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Abstract

Scene parsing is an indispensable component in understanding the semantics within a

scene. Traditional methods rely on handcrafted local features and probabilistic graph-

ical models to incorporate local and global cues. Recently, methods based on fully

convolutional neural networks have achieved new records on scene parsing. An im-

portant strategy common to these methods is the aggregation of hierarchical features

yielded by a deep convolutional neural network. However, typical algorithms usually

aggregate hierarchical convolutional features via concatenation or linear combination,

which cannot sufficiently exploit the diversities of contextual information in multi-

scale features and the spatial inhomogeneity of a scene. In this paper, we propose

a mixture-of-experts scene parsing network (MoE-SPNet) that incorporates a convo-

lutional mixture-of-experts layer to assess the importance of features from different

levels and at different spatial locations. In addition, we propose a variant of mixture-of-

experts called the adaptive hierarchical feature aggregation (AHFA) mechanism which

can be incorporated into existing scene parsing networks that use skip-connections to

fuse features layer-wisely. In the proposed networks, different levels of features at

each spatial location are adaptively re-weighted according to the local structure and

surrounding contextual information before aggregation. We demonstrate the effective-

ness of the proposed methods on two scene parsing datasets including PASCAL VOC
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2012 and SceneParse150 based on two kinds of baseline models FCN-8s and DeepLab-

ASPP.

Key words: Scene Parsing, Mixture-of-Experts, Attention, Convolutional Neural

Network

1. Introduction

Scene parsing or semantic image segmentation, which predicts a category-level

label (such as “sky”, “dog” or “person”) for each pixel in a scene, is an important

component in scene understanding. A perfect parsing can contribute to a variety of

applications including unmanned vehicles, environmental reconstruction, and visual

SLAM. Many other fundamental computer vision problems can benefit from the pars-

ing of an image, such as medical image analysis, tracking, and object detection [1, 2, 3].

However, scene parsing is a very challenging high-level visual perception problem as

it aims to simultaneously perform detection, reconstruction, segmentation, and multi-

label categorizing [4, 5].

Since feature representation is critical to pixel-level labeling problems, classical

methods focus on designing handcrafted features for scene parsing [6]. Since the hand-

crafted features alone can only capture local information, probabilistic graphic models

such as conditional random fields (CRFs) are often built on these features to incor-

porate smoothness or contextual relationships between object classes [7]. Recently,

deep learning approaches such as deep convolutional neural networks (DCNNs) have

earned immense success in scene parsing. In particular, fully convolutional networks

(FCNs)-based approaches have demonstrated promising performance on several public

benchmarks [5, 8, 9, 10, 11, 12].

A common strategy adopted in all the CNN-based methods is to aggregate multi-

scale/level features from multiple CNN layers [5] or from a specific layer [8], which

is a key component to obtain high-quality dense predictions because the multi-level

features capture different levels of abstractions of a scene. The standard way to com-

bine hierarchical features/predictions is to either concatenate multi-level features [13,

14, 15, 16, 17, 18, 19, 20] or equivalently aggregate the prediction maps by average
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pooling [5]. However, the linear feature aggregation methods are not able to evaluate

the relative importance of the semantic and spatial information in each level of fea-

tures. The information at different scales is complementary because the higher-level

convolutional features contain larger-scale contextual information which is beneficial

for classification, while the lower-level features have higher spatial resolution which

produces finer segmentation masks [21]. The information at different scales is also

complementary since they are from different receptive fields. There is thus a trade-off

between the semantic and the spatial information. In addition, the average pooling ig-

nores the spatial inhomogeneity of a scene, which is improper since different objects

may prefer features from different scales/levels. For example, textured objects such as

“grass” and “trees” can be easily distinguished from lower-level features while texture-

less objects like “bed” and “table” require higher-level features to capture the global

shape information.

In this paper, we propose a mixture-of-experts [22] scene parsing network (MoE-

SPNet) which learns to aggregate multi-level convolutional features according to the

image structures. Specifically, we treat each network branch that contains a specific

level/scale of features/predictions as an expert and aggregate them using the weights

generated by a trainable convolutional gating network. The gating network also has

a convolutional architecture and outputs a weight map for the entire image. The pro-

posed MoE-SPNet is motivated by the following three observations: 1) The lower-level

convolutional features contain more precise boundary information but tend to yield

more incorrect predictions, while the higher-level features contain more contextual and

semantic information but less spatial information. 2) Different levels/scales of fea-

tures reflect the visual properties of different-sized objects because they are extracted

by receptive fields with different sizes. Notably, small objects are more likely to be

misclassified to their background if using higher-level features because larger recep-

tive fields introduces much noise to these small objects. 3) The relative importance

of different levels of features varies with spatial location; it relies on the local image

structure and surrounding contextual information. Obviously, a linear combination of

these features by average pooling cannot capture the homogeneity of a scene and assess

the importance of different feature levels. On the contrary, the proposed MoE-SPNet
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overcomes the limits of linear combination by aggregating different level of features in

a nonlinear and adaptive way.

Since MoE-SPNet is only able to adaptively aggregate multi-scale features gener-

ated from a single CNN layer, we further propose a variant of MoE called adaptive

hierarchical feature aggregation scheme (AHFA) which can be incorporated into the

existing parsing networks that aggregate hierarchical features using skip-connections.

For example, the original FCN architecture combines features from the last convolu-

tional layer with previous layers by successive upsampling and aggregation. Employ-

ing AHFA will enable the parsing networks such as FCN to learn weights at each stage

and aggregate the features adaptively as done in MoE-SPNet. In this paper, we focus on

exploiting AHFA for the original FCN, leading to a new network architecture denoted

as FCN-AHFA.

We demonstrate the effectiveness of our MoE-SPNet and FCN-AHFA on two chal-

lenging benchmarks for scene parsing, PASCAL VOC 2012 [23] and SceneParse150

[24], and achieve the state-of-the-art or comparable results. Also, the experimental re-

sults show that our MoE-SPNet and FCN-AFHA consistently improve the performance

of all the evaluated baseline networks, and thus demonstrate the value of the proposed

methods. In addition, the produced weight maps can help us understand the reason that

some image structures prefer higher-level convolutional features while others prefer

lower-level features.

2. Related work

Segmentation is a fundamental problem in scene understanding. While some works

focus on low-level segmentation which segments a scene into some regions that share

certain characteristics or computed property, such as color, intensity, or texture [25,

26, 27, 28], high-level segmentation (scene parsing or semantic segmentation), which

assigns a category-level label to each pixel of a scene, receives much attention recently.

In the past decade, the successful scene parsing methods rely on handcrafted local

features like colour histogram and textons [6, 29, 30, 31, 32, 33], and shallow classifiers

such as Boosting [6, 34], Random Forests [35, 36], Support Vector Machines [37]. Due
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to the limited discriminative power of local features, a lot of efforts have been put into

developing probabilistic graphical models such as CRFs to enforce spatial consistency

and incorporate rich contextual information [38, 7, 39, 40]. Recently, deep learning

methods typified by DCNNs have achieved state-of-the-art performance on various

computer vision tasks, such as image classification and multi-class object detection.

Also, the DCNN architectures such as VGG [41] and ResNet [42] originally de-

veloped for image classification have been successfully transferred to scene parsing.

Specifically, Long et al. [5] proposed the fully convolutional network (FCN) which

applied DCNNs to the whole image and directly produced dense predictions from con-

volutional features, making it possible to get rid of bottom-up segmentation steps [43]

and train the parsing network in an end-to-end fashion.

The impressive performance of FCNs is largely due to the aggregation of multi-

level or multi-scale features/predictions. There are mainly two types of aggregation

methods: share-nets and skip-nets [44]. The skip-nets, which merge multi-level fea-

tures/predictions from a single network, are computationally more efficient than the

share-nets. Furthermore, they have been refined to enable end-to-end training by nor-

malizing the features from different levels. For example, Hariharan et al. [4] con-

catenated the multi-level features together after certain normalization methods like L2

normalization. However, the concatenation of hierarchical features results in high-

dimensional features and is thus time-consuming. The FCN-8s [5] model aggregated

features from the last three convolutional blocks by averagely pooling over layers.

Similarly, Chen et al. [45] combined the features which were extracted by applying

multi-layer perceptrons on the original image and the pooling layers. However, linear

combination of multi-scale features does not sufficiently exploit the geometric proper-

ties, contextual information, and the spatial-semantic tradeoff. Recently, Ghiasi et al.

[21] found that directly summing up multi-scale features cannot achieve desirable re-

sults, as the learned parameters tended to down-weight the contribution of lower-level

features (higher resolution) to suppress the effects of noisy predictions. They proposed

the laplacian pyramid refinement approach which computed a boundary mask from

higher-level semantic predictions to filter out the noisy predictions in lower-level fea-

tures. However, we aim to learn the mask weights from multi-level features instead of
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calculating a boundary mask by manually designed mathematical operations.

Share-nets combine features from shared networks built on multiple rescaled im-

ages. For example, Farabet et al. [43] transformed the raw image through a laplacian

pyramid, and each level of which was fed into a CNN. The produced sets of feature

maps of all scales were concatenated to form the final representation. Similarly, Lin

et al. [46] resized the original image to three scales and concatenated the multi-scale

features. Aside from concatenation, average pooling [47] and max pooling [48] were

adopted over scales to merge multi-scale features. However, average or max pooling

either treats the multi-scale features equally or losses too much information. Targeting

this problem, Chen et al. [44] proposed the scale attention method which uses the at-

tention model [49] over scales to focus on the features from the most relevant scales.

Instead of aggregating multi-scale features at one time, Pinheiro et al. [50] proposed

a multi-stage approach which fed multi-scale images successively to a recurrent con-

volutional neural network. Although the share-nets obtain much better performance,

they are computationally more expensive than the single scale networks. Most re-

cently, Chen et al. [8] developed an atros spatial pyramid pooling strategy (a variant of

the share-nets) which extracted multi-scale features in a single network. However, the

multi-scale features were still aggregated via an average pooling, and the performance

had some gaps against the typical share-nets.

In this paper, we investigate how to adaptively aggregate multi-level or multi-scale

features in a single network to further improve their performance and obtain deeper

understanding of the special properties of the features from different layers. Specif-

ically, we treat the network branches which obtain multi-level/scale features as ex-

pert networks, and propose MoE-SPNet, which learns some pixel-wise gating weight

maps for each experts, to adaptively aggregating these features for a better solution for

scene parsing. We also propose the AHFA scheme to further improve existing skip-nets

[5, 21] that use stage-wise aggregation of hierarchical features. Since most of current

parsing networks follow the similar forms as FCN or DeepLab, we can conclude that

our technique is widely applicable.
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3. Background

In this section, we first review the mixture-of-experts (MoE) framework and then

review two typical scene parsing networks that employ fully convolutional architec-

tures, i.e., FCN-8s [5] and DeepLab-ASPP [8].

3.1. Mixture-of-Experts
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Figure 1: Mixture-of-Experts. An illustration of mixture-of-experts. The same input is fed

to different experts, resulting in different solutions for the whole problem space. Typically, the

gating network G also receives the same input as the experts, and the weights are often nomalized

by the softmax function. Here, Fi and Fi are learned intermediate features and a prediction

correspond to expert i respectively.

Mixture-of-experts [22] is one of the effective machine learning techniques which

aims to adaptively aggregating multiple decisions from different experts. As shown in

Fig. 1, MoE contains two key components: multiple correlated experts and a gating

network. The multiple correlated experts are expected to learn the distribution special-

ized on a stochastic subspace of the whole problem space, and are thus complementary

to each other. The gating network aims at learning weights for each expert according to

their local efficiency. It should be noted that, the weights in the gating network are dy-

namically determined by the input features. Here, we take mixture-of-expert networks

as an example, and introduce the conventional MoE with respect to two different error

functions in the learning process.
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3.1.1. Cooperation Encouraged Error Function

The error function which encourages cooperation among local experts exhibits the

following form:

Ecoop = ‖y −
N∑
i=1

gioi‖2 (1)

where y is the target vector, N is the number of experts, oi is the output of expert i,

and gi from the gating network (g1 + g2 + ...+ gN = 1) represents the contribution of

expert i for the final prediction.

With this error function, the blend of the outputs from each expert is directly com-

pared with the target, meaning that the parameters in each expert are updated according

to the overall ensemble error. The strong coupling in the learning process encourages

all the experts cooperating nicely, but tends to make each expert generalize to the whole

problem space rather than to different subspaces of the whole problem space. Thus, the

learned model via this error function may become inconsistent with the localization of

the experts.

3.1.2. Competition Encouraged Error Function

Addressing the shortage in cooperation encouraged error function, Jacobs et al.

[51] defined a competition encouraged error function as:

Ecomp =

N∑
i=1

gi‖y − oi‖2 (2)

From the definition, this error function actually measures the expected value of dif-

ferences between the target and each local experts. Thus, each expert directly responds

to their own occasions and obtain a complete output over the whole problem space

instead of a residual. After the training process, a single expert prefer to generate a so-

lution for a specific training case, and the gating network here plays a role in selecting

one or several experts for a given input. In this case, the experts still have some indirect

coupling of each other due to the gating network.

3.2. FCN and DeepLab-ASPP

FCN-8s [5] applies a deep convolutional architecture, e.g. VGG net [41], in a fully

convolutional fashion to extract hierarchical features with different strides (32x, 16x,
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and 8x), and combine these features stage by stage from a deeper (coarser) layer to

a shallower (finer) layer. Specifically, built on the 16-layer VGG (VGG16) architec-

ture, FCN-8s replaces fully-connected layers with convolutional layers to generate the

prediction feature maps with stride 32.

DeepLab-ASPP reduces the stride of 32x feature maps of FCN to 8 by using di-

lated convolutions (atrous algorithm) [52], which introduces zeros to increase the con-

volution fields for the convolutional kernels. Then, the atrous spatial pyramid pooling

(ASPP) strategy, which employs multiple parallel filters with different dilation rates

on the pool5 layer, is adopted to exploit multi-scale features. The generated predic-

tions from the multi-scale features are simply summed together to produce the final

prediction.

4. Approach

In this section, we first present how to incorporate MoE in a scene parsing network

and describe the details of the proposed MoE-SPNet. Second, we introduce adaptive

hierarchical feature aggregation (AHFA) scheme which is a variant of MoE and show

how it can incorporated into the skip-net FCN-8s [5] to form a new network FCN-

AHFA. The AHFA scheme can be incorporated into other skip-nets in a similar way.

4.1. MoE-SPNet

We develop a mixture-of-experts scene parsing network (MoE-SPNet) which aims

to learn predictions by considering features computed with different receptive fields

(experts) and adaptively aggregate these predictions (gating network) to produce fi-

nal semantic segmentation masks. Our network is built on DeepLab-ASPP [8] which

exploits different receptive fields for scene parsing.

Each expert in MoE-SPNet targets at learning a parsing mask from a specific recep-

tive field. In particular, an expert adopts a dilated convolutional layer with a specific

dilation rate (e1i ) to obtain local structural and contextual information from features

computed with a specific receptive field on top of the pool5 layer. Followed by two

additional convolutional layers with the filter size of 1× 1 (e2i and e3i ), each expert can
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Figure 2: MoE-SPNet. An illustration of the proposed MoE-SPNet. Di represents a dilated

convolutional layer with a specific dilation rate. We learn 4 experts in this paper with the dilation

rates of 6, 12, 18, and 24 respectively. Each expert learns a richer representation ( Fi) of the

input scene, and produces a solution (denote as Fi) for the parsing task. Gi represents the weight

map produced by the gating network for each parsing solution Fi. A is the final segmentation

mask which is the weighted aggregation of all Fi.
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Figure 3: Variants of MoE. Left: Learning the gating network from high-level features Fi of

each expert. Right: Learning the gating network from the predictions Fi of each expert.

learn a richer representation (denote as Fi) of the input scene, and produce a solution

(denote as Fi) for the parsing task. Thus, with different dilation rates, the network can

obtain some experts corresponding to different parsing solutions. Specifically, each

experts are supervised by the ground-truth parsing via softmax regression. Thus, each

channel of Fi corresponds to the probability of belonging to a category.

As shown in Fig. 2, the gating network in our MoE-SPNet is different from the

standard gating network that learns weights from the input features to combine a series
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Figure 4: Dilation. Convolutional layers with the kernel size of 3. Left: standard convolutional

layer. Right: dilated convolutional layer with the dilation rate of 2.

of classifiers. We learn the gating network from the segmentation maps generated by

different experts instead of the same input features fed to the experts. Fig. 3 shows two

variants of the standard MoE: one uses the high-level features Fi and the other uses

the predictions Fi for the gating network. These two variants are supposed to perform

better than the standard MoE, because of adoption of higher-level representations for

the gating network. Since prediction maps are directly supervised using ground-truth

segmentation maps, they contain the richest semantic information and are most suitable

for training the gating network. Another advantage of using predictions Fi to train the

gating network is that the number of gating network parameters can be reduced, leading

to lower computational and memory cost.

To train the gating network, we concatenateF1 toFN (N is the number of experts),

denoted as F , and learn a non-linear function via two convolutional layers (g′1 and g′2)

from these features to the corresponding gating features, denoted as G, which follows

the form:

G = (F ∗ Kg′
1
) ∗ Kg′

2
, (3)

where Kg′
1

and Kg′
2

are kernels of the convolutional layers g′1 and g′2 with the kernel

size of 3 × 3 and 1 × 1 respectively, “∗” is the convolution operator, and the gating

features set G in this paper consists of G1 to GN . Followed by a normalisation process,

the weight located at (i, j) for expert l can be calculated as:

wl(i, j) =
eGl(i,j)∑N

k=1 e
Gk(i,j)

. (4)
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After obtaining the weight maps in the gating networks, each channel Fi is multiplied

by the corresponding weight mapWi, and the aggregated output can be calculated as:

A =

N∑
i=1

Fi ⊗Wi, (5)

where “⊗” denotes element-wise product in each channel.

We train MoE-SPNet using the cost function consisting of a cooperation encour-

aged error term and a weakened competition encouraged error term:

L = Φ(Y,A) +

N∑
i=1

Φ(Y,Fi ⊗Wi), (6)

where the “Φ” represents the multinomial logistic regression error. Note that, all of the

experts in our parsing network are addressing the single occasion rather than different

occasions, thus the competition between these experts should not be strong. As a result,

we ignore the gating factors in the typical competition encouraged error term.

4.2. FCN-AHFA
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Figure 5: AHFA: An illustration of the proposed adaptively hierarchical features aggrega-

tion(AHFA) technique, which is another variant of mixture of experts.

We investigate how to incorporate the mechanism of MoE into another popular

parsing network architecture with stage-wise fusions of features from different layers.

We hypothesize that the gating map for each expert can be directly learned from the ex-

pert itself and propose an adaptive hierarchical feature aggregation (AHFA) mechanism

which is a variant of the proposed MoE in Sec. 4.1 by assuming sparse connections in
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the gating network. We take the typical parsing network FCN-8s [5] as an example to

demonstrate the effectiveness of AHFA.

To take advantage of contextual information, FCN-8s produces a finer 16x-prediction

with 16 pixel stride (16x) by adding a 1 × 1 convolutional layer on top of the pool4

layer. The 32x-prediction is then upsampled to the same size of the 16x-prediction

via a learnable deconvolutional layer, and then summed up with the 16x-prediction to

accomplish one stage of combination. Finally, the above combined prediction is fur-

ther aggregated with higher resolution (8x) features by applying the same strategy. The

final prediction with stride 8 is upsampled back to the input image resolution.

ℱ)×

ℱ"+×

ℱ,#×

2x	upsampling

Spatial	product

-"+×.)×

."+×

.,#×

/"+×

Average	pooling8x

16x

32x

Figure 6: AHFA for skip-nets. The feature maps are fused by stage-wise combination in skip-

nets. In each combination stage, we learn a soft weight map for each level of features followed

by a weighted pooling step over adjacent levels.

Now we describe the details of AHFA in FCN-8s to adaptively merge hierarchical

features (32x, 16x, and 8x), resulting in a modified model which we call FCN-AHFA.

An illustration of FCN-AHFA is shown in Fig. 6. In the first stage, on top of the

32x-prediction, denoted as F32x ∈ RH×W×C , we add a convolutional layer with the

kernel size of 3× 3 and the stride of 1 followed by a sigmoid layer to produce a dense

probabilistic weight map W32x ∈ RH×W . Here, H , W , and C denote the height,

width, and the number of channels of the 32x feature maps, respectively. Then the

weight located at (i, j) inW32x can be calculated as:

w32x
(i,j) =

1

1 + e−
∑C

c=1(f
32x
c ∗k32x

c )(i,j)
, (7)
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where f 32x
c represents the c-th channel of F32x, k32x

c is the corresponding convolu-

tional kernel, and “∗” is the convolution operator. The weight function in Eq. (7)

can be made more complex by introducing more convolutional and activation layers.

However, we have observed from the experimental results that learning more complex

weight functions only slightly improves the performance. After obtaining the weight

map, each channel of F32x is multiplied by W32x, resulting in the weighted features

H32x ∈ RH×W×C of which each channel is:

h32x
c =W32x ⊗ f 32x

c , (8)

where ⊗ represents Hadamard product or entrywise product. Likewise, we reweight

the 16x-prediction F16x by the learned weightW16x to obtainH16x ∈ R2H×2W×C . At

the final step of this stage, H32x is upsampled to have the same size of the H16x and

linearly combined with it to produce the 16x aggregated feature:

A16x = H16x ⊕ (H32x)↑, (9)

where (•)↑ is a 2x upsampling operation via bilinear interpolation and ⊕ denotes the

summing operation in each spatial location.

The aggregation strategy for the second stage is similar to that used in the first stage

but is applied on A16x and F8x. Hence, the the c-th channel of A8x can be calculated

as:

a8x
c = (W8x ⊗ f 8x

c )⊕ (W16x ⊗ a16x
c )↑, (10)

where W8x and W16x are the learned probabilistic weight maps for F8x and A16x,

repectively.

Remark The fixed-size filters (3 × 3) used for learning the weight maps are actually

adaptive to the size of semantic areas in the input image, because the higher-layer

feature maps have smaller size. For example, the spatial areas corresponding to the

original image considered by k32x
c are four times larger than that considered by k16x

c .

Also, the weight map of a layer is learned only from the feature maps in that layer.
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This is different from existing mixture-of-experts [22] or the attention models [44]

which usually learn the weights from the concatenation of features maps from all lay-

ers. Our method simplifies the weight learning network based on the observation that

the feature maps in one layer already contain rich information about the corresponding

weight map. Finally, with the learned weight maps, different levels of features can

be aggregated adaptively by considering the relative spatial-semantic tradeoff at each

spatial location.

5. Experiments

To demonstrate the effectiveness of the proposed MoE-SPNet and FCN-AHFA

methods, we compare our methods with the existing methods on two challenging

datasets, i.e. PASCAL VOC 2012 [23] and SceneParse150 [24]. We first describe

the experimental settings including evaluation protocols and detailed implementations,

and then report the experimental results with discussions.

5.1. Experimental Setting

Evaluation Metrics Four common metrics for scene parsing are used in our experi-

ments, i.e. pixel accuracy, mean accuracy, mean IoU, and weighted IoU. Pixel accu-

racy indicates the proportion of correctly classified pixels. Mean accuracy indicates the

average of the proportion of correctly classified pixels for all classes. IoU indicates the

average intersection-over-union between the predicted and ground-truth pixels over all

classes. Weighted IoU indicates the IoU weighted by total pixel ratio of each class. Let

L be the number of classes of interest, lij represents the number of pixels belonging to

class i predicted as class j, and N =
∑L

i=1

∑L
j=1 lij is the number of pixels. The four

metrics are computed as follows:

• Pixel Acc. : 1
N

∑L
i=1 lii

• Mean Acc. : 1
L

∑L
i=1

lii∑L
j=1 lij

• Mean IoU : 1
L

∑L
i=1

lii
−lii+

∑L
j=1(lij+lji)

• Weighted IoU : 1
N

∑L
i=1

lii
∑L

j=1 lij

−lii+
∑L

j=1(lij+lji)
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It should be noted that pixel accuracy is biased to reflect the “stuff” categories such

as grass and sky as they occupy more pixels. Instead, IoU is a more accurate measure

of the classification performance on “things” categories such as person and car.

Implementation Since the proposed methods rely on semantic predictions in each

level, our framework are trained in two stages. In the first stage, we train the basic

network without MoE to produce hierarchical features containing semantic informa-

tion. In the second stage, we add the gating network of MoE to the pre-trained baseline

network and fine-tune the whole parsing network in an end-to-end fashion. For fair

comparison, we also fine-tune the baseline network with the same iterations. We ini-

tialise the base convolutional architecture via the pre-trained VGG16, ResNet-50, and

ResNet-101 [42] classification models on ILSVRC [53]. The fine-tuning stage follows

a polynomial decay with the power of 0.9, the momentum of 0.9, and the weight decay

of 0.0005. We implement our networks based on Caffe [54], and train them using 4

TITAN X GPUs with 12GB of memory per GPU. The batch size is set to 8 in all the

experiments.

Data Augmentation Data augmentation techniques are used when training the parsing

networks, which can be summarised as follows: 1). The training images are resized

by the scaling factors: 0.5, 0.75, 1.0, 1.25, 1.5. 2). We randomly flip the training

images horizontally. 3). The input samples of the models are randomly cropped from

the training images with a fixed size.

5.2. Benchmark Performance

5.2.1. PASCAL VOC 2012

PASCAL VOC 2012 [55], which consists of 20 common object categories and one

background category, is a well-known benchmark for semantic segmentation. The im-

ages contained in this dataset are split into three parts, including 1464 training im-

ages, 1449 validation images, and 1456 test images. Following [56], the training

data with ground-truth segmentation masks are augmented to 10,582 images using

the extra annotated images for VOC 2012. Since PASCAL VOC 2012 is an object-
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Image GT FCN-8s [5] FCN-AHFA Deeplab-ASPP [8] MoE-SPNet

Figure 7: PASCAL VOC 2012 results. A comparison of proposed MoE based parsing networks,

i.e. FCN-AHFA, MoE-SPNet, with their baseline models, i.e. FCN-8s, DeepLab-ASPP. (Best

view in colour.)

level segmentation benchmark, and each image in this dataset follows a simple fore-315

ground/background form. We only adopt mean IoU, which is a stricter and more

convincing metric for scene parsing, to evaluate different methods following previous

works.

In Tab. 1, we report our scores on the test server in different conditions to make a

comparison with previous works. Our MOE-SPNet achieves about 2.5% improvement320

on the baseline model Deeplab-ASPP based on ResNet, and obtains comprisable results

with current state-of-the-art algorithms on different settings. Also, our FCN-AHFA

significantly outperforms the most typical baseline model FCN-8s, nearly closing the

gap to current state-of-the-art methods. Fig. 7 gives qualitative comparison of different

methods on several images.325
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Image GT FCN-8s [5] FCN-AHFA

Image Ground Truth Deeplab-ASPP [8] MoE-SPNet

Figure 8: SceneParse150 results. The top part shows the segmentation results of FCN-8s [5]

without or with our AHFA technique. The bottom part shows the segmentation results of

Deeplab-ASPP [8] (with atrous spatial pyramid pooling) and our MOE-SPNet. (Best viewed

in colour)
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VGG + PASCAL VOC

SegNet [19] 59.9 73.6 37.6 62.0 46.8 58.6 79.1 70.1 65.4 23.6 60.4 45.6 61.8 63.5 75.3 74.9 42.6 63.7 42.5 67.8 52.7

FCN-8s [5] 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1

Hypercolumn [13] 62.6 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4

Zoom-out [57] 69.6 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3

EdgeNet [58] 71.2 83.6 35.8 82.4 63.1 68.9 86.2 79.6 84.7 31.8 74.2 61.1 79.6 76.6 83.2 80.9 58.3 82.6 49.1 74.8 65.1

Attention [44] 71.5 86.0 38.8 78.2 63.1 70.2 89.6 84.1 82.9 29.4 75.2 58.7 79.3 78.4 83.9 80.3 53.5 82.6 51.5 79.2 64.2

DeepLab-Large [45] 71.6 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7

CRFasRNN [59] 72.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1

DeconvNet [60] 72.5 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0

DPN [61] 74.1 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0

Cont-CNN-CRF [46] 75.3 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3

MoE-SPNet 74.7 90.1 38.6 79.7 63.4 69.9 90.9 86.4 89.1 32.2 82.7 62.6 84.9 83.3 85.7 82.7 63.9 84.2 56.6 79.3 67.6

FCN-AHFA 70.6 82.6 37.2 80.9 58.0 67.7 86.4 84.6 84.5 30.2 76.6 50.3 78.7 79.1 83.4 80.3 59.3 78.5 48.5 80.5 61.9

VGG + PASCAL VOC + COCO

EdgeNet [58] 73.6 88.3 37.0 89.8 63.6 70.3 87.3 82.0 87.6 31.1 79.0 61.9 81.6 80.4 84.5 83.3 58.4 86.1 55.9 78.2 65.4

CRFasRNN [59] 74.7 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1

BoxSup [47] 75.2 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7

SBound [62] 75.7 90.3 37.9 89.6 67.8 74.6 89.3 84.1 89.1 35.8 83.6 66.2 82.9 81.7 85.6 84.6 60.3 84.8 60.7 78.3 68.3

Attention [44] 76.3 93.2 41.7 88.0 61.7 74.9 92.9 84.5 90.4 33.0 82.8 63.2 84.5 85.0 87.2 85.7 60.5 87.7 57.8 84.3 68.2

DPN [61] 77.5 89.0 61.8 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4

Cont-CNN-CRF [46] 77.8 94.1 40.4 83.6 67.3 75.6 93.4 84.4 88.7 41.6 86.4 63.3 85.5 89.3 85.6 86.0 67.4 90.1 62.6 80.9 72.5

TVG-HO-CRF [63] 77.9 92.5 59.1 90.3 70.6 74.4 92.4 84.1 88.3 36.8 85.6 67.1 85.1 86.9 88.2 82.6 62.6 85.0 56.3 81.9 72.5

Att-CRF-DT [58] 76.3 93.2 41.7 88.0 61.7 74.9 92.9 84.5 90.4 33.0 82.8 63.2 84.5 85.0 87.2 85.7 60.5 87.7 57.8 84.3 68.2

MoE-SPNet 77.7 91.6 39.7 89.6 64.2 77.1 93.7 89.0 93.6 36.5 87.6 56.0 90.3 91.6 85.9 86.7 59.2 89.3 59.3 85.7 70.9

ResNet-101 + PASCAL VOC + COCO

Deeplab-ASPP [8] 79.7 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5

LRR-CRF [61] 79.3 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3

Deep G-CRF [64] 80.2 92.9 61.2 91.0 66.3 77.7 95.3 88.9 92.4 33.8 88.4 69.1 89.8 92.9 87.7 87.5 62.6 89.9 59.2 87.1 74.2

FRRN [20] 80.3 94.4 61.3 91.1 65.7 76.2 94.5 88.1 91.9 35.1 89.2 70.9 88.6 92.3 87.9 87.9 62.9 89.9 61.7 86.6 74.6

Multi-Refine [65] 82.4 94.9 60.2 92.8 77.5 81.5 95.0 87.4 93.3 39.6 89.3 73.0 92.7 92.4 85.4 88.3 69.7 92.2 65.3 84.2 78.7

MoE-SPNet 82.5 94.1 63.9 93.8 72.3 82.1 95.2 89.8 94.2 40.1 88.1 70.3 90.0 93.9 90.0 87.2 67.0 91.3 67.0 87.1 78.2

Table 1: Results on PASCAL VOC 2012 test set. For a fair comparison, In the bottom part of

the table, we only compare results with previous works who also adopt the standard ResNet-101

as their base network. Thus, some works who modify the ResNet-101 to deeper or wider for

their parsing network are not reported.

19



Imgae GT FCN-AHFA W8x W16x W32x

Figure 9: Weight maps on SceneParse150 by FCN-AHFA. Red represents high probability,

and blue represents low probability. W8x, W16x, and W32x correspond to weight maps of F8x,

F16x, and F32x, respectively, as defined in section 4.2. W8x give high weights to the boundary

positions. W16x sets high probabilities to regions of small categories for F16x. And the W32x

activates almost all the positions, since 32x features in FCN-8s capture the global contextual

information which is useful for many categories. (Best viewed in colour)

5.2.2. SceneParse150

SceneParse150 [24] is a recently released large-scaled scene parsing benchmark

using images from ADE20K Dataset [24]. The images are collected from diverse out-

door and indoor scenes involving 35 stuff categories (e.g. floor, water, and sky) and

115 discrete objects (e.g. person, chair, and car). We train our models on the 20,210330

training images, and evaluate the performance on the 2,000 validation images.

From the analyzation of different variants of MoE-SPNet, we choose MoE-SPNet,

which contains least parameters but has promise performance, as our network archi-

tecture to demonstrate the effectiveness of our MoE based parsing algorithm. Also,

following the same setting as the previous section, we employ the AHFA, which is the335

key component of MoE-SPNet, to the FCN. Note that, when building on ResNet, we

add an extra convolutional layer with kernel size of 7 ⇥ 7 on top of ResNet to make
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Algorithm
Metric

Pixel Acc. Mean Acc. Mean IoU Weighted IoU

VGG

Cascade-DilatedNet [24] 74.52 % 45.38 % 0.3496 0.6108

FCN-8s [5] 71.56 % 40.50 % 0.2948 0.5755

FCN-AHFA 73.59 % 43.51 % 0.3128 0.6009

DeepLab-ASPP [8] 74.88 % 46.17 % 0.3303 0.6167

MoE-SPNet 75.50 % 47.33 % 0.3435 0.6242

ResNet

FCN-16s [5] 75.52 % 44.13 % 0.3475 0.6246

FCN-AHFA 76.04 % 45.40 % 0.3549 0.6286

Deeplab-ASPP [8] 77.31 % 47.69 % 0.3675 0.6354

MoE-SPNet 78.02 % 48.02 % 0.3789 0.6426

Table 2: Results on SceneParse150 validation set. We add AHFA and MOE to two kinds of

parsing networks, including FCN-16/8s and Deeplab-ASPP, respectively. The comparison with

baseline models demonstrates the effectiveness of our attention strategies.

the learned representation more complicated for FCN. We use FCN-16s as the baseline

model, as we observed from the experiments that it outperforms FCN-8s on this dataset.

Due to limited GPU memory, we use 50-layer ResNet for FCN-16s and FCN-AHFA

and use ResNet101 to build two models based on DeepLab-ASPP and MoE-SPNet.

Following the benchmark providers, we take the mean of Pixel Acc. and Mean IoU as

the evaluation score.

The evaluation results are shown in Tab. 2. Sampled qualitative results are shown

in Fig. 8. It can be seen that the AHFA-based methods outperform the baseline meth-

ods in terms of both pixel accuracy and IoU. Our VGG16-based FCN-AHFA yields a

score of 52.4%, bringing 1.9% improvement over the VGG16-based FCN-8s (50.5%);

and ResNet-based FCN-AHFA obtains a score of 55.8%, outperforming ResNet-based

FCN-16s (55.1%) by 0.7%. Also, some selected learned weight maps in Fig. 9 fur-

therly demonstrate the effectiveness of our attention strategy.

Also, VGG-based MoE-SPNet has a score of 54.9%, yielding 0.9% improvement
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over the baseline method DeepLab-ASPP. Also, ResNet-based MoE-SPNet achieves

58.0%, which is 1% higher than performance of ResNet-based DeepLab-ASPP. It

should be noted that obtaining 1% overall improvement on this dataset containing 150

classes is considered as significant. Especially, the MoE-SPNet method outperforms

the Cascade-DilatedNet [24] which segments stuff, objects, and object parts via a com-

plicated cascade structure.

5.3. Ablation Studies on PASCAL VOC

We run some experiments to analyze our MOE and AHFA based networks, and

discuss them in detail here.

5.3.1. Comparison with Baseline

Algorithm
Mean IoU (%)

val test

FCN-8s [5] 68.4 62.2

FCN-AHFA 70.5 70.6

DeepLab-ASPP [8] 66.3 72.6

MoE-SPNet 70.4 74.7

Table 3: Comparison with Baseline This table reports the mean IoU on PASCAL VOC 2012 on

val/test set. The FCN-8s and Deeplab-ASPP are two baseline networks.

To demonstrate the effectiveness of our MOE-SPNet, we compare VGG16-based

MoE-SPNet with the baseline parsing network Deeplab-ASPP [8] on both the valida-

tion set and the test set. We also apply AHFA to the popular stage-wise parsing network

FCN-8s to demonstrate the wide applicability of proposed AHFA based parsing strat-

egy. As shown in Tab. 3, our methods consistently outperform the counterpart baseline

networks. In particular, our MoE-SPNet obtains 2.1% improvement in terms of Mean

IoU compared with the baseline Deeplab-ASPP [8] on both sets. Significantly, em-

ploying our AHFA method to FCN-8s results in an Mean IoU of 70.4%, which not only

outperforms FCN-8s (66.3%) by 4.1%, but also achieves comparable performance with

22



the state-of-the-art algorithms. It should be noted that, this comparison does not adopt

the extra performance boosting techniques like CRF post-processing, pre-training on

MS COCO, or multi-scale inputs.

5.3.2. Variants of MOE-SPNet
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Baseline 72.6 88.3 37.0 89.8 63.6 70.3 87.3 82.0 87.6 31.1 79.0 61.9 81.6 80.4 84.5 83.3 58.4 86.1 55.9 78.2 65.4

MoE-SPNet-CF 74.1 90.3 40.1 81.9 62.4 70.9 90.3 87.5 88.4 33.7 81.1 56.3 82.5 83.0 87.0 83.6 57.2 85.2 50.0 83.0 66.9

MoE-SPNet-EF 74.2 89.2 38.8 79.1 64.1 72.8 90.9 87.0 88.6 35.2 81.9 61.2 83.7 80.3 84.5 83.5 59.5 83.9 55.6 78.3 67.5

MoE-SPNet 74.7 90.1 38.6 79.7 63.4 69.9 90.9 86.4 89.1 32.2 82.7 62.6 84.9 83.3 85.7 82.7 63.9 84.2 56.6 79.3 67.6

Table 4: Comparison of different MoEs for parsing. Baseline: The DeepLab-ASPP parsing

network without the gating part. MoE-SPNet-CF: The gating network using the input features

to all the experts. MoE-SPNet-EF: The gating network takes the high-level features F within

each expert as input. MoE-SPNet: The gating network takes the predictions Fi of each expert as

input.

Furthermore, Tab. 4 shows evaluation results of variants of the proposed MoE-

SPNet on the test server, including MoE-SPNet-CF whose gating network share the

same input with the that of the experts, MoE-SPNet-EF whose gating network takes

the features within each experts as input. From the table, all the MoE based parsing

networks yield at least an improvement of 1.0% over the baseline network (Deeplab-

ASPP). MoE-SPNet-EF outperforms MoE-SPNet-CF by 0.5%, while MoE-SPNet ob-

tains a further 0.6% improvement compared with MoE-SPNet-EF, which demonstrate

that direct understanding of a scene can help learn a more effective gating network.

To exploit the MoE based parsing networks in deeper, we calculate the number of

parameters of the gating networks belong to these MoE-SPNets here. Assuming the

dimension of S, Fi, and Fi are C1, C2, and C3, respectively, and the additional convolu-

tional layer for MoE-SPNet-EF and MoE-SPNet-CF contain C4 channels, the numbers

of the gating networks parameters in MoE-SPNet-CF, MoE-SPNet-CF, MoE-SPNet are

C1×C4×3×3+C4×N×1×1,N×C2×C4×3×3+C4×N×1×1, andN×C3×N×3×3,

respectively, where N is the number of experts, and N < C3 � C1, C2, C4. It can be

seen that MoE-SPNet contains the fewest parameters but achieves the best performance
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by using a gating network learned from the predictions of each expert.

6. Conclusion

In this paper, we have proposed MoE-SPNet and FCN-AHFA to better exploit the

diversities of contextual information in multi-level features and the spatial inhomo-

geneity of a scene in CNN-based models for scene parsing, by learning to assess the

importance of features from different levels at each spatial location, instead of aggre-

gating such features via concatenation or linear combination as commonly done in

previous methods. The proposed MoE-SPNet achieves better performance by incor-

porating a mixture-of-experts layer to assess the importance of features from different

layers. The AHFA scheme inspired by MoE-SPNet is applicable to a variety of scene

parsing networks that use skip connections to fuse multi-level features from different

stages. The value of the proposed methods have been demonstrated by the consistent

and remarkable performance increase in a number of experiments on two challenging

benchmarks (PASCAL VOC 2012 and SceneParse150). In the future, we will continue

investigating more effective and efficient methods to jointly make use of multi-level

convolutional features in CNN-based models for scene parsing and other challenging

computer vision problems.
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[13] B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Hypercolumns for object seg-

mentation and fine-grained localization, IEEE Transactions on Pattern Analysis

and Machine Intelligence (2013) 1915–1929.

[14] S. Yin, Y. Qian, M. Gong, Unsupervised hierarchical image segmentation through

fuzzy entropy maximization, Pattern Recognition 68 (2017) 245–259.

[15] Q. Zhou, B. Zheng, W. Zhu, L. J. Latecki, Multi-scale context for scene labeling

via flexible segmentation graph, Pattern Recognition 59 (2016) 312–324.

[16] Z. Wang, L. Wei, L. Wang, Y. Gao, W. Chen, D. Shen, Hierarchical vertex regres-

sion based segmentation of head and neck ct images for radiotherapy planning 27

(2018) 923–937.

[17] G. Passino, I. Patras, E. Izquierdo, Pyramidal model for image semantic segmen-

tation, in: Pattern Recognition (ICPR), 2010 20th International Conference on,

IEEE, 2010, pp. 1554–1557.

[18] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomed-

ical image segmentation, in: MICCAI, 2015.

[19] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional

encoder-decoder architecture for image segmentation, IEEE TPAMI 39 (12)

(2017) 2481–2495.

[20] T. Pohlen, A. Hermans, M. Mathias, B. Leibe, Full-resolution residual networks

for semantic segmentation in street scenes, in: CVPR, 2017.

[21] G. Ghiasi, C. C. Fowlkes, Laplacian pyramid reconstruction and refinement for

semantic segmentation, in: ECCV, Springer, 2016, pp. 519–534.

[22] M. I. Jordan, R. A. Jacobs, Hierarchical mixtures of experts and the em algorithm,

Neural computation 6 (2) (1994) 181–214.

26



[23] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, A. Zisser-

man, The pascal visual object classes challenge: A retrospective, International

Journal of Computer Vision 111 (1) (2015) 98–136.

[24] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Seman-

tic understanding of scenes through the ADE20K dataset, arXiv preprint

arXiv:1608.05442.

[25] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on

pattern analysis and machine intelligence 22 (8) (2000) 888–905.

[26] P. F. Felzenszwalb, D. P. Huttenlocher, Efficient graph-based image segmentation,

International journal of computer vision 59 (2) (2004) 167–181.

[27] B. Liu, H. Cheng, J. Huang, J. Tian, X. Tang, J. Liu, Fully automatic and

segmentation-robust classification of breast tumors based on local texture anal-

ysis of ultrasound images, Pattern Recognition 43 (1) (2010) 280–298.

[28] H. Permuter, J. Francos, I. Jermyn, A study of gaussian mixture models of color

and texture features for image classification and segmentation, Pattern Recogni-

tion 39 (4) (2006) 695–706.

[29] F. Bergamasco, A. Albarelli, A. Torsello, M. Favaro, P. Zanuttigh, Pairwise simi-

larities for scene segmentation combining color and depth data, in: Pattern Recog-

nition (ICPR), 2012 21st International Conference on, IEEE, 2012, pp. 3565–

3568.

[30] M. Xian, Y. Zhang, H. Cheng, Fully automatic segmentation of breast ultrasound

images based on breast characteristics in space and frequency domains, Pattern

Recognition 48 (2) (2015) 485–497.

[31] M. Unger, M. Werlberger, T. Pock, H. Bischof, Joint motion estimation and seg-

mentation of complex scenes with label costs and occlusion modeling, in: CVPR,

2012.

27



[32] E. Zemene, M. Pelillo, Interactive image segmentation using constrained dom-

inant sets, in: European Conference on Computer Vision, Springer, 2016, pp.

278–294.

[33] T. Elguebaly, N. Bouguila, A nonparametric bayesian approach for enhanced

pedestrian detection and foreground segmentation, in: Computer Vision and Pat-

tern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Confer-

ence on, IEEE, 2011, pp. 21–26.

[34] Z. Tu, X. Bai, Auto-context and its application to high-level vision tasks and 3d

brain image segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 32 (10) (2010) 1744–1757.

[35] J. Shotton, M. Johnson, R. Cipolla, Semantic texton forests for image categoriza-

tion and segmentation, in: CVPR, IEEE, 2008, pp. 1–8.

[36] D. Ravı̀, M. Bober, G. M. Farinella, M. Guarnera, S. Battiato, Semantic segmen-

tation of images exploiting dct based features and random forest, Pattern Recog-

nition 52 (2016) 260–273.

[37] B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization

with superpixel neighborhoods, in: Computer Vision, 2009 IEEE 12th Interna-

tional Conference on, IEEE, 2009, pp. 670–677.

[38] X. He, R. S. Zemel, M. A. Carreira-Perpiñán, Multiscale conditional random
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