visual embedding. Their

manner limits the classification performance and discourages the benefit of unifying the matching

and classification components. Instead, our classification component allows to combine visual and

textual embeddings and can produce more informative multimodal representations.

3. Multimodal Matching and Classification Network135

In this section, we introduce the proposed MMC-Net model and its three key components.

3.1. Overall Architecture

Figure 3 illustrates the overview architecture of MMC-Net, which mainly consists of three com-

ponents: multimodal input, multimodal matching and multimodal classification. Given an image

and its corresponding text, MMC-Net first utilizes off-the-shelf feature encoders to extract the vi-140

sual and textual features, respectively. Next, in the multimodal component, two groups of four

fully-connected layers are used in both image and text branches to learn a latent space, where its

objective is to minimize the matching loss between the related images and texts. Moreover, the

multimodal classification component is built upon the visual and textual embedding features. We

6
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Figure 3: The overview architecture of our proposed MMC-Net for joint multimodal matching and classification. It
comprises three key components. (1) The multimodal input aims to capture visual and textual representations from
off-the-shelf encoders (e.g. CNN and word2vec). (2) In the matching component, four fully-connected layers in both
of the image and text branches are developed to learn the latent embeddings. (3) Based on the visual and textual
embedding features, the classification component utilizes a compact bilinear pooling module which can generate a
high-order multimodal representation to perform the prediction. The entire network can be trained with a matching
loss and a classification loss.

employ a compact bilinear pooling module to generate a high-order and efficient multimodal repre-145

sentation. The classification loss is computed with respect to the pre-defined ground-truth labels.

Next, we will detail each of the three components.

3.2. Multimodal Input

In a data collection with N matching image-text pairs, (xi,yi) represent the encoded visual and

textual features, i = 1, . . . , N . Taking these features as input instead of the raw data enables to150

train the entire network effectively. Also, any common feature encoders are potentially applicable

for this network.

Image encoder: we use the powerful CNN model, ResNet-152 [42], which is pre-trained on

the ImageNet dataset [43]. First, the CNN model is recast to its fully convolutional network (FCN)

counterpart, to extract richer region representations. Then we set the smaller side of the image to155

512 and isotropically resize the other side. The last max-pooling layer in ResNet-152 is averaged to

generate a 2048-dimensional feature vector. Compared with the widely-used VGG feature [44] (i.e.

4096-dim), ResNet-152 can provide more discriminative visual representation, while decreasing the

feature dimensions (2048 v.s. 4096). The extracted image feature is then fed into the image branch

of the matching component.160

Text encoder. we employ the simple yet efficient word2vec [45] to represent sentence-level

texts. It provides a 300-dimensional feature vector, which is often called Mean vector. Notably, more

informative text encoders can be developed based on word2vec, for example the Hybrid Gaussian-

Laplacian mixture model (HGLMM) [46] that computes a 18000-dimensional feature vector with

30 centers (i.e. 300*30*2). However, we still use the standard Mean vector due to its high efficiency165

and low dimensionality.
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Figure 4: Illustration of the fusion module used in the matching component. A convolutional layer is used to learn
weights for different spatial elements in FC2, FC3 and FC4.

3.3. Multimodal Matching

The multimodal matching component contains three aspects: latent embedding, fusion module

and matching loss.

Latent embedding. As shown in Fig. 3, the matching component develops two branches of four170

fully-connected layers to simultaneously project visual and textual features into a discriminative

latent space. Note that the parameters of the two branches (drawn in blue and green) are unshared

due to the modality specialization. The channels from FC1 to FC4 are set to {2048, 512, 512, 512}

in both of the two branches. First, the input visual and textual features are normalized with the

batch normalization (BN) [47]. Then FC1 is regularized by a dropout layer with 0.5 probability,175

and instead other fully-connected layers are regularized with the BN layer. ReLU is used after the

fully-connected layers.

Fusion module. Exploiting multi-layer features has been well-studied in many deep neural

networks [48, 49, 50, 51], as it allows to take advantage of different levels of hidden representations

in the networks. Driven by this, we introduce a fusion module to generate a multi-layer embedding180

feature. Figure 4 depicts the pipeline of the fusion module. Since the FC2, FC3 and FC4 layers

have the same number of channels, it is feasible to stack their feature vectors together. Then we

employ a convolutional operation to learn adaptive weights while fusing the three layers.

We denote the stack layer in the two branches as S(xi) and S(yi), respectively. The stack layer,

a 512× 3 matrix, is convolved by the convolutional filter, which has a size of 1× 1× 3. Note that,185

the three weights are shared over the spatial dimensions of the stack layer. We can compute the

fused visual feature f(xi) and textual feature g(yi) by

f(xi) = W fuse
I � S(xi) + bfuseI , (1)

g(yi) = W fuse
T � S(yi) + bfuseT , (2)

8
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Figure 5: Visualization of the visual and textual embedding features learned in the matching component. Each image
(in red) is related to several corresponding texts (in green). We present some images and texts corresponding to the
points in the distribution map. The semantic words related to the visual content are shown in red.

where W fuse
I and W fuse

T are the fusion weights to be learned (i.e. 3 elements) bfuseI and bfuseT are

the bias vectors (i.e. 512 elements). The operator � represents the convolutional operation.190

Although the common element-wise operators such as sum-pooling and inner product are simple

to compute, they do not adapt the importance of different layers. Another fusion approach is

concatenating the three 512-D vectors into one 3*512-D vector. However, the concatenation output

will increase the feature dimensionality and make it more expensive to compute the matching loss.

To summarize, the convolutional fusion module can provide marked performance improvements,195

while it has a minimal increase to the total parameters used in the network.

Matching loss. As a common practice, the matching distance between f(xi) and g(yi) is

computed with the cosine distance [15, 6, 16]

d(f(xi), g(yi)) = 1− f(xi) · g(yi)

||f(xi)|| · ||g(yi)||
. (3)

Smaller distances indicate more similar image-text pairs. Both f(xi) and g(yi) are L2-normalized

before computing their cosine distance. To preserve the similarity constraints in the latent space, we200

define the matching loss based on an efficient bi-directional rank loss function, similar to [52, 13, 6].

The loss function needs to handle the two triplets, (xi, yi, y
−
i,k) and (yi, xi, x

−
i,k), where x−i,k ∈ X

−
i

and y−i,k ∈ Y
−
i are the negative images and texts, k = 1, · · · ,K. To exploit more representative
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non-matching pairs, we pick the top K most dissimilar candidates in each mini-batch. Intuitively,

this loss function is designed to decrease the distances of matching pairs (e.g. xi and yi) and205

increase the distances of non-matching pairs (e.g. xi and y−i,k, yi and x−i,k). Formally, the matching

loss based on the fused features is formulated via

Lfuse
mat =

N∑
i=1

K∑
k=1

max
[
0, d(f(xi), g(yi))− d(f(xi), g(y−i,k)) +m

]
+ αmax

[
0, d(f(xi), g(yi))− d(f(x−i,k), g(yi)) +m

]
,

(4)

where m is a margin parameter, and α is used to balance the importance of the two triplets. Mini-

mizing this loss cost will lead to a desirable latent space, where the matching distance d(f(xi), g(yi))

should be smaller than any of the non-matching ones d(f(xi), g(y−i,k)) and d(f(x−i,k), g(yi)), ∀x−i,k ∈210

X−i ,∀y
−
i,k ∈ Y

−
i .

In Fig. 5, we make use of the t-SNE algorithm [53] to visualize our embedding features (i.e.

f(xi) and g(yi)). We use the 1000 images and 5000 texts from the MSCOCO test set. It can

be seen that in the distribution map an image feature (in red) is properly surrounded by several

related text features (in green), as each image is annotated by five ground-truth matching texts in215

the dataset. Therefore, this visualization shows that our embedding model can align the images and

texts due to learning their semantic correlation. In addition, some images and texts corresponding

to the points are shown in the windows. We can see that the embeddings can cluster similar images

and texts together despite the significant variations and changes.

3.4. Multimodal Classification220

The classification component aims to incorporate the visual and textual embedding features and

then generates a multimodal representation for predicting object labels. In the following, we detail

the classification component including a bilinear pooling module and classification loss.

Bilinear pooling. We take advantage of a bilinear pooling module to incorporate visual and

textual embedding features learned in the matching component. The bilinear pooling [37] aims to225

model the pair-wise multiplicative intersection between all elements of two vectors. It can generate

more expressive features than other basic operators such as element-wise sum or product. The

standard bilinear pooling is formulated with

B(xi, yi) = f(xi)
T g(yi), (5)

Since f(xi) and g(yi) are 1 ×M vectors (i.e. M = 512), B(xi, yi) becomes an M ×M matrix

that is then reshaped to be a 1×M2 vector. Due to the high dimensionality of the bilinear vector230
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Algorithm 1 CBP with latent embedding features

1: Input: f(xi) ∈ RM , g(yi) ∈ RM

2: Output: B(xi, yi) ∈ RD

3: Initialize hash functions: h1, s1, h2, s2
For j ← 1 · · ·M

sample h1[j], h2[j] from {1, · · · , D}
sample s1[j], s2[j] from {−1, 1}

End for
4: Compute count sketches:

f̂(xi) = [0, · · · , 0], ĝ(yi) = [0, · · · , 0]
For j ← 1 · · ·D
f̂(xi)[h1[j]] = f̂(xi)[h1[j]] + s1[j] · f(xi)[j]
ĝ(yi)[h2[j]] = ĝ(yi)[h2[j]] + s2[j] · g(yi)[j]

End for
5: Convolution of Count Sketches:

B(xi, yi) = FFT−1(FFT(f̂(xi)) ◦ FFT(ĝ(yi))),
where the ◦ denotes element-wise multiplication.

(i.e. M2), we instead use the compact bilinear pooling (CBP) variant [36], which can decrease

the dimensionality to D (where D � M2) while retaining the strong discrimination. Different

from [35, 36] in which they simply perform the CBP module with the input visual or textual

features, we build the CBP module based on the latent embeddings to generate a multimodal

feature vector (Fig. 3).235

The computational procedure of the CBP module is detailed in Algorithm 1. At first, we initial-

ize several hashing functions from the pre-defined sets. Then, it computes the count sketches [54]

to maintain linear projections of a vector with several random vectors. Finally, we make use of the

Fast Fourier Transformation (FFT) to compute the convolution of the count sketches, and produce

a bilinear vector B(xi, yi) by an inverse FFT. In particular, the count sketches have the properties:240

E[〈f̂(xi), ĝ(yi)〉] = 〈f(xi), g(yi)〉, (6)

V ar[〈f̂(xi), ĝ(yi)〉] ≤
1

D
(〈f(xi), g(yi)〉2 + ‖f(xi)‖2 + ‖g(yi)‖2). (7)

Next, the bilinear vector B(xi, yi) is is processed by a signed square-root layer and an L2

normalization layer. Then, we employ a fully-connected layer to estimate the prediction. Assume245

that there are C object labels pre-defined in the dataset, the j-th class probability is predicted with

ai,j =

D∑
k=1

Wj,kB(xi, yi)k (8)
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European 

Goldfinch

Indigo Bunting Person PersonUmbrella

Handbag Chair

Cat Dog

Tie Cup TV Book

(a) (b)

Figure 6: (a) Examples of single-label images from CUB-Bird [55]. (b) Examples of multi-label images from
MSCOCO [56].

where j = 1, · · · , C. Wj,k is the parameter matrix with the size of D × C. For simplicity, we do

not show the signed square-root and the L2 normalization in this formulation.

Classification loss. The objective of the classification component is to minimize the loss cost250

of the prediction with respect to the given ground-truth labels. Fig. 6 shows some images that are

annotated by single label or multiple labels. It makes sense to compute different loss functions for

single-label and multi-label classification, respectively.

1) Single-label classification. For example the fine-grained classification in Fig. 6(a), each image

is labelled with a fine bird category. To train the classification component, we use the softmax loss255

function that is represented by

Lcls = − 1

N

N∑
i=1

C∑
j=1

δ(gi = j) log pi,j , (9)

pi,j =
exp(ai,j)∑C
k=1 exp(ai,k)

, (10)

where gi is the ground-truth label corresponding to xi. δ(gi = j) is 1 when gi = j, otherwise is 0.

2) Multi-label classification. As shown in Fig. 6(b), images annotated with multiple labels can

provide richer information about the visual content. Although many of these labels may appear in260

the input text, they can still offer complementary labels which are ignored in the text due to less

visual attention. We employ the sigmoid cross-entropy loss function to supervise the multi-label

classification. The total cost sums up K of element-wise loss terms

Lcls = − 1

N

N∑
i=1

C∑
j=1

g
′

i,j log p
′

i,j + (1− g
′

i,j) log(1− p
′

i,j), (11)
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Algorithm 2 Multi-stage Training Algorithm for MMC-Net.

1: The first stage: train the matching component.
initialize: learning rate λ1, training iterations T1, t = 0.

while t < T1 do
t← t+ 1
compute the matching loss Lmat in Eq.(4);
update the parameters in the image and text branches:

W
(t)
I = W

(t−1)
I − λ(t)1

∂Lmat

∂W
(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Lmat

∂W
(t−1)
T

;

end while
2: The second stage: train the classification component.

initialize: learning rate λ2 (< λ1), training iterations T2, t = 0.
while t < T2 do
t← t+ 1
compute the classification loss Lcls in Eq.(9) or Eq.(11);
update the parameters in the compact bilinear pooling module:

W
(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Lcls

∂W
(t−1)
CBP

;

end while
3: The third stage: jointly fine-tune the whole network.

initialize: learning rate λ3 (< λ2), training iterations T3, t = 0.
while t < T3 do
t← t+ 1
compute the total loss in Eq.(13);
update all the parameters in the network:

W
(t)
I = W

(t−1)
I − λ(t)1

∂Ltotal

∂W
(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Ltotal

∂W
(t−1)
T

;

W
(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Ltotal

∂W
(t−1)
CBP

;

end while

p
′

i,j =
1

1 + exp(−ai,j)
, (12)

where g
′

i,j ∈ {0, 1} is the ground-truth label indicating the absence or presence of the j-th class.265

4. Training and Inference

This section describes the training procedure of the MMC-Net model. Also, we present the

inference manner for multimodal matching and classification.

4.1. Multi-stage Training

The optimization objective in the model is to minimize the total training loss which merges the270

matching and classification loss together

min
W
Ltotal = Lmat + βLcls, (13)
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where the parameter β is used to regulate the two loss terms. The parameters W in the network

mainly contains WI and WT in the image and text branches, and WCBP in the compact bilinear

pooling module.

We propose a multi-stage training algorithm to better model the matching and classification275

components. As summarized in Algorithm 2, the training procedure consists of three stages. During

the first stage we train the matching component with the loss Lmat. For the second stage, we need

to learn the parameters in the classification component using the loss Lcls. In this stage, only the

parameters in the classification component can be updated whereas the parameters in the matching

component are all frozen. In the third stage, the model is initialized by the parameters learned in280

the first and second stages. It aims to jointly fine-tune the whole network based on the total loss

Ltotal. Due to using this multi-stage fashion, it is feasible to promote the training of the entire

network and maintain the high performance.

Note that, the training of the FFT and inverse FFT in the CBP module also follows the chain

rule of the backward propagation. As for B(xi, yi), the partial derivatives of Lcls with respect to285

f̂(xi) and ĝ(yi) can be expressed with

∂Lcls

∂f̂(xi)
= FFT−1

(
FFT

(∂Lcls

∂B
)
◦ FFT(ĝ(yi))

)
, (14)

∂Lcls

∂ĝ(yi)
= FFT−1

(
FFT

(∂Lcls

∂B
)
◦ FFT(f̂(xi))

)
, (15)

Similarly, it is straightforward to induce the partial derivatives for any variables in the model.

4.2. Inference

We present the inference manner for multimodal matching and classification, respectively.290

Multimodal matching. For the image-to-text matching, given a query image xq, its purpose

is to search for relevant texts w.r.t xq from a text database Y . Likewise, the text-to-image matching

aims to retrieve related images from an image database X, given a query text yq. In the MMC-Net

model, the fused visual and textual features learned in the fusion module are used to compare

the matching distance, denoted as d(f(xq), g(yi)) or d(f(xi), g(yq)), where yi ∈ Y, xi ∈ X. The295

k-nearest neighbor (k-NN) search is used to find the top-k most similar candidates.

Multimodal classification. Its inference is based on the probabilities predicted by the last

fully-connected layer in the classification component. For the single-label case, the element that has

the maximum probability corresponds to the predicted class. As for the multi-label case, the items

whose probabilities in the prediction are more than 0.5 are estimated to contain the corresponding300

object classes.
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1. Two men on a yellow 

tandem bicycle rest at the 

curb. 2. Two people riding a 

tandem bicycle while 

wearing lira racing outfits.

3. Two prop-leg ride a 

yellow tandem bike while 

someone helps. …

1. a woman standing on a 

field of grass holding a 

tennis racquet. 2. two 

children play badminton 

with a windmill in the 

background. 3. it is always 

more fun to play badminton 

in front of a windmill. …

1. the bird has a blue 

wingbar and a long billl that 

is black.

2. the bird has a brown head 

and chest and wings that are 

blue in color. 3. this bird has 

a very large pointed bill, 

with a blue back. …

Pascal Sentence MSCOCO CUB-BirdFlowers

1. this flower has long white 

petals and a white pistil. 2. this 

flower is purple and yellow in 

color, with petals that are oval 

shaped. 3. the petals of the 

flower are purple with a yellow 

center and have thin filaments 

coming from the petals. …

1. A double decker red 

United bus on a city street.2. 

A doubly decker red bus 

driving down the road. 3. A 

red, double-decker. 4. Front 

and left side of a red double 

decker bus. …

1. a young boy playing 

soccer on a grassy field. 2. a 

group of kids playing soccer 

on a field. 3. small child in 

soccer uniform kicking at 

yellow ball. 4. a young man 

kicking a soccer ball around 

a field. …

1. this is a flower with triangle 

shaped dark blue petals. 2. this 

flower has a tiny white center 

blossom surrounded by veined 

and leaf like blue petals with 

pointed tips. 3. the petals on this 

flower are a bright blue with 

blue pistil in the center. …

1. a black bird with orange 

and yellow wingbars and 

black eyes. 2. this bird is all-

black except for a blaze of 

red on the coverts with a 

short, pointy black beak and 

black eyes. 3. bird has black 

body feathers, black breast 

feather,and pointed beak. …

Figure 7: Example of four multimodal datasets. Three textual descriptions are listed for each image.

5. Experiments

In this section, we evaluate the performance of the proposed MMC-Net on four well-known

multimodal benchmarks. We first introduce the configuration in the experiments, including the

datasets, evaluation metrics, parameter settings and baseline models. Then we assess the perfor-305

mance of MMC-Net for tasks of multimodal matching and classification and compare its results

with those of the baseline models. Furthermore, we conduct the ablation study to fully analyze

MMC-Net. Lastly, we compare our results with other state-of-the-art approaches.

5.1. Dataset Settings

We performed the experiments on four well-known multimodal datasets: Pascal Sentence [57],310

MSCOCO [56], Flowers [58] and CUB-Bird [55]. Some image and text examples are shown in Fig. 7.

Pascal Sentence [57]. It contains 1000 images from 20 categories (50 images per category),

and one image is described by five different sentences. We pick 800 images for training (40 images

per category), 100 images for validation (5 images per category), and 100 images for test (5 images315

per category). In total, there are 40 ∗ 20 ∗ 5 = 4000 image-text training pairs, 5 ∗ 20 ∗ 5 = 500

validation pairs, and 5 ∗ 20 ∗ 5 = 500 test pairs.

MSCOCO [56]. It includes 82783 training images and 40504 validation images in total. We

pick five descriptive sentences for one image and generate 82783 ∗ 5 = 413915 training pairs. For a

fair comparison, we use the same 1000 test images used in recent works [15, 6, 16].320

Flowers [58]. This dataset [58] contains 102 classes with a total of 8189 images. 2040 images

(train+val) are used in the training stage and the rest 6149 images are for testing. Reed et al. [8]

collected fine-grained visual descriptions for these images by using the Amazon Mechanical Turk

(AMT) platform. One image is described by ten sentence-level descriptions. Therefore, we can

obtain 2040 ∗ 10 = 20400 training pairs and 6149 ∗ 10 = 61490 testing pairs.325

CUB-Bird [55]. It contains 11,788 bird images from 200 categories. 5994 images are for

training, and 5794 images are for testing. Similarly, ten sentences are provided to describe one
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image [8]. As a result, it has 5994 ∗ 10 = 59940 pairs for training, and 5794 ∗ 10 = 57940 pairs for

testing.

5.2. Evaluation Metrics330

We evaluate the performance of multimodal matching and multimodal classification, separately.

Multimodal matching. We employ the widely-used retrieval metric R@K, which is the recall

rate of a correctly retrieved ground-truth at top K candidates (e.g. K = 1, 5, 10) [14, 3]. It includes

results of both image-to-text (I→T) and text-to-image retrieval (T→I).

Multimodal classification. We compute the Top-1 classification accuracy for Pascal Sentence,335

Flowers and CUB-Bird. Since MSCOCO is a multi-label classification dataset, we evaluate the

performance on it using the average precision (AP) across multiple classes.

5.3. Implementation Details

We implemented the proposed approach based on the publicly available Caffe library [59]. It

is important to shuffle the training samples randomly during the data preparation stage. The340

hyper-parameters were evaluated on the validation set of each dataset. For instance, we set α = 2

and m = 0.1 while computing the matching loss function on all the datasets. The number of

non-matching pairs in the negative sets was K = 20 for Pascal Sentence, Flowers and CUB-Bird,

and K = 50 for MSCOCO. We used a mini-batch size of 128 for Pascal Sentence, Flowers and

CUB-Bird, and 1500 for MSCOCO. Note that, we use a larger K and min-batch size for MSCOCO,345

because it has enormously more training samples, compared to the other three datasets. We trained

the model using SGD with a weight decay of 0.0005, a momentum of 0.9. The learning rate was

initialized with 0.1 and was divided by 10 when the loss stops decreasing.

5.4. Baseline Models

To verify the effectiveness of the proposed MMC-Net, we implemented two baseline models:350

MM-Net and MC-Net.

MM-Net: a baseline model for multimodal matching as illustrated in Fig. 2(a). It only contains

the matching component of the MMC-Net (see Fig. 3), which is trained with the matching loss.

MC-Net: a baseline model for multimodal classification as illustrated in Fig. 2(b). It has the

similar architecture as the MMC-Net, however, it does not compute the matching loss between355

visual and textual features. MC-Net is only trained with the classification loss.

5.5. Results on Multimodal Matching

We conducted the cross-modal retrieval experiments on the four datasets. To verify the effective-

ness of adding a classification component in MMC-Net, we use the baseline MM-Net for comparison.
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Table 1: Image-to-text retrieval results compared between MMC-Net and MM-Net. The proposed MMC-Net can
outperform the baseline MM-Net with considerable gains across all the four datasets.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 47.0 85.0 92.0 55.5 84.2 91.4 58.1 82.5 88.5 32.5 61.4 72.5
MMC-Net 52.0 87.0 93.0 57.0 85.8 92.7 78.7 93.9 96.0 39.2 66.9 76.4

Table 2: Text-to-image retrieval results compared between MMC-Net and MM-Net. Compared to MM-Net, MMC-
Net can achieve better retrieval results on the four datasets.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 38.4 80.6 88.6 44.7 79.5 89.5 32.7 46.4 52.9 18.3 25.6 28.8
MMC-Net 41.0 81.2 92.5 46.2 80.8 90.5 43.6 54.8 58.6 25.8 31.4 34.5

Table 1 and Table 2 report the results of image-to-text and text-to-image retrieval, respectively.360

Overall, MMC-Net can achieve considerable improvements over MM-Net for both I→T and T→I

retrieval. These results reveal that the classification component in MMC-Net can help in improving

the learning of embedding features in the matching component. Moreover, we can observe more

insights from these results as follows:

• By comparison with MM-Net, MMC-Net yields more performance gains on Flowers and CUB-365

Bird than Pascal Sentence and MSCOCO. For example, the performance gap between MMC-

Net and MM-Net is below 5% on Pascal Sentence and MSCOCO, but above 5% on Flowers and

CUB-Bird across all the measurements. One reason is that both Flowers and CUB-Bird are

fine-grained datasets, and the textual descriptions cannot fully represent the discrimination

among different samples. Hence, the results of MM-Net are limited on these two datasets.370

Instead, MMC-Net can make use of fine-grained class labels to enhance the discriminative

abilities when matching images and texts.

• The results of T→I retrieval are lower than those of the I→T retrieval on the four datasets.

This is because each image can retrieve several related textual descriptions, but one text

corresponds to only one matched image. We believe that refining the datasets is a favorable375

solution to narrow the performance gap between the I→T and T→I retrieval.

• For Flowers and CUB-Bird, their results are still not satisfactory, especially for the T→I

retrieval. Currently, the fine-grained multimodal matching still remains challenging in the

research field, but it is a promising research direction in the future.

In addition, we present the qualitative retrieval results as shown in Fig. 8. We can observe that380

MMC-Net obtains better retrieved candidates than MM-Net, for both I→T and T→I retrieval. Fur-

thermore, we visualize the visual and textual embedding features learned in the matching component

of MMC-Net. As mentioned earlier in 5, it has shown the embedding map with the MSCOCO test
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set. Similarly, we illustrate the embedding features with the Pascal Sentence test set that consists

of 100 images and 500 texts. As shown in Fig. 9(a), each point corresponds to one sample (an image385

or a text) from the 20 Pascal categories. Also, we detail the embedding features per category in

Fig. 9(b1) to (b20). It is clear to observe the matching relation between images and texts.

Query Image

Pascal 

Sentence

MM-Net: Retrieved texts

MSCOCO

MMC-Net: Retrieved texts

1. People riding tandem bicycle.

2. Two prop-leg ride a yellow tandem bike while someone helps.

3. Young man wearing jeans and helmet rides his motorcycle

in front of a small crowd.

4. A man wearing a helmet does a wheelie on a motorcycle as 

a crowd watches.

1. Two prop-leg ride a yellow tandem bike while someone helps.

2. People riding tandem bicycle.

3. Two people riding a tandem bicycle while wearing lira racing 

outfits.

4. Young man wearing jeans and helmet rides his motorcycle in front 

of a small crowd.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a tiny toddler carries a giant bookbag and bag.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a man inside a room putting together a white kite.

Flowers

CUB-Bird

1.this flower is pink and white in color, with petals that have 

pink veins.

2. this pink flower has several filaments sticking out of the 

receptacle.

3. this flower has pale pink petals with veins and a white center.

4. this flower has petals that are pink with long stamen.

1. a dark brown beak with a long beak and large wingspan.

2. this bird has a dark grey color, with a large bill and long 

wingspan.

3. this dull colored bird is brown all over, has large wings and a 

long large bill.

4. a bird with a large, hooked bill, white superciliary and cheek 

patch, brown crown, and brown body.

1.this flower is pink and white in color, with petals that have pink 

veins.

2. this flower has pale pink petals with veins and a white center.

3. this flower has very light pink petals that have darker pink veins, a 

yellow ovary, and white stamen.

4. this pink flower has several filaments sticking out of the receptacle.

1. a dark brown beak with a long beak and large wingspan.

2. large bird that is complete brown, with white stripes littering it's 

wings and a long blunted bill.

3. a bird with a large, hooked bill, white superciliary and cheek patch, 

brown crown, and brown body.

4. this dull colored bird is brown all over, has large wings and a long 

large bill.

(a) Image-to-text retrieval

Query Text

Pascal 

Sentence

MM-Net: Retrieved images

MSCOCO

MMC-Net: Retrieved images

An Swiss-Air flight 

has just taken off 

from a runway.

1 2 3 4 1 2 3 4

a woman in white 

shirt holding 

bananas next to door.

1 2 3 4 1 2 3 4

Flowers

CUB-Bird

the bright orange petals 

are highlighted by brown 

spots and the prominent 

stamen are topped with 

dark brown anthers.

1 2 3 4 1 2 3 4

this bird is light 

brown, has a long 

hooked bill, and 

looks dumb.

1 2 3 4 1 2 3 4

(b) Text-to-image retrieval

Figure 8: Image-text retrieval examples on the datasets. For (a) image-to-text retrieval, the ground-truth matching
texts are in green. For (b) text-to-image retrieval, the red number in the upper left corner of one image is the ranking
order, and the green frame corresponds to the ground-truth matching image. For the I→T and T→I retrieval, MMC-
Net can retrieve more accurate candidates than MM-Net.
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(b1) aeroplane

(b4) boat
(a) 20 Pascal classes

(b7) car

(b12) dog

(b2) bicycle (b3) bird

(b5) bottle (b6) bus

(b8) cat (b9) chair (b10) cow (b11) dining table

(b13) horse (b14) motorbike (b15) person (b16) pottedplant

(b17) sheep (b18) sofa (b19) train (b20) tvmonitor

Figure 9: Visualization of the embedding features of the Pascal Sentence test set. (a) 100 images and 500 texts
are projected to the 2-D space based on the t-SNE algorithm. They are labelled with the corresponding categories.
(b1)-(b20) The embedding map for each category. The images and texts are described by ’O’ and ’X’, respectively.
For some categories (e.g. ’bicycle’, ’bird’, ’boat’), we can see that MMC-Net can learn the desirable matching between
images and texts, but it is still difficult for other categories (e.g. ’bus’, ’cat’, ’motorbike’).
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5.6. Results on Multimodal Classification

Next, we conducted the multimodal classification experiments on the datasets. To demonstrate

the benefit of using a matching component for classification, we compare the MMC-Net model with390

the baseline MC-Net model. Table 3 reports the classification results, where MMC-Net achieves

consistent improvements over MC-Net across all the four datasets. It shows that the matching

component is able to promote the classification component due to combining the embedding features

to generate more discriminative multimodal representations. Also, MMC-Net has a generalization

ability for different types of classification datasets, including either natural images or fine-grained395

images.

In addition, we show some classification examples in Fig. 10. It can be seen that MMC-Net

can predict more accurate classes than MC-Net. Note that MSCOCO has multiple ground-truth

labels. Furthermore, we visualize the multimodal representation captured from the CBP module in

MMC-Net. Figure 11(a) and (b) illustrate the multimodal features with the Flowers and CUB-Bird400

test images, respectively. We can observe clear separations among different categories.

Table 3: Comparison of the multimodal classification accuracy between MMC-Net and MC-Net. For the four datasets,
MMC-Net can outperform MC-Net with consistent performance gains.

Method Pascal Sentence MSCOCO Flowers CUB-Bird

MC-Net 71.0 77.6 94.0 80.7
MMC-Net 74.0 79.3 95.2 82.4

A striped 

sofa and 

office 

chairs are 

near a ping 

pong 

table.

MC-Net

MMC-Net

1. sofa

2. chair

3. Diningtable

4. tv/monitor

5. potted plant

1. chair

2. tv/monitor

3. sofa

4. diningtable

5. bottle

a tennis 

player 

wiping 

his face 

off with 

a towel.

1. person

2. chair

3. sports ball

4. tennis racket

5. dining table

1. person

2. tennis racket

3. chair

4. bench

5. sports ball

Pascal Sentence MSCOCO

the petals of 

the flower 

are purple in 

color and 

have green 

stems with 

green sepals.

1. canterbury bells

2. bolero deep blue

3. foxglove

4. stemless gentian

5. garden phlox

1. bolero deep blue 

2. garden phlox

3. canterbury bells

4. bougainvillea

5. snapdragon

a bird with a 

medium 

yellow bill, 

white body 

webbed feet 

and gray 

wings.

1. Glaucous winged Gull

2. Ring billed Gull

3. California Gull

4. Herring Gull

5. Heermann Gull

1. Herring_Gull

2. California_Gull

3. Western_Gull

4. Ring_billed_Gull

5. Slaty_backed_Gull

Flowers CUB-Bird

Figure 10: Multimodal classification examples on the datasets. Given an input image-text pair, the Top-5 predictions
are estimated based on MC-Net and MMC-Net. The ground-truth classes are in green. By comparison, MMC-Net
obtains more accurate predictions than MC-Net.

20



(a) 102 flower categories (b) 200 bird categories

Figure 11: Visualizing the multimodal features learned in the classification component of MMC-Net. (a) 6149 images
from the Flowers test set. (2) 5794 images from the CUB-Bird test set. Images are properly grouped into different
clusters as shown in color.

Table 4: Effect of the mini-batch size on the performance of MMC-Net. We train the model with different mini-batch
sizes and compare their retrieval results on MSCOCO.

Method
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

batch size=100 42.5 74.6 87.4 36.6 73.8 86.8
batch size=250 52.6 83.3 91.7 43.0 79.5 89.4
batch size=500 56.6 85.3 92.7 46.0 80.5 90.1
batch size=1000 56.2 85.8 93.0 46.5 80.5 90.1
batch size=1500 57.0 85.8 92.7 46.2 80.8 90.5
batch size=2000 56.7 85.5 92.8 46.7 80.6 90.4

5.7. Ablation Study

In the following, we perform an ablation study to provide more insights into MMC-Net.

5.7.1. Analysis of parameters

First of all, we analyze the effects of three key parameters used in MMC-Net.405

Effect of the mini-batch size. Since the loss function for multimodal matching aims to search

for hard negative samples, it is essential to define a large mini-batch to increase the search space.

For example, we selected a mini-batch size of 1500 for MSCOCO due to its large-scale data. To

study the effect of varying different batch sizes, we used different batch sizes to train MMC-Net and

tested their performance. Considering the number of negative pairs in each mini-batch is K = 50410

for MSCOCO, we varied the batch size with 100, 250, 500, 1000, 1500 and 2000. Table 4 compares

the retrieval results on MSCOCO with different batch sizes. We can observe that the performance is

low when the batch size is 100. By increasing the size to 500, it can achieve significant gains across
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Figure 12: Effect of the parameter β on the performance of MMC-Net. The retrieval results on Pascal Sentence are
reported. We select β = 0.5 by comparing these results.

R@1
0

0.1

0.2

0.3

0.4

0.5

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(a) I→T: R@1
R@5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(b) I→T: R@5
R@10

0.5

0.6

0.7

0.8

0.9

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(c) I→T: R@10

R@1
0

0.1

0.2

0.3

0.4

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(d) T→I: R@1
R@5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(e) T→I: R@5
R@10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
ec

al
l A

cc
ur

ac
y

D=512
D=1024
D=2048
D=4096
D=8192
D=20000

(f) T→I: R@10

Figure 13: Effect of the parameter D on the performance of MMC-Net. We present the retrieval results on Pascal
Sentence by using different sizes of D. We select D = 2048 that can bring better results.
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Figure 14: Effect of the parameters on the performance of MMC-Net. We report the Top-1 classification results on
Flowers. (a) Analysis of the parameter β. (b) Analysis of the parameter D. (c) Confusion matrix of 102 Flowers
classes. The diagonal line demonstrates the high accuracy per flower class.

all the measurements. We further raise the size to 2000, however there is no important influence

on the results. Finally, we select batch size=1500 due to its slightly superior results.415

Effect of the Parameter β. Recall that MMC-Net is trained by integrating the matching

and classification loss, we use the parameter β to balance the weights of the two loss functions as

defined in Eq. 13. This experiment aims to analyze the effect of β on the performance. Figure 12

shows the cross-modal retrieval results on Pascal Sentence. The R@1, R@5 and R@10 results are

shown separately, when β varies from 0.1 to 1. We pick β = 0.5 by fully comparing these results.420

Effect of the Parameter D. In the classification component, a CBP module can integrate

visual and textual embedding features into a D-dimension multimodal vector. In this experiment,

we analyze D with {512, 1024, 2048, 4096, 8192, 20000}, which are all significantly lower than the

original bilinear pooling vector (i.e. 512 × 512 = 262144). In Fig. 13, we present the compared

results on Pascal Sentence. When D = 2048, MMC-Net can achieve better results compared to425

others.

Since MSCOCO is also composed of scene images like Pascal Sentence, it is straightforward

and general to employ the same parameters β and D. In contrast, Flowers and CUB-Bird are

commonly used for fine-grained recognition. It is needed to evaluate their parameters different

from Pascal Sentence and MSCOCO. To this end, we estimated the effects of the parameters on430

the classification accuracy of Flowers, and then applied the same parameters to CUB-Bird for

generalization. Figure 14 presents the analysis of parameters on Flowers. As for the parameter

β shown in Fig. 14(a), the best precision accuracy, 95.1%, is reached by β = 1.2. As shown in

Fig. 14(b), the accuracy is maximized (i.e. 95.2%) when D = 4096. In the experiments, we set

β = 1.2 and D = 4096 for Flowers and CUB-Bird. Additionally, we show the confusion matrix of435

102 Flowers categories in Fig. 14(c).
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Table 5: Analysis of the fusion module used in MM-Net and MMC-Net. The R@K results on Pascal Sentence are
reported. By comparison, the convolutional fusion module can achieve better results than others.

Method Fusion module
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

MM-Net No 45.0 82.0 91.0 35.6 75.8 87.0
MM-Net summation 46.0 83.0 91.0 36.8 77.6 87.6
MM-Net Multiplication 46.0 84.0 91.0 37.2 78.4 87.6
MM-Net Convolution 47.0 85.0 92.0 38.4 80.6 88.6

MMC-Net No 51.0 85.0 92.0 37.6 80.6 92.0
MMC-Net summation 51.0 86.0 92.0 38.4 81.0 92.0
MMC-Net Multiplication 51.0 86.0 92.0 39.0 81.0 92.0
MMC-Net Convolution 52.0 87.0 93.0 41.0 81.2 92.5

(a) Image branch (b) Text branch

Figure 15: Analysis of adaptive weights learned in the fusion module of the image branch and text branch. This test
is performed on Pascal Sentence.

5.7.2. Analysis of the fusion module.

This test aims to verify the effectiveness of using the fusion module in the matching component.

We build a convolutional fusion module in MMC-Net which can also be applied on the baseline

MM-Net. In Table 5, we report the results for both MMC-Net and MM-Net on the Pascal Sentence440

test set. We can see that using a fusion module can improve all R@K performance measurements

by a considerable margin, compared to the counterparts without using any fusion module. For an

additional comparison, we further implement two simple fusion modules: element-wise summation

and multiplication. Their results are inferior to those of the convolutional fusion, because they do

not consider the weights of different layers. Instead, the convolutional fusion can learn adaptive445

weights to produce a superior fused feature while spending only three parameters. All the weights

can be learned dynamically and adaptively with other network parameters, without introducing

any manual tuning.

Moreover, we delve into analyzing the adaptive weights of different layers learned in the convo-

lutional fusion module. Figure 15 demonstrates their distributions during the training procedure.450

Since there are three layers (i.e. FC2, FC3, FC4) in the fusion module, we initialize their weights
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Table 6: Analysis of the CBP module in MMC-Net. The R@K results on Pascal Sentence are reported, which
demonstrate the effectiveness and efficiency of using the CBP module.

Method Dimension
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

MMC-Net with FC 1024 50.0 86.0 92.0 39.6 80.4 90.0
MMC-Net with BP 262144 53.0 88.0 93.0 41.5 81.5 92.5

MMC-Net with CBP 2048 52.0 87.0 93.0 41.0 81.2 92.5

with 0.33. It can be seen that the weights in both of image and text branches tend to be stable

after a number of training epochs. In particular, the weight of the FC2 layer is smallest, which

demonstrates that its feature representation is less powerful than those of the FC3 and FC4 layers.

In addition, the FC4 layer is less important than the FC3 layer. This implies that increasing the455

depth may not improve the representation learning any more. Hence, we do not develop more layers

behind the FC4. Lastly, all the three layers play essential roles in the fusion module, even though

they learns individual and different weights.

5.7.3. Analysis of the CBP module.

We conduct this experiment to test the use of the CBP module in MMC-Net. For comparison,460

we present two other methods to integrate the visual and textual features. For the first method,

we concatenate the two features to construct a multimodal representation and then feed it into a

fully-connected (FC) layer to perform the classification. The second one is using the traditional

bilinear pooling (BP) to produce a high-order multimodal representation. Table 6 reports the

compared results of different classification modules. The model with CBP can obtain considerable465

improvements over the one with FC. The MMC-Net with BP achieves better results than other

methods, while its multimodal representation has higher dimensionality. On the contrary, CBP can

maintain the high accuracy and efficiency.

5.7.4. Analysis of combining vision and language

This experiment is used to verify the advantage of incorporating visual and textual represen-470

tations. As reported in Table 7, we compare the results between combining visual and textual

features (i.e. MMC-Net) and using only visual features. We can observe that combining vision and

language can achieve significantly superior accuracies on Flowers and CUB-Bird. Although visual

features can enable the models to achieve promising performance, the informative textual features

Table 7: Analysis of combining vision and language. We report the Top-1 classification rates on Flowers and CUB-
Bird. The model with both vision and language outperforms the model with only vision.

Method Flowers CUB-Bird

Only Vision 92.2 78.8
Vision and Language 95.2 82.4
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Figure 16: Illustration of the test classification rates during the training iterations. Incorporating language and
vision is significant to improve the performance, compared to only using visual information.

Table 8: Analysis of image encoders. The image feature dimensions are also presented. MMC-Net has better
matching results on MSCOCO than DSPE [6].

Method Image encoder Dimension
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

DSPE VGG-19 4096 40.7 74.2 85.3 33.5 68.7 83.2
MMC-Net VGG-19 4096 46.0 79.7 89.2 38.9 73.5 87.5

DSPE ResNet-152 2048 53.1 82.7 90.2 43.5 78.2 88.9
MMC-Net ResNet-152 2048 57.0 85.8 92.7 46.2 80.8 90.5

can further help improve the classification accuries. This shows the effectiveness of capturing multi-475

modal representations from both vision and language. Furthermore, Fig. 16 analyzes the test rates

during the training iterations. It can be seen that the vision and language model can consistently

outperform the vision model in the entire training stage.

5.7.5. Analysis of image encoders

As aforementioned in Sec. 3.2, we employ the ResNet-152 model to encode the input image. In480

this experiment, we aim to study the effect of different image encoders. For a fair comparison with

DSPE [6], we provide the results of MMC-Net with VGG-19. Also, we implement the DSPE with

ResNet-152. Table 8 reports the compared results on MSCOCO. For both VGG-19 and ResNet-

152, our MMC-Net can outperform DSPE across all the measurements. We should realize that the

improvements of MMC-Net come from two aspects. First, the matching component in MMC-Net485

has more layers than that of DSPE, i.e. four layers v.s. two layers. Second, MMC-Net utilizes a

classification component to help improve the matching performance. This is the main motivation

in this work. Note that, both MMC-Net and DSPE in Table 8 use the Mean vector to encode

the input text. In [6], they also present another expensive textual representation using the Hybrid

Gaussian-Laplacian mixture model (HGLMM) [46], i.e. a 18000-dimension vector. Currently, we490
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do not introduce HGLMM to MMC-Net, even though it can help increase the performance.
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Table 9: Comparison with other state-of-the-art approaches on Pascal Sentence for image-text retrieval. Best results
are in bold face. The CNN and RCNN models for [60] and [13] are based on AlexNet [61].

Method Image encoder Text encoder
Image to Text Text to Image
R@1 R@5 R@1 R@5

SDT-RNN [60] CNN DT-RNN 23.0 45.0 16.4 46.6
kCCA [60] CNN Word vector 21.0 47.0 16.4 41.4

DeViSE [52] AlexNet skip-gram 17.0 57.0 21.6 54.6
SDT-RNN [60] RCNN DT-RNN 25.0 56.0 25.4 65.2

DFE [13] RCNN Word vector 39.0 68.0 23.6 65.2
MDL-CW [62] feature from [63] feature from [63] 34.0 70.0 35.2 72.6

Mean Vector [46] VGG-16 Mean vector 52.5 83.2 44.9 84.9
GMM+HGLMM [46] VGG-16 HGLMM 55.9 86.2 44.0 85.6
Proposed MMC-Net ResNet-152 Mean vector 52.0 87.0 41.0 81.2

Table 10: Comparison with other state-of-the-art approaches on MSCOCO for image-text retrieval. Best results are
in bold face.

Method
Image
encoder

Text
encoder

Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

DVSA [14] RCNN RNN 38.4 69.9 80.5 27.4 60.2 74.8
Mean vector [46] VGG-16 Mean vector 33.2 61.8 75.1 24.2 56.4 72.4

GMM+HGLMM [46] VGG-16 HGLMM 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [3] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0

RNN-FV [64] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4
mCNN(ensemble) [15] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8

DSPE [6] VGG-19 Mean vector 40.7 74.2 85.3 33.5 68.7 83.2
DSPE [6] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9

2WayNet [16] VGG-16 HGLMM 55.8 75.2 - 39.7 63.3 -
Proposed MMC-Net ResNet-152 Mean vector 57.0 85.8 92.7 46.2 80.8 90.5

5.8. Comparison with Other Approaches

For Pascal Sentence and MSCOCO, we compare our matching results with other state-of-the-art

approaches. As reported in Table 9 and 10, MMC-Net can achieve competitive performance with

the state-of-the-art. To be more specific, the method in [46] is effective on small-scale datasets, so495

it can obtain state-of-the-art results on Pascal Sentence. However, it does not have a strong gener-

alization on large-scale datasets, for example their results on MSCOCO are not quite competitive.

In contrast, the proposed MMC-Net maintains the high performance on both of small-scale and

large-scale datasets. Moreover, we show the image and text encoders used in different approaches.

Both of DSPE [6] and 2WayNet [16] extracted the visual features based on the VGG-19 model,500

while they rely on a more complicated HGLMM textual representation [46] than the Mean vector

used in MMC-Net. As early discussed (Sec. 3.2), we did not use the HGLMM representation in

order to maintain the training efficiency. For a fair comparison, MMC-Net with VGG-19 and Mean

vector (in Table 8) can outperform DSPE with significant improvements, and can compete with
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Table 11: Comparison with other approaches on Flowers and CUB-Bird. Best results are in bold face. The methods
in the upper part fine-tune the original CNN models, however, the ones in the lower part do not perform the fine-
tuning process. We do not use the bounding box annotations in the datasets. Note that, we use the numbers to
describe the depth of the image encoders. The dimension of MMC-Net indicates the multimodal representation
extracted from CBP.

Method Image encoder Finetune Dimension Flowers CUB-Bird

Deep Optimized [65] CNN-16 Yes 4096 91.3 67.1
Part R-CNN [66] DeCAF-8 Yes 4096 - 76.5

Two-level attention [67] AlexNet-8 Yes 4096 - 77.9
Deep LAC [68] AlexNet-8 Yes 12288 - 80.3
NAC-const [69] AlexNet-8 Yes 4096 91.7 68.5
NAC-const [69] VGG-19 Yes 4096 95.3 81.0

Bilinear CNN [38] VGG-16 Yes 250k - 84.0
PD+FC+SWFV-CNN [70] VGG-16 Yes 70k - 84.5

MsML+ [71] DeCAF-8 No 134016 89.5 67.9
BoSP [72] VGG-16 No 5120 94.0 -

RI-Deep [73] VGG-19 No 4096 94.0 72.6
ProCRC [74] VGG-19 No 5120 94.8 78.3
MG-CNN [75] VGG-19 No 12288 - 81.7

Proposed MMC-Net ResNet-152 No 4096 95.2 82.4

2WayNet while it uses the HGLMM representation. Lastly, we clarify that any common feature505

encoders for images and texts can be potentially adopted to MMC-Net. Exploring more efficient

feature encoders is a fundamental and promising work.

For Flowers and CUB-Bird, we compare the fine-grained classification results with the state-

of-the-art. Table 11 reports the comparison details. Since the compared methods do not utilize

textual representations, we instead show the CNN model used in the image encoder and the network510

depth. Note that, these approaches are divided into two groups based on whether the CNN model

is finetuned on the target dataset. First, it can be seen that, MMC-Net achieves better results than

other approaches without performing the fine-tuning step. Second, MMC-Net can even compete

with the approaches with the finetuning step. For example, our results on Flowers is competitive

with NAC-const [69]. Also, our approach is superior over most approaches on CUB-Bird, except515

Bilinear CNN [38] and PD+FC+SWFV-CNN [70]. However, we can see that both [38] and [70]

produce a significantly more expensive feature vector than MMC-Net. We should realize that

additional fine-tuning techniques have potential to improve performance, but are not the focus of

this work. Our competitive results are partly due to the use of the ResNet-152 model, while we

believe this should not decrease the effectiveness of our approach.

Table 12: Summary of the parameters used in the MMC-Net for matching and classification, and the time for running
the multi-stage training algorithm.

Dataset #Params for matching #Params for classification Time (hours)

Pascal Sentence ∼8 millions ∼41,000 ∼0.3
MSCOCO ∼8 millions ∼164,000 ∼7.0

Flowers ∼8 millions ∼418,000 ∼0.5
CUB-Bird ∼8 millions ∼820,000 ∼1.3

520
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5.9. Computational Cost

We conducted the experiments on a NVIDIA TITAN X card with 12 GB memory. In practice,

we first extracted visual and textual features for all training samples using the off-the-shelf feature

encoders. Then, we take as input these input features for the matching and classification compo-

nents. Since the network parameters in MMC-Net are not expensive, it is feasible and rewarding to525

use a large mini-batch size to improve the training (in Sec.5.3). In Table 12, we show the training

parameters in the matching and classification component, and the multi-stage training time cost on

the four datasets. The MSCOCO dataset consumes more training time due to its large-scale data.

In summary, MMC-Net is an efficient network with a decent model complexity.

6. Conclusion and Future Work530

In this work, we proposed a unified network for joint multimodal matching and classification.

The proposed MMC-Net can simultaneously learn latent embeddings in the matching component,

and generate a multimodal representation vector in the classification component. Consequently,

the two components can help promote each other by combining their loss functions together. We

evaluated our approach on four well-known multimodal datasets. The experimental results demon-535

strated the robustness and effectiveness of the MMC-Net model, compared to the baseline models.

In addition, our approach achieved competitive results with the state-of-the-art approaches. The

results showed its promising generalization for diverse multimodal tasks related to matching or

classification.

In the future, it is feasible to advance the three components in the MMC-Net. For example,540

fine-tuning the feature encoders on the target datasets, adding intermediate supervisory signals in

the matching component, and improving the compact bilinear pooling module in the classification

component. In addition, it is straightforward to adapt MMC-Net to a wider variety of multimodal

tasks, including image captioning, visual question answering, and video summarization. Moreover,

the attention mechanism is potential to be introduced in the MMC-Net.545
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