
A fast robust geometric fitting method for parabolic
curves
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Guevara-Muñozb
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Abstract

Fitting discrete data obtained by image acquisition devices to a curve is a com-
mon task in many fields of science and engineering. In particular, the parabola is
some of the most employed shape features in electrical engineering and telecom-
munication applications. Standard curve fitting techniques to solve this problem
involve the minimization of squared errors. However, most of these procedures
are sensitive to noise. Here, we propose an algorithm based on the minimiza-
tion of absolute errors accompanied by a normalization of the directrix vector
that leads to an improved stability of the method. This way, our proposal is
substantially resilient to noisy samples in the input dataset. Experimental re-
sults demonstrate the good performance of the algorithm in terms of speed and
accuracy when compared to previous approaches, both for synthetic and real
data.

Keywords: parabolic fitting, geometric curve fitting, noise, minimization of
absolute errors, robust estimation

1. Introduction

Fitting of conic sections such as parabola, hyperbola and ellipse is a funda-
mental task in digital image analysis, pattern recognition, computer graphics,
computer vision, reverse engineering and statistics. In these fields, fitting geo-
metric primitive models is especially significant for reverse engineering, whose
core is to reconstruct the curve from scattered data, and request the fitting curve
reflecting the shapes and features of the original data points [1, 2, 3, 4, 5, 6, 7, 8].
Also, there are some records in the literature on the fitting of quadratic curves
and surfaces to sampling points that occurs frequently in several metrology,
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astronomy, medical diagnosis, geology [9, 10, 11, 12, 13], industrial and ar-
chitectural applications [14, 15]. For example, a fitting of conic sections was
proposed for biological application, such as the chromosome shape analyzed by
[16].

In recent years, there are some research works in medical field. To cite an
instance, a study on teeth [17]. Another example in this field is related with
the corneal shape. A direct mathematical approach for obtaining relevant pa-
rameters of corneal surface was proposed in [18]. Other study connected to
eyelid location using image focus has been carried out by [19]. According to the
anatomic research, parabola-like vascular geometry model is the most common
way used to detect fovea [20, 21, 22]. Other medical applications that have been
studied are presented by [23] who intended to solve the segmenting ribs problem
in a chest radiography image as an halfway step for eliminating rib shadows for
an effective Computer-Aided Diagnosis System (CAD). The proposed system
facilitated a novel strategy to fit a parabolic curve to all rib seeds acquired by
a log Gabor filtering approach. In the same problem as image diagnosis for
prostate cancer recognition, [24] proposed a semi-quantitative model to repre-
sent perfusion behavior of 3-dimensional prostate voxels in DCE-MRI sequences
based on parametric evaluation of parabolic polynomials. Perfusion data of each
prostate voxel is modeled on to a best fit parabolic function using second order
non-linear regression.

Moreover, telecommunications and industrial applications are presented by
[25, 26, 27, 28, 29]. In [27], the problem of fitting a rotated paraboloid to given
measured data in 3-space has been discussed. Furthermore, [28] claimed that one
of the most important issues for engineers implicated in the structural design
of a large antenna is compensation for degrading electromagnetic efficiency.
Others industrial applications have been carried out by [29]. They integrated
the analogy of gray value of power lines into particle filtering to track the points
on power lines, and use those selected points to fit the power line as a parabola.

On the other hand, the detection of automated lane is an essential part of
driver assistance systems in smart vehicles [30, 31]. For example, [32] proposed
a new kind of lane boundary detection algorithm based on parabola model in
order to improve lane detection accuracy under different road conditions for
intelligent vehicles. Another research presented by [33] showed a multilane de-
tection method based on omnidirectional images to address the difficulties from
the limited view field of the rectilinear cameras. In physics field as detecting in
[26] was presented an accurate measurement method for optics system with lu-
nar imaging. The results show that the method is highly accuracy and frequency
for focal length measurement.

An atmospheric application related to sound propagation can be found in
[25]. Parabolic equations, approximations of the Helmholtz equation in cylin-
drical coordinates, are used widely in underwater acoustics context, see [34, 35].
They have been further employed to simulate the analog problem of sound
propagation in an inhomogeneous atmosphere. Finite element [36, 37], finite
difference [38, 39], and Fourier/Green’s function methods [40, 41], have been
used to discretize the parabolic equations in cylindrically symmetric domains.
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In parabolic equation models, a waveguide with irregular boundaries can be en-
countered. In computational fluid dynamics [42], a common practice to trans-
form the physical domain to a rectangular computational one, is the use of
a boundary fitting curvilinear coordinate system. In [43] a similar analytical
transformation of coordinates was used in a finite element discretization of the
conventional parabolic equation in a sea environment with variable bottom. Ir-
regular terrain is also encountered in electromagnetic parabolic equation models
[44].

Finally, an example in the architectural field is showed in [15], which provides
a method that expect to determine the best fits to a geometric shape of an arch
of a heritage building. This method only involves standard geometric processes,
computing, statistics, numerical processes and data acquisition.

Most of the current state of the art methods to fit parabolas are based on
the minimization of squared errors. Such methodologies have little resilience to
noisy observations, due to the excessive sensitivity of the squared error function
to them. This problem is further exacerbated by the fact that for many input
datasets there are spurious solutions that the fitting algorithms can easily fall
into. Here we aim to develop a method to fit parabolas from a set of sample
points which is more robust, based on the minimization of absolute errors. The
main contribution of this work is the proposal of a fitting algorithm which is
resilient both to outlying input points, by means of absolute error minimiza-
tion, and to the presence of spurious solutions, and the introduction of random
restarts in the search. Moreover, our proposal attains a good balance between
the quality of the solution and the execution speed.

This paper is structured as follows. Section 2 presents previous works and the
definition of earlier parabola fitting methods. Subsequently, Section 3 describes
the formulation of our method and Section 4 reports the obtained experimental
results using synthetic and real data. Finally, Section 5 summarizes the main
conclusions of this research.

2. Previous work

Fitting quadratic curves occurs frequently in computer vision, pattern recog-
nition, and image processing applications. Given a parametric function

P (x, g) = 0 (1)

where P represents a quadratic function, x stands for the point coordinate
vector, and g denotes curve parameters, the main purpose is to estimate g from
noisy samples

xi = x̄i + x̃i (2)

where x̄i is noiseless data and x̃i is a noise contribution such that for all x̄i we
have

P (x̄i, g) = 0 (3)
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One of the most accurate approaches to estimate g in Eq. (1) is with maxi-
mum likelihood (ML) methods, where the geometric distance of data points to
the curve P is minimized. These methods are typically more computationally
expensive and usually converge slowly if it is formulated as an iterative pro-
cess. Traditional least squares methods (LSM), in contrast, which minimize the
squared equation error, also called as algebraic fit, are cheaper and involve no
iterations but may be heavily biased and non-robust systems [45, 46].

The main objective of [47] is to (1) use the simplicity of the algebraic meth-
ods, avoiding (2) the statistical inaccuracy in least squares approaches, while
(3) enforcing constraints that arise from a priori information at a low computa-
tional cost. They work with images where data points are polluted by a large
amount of Gaussian noise.

As it has been mentioned before, for the conic fitting, there are two problems
to be considered [48]. One is the mathematical form of the formula for the fitting
conic, and the other is the objective function of the fitting conic. The selection
of the objective function, during the fitting of the curve, can be divided into two
categories: firstly, based on minimizing the geometric distance from the point
to the curve and secondly, based on minimizing the algebraic distance.

The general form of a conic section is:

Q (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (4)

The roots of Eq. (4) evaluated at infinity allow to identify the type of conic
[49].

Explicitly,

x =
−B ±

√
B2 − 4AC

2A
(5)

Through (5), the type of conics can be characterized as follows:

B2 − 4AC


> 0 real asymptotes⇒ hyperbola

= 0 real parrallel asymptotes⇒ parabola

< 0 complex asymptotes⇒ ellipse

(6)

The discriminant B2−4AC = 0 depicts a second order surface in the (A,B,C)
tridimensional parameter space, i.e., it is an elliptical cone with the origin as
its vertex. This surface represents all parabolas. All ellipses are enclosed inside
the cone, whereas all hyperbolas are external to it.

According to Bookstein [9] the invariance must be with respect to transfor-
mations of the Euclidean plane, such as rotations, translations and scale changes.
If the dataset coordinates are transformed then the resulting best fitting conic
should match the best fitting conic that would be obtained by the algorithm if
the non transformed samples were provided to the algorithm. The Yu method
[50] has a cost function with geometric interpretation where the parameters are
intrinsic of the conic and are translation and rotation invariant. Our method is
also invariant to these transformations.
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Many proposals can be found about parabola fitting in the literature, but
there are few state-of-art methods with available source code that can be used
in order to obtain interesting experimental results.

Harker [49] considers that the Direct method is the first known direct solution
for parabola fitting. This fitting is reached by establishing an orthogonal basis
vector set in the Grassmannian space of the quadratic terms’ coefficients. The
linear combination of the basis vectors that satisfied the parabolic condition and
has a minimum residual norm is resolved using Lagrange multipliers.

Cals Method fits a parabola using Consistent Algebraic Least Squares (CALS).
That implies a pre-processed scatter matrix for a Direct least squares fitting.
An improved matrix partitioning is employed, through an extension of Haĺı̌r
and Flusser’s work [51]. A generalization of the Eckart-Young-Mirsky matrix
approximation theorem allows for an incremental orthogonal residualization of
the partitioned scatter matrix [52].

Garćıa [3] has presented a method to fit parabolas to scattered data which
is applicable in noisy images. They employ a trimming procedure and avoids
trying to fit all the points in the data set, but only a proportion 1− α of them.
This approach has the disadvantage that it does not only need the samples as
input parameters, but also the trimming level α and two step parameters (L
updating steps and S random initializations) for the iterative process, which
depend on the characteristics of the dataset.

2.1. Geometric distance

The geometric distance from a point (x, y) ∈ R2 to a conic is the smallest
Euclidean distance from the point to all the points in the conic [53]:

dG (x, y) = min
{
‖(x, y)− (r, s)‖ | (r, s) ∈ R2, Q (r, s) = 0

}
where ‖·‖ stands for the Euclidean distance.

The objective function based on minimizing the geometric distance is a 4th
order equation. This can be solved by mathematical methods, but it needs to
use non-linear procedures and the results are not quite stable [54, 55]. So the
applications are somehow limited.

2.2. Algebraic distance

The algebraic distance from a point (x, y) ∈ R2 to a conic is given by [55]:

dA (x, y) = Q2 (x, y)

The minimizing algebraic distance method has been used by several re-
searchers. For example, [56] used six different restrictions to obtain six basic
conics, and produced the final fitting conic by adding certain weights to the coef-
ficients of the six basic conics. Rosin discussed the objective functions based on
minimizing algebraic distance from the aspects of curvature bias, singularities,
and transformational invariance [57]. On their part, [9, 58, 59] introduce differ-
ent constraints to the objective function, transformed it to the extreme problem,
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and obtained varied results depending on the restriction. Furthermore, [49] used
the partition matrix to fitting a specific conic and introduced a bias correction
method. Based on the aforecited researches, a conic fitting method is provided
in Li’s work [48], which minimizes the point-to-curve algebraic distance for the
given data points. This proposed method can preserve the original outline of
the conic data points, whereas the fitting effects are improved.

3. The model

Next our robust parabola fitting method is presented. The equation of a
parabola in 2D is given by:

(ax+ by + c)
2

a2 + b2
= (x− u)

2
+ (y − v)

2
(7)

where the directrix is ax+ by+ c = 0 with a and b not both zero, and the focus
point is (u, v) ∈ R2. Please note that at this point it is not advantageous to
normalize the directrix vector, a2 +b2 = 1, since such normalization would force
to express either a or b in terms of the other, for example b =

√
a2 − 1, which

would clutter the subsequent derivations.
We may write the five parameters which define the parabola in vector form:

p = (a, b, c, u, v)

Please note that the left hand side of (7) is the squared distance of point
(x, y) ∈ R2 to the directrix, and the right hand side of (7) is the squared distance
of point (x, y) ∈ R2 to the focus point. Therefore we can rewrite (7) as:

Ed (x, y) = Ef (x, y)

Ed (x, y) =

√
(ax+ by + c)

2

a2 + b2
(8)

Ef (x, y) =

√
(x− u)

2
+ (y − v)

2
(9)

where Ed (x, y) is the distance of the test point (x, y) to the directrix, and
Ef (x, y) is the distance of the test point of the focus point. Furthermore, the
plane is divided into two regions:

Rd =
{

(x, y) ∈ R2 | Ed (x, y) ≤ Ef (x, y)
}

(10)

Rf =
{

(x, y) ∈ R2 | Ef (x, y) < Ed (x, y)
}

(11)

where Rd contains the points which are closer to the directrix than to the focus
point, or at the same distance, and Rf contains the points which are closer to
the focus point than to the directrix (see Figure 1).
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Figure 1: Depiction of the Rd and Rf regions. The directrix of the parabola is plotted with
a dashed line, and the focus is drawn as a square.

Now we may consider the minimization of the following cost function:

E (p) =
1

N

∑
i∈Rd

(Ef (xi, yi)− Ed (xi, yi)) +

1

N

∑
i∈Rf

(Ed (xi, yi)− Ef (xi, yi))− λEd (u, v) (12)

where N is the number of training points, the last term is introduced in order to
avoid degenerate solutions with the focus on the directrix, and λ is an adjustable
penalty parameter, λ > 0. Please note that the last term includes the distance
from the focus point to the directrix, so that the degenerate solutions which
must be avoided have Ed (u, v) = 0. Nondegenerate parabolas have Ed(u, v) > 0
which leads to −λEd(u, v) < 0. Degenerate parabolas with Ed(u, v) = 0 lead
to −λEd(u, v) = 0 which is the maximum, i.e. worst since we are minimizing
E , possible value of the term −λEd(u, v). In other words, the value of the
term −λEd(u, v) is always worse (higher) for degenerate parabolas than for
nondegenerate parabolas.

The gradient of the error is computed as follows:

∂E
∂a

=
1

N

∑
i∈Rd

(axi + byi + c)
(
ac+ abyi − b2xi

)
(a2 + b2)

2
Ed (xi, yi)

− 1

N

∑
i∈Rf

(axi + byi + c)
(
ac+ abyi − b2xi

)
(a2 + b2)

2
Ed (xi, yi)

+λ
(au+ bv + c)

(
ac+ abv − b2u

)
(a2 + b2)

2
Ed (u, v)

(13)

∂E
∂b

=
1

N

∑
i∈Rd

(axi + byi + c)
(
bc+ abxi − a2yi

)
(a2 + b2)

2
Ed (xi, yi)
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− 1

N

∑
i∈Rf

(axi + byi + c)
(
bc+ abxi − a2yi

)
(a2 + b2)

2
Ed (xi, yi)

+λ
(au+ bv + c)

(
bc+ abu− a2v

)
(a2 + b2)

2
Ed (u, v)

(14)

∂E
∂c

= − 1

N

∑
i∈Rd

axi + byi + c

(a2 + b2)
2
Ed (xi, yi)

+
1

N

∑
i∈Rf

axi + byi + c

(a2 + b2)
2
Ed (xi, yi)

−λ au+ bv + c

(a2 + b2)
2
Ed (u, v)

(15)

∂E
∂u

=
1

N

∑
i∈Rd

u− xi
Ef (xi, yi)

− 1

N

∑
i∈Rf

u− xi
Ef (xi, yi)

−λ a (au+ bv + c)

(a2 + b2)
2
Ed (u, v)

(16)

∂E
∂v

=
1

N

∑
i∈Rd

v − yi
Ef (xi, yi)

− 1

N

∑
i∈Rf

v − yi
Ef (xi, yi)

−λ b (au+ bv + c)

(a2 + b2)
2
Ed (u, v)

(17)

It has been found in experiments that keeping the normal vector of the
directrix normalized improves the numerical stability of the method, so that
the obtained solutions are better. It is also advantageous to restart the search
from a random state close to the initial estimation each T steps, because this
allows the method to escape from local minima of the cost function E .

The algorithm is:

1. Initialization. The focus point is initialized to the mean of the dataset:

(p4, p5) =

(
1

N

N∑
i=1

xi,
1

N

N∑
i=1

yi

)

The directrix is initialized to the straight line which best fits the dataset
in the least squares sense:

(p1, p2, p3) = arg min
(a,b,c)

N∑
i=1

(axi + byi + c)
2
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In order to keep a scale in the parameter space for the gradient descent,
the directrix is normalized:

(p̄1, p̄2, p̄3) =

(
p1√
p21 + p22

,
p2√
p21 + p22

,
p3√
p21 + p22

)

Then a random perturbation drawn from a Gaussian distribution with
zero mean and half the standard deviation of the dataset is added to the
initial focus point. These are rough estimations, as the method will refine
them later. The step counter is initialized to t = 0.

2. Determine the errors Ed (xi, yi) and Ef (xi, yi) for all training points
(xi, yi) by (8) and (9).

3. Compute which training points belong to Rd and Rf with (10) and (11),
where points on the boundary between both regions are assigned to one
of them uniformly at random.

4. Find a new solution by gradient descent:

pnew = pold − η
∂E
∂p

where ∂E
∂p is given by Eqs. (13)-(17).

5. Normalize the directrix (as in Step 1) of the new solution in order to
improve the numerical stability of the method.

6. Increase the step counter t. If the current solution has a lower value of
the cost function (12), then store it as the best solution so far.

7. If the step counter t is an integer multiple of T , then restart the method
by setting the current solution to a randomly perturbed version of the
initial non perturbed solution. The random perturbation is carried out by
adding a normally distributed random number to each of the components
of the initial non perturbed solution of step 1. These random numbers are
generated with zero mean and half the standard deviation of the dataset.

8. If convergence has been achieved or a maximum number of steps M has
been reached, then return the stored best solution and halt. Otherwise,
go to step 2.

The design of step 1 is aimed to obtain a valid solution, i.e. a non degenerate
parabola. The random perturbation ensures that the perturbed solution is not
degenerate. Input data which are aligned or almost aligned can lead to a de-
generate initial parabola. Furthermore, the initial focus and the directrix are
chosen to be close to the input data, so that the initial parabola has enough
curvature, i.e. it is not too open. On the other hand, the normalization of step
5 ensures that the values of the directrix parameters a, b and c do not grow too
large or become too small, which would cause loss of precision in the calcula-
tions and would ultimately destabilize the algorithm from the numerical point
of view.
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The convergence monitoring of step 8 is carried out by analyzing the updates
of the current best solution which are done at step 6. Convergence is declared
when the current best solution has not been updated for 2T steps.

It must be noted that our proposed algorithm might have some resemblances
to the Expectation-Maximization (EM) algorithm. In particular, in step 3 of
our algorithm it is estimated which side of the parabola each training sample is.
This would be similar to the Expectation step, if we interpret that the “missing
value” or “latent variable” would be a binary variable for each training sample
which says which side of the parabola the sample is. Then in step 4 of our algo-
rithm the five model parameters a, b, c, u, v are updated by assuming that the
estimated values of such binary “latent variables” are correct, which is somehow
similar to the Maximization step. However, our algorithm also has fundamental
differences with respect to Expectation Maximization. First of all, no proba-
bilistic model of the input data is defined or assumed. Therefore, there is no
likelihood function or log-likelihood function to be optimized. This means that
the EM algorithm cannot be applied to our parabola fitting approach. Secondly,
unlike the Maximization step of the EM algorithm, our step 4 does not maximize
the cost function given the estimated values of the binary “latent variables”, but
only moves the parameters in the direction of the gradient descent.

4. Experimental Results

In this section several experiments are carried out to show the performance
of the proposed method. Firstly, Subsection 4.1 briefs the tuning of the param-
eters of the algorithm. Then, some computational experiments for synthetic
datasets are reported in Subsection 4.2. Simulations with and without outliers
are presented, but also were analyzed datasets with Gaussian noise, degenerate
parabolas and the effect of different initializations. Finally, real examples with
data from natural images were used in Subsection 4.3.

Two of the competing approaches mentioned in Section 2 which have been
tested are considered in [49], Direct Method and Cals Method. In addition to
this, a third method has been used for the comparison, which was called as
Garćıa Method [3]. For the experiments, fixed values L = 400 and S = 40 have
been adopted following the advice of the authors of this method, and α with a
value 0.1 higher than the outlier level, i.e. if we add 10% of outliers, we employ
α = 0.2. If no anomalous samples are present in the dataset, α = 0 was used.
Ours, Direct and Cals methods are implemented as Matlab scripts (R2018a),
with no use of the GPU. Garćıa method is implemented in R, but we linked it
with Matlab by the RMatlab package [60] to perform all the comparisons under
the Matlab environment.

To measure the quality of the fit for the synthetic datasets, we compute the
residual errors, consisting on the mean squared differences between the directrix
and focus errors along the sample points:
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Residual =
1

N

N∑
i=1

(Ed (xi, yi)− Ef (xi, yi))
2

(18)

If spurious points (outliers) are added in the fitted dataset, these are not used
to compute the Residual measure. This is done because the goal of a parabola
fitting algorithm is to fit the inliers and not the outliers. Also, we obtained the
runtime of all methods on a desktop personal computer with a 64-bit PC, with
an Intel Core i7-4790, 3.6GHz CPU, 32 GB RAM and standard hardware.

4.1. Parameter selection

Our algorithm requires setting four parameters, the penalty parameter λ,
the gradient descend step size η, the restart parameter T and the maximum
number of steps M .

To determine the optimum values for the parameters, synthetic sets of points
of a parabola were generated in the same manner as the first set of experiments
detailed in Subsection 4.2. Then, we have run 100 executions of our algorithm
and the Residual errors (18) were calculated for each execution varying the
parameter of study and fixing the others. In addition to this, for the sake
of completeness we have analyzed the cost function E (12) for the T and M
parameters since there is no direct dependency on the parameters.

Figure 2 shows the results of the simulations. The average values of the
measures along all the executions are depicted. In the case of the Step Size
(Figure 2a), no significant differences can be appreciated between almost all
possible values. The value 0.1 was chosen because is usually better to set a small
value so that the gradient descent avoid abrupt jumps and the convergence is
more reliable.

Regarding the restarting parameter T (Figures 2b-2c) and the maximum
number of steps M (Figures 2e-2f), it can be seen that there is a moment from
which the results stabilize for both parameters. This point was selected as our
value for the tunable parameter.

With respect to the penalty parameter (Figure 2d), the testing of negative
values of λ has been done for the sake of completeness. The condition λ < 0
means that we are rewarding degenerate solutions, which is expected to give bad
results, but we still want to experimentally show that this is the case. And when
λ > 0.15, the error increases exorbitantly. The penalty parameter is designed
to avoid finding a degenerate parabola when the true input parabola is not
degenerate. To show the effect of λ we have carried out an experiment where
we create an input dataset corresponding to a regular, i.e. non degenerate,
parabola, and we have run our algorithm for λ = −0.1, λ = 0 and λ = 0.1.
Figure 3 shows that the obtained solutions are degenerated for the first two
cases, as it was expected, and the proper solution is reached with the positive
value.
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Figure 2: Study of the optimal parameters of our algorithm. Results of the residual errors
and cost function for each parameter of our algorithm. Average results of 100 executions are
displayed. The penalty parameter λ was varied from -1 to 1, and the gradient descend step
size η from 0 to 1, both using a step of 0.005. The restart parameter T was varied from 100
to 2000, using a step of 10, and the maximum number of steps M from 1000 to 20000, using
a step of 100. To analyze each parameter, the rest of them where fixed.
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Figure 3: Outcomes of our algorithm for a non degenerate parabola when penalty parameter
is λ = −0.1, λ = 0 and λ = 0.1, from left to right. The rest of the parameters where fixed.
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Parameter λ η T M
Value 0.1 0.1 1000 10000

Table 1: Parameter selection of our method

The previous discussion is specific to a particular dataset. However, the
resulting parameter selection has worked for all the other tested datasets, so
the subsequent experiments validate the parameter values chosen in Subsection
4.1. All the selected parameter values for our method are summarized in Table
1.

4.2. Synthetic data

Our first set of experiments deals with artificially generated data. For each
experiment, the focus and the directrix of a parabola are chosen at random:

u, v ∼ U (0, 20) (19)

a, b, c ∼ U (0, 30) (20)

where U (α, β) stands for the uniform distribution over the open interval of real
numbers (α, β). Then 100,000 candidate points are uniformly generated on the
square [−20, 20] × (−20, 20). Then, we select the points (xi, yi) whose which
satisfy that:

(Ed (xi, yi)− Ef (xi, yi))
2
< 2 (21)

Note that (21) means that the input samples are close to the true parabola,
which is given by:

(Ed (xi, yi)− Ef (xi, yi))
2

= 0 (22)

but they are not exactly on the true curve, i.e. some noise is present. The value
2 was manually chosen so that the noise was significant but not so large that the
parabolic shape was lost. Finally, from this candidates are randomly selected
the input datasets with size N = 50.

If a percentage of outliers is added in the experiments, then the number of
those is calculated as a fraction of N . That is, if we add pout% of outlying
points, then the final number of samples is N + pout·N

100 . These extra points are
randomly selected from those candidate points that do not satisfy (21), i.e., they

are points where (Ed (xi, yi)− Ef (xi, yi))
2
> 2.

Next we present the results of the competing methods for some cases. First
example is shown in Figure 4. A synthetic dataset was generated in absence of
anomalous samples. Comparing all the fits, both ours and Garćıa methods yield
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the best results. As seen in Figure 4a, the trace of the estimated foci sometimes
goes far away from the true solution. This is due to the existence of many
spurious solutions which have good values of the cost function E . And this is why
Direct and Cals methods return incorrect estimations of the parabola, falling in a
local minima. However, this issue has been addressed in our proposed algorithm
by introducing restarts from randomly perturbed versions of the initial non
perturbed solution (step 7 of the algorithm) at regular intervals. These restarts
are seen in Figure 4a as line segments which come back to the vicinity of the
true focus.
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Figure 4: Solutions for the first synthetic dataset. In magenta the trace of the foci of our
method is represented, and the blue square and the dotted line are the best foci and directrix
achieved. The true parabola is plotted as a thick solid curve, while the fitted parabola is
shown as a narrow solid curve.
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In Figure 5 a second example dataset is presented. This dataset features a
higher occlusion level, in the sense that the points corresponds to a small arc of
the parabola, becoming difficult to determine which type of conic they are part
from, so the fit is exposed to an incorrect fitting. As it is shown Direct and Cals
methods yield similar results, neither of them converge to a good solution. The
first and second synthetic datasets are similar, but it is relevant to depict their
results because they are largely different for the unstable methods (Direct and
Cals).
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Figure 5: Solutions for the second synthetic dataset. In magenta the trace of the foci of our
method is represented, and the blue square and the dotted line are the best foci and directrix
achieved. The true parabola is plotted as a thick solid curve, while the fitted parabola is
shown as a narrow solid curve.

The last example dataset is shown in Figure 6, where a 20% of outliers is
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added to the training data. The results obtained by our method and Garćıa
method are quite acceptable, while Direct and Cals methods show a clearly
wrong outcome. It seems that in most of the examples, our approach have a
similar or even better fit to the point cloud than Garćıa algorithm.
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Figure 6: Solutions for the third synthetic dataset. In magenta the trace of the foci of our
method is represented, and the blue square and the dotted line are the best foci and directrix
achieved. The true parabola is plotted as a thick solid curve, while the fitted parabola is
shown as a narrow solid curve.

In general terms, it can be said that our method exhibits a higher resilience
to noise than its competitors for synthetic data. To further confirm this, a set
of 100 executions has carried out and the residual errors are shown in Figure 7.
Simulations without outliers and with 5%, 10%, 15%, 20% and 25% of added
outliers have been done. The outliers are not considered in the computation
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of the residuals. Boxplots were used to display the results. We have used the
Residual measure defined in (18) to compare the results. As it can be seen,
in almost all cases our method yields the best results, as the mean squared
differences between the errors Ed (xi, yi) and Ef (xi, yi) along the training points
are very close to zero, that is, the samples are very close to the fitted parabola.
In the case of median values, the different approaches are more competitive but
they have a higher deviations, as it can be seen in the higher size of the box.
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Figure 7: Comparative of the four methods along 100 executions with synthetic data. Grey
circles and lines represent the mean and median value over all the simulations, respectively.
Displayed whiskers are in the range of 5-95%. Results shown in a logarithmic scale..

The results are very similar when we have no outliers (Figure 7a). Clearly,
Direct and Cals methods yield inconsistent results, while Garćıa approach ob-
tains good performance. Figures 7c and 7b depict the results for adding 5% and
10% of anomalous points to the initial dataset, respectively, which implies the
presence of few points that do no belong to the initial selection of points near
to the parabola since Eq. (21). For this configuration, the deviation errors are
quite similar to that one without outliers with the exception of Garćıa method,
which suffers big mismatches as the number of outlying points increases. It is
remarkable that the residuals, which are computed taking only into account the
inliers, preserve the goodness of fit only in our case.
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Ours Direct Cals Garćıa

0% 0.333 (0.036) 0.001 (0.005) 0.003 (0.009) 79.554 (1.818)
5% 0.334 (0.012) 0.001 (0.003) 0.003 (0.006) 84.087 (1.651)
10% 0.334 (0.006) 0.001 (0.000) 0.002 (0.000) 86.313 (1.390)
15% 0.3348 (0.006) 0.001 (0.000) 0.002 (0.000) 90.916 (1.584)
20% 0.342 (0.017) 0.001 (0.000) 0.002 (0.000) 93.654 (1.594)
25% 0.347 (0.040) 0.001 (0.000) 0.002 (0.000) 97.469 (1.972)

Table 2: Mean and standard deviation of the running time (in seconds) along the 100 execu-
tions for different noise levels.

The statistics when 15%, 20% and 25% of outliers is added to the training
points are shown in Figures 7d, 7e and 7f. The outcomes of these three configu-
rations are very similar. Although our method has the best results, Direct and
Cals methods reduce the difference in terms of median values. However, these
competing methods generate solutions with to much deviation. The mean and
standard deviation of our proposal still remain clearly the best. There could be
cases where Direct and Cals methods yield small values of the residuals, even
if the number of outliers increases. That is because the residuals are computed
setting aside outliers.

Table 2 summarizes the computational time required for the execution of
the four methods. As we can see, our method is the only one that has an equi-
librium between performance and computational efficiency. The mean running
time employed by our approach is always less than 0.35 seconds. We can also see
that Direct and Cals methods fit their parabolas faster than ours, but with the
inconvenience of inconsistent results. Garćıa method has demonstrated good
accuracy in some cases, but the required time to compute the parabola is ex-
cessive, it is around 90 sec., which is one hundred times slower than the other
methods.

4.2.1. Gaussian distribution

A second set of experiments with synthetic data was carried out. Starting
from the unit parabola with equation y = x2, any other parabola can be inferred
from this one using an affine transformation of the Euclidean plane in the form
x → f0 + Ax, where A is a regular matrix with column vectors f1, f2, and f0
is an arbitrary vector. Thus, the general parametric equation of a parabola is
defined as

x = f0 + f1t + f2t
2, t ∈ R (23)
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As before, 100,000 candidate points on the square [−20, 20]× (−20, 20) are
generated following (23) with A = RΛ, where Λ is a diagonal matrix which
is multiplied by a 2D rotation matrix R. Then, Gaussian noise with standard
deviation 0.5 was added to the points of the parabola. Finally, a subset with
size N = 50 from this candidates are randomly selected.

In Figure 8 we present an example of an execution with this kind of dataset.
Both Ours and Garćıa methods yields the best results in comparison with the
true parabola. Direct and Cals methods also show a good fit, but not as good
as expected since the LS approaches assume normally distributed residuals.
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(d) Garćıa method

Figure 8: Solutions for a synthetic dataset with Gaussian noise distribution. In magenta the
trace of the foci of our method is represented, and the blue square and the dotted line are the
best foci and directrix achieved. The true parabola is plotted as a thick solid curve, while the
fitted parabola is shown as a narrow solid curve.
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For an adecuate evaluation, we carried out a set of 100 execution with dif-
ferent parabolas generates as explaned before. The results are summarized in
Figure 9. Our approach yields great results, specially in terms of small devi-
ations. If we compare the outcomes obtained from the previous experiments
(Figure 7), the Direct and Cals methods show lower errors but similar devia-
tions, and Garćıa yields higher errors.
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Figure 9: Comparative of the four methods along 100 executions with synthetic data and
Gaussian noise distribution. Results shown in a logarithmic scale.

4.2.2. Variability of the fitting

In the next experiment, we see the differences in estimates for different ini-
tializations in order to study the variability of the algorithms. Thus, we con-
struct a parabola as is explained in 4.2.1, and Gaussian noise with standard
deviation 0.2 was added to the candidate points defined on the parabola. The
generated cloud points is depicted in Figure 10a. Then, we carried out a total of
100 executions with different sample points with size N = 50, selected randomly
from the set of candidate points.

In Figure 10 all the solutions for all the initializations are represented, so
we can have a qualitative assessment of the four algorithms. Clearly, Direct
and Cals methods fails too many times in the predictions, which is not a good
symptom in terms of robustness. The most stable method is Garćıa. However,
it is important to remark that it needs a lot of time to process the information
and generate the solution, which could be an impediment for some real time
applications. Our approach also achieves a good performance, since it only fails
once, and its computing time is quite acceptable.
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Figure 10: Solutions for all the different initializations. The true parabola is plotted as a thick
solid curve, while the fitted parabola is shown as a narrow solid curve. Each caption contains
the mean execution time needed to obtain the fitted parabola.

4.2.3. Degenerated parabola

In this subsection we analyze the behavior for all methods in the case of a de-
generated parabola. To generate it, a random directrix was computed following
(20) and a point in this line has been chosen as the focus. Thus, two symmetric
branches are the two solutions of this configuration, as is shown in Figure 11a
in colors yellow and brown. These degenerate parabolas are orthogonal to the
directrix, which is shown in a dotted light blue line. To generate the dataset,
we followed the methodology explained at the beginning of the experimental
section but varying the error margin (21) to a value very close to zero. In this
example we used an error of 0.001. Residuals were also computed in order to
compare the methods from a quantitative point of view.

The best approximation to the real degenerated parabola is achieved by our
proposal, which is the only one that finds one of the two solutions. It is not a
straight line, but the obtained parabola is the flattest one. The Residual error
is 0.000502, which is very close to zero. In addition, the estimated directrix
is almost the same as the true one. Both Direct and Cals methods fail in
the prediction, with Residuals 3.7190 and 3.4084 resp., and Garćıa approach
estimates a flattened parabola but the focus is wrongly estimated to lie at one
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Figure 11: Solutions for a synthetic dataset with Gaussian noise distribution. In magenta the
trace of the foci of our method is represented, and the blue square and the dotted line are the
best foci and directrix achieved. The true parabola is plotted as a thick solid curve, while the
fitted parabola is shown as a narrow solid curve.

extreme of the data domain. However, the Residual is the best one, 0.0000207.

4.3. Real data

Next some real dataset examples are presented such as a fountain, a denture
sample, a bridge and a reflector. We have overlayed the data points on each
image for the sake of clarity.

The first two examples, the fountain and the denture sample, are based on
manually selected points on the parabolic curves defined by them. As shown in
Figure 12 our results are better than the competing methods. As known, the
trajectory of the water drops or any other bodies under the sole influence of
the gravitational field of the Earth is a parabola. Although all the algorithms
return a fitted parabola very similar that one described by the fountain, Direct
and Cals fail in the orientation. Both Ours and Garćıa generate good quality
solutions but with very different CPU times.

In the case of the denture dataset (see Figure 13), the centers of the teeth
should describe a parabola for an ideal denture. Having this in mind, this
example can be considered as a dataset with a small level of noise. It is shown



4.3 Real data 23

(a) Fountain ex-
ample: real image
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Figure 12: Solutions for the fountain dataset. Points were manually selected from one of the
water streams. In magenta the trace of the foci of our method is represented, and the blue
square and the dotted line are the best foci and directrix achieved. Fitting results are plotted
in a reverse Y scale to coincide with the image visualization format.

that both Garćıa and our methods do not fail and have a better performance
than the other two methods.

Next, we used the image intensities to extract the bridge sample dataset (see
Figure 14a). A white color threshold was applied followed by the application of
a region of interest (ROI) mask to remove all pixels that are below the bottom
part of the bridge arc, in order to remove the crossing pathway. Then, a random
selection of 25 points from the segmented image were carried out. As it can be
seen in Figure 14a, there are two spurious points in the final data selection,
i.e., 10% of outliers approx. Figure 14 demonstrate that our method is robust
against anomalous data, achieving a great fit compared to Cals and Direct
methods, which are unstable when the dataset does not describe a large arc of
the parabola. Garćıa algorithm works very well but only if the trimming level
is provided. Otherwise, i.e., α = 0 the method fails in the fit. This parameter
is hard to determine in real applications.

An industrial real data example is used in Figure 15. In this case, the dataset
describes a parabola with a radius of curvature a little higher than the previous
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(a) Denture example: real
image
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Figure 13: Solutions for denture real data. Points were manually selected from the center of
the teeth. In magenta the trace of the foci of our method is represented, and the blue square
and the dotted line are the best foci and directrix achieved. Fitting results are plotted in a
reverse Y scale to coincide with the image visualization format.
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(a) Bridge example: real
image
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Figure 14: Solutions for the real data about a bridge. 25 points were randomly selected using
a color threshold for pixels with values greater that 214 (in a scale [0-255]) for the three RGB
channels, followed by a ROI with 0 < X < 215 in the first dimension. In magenta the trace
of the foci of our method is represented, and the blue square and the dotted line are the best
foci and directrix achieved. Fitting results are plotted in a reverse Y scale to concise with the
image visualization format. We used α = 0.2 as an input for Garćıa method.

examples. The Canny edge detection method has been employed to extract edge
points on the parabolic curves from the image, and then the training samples
have been randomly drawn from the set of edge points.

The dataset shown in Figure 15a exhibits three anomalous points near the
vertex that clearly are not part of the parabolic shape. As seen, all the compet-
ing methods present worse results than ours (see Figure 15). Direct and Cals
fail in the fit and Garćıa method generates a good fit, but still it is not as precise
as ours and also the trimming level needed to be provided. Garćıa only works
well if the true percentage of outliers is supplied, which would not be easy to
get in a real application, while our method does not need that input.

Overall our proposal achieves a good fit to the above presented real datasets,
and employing very little time to compute the fitted parabola. Therefore, its
robustness against noise is further validated. It is also remarkable that the
method do not need to be provided by input parameters based on the employed
dataset.
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(a) Reflector exam-
ple: real image
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Figure 15: Solutions for the real data about a reflector. 25 points were randomly selected from
the output of the Canny edge detection function of Matlab with threshold=0.95, followed by a
ROI with 0 < X < 375 in the first dimension. In magenta the trace of the foci of our method
is represented, and the blue square and the dotted line are the best foci and directrix achieved.
Fitting results are plotted in a reverse Y scale to concide with the image visualization format.
We used α = 0.2 as an input for Garćıa method.

The following examples are based on stroboscopic images of spherical ob-
jects that describe a parabolic shot. In this case, the point were automatically
extracted using the Circle Hough Transform, which is a feature extraction tech-
nique used to find imperfect instances of objects by a voting procedure. It
has a great performance to detect object that have circular or elliptical shapes.
MATLAB imfindcircles function was used to detect the objects in the image
and determine its centroid.

Figures 16 and 17 show two examples of the execution of the algorithms
with stroboscopic images. In Figure 16a we can see the movement of a tennis
ball throwing and describing three parabolas. We select the middle one and
extracted the points as specified in the figure caption. We can observe that the
best fits are achieved again by our proposal and Garćıa method, but this one
employs too much time although the number of sample points is very small.
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(a) Tennis ball example:
stroboscopic image
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Figure 16: Solutions for tennis ball stroboscopic image. Points were selected using the Circle
Hough Transform through MATLAB with Radius Range = [15 45] and Sensitivity = 0.9 as
input parameters. In magenta the trace of the foci of our method is represented, and the blue
square and the dotted line are the best foci and directrix achieved. Fitting results are plotted
in a reverse Y scale to coincide with the image visualization format. CPU time is displayed
in subcaptions.

In Figure 17a a soccer ball is pictured. The first parabola is selected, which
has an occluded part. However, this does not affect the estimations of the four
methods, but Direct and Cals methods still have a bit worst performance.

If we compare all the processing times for all the experiments that we have
carried out with real examples, we can see that the fastest ones are always
Direct and Cals, with around 0.05 seconds. The third position is occupied by
our algorithm, with a mean value of 0.42 seconds, but with the difference that
the fitting performance is clearly better. At last, Garćıa method is very robust
but needs more that 40 seconds to obtain the result.

5. Conclusions

This paper presents a parabola fitting method based on minimization of
the parabola geometric function to a set of points by minimizing the mean
absolute deviation from the level set, which defines the parabola feature. The
algorithm comprises of two stages: 1) determining the closed distance between
data points to the directrix and to the focus point, and 2) solving an absolute
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(a) Soccer ball
example: strobo-
scopic image
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Figure 17: Solutions for soccer ball stroboscopic image. Points were selected using the Circle
Hough Transform through MATLAB with Radius Range = [15 45] and Sensitivity = 0.85 as
input parameters. In magenta the trace of the foci of our method is represented, and the blue
square and the dotted line are the best foci and directrix achieved. Fitting results are plotted
in a reverse Y scale to coincide with the image visualization format. CPU time is displayed
in subcaptions.

geometric cost function for parameter estimates with a normalized directrix
vector that improves the stability of the method. Furthermore, the search is
restarted each certain number of steps in order to escape from local minima.
This way the proposed algorithm converges to a finite solution irrespective of
the initial parameters.

Experimental results demonstrate that our algorithm is robust since the
solutions have a low sensitivity to noise data. The robustness of the proposed
algorithm is due to the usage of absolute rather than squared errors, since the
sum of absolute errors is more robust than the sum of squared errors. State of
the art alternative methods have been tested, which are either much slower than
ours, or clearly worse in their fitting accuracy. Therefore, it can be concluded
that a fast and accurate approach for parabola fitting has been proposed, which
can be used for datasets with significant amounts of noise and occlusion. This
facilitates its application to real problems with low quality input data.

Directions for future work include further improving the accuracy of the esti-
mation of the parabola parameters, while keeping the computational complexity
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low. As seen in the experiments, Garćıa method is quite robust, and it some-
times finds better estimations of the parabolas, but at the expense of being one
or two orders of magnitude slower than our approach. Hence there is still room
for enhancing our approach. This might be done by hybridizing the algorithm
presented here with some optimization framework such as genetic algorithms,
tabu search or particle swarm optimization. Another possible strategy is the
combination of several high quality solutions, in the spirit of ensemble learning.
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[3] L. A. Garćıa-Escudero, A. Mayo-Iscar, C. I. Sánchez-Gutiérrez, Fitting
parabolas in noisy images, Computational Statistics and Data Analysis
112 (2017) 80–87.

[4] G. Hu, F. Yan, J. Kittler, W. Christmas, C. H. Chan, Z. Feng, P. Huber,
Efficient 3D morphable face model fitting, Pattern Recognition 67 (2017)
366–379.

[5] M. L. Torrente, S. Biasotti, B. Falcidieno, Recognition of feature curves
on 3D shapes using an algebraic approach to Hough transforms, Pattern
Recognition 73 (2018) 111–130.



30

[6] T. Varady, R. Martin, J. Cox, Reverse engineering of geometric models -
An introduction, Computer-Aided Design 29 (4) (1997) 255–268.

[7] F. de Vieillevile, J. O. Lachaud, Comparison and improvement of tangent
estimators on digital curves, Pattern Recognition 42 (2009) 1693–1707.

[8] G. Xiao, H. Wang, T. Lai, D. Suter, Hypergraph modelling for geometric
model fitting, Pattern Recognition 60 (2016) 748–760.

[9] F. Bookstein, Fitting conic sections to scattered data, Computer Graphics
and Image Processing 9 (1979) 56–71.

[10] B. P. Butler, A. B. Forbes, P. M. Harris, Algorithms for geometric tolerance
assessment, Teddington, UK, 1994.

[11] A. B. Forbes, Algorithms for Approximation II, Chapman and Hall, 1990,
Ch. Least-squares best fit geometric elements, pp. 311–319.
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