
 
 

Script Identification in Natural Scene Image and 

Video Frame using Attention based 

Convolutional-LSTM Network  
a
Ankan Kumar Bhunia

1
,
 b
Aishik Konwer

1
, 

c
Ayan Kumar Bhunia,

d
Abir Bhowmick,

e
Partha P. Roy*,

 f
Umapada Pal 

 
a
Dept. of EE, Jadavpur University, Kolkata, India. Email-

a
ankankumarbhunia@gmail.com 

b
Dept. of ECE, Institute of Engineering & Management, Kolkata, India. Email-

b
konweraishik@gmail.com 

c
Dept. of ECE, Institute of Engineering & Management, Kolkata, India.Email-

c
ayanbhunia007@gmail.com 

d
Dept. of ECE, Institute of Engineering & Management, Kolkata, India. Email-

d
bhowmick.abir@rediffmail.com 

e
Dept. of CSE, Indian Institute of Technology, Roorkee, India. Email-

e
proy.fcs@iitr.ac.in 

 
f
Umapada Pal, CVPR Unit, Indian Statistical Institute, Kolkata, India. email-

f
umapada@isical.ac.in 

e
TEL: +91-1332-284816 

Abstract 
 

Script identification plays a significant role in analysing documents and videos. In this paper, we 

focus on the problem of script identification in scene text images and video scripts. Because of 

low image quality, complex background and similar layout of characters shared by some scripts 

like Greek, Latin, etc., text recognition in those cases become challenging. In this paper, we 

propose a novel method that involves extraction of local and global features using CNN-LSTM 

framework and weighting them dynamically for script identification. First, we convert the 

images into patches and feed them into a CNN-LSTM framework. Attention-based patch weights 

are calculated applying softmax layer after LSTM. Next, we do patch-wise multiplication of 

these weights with corresponding CNN to yield local features. Global features are also extracted 

from last cell state of LSTM. We employ a fusion technique which dynamically weights the local 

and global features for an individual patch. Experiments have been done in four public script 

identification datasets: SIW-13, CVSI2015, ICDAR-17 and MLe2e. The proposed framework 

achieves superior results in comparison to conventional methods. 

 

Keywords-Script Identification, Convolutional Neural Network, Long Short-Term Memory, 

Local feature, Global feature, Attention Network, Dynamic Weighting. 

 

1. Introduction 

Script identification is one of the essential elements of Optical Character Recognition (OCR). 
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Provided an input text image, the function of script identification is to classify it into one of the 

available scripts which include English, Chinese, Greek, Arabic etc. Some examples of scene 

text images from various scripts are shown in Figure 1. Script identification task can be posed as 

an image classification problem that has been thoroughly studied recently. It is potentially 

applied for different purposes such as scene understanding [1], image searching of any product 

[2], mobile phone navigation, video caption recognition [3], and machine translation [4,5].  

 

 

Fig.1. Examples of scene text images 

 

In the field of document image analysis problems, script identification has gained plenty of 

popularity in recent years. Recently, advanced problems like font-to-font translation, staff line 

removal, handwriting trajectory recovery etc. have been addressed employing deep learning 

techniques in [66-68]. However the main area of research lies in script identification of printed 

documents or videos. Spitz in [6] exploits different spatial relationships of features connected to 

concave shapes in character structures, for page-wise script identification. In [7] the authors 

addressed text level script identification of Indian language using projection profile. Hochberg et 

al. [8] developed a novel method utilizing templates based on clusters to deal with distinct 

characteristic layouts. Tan in [9] employed texture level features unaffected by rotation, for 

identification of Chinese, English, Greek, Russian and other such text. In [10], Singh et al. make 

use of mid-level feature representation extracted from densely calculated local features and in 

end a readymade classifier for script identification from text image. All the above methods have 

achieved great results but only in document script identification.  

 

However, identification of script from natural scenes is still a thought-provoking problem and 



 
 

has not been dealt with much. As texts in natural scenes often hold productive, high quality 

information, many works are found in localization and recognition of scene text [11-17]. Script 

identification in the wild is an unavoidable pre-processing of a multi-lingual scene text 

understanding scheme [18-20]. But this scene text identification is difficult because its 

characteristics are quite dissimilar to normal image classification, or document/video script 

identification, largely owing to the following reasons: Firstly, in natural scenes, text presents 

more diversity compared to documents or videos. They are frequently spotted on complex 

backgrounds such as outdoor sign-boards and hoardings, written in different fonts and styles. 

Fonts and colour of the text have large variations. Secondly, the image quality is often degraded 

by distortions such as low resolutions, noises, and varying light conditions. This results in low 

accuracy. Traditional document analysing methods like binarization and component analysis 

appear untrustworthy. And finally, few languages contain relatively small dissimilarities, e.g. 

scripts like Greek, English and Russian share a subset of characters that have nearly the same 

layout. Differentiating them depends largely on peculiar characters or dealing with components. 

This is cast as a problem of fine-grained classification. 

While substantial research works can be found for text script identification in complex 

backgrounds [21-23], such methods are so far limited and have their own challenges. Pre-defined 

image classification algorithms, such as the robustly tested CNN [24] and the Single-Layer 

Networks (SLN) [25] normally consider holistic representation of images. Hence they perform 

poorly in distinguishing some script categories (e.g. English and Greek). The use of state of the 

art CNN classifiers for script identification is not straightforward, as they fail to counter the 

primary characteristic of extremely variable aspect ratio. Gomez et al [26] describe a new 

method using ensembles of conjoined networks as they form an important factor in a patch-based 

classification system. In [27], the authors proposed a novel approach, where Convolutional 

Neural Network (CNN) and Recurrent Neural Network (RNN) have been combined into an end-

to-end framework. 

 

Earlier, Attention mechanism has never been employed in script identification problem. 

However, in recent years, Attention model has been proved to be effective and impactful in the 

field of computer vision [59, 49, 60] and natural language processing [61]. But in the script 

identification task, few scripts are present which have similar character layouts. To distinguish 

them, attention in some specific areas is necessary. In this paper we introduce a novel feed 



 
 

forward attention mechanism for improving script identification. Attention improves the ability 

of the network to extract the most relevant information for each part of an input image. Thus it 

can also efficiently select those features which hold more significance at a particular step. To the 

best of our knowledge, ours is the first work to exploit attention mechanism for script 

identification task.  

We used deep CNN architectures on image patches to extract their feature representations and 

eventually fed them to a LSTM network. After this, we used Attention mechanism for weight 

calculation of patches in order to give importance to those features which hold more 

significance. The patch-wise multiplication of these attention weights with the extracted CNN 

feature vectors yields the local features for individual patches whereas a global feature is 

obtained from the last cell state of LSTM. Local features contain fine-grained information while 

the global feature captures the holistic representation of the text images. Lastly we integrated 

local and global features using dynamic weighting because fusion of these features has been 

proved to give superior performance in various works [63]. In our work we employed attention 

based dynamic weighting to efficiently decide whom to assign more weightage between global 

feature and local feature, depending on their prominence. A fully connected layer is used at the 

end to obtain the classification scores for each patch. Final classification involves attention-wise 

summation of these patch-wise classification scores. Involving Attention at this step will allow 

the network to focus on relatively more important patches which would not have been possible if 

we used simple element-wise summation. 

The major contributions of this paper are the following: (1) Both local and global features are 

extracted to preserve the fine-grained information as well as coarse-grained information of the 

images. (2) We propose a feed forward attention mechanism to assign weightage relatively 

between global and local features, according to their significance. Such a method allows the 

network to assign more importance to the least deformed parts of the image thus enabling the 

model to be more robust to noise. (3) Dynamic weighting of local and global features is used 

based on their contribution to the fused representation.  Two different types of features together 

can effectively mitigate respective shortcomings of each feature. (4) Final classification involves 

attention-wise summation of patch-wise classification scores. It overcomes the limitation of 

element-wise summation which gives equal importance to all patches. 

The rest of the paper is laid out as follows: In Section 2, we discuss some related works 

regarding development of script identification. In Section 3, the proposed attention based script 



 
 

identification framework has been described in details. In Section 4, we provide the experiment 

setup and discuss performance results in details. Finally, the conclusion is given in Section 5. 

 

2. Related Work 

Script identification is regarded as a well-described problem by document image analysis 

community. [28] provides a comprehensive review of various methods stated to tackle this 

problem. They classify the approaches into two main categories: techniques based on structure 

and visual appearance.  

The techniques involving structure, require precise segmentation of text connected regions from 

the image, while methods relying on visual appearance are known for better performance in bi-

level text. In the first category, Hochberg et al. [29] used cluster-based templates to handle 

unique characteristic shapes. Spitz and Ozaki [30,31] proposed to obtain the vertical distribution 

of concave outlines in connected components and then identify scripts at page-level, using their 

optical density. The authors of [32] considered both vertical and horizontal projection profiles 

and experimented on them for full-page document identification. Latest approaches in this 

division have obtained texture level features from Local Binary Patterns [36] or Gabor filters 

analysis [33-35]. Neural networks have been also employed [37,38] replacing hand-crafted 

features. All the methods mentioned above achieve high accuracy particularly for printed 

document images in mind. Also, some of them need large passages to extract sufficient 

information and hence do not perform well for scene text as they generally carry very less words. 

 

Although extensive research has been done in script identification on printed document images, 

it is quite rare on non-conventional paper formats. Sharma et al. [39] relied on using 

conventional document analysing methods for identification of video-overlaid text at word stage. 

They study Gabor filters, Zernike moments, along with some hand-crafted gradient features 

earlier applied in tasks of handwritten character recognition. They overcame the in-built barriers 

of video-overlaid text by developing few dedicated algorithms for the pre-processing step. [21] 

deals with edge detection in overlaid-text images using a method that involves wavelet 

transform. After that some low-level features are extracted and they make use of a K-NN 

classifier. T.Q. Phan et al. designed algorithms and jointly performed both script identification 

and detection of video text overlay in [40]. They applied canny edge detection on text lines and 



 
 

evaluated connected components of those edges. Then they extracted upper and lower extreme 

points for each such component to analyze their texture properties like cursiveness. Shivakumara 

et al. [22,41] evaluated dominant gradients and explored their skeletons. They extracted a set of 

hand-crafted features after analysing the properties [41] of skeleton components, and studying 

the spatial [22] distribution of their branch points and end points. The above methods have been 

evaluated mainly for text appearing on video. Majority of these methods detect edges of text 

regions, which cannot be done for scene text. Also, Sharma et al. [42] identified video-overlaid 

text scripts at word level, by employing techniques based on Bag-of-Visual Words. They 

outperformed conventional script identification approaches that considered HoG as gradient 

based features or LBP as texture based features, by combining Bag-Of-Features (BoF) and 

Spatial Pyramid Matching (SPM) with patch based SIFT descriptors.  

 

In 2015, the ICDAR Competition on Video Script Identification (CVSI-2015) [43] came up with 

a new standard dataset which tested the document analysis community. Apart from text images 

taken from videos of news, sports etc., it also included some examples of scene text. The most 

competitive pipelines in the contest were all built on CNN. They showed a considerable increase 

in accuracy as compared to methods based on hand-crafted features like HoG or LBP. 

 

Shi et al. introduced Multi-stage Spatially-sensitive Pooling Network (MSPN) method in [44], 

where they provided the first real scene text images’ dataset for script identification. The MSPN 

network’s advantage is that unlike traditional CNNs, it does not require inputs to be of constant 

dimension. They achieved it by max pooling/average pooling along each row of the feature 

representations obtained at the intermediate levels. Their method is improved in [23] where they 

combined deep representations and mid-level features to design a globally trainable deep 

architecture. At every layer of the MSPN, local image descriptors were extracted with an 

encryption method that helped in CNN weight optimization. Nicolaou et al. [45] have presented 

a method based on hand-crafted features, a LBP variant, and a deep Multi-Layer Perceptron 

achieving superior performance in scene text script identification. Gomez et al. in [58] have 

proposed a patch-based method for script identification in scene text images. The method utilized 

patch-based CNN features, and the Naive–Bayes Nearest Neighbour classifier (NBNN). The 

same authors used a much deeper CNN framework in their extended work [26]. Moreover, they 

replaced the weighted NBNN classifier by a classification scheme based on patches. The new 



 
 

approach can be integrated in the CNN training procedure employing an Ensemble of Conjoined 

Networks. Thus their model had an advantage to learn simultaneously, both meaningful image 

patch feature maps and their individual significance in the patch-based classification rule. In 

[27], the authors trained together a CNN and a RNN into one globally trainable framework. CNN 

generates expressive feature maps, while RNN efficiently analyzes long-term spatial 

dependencies. Moreover, they handled input images of arbitrary sizes by adopting an average 

pooling structure. From all reviewed methods of script identification the one proposed here is the 

only one based on an attention-based patch weight classification framework. There are three key 

differences in the way we build our framework: (1) Use of Attention Network for weight 

calculation of patches to judge their priority according to information they contained, (2) 

Evaluation of both global and local features and (3) Dynamic weighting of local and global 

features, using fusion technique for successful script identification. 

 

3. Proposed Framework 

3.1. Overview 

Provided a patch from an image I containing a few words, we estimate its script category 𝑐 𝜖 (1‚ ·

·· ‚𝐶). The brief overview of our proposed framework is illustrated in Figure 2. The end-to-end 

framework broadly contains three stages. In first stage, we use a stacked convolutional layers 

structure to extract precise translation invariant image features. The CNN layers generate varying 

dimension feature vectors. These vectors are fed into LSTM layer to utilize the spatial 

dependencies present in text script images. The second stage is an Attention network followed by 

softmax layer to obtain the patch weights. The reason for including Attention model is to give 

importance to those features which hold more significance. The patch-wise multiplication of this 

attention weights with the extracted CNN feature vectors yields the local features for individual 

patches. These local features contain fine-grained representation of the text images. To obtain the 

holistic information of these images, global feature is also extracted from the last cell state of the 

LSTM unit. Lastly we employed attention based dynamic weighting to integrate both local and 

global features, obtained in second stage. The classification scores for each patch are evaluated 

by using a fully connected layer at the end. Final classification involves attention-wise 

summation of these patch-wise classification scores to get final probability distribution over 



 
 

classes. It overcomes the limitation of element-wise summation which gives equal importance to 

all patches.  

 

3.2. Review of CNN and LSTM Module 

We first resize the height of the script image (containing few words) to a constant 40 pixels, 

maintaining the same aspect ratio. Then, we use sliding window approach to densely extract 

patches of size 32 × 32. The step size of the window is chosen as 8 pixels. For a particular image, 

starting from the left, we have extracted vertically two overlapping patches, thereafter shifted 8 

pixels rightwards in the horizontal direction and carried out the same process successively. The 

particular values of the window scale and step size can be justified because they help in 

designing an improved scale invariant CNN architecture. The script length determines how many 

patches will be created. If D is the maximum patch count for a query image 𝑋(𝑖) , then 

𝑋(𝑖) = (𝑋1
(𝑖)

, 𝑋2
(𝑖)

, 𝑋3
(𝑖)

, … , 𝑋𝐷
(𝑖)

) 

                                              (1) 

where the superscript refers to 𝑖𝑡ℎ sample and 𝑋𝑑
(𝑖)

𝜖 ℝ32×32 represents the individual patches. 
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         Fig.2. Flowchart of our proposed framework 

Our framework design begins with the CNN architecture, which is used to obtain the text image 

representations. Each image patch is passed through this CNN network. The output response of 

the CNN for each patch in a given image 𝑋(𝑖) is a 256 dimension feature vector.    

𝑌𝑑
(𝑖)

= 𝐶𝑁𝑁(𝑋𝑑
(𝑖)

) ∀ 𝑑 = 1 → 𝐷 

                                           (2) 

where 𝑌𝑑
(𝑖)

𝜖 ℝ256.  

We used the CNN model proposed in [26] as it performed well in many instances for script 

identification. Our goal was to achieve the relevant CNN network that would provide optimum 



 
 

performance when integrated into our Attention model. Hence we varied the different parameters 

like number of convolutional layers, number of filters per layer, size of kernels and fully 

connected layers. Finally, we found that the CNN network in [26] gave the most promising 

results for script identification. The CNN model configuration has been provided in Table I. It 

contains three convolutional layers, each associated with pooling. Then an extra convolution 

layer is provided without pooling. Finally, the model ends with two fully connected layers.  

 

The feature representations of all image patches, which are obtained after passing through a 

CNN network, are eventually fed to a LSTM following the same order of patch extraction. 

Spatial dependencies within text lines are overlooked by many of the previous approaches. 

However, it may be a critical step for script identification. RNN models are available which 

handle sequences and this allows the input text images to have arbitrary length. This naturally 

solves the issue while exploiting the spatial dependencies within text lines.  

If an input vector x = (𝑥1, 𝑥2,···, 𝑥𝑇) is provided, the RNN commonly used is: 

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1) 

                                                           (3) 

The hidden state ℎ𝑡 simultaneously considers the current input 𝑥𝑡, as well as the earlier hidden 

state ℎ𝑡−1 stored in the RNN block. The hidden states undergo a linear transformation to produce 

the RNN output. 

 

Despite RNN being useful in dealing with sequence based problems, it has a disadvantage of 

vanishing gradient problem during back-propagation [46]. This restricts RNN’s capability of 

handling considerably long contextual information. Vanishing gradient and exploding gradient 

are barriers in this task, due to presence of long text in script identification. The learning time 

increases and weights begin to oscillate, deteriorating the quality of the network. We redesign the 

unit using Long Short Term Memory (LSTM) [47] to elude the effect. LSTM addresses the issue 

by proposing three gating units: input, output and forget. These gates are incorporated into a 

block to model large long-temporal dependencies by preserving the gradient norm during back 

propagation. Input gate determines the amount of input information to be stored in hidden state. 

Output gate focuses on which hidden state information should be included in current time step 

output. Forget gate decides the hidden state information that should not be further remembered. 



 
 

The gates operate based on the present input and previous hidden state. The hidden layer 

function is calculated using the following composite functions. 

 

𝑖𝑡 =  𝜎(𝜔𝑥𝑖𝑥𝑡 +  𝜔ℎ𝑖ℎ𝑡−1 + 𝜔𝑐𝑖𝑐𝑡−1 +  𝛣𝑖)                                        (4) 

𝑓𝑡 =  𝜎(𝜔𝑥𝑓𝑥𝑡 +  𝜔ℎ𝑓ℎ𝑡−1 + 𝜔𝑐𝑓𝑐𝑡−1 +  𝛣𝑓)                                       (5) 

𝑐𝑡 =  𝑓𝑡𝑐𝑡−1 +  𝑖𝑡𝑡𝑎𝑛ℎ(𝜔𝑥𝑐𝑥𝑡 +  𝜔ℎ𝑐ℎ𝑡−1 +  𝛣𝑐)                                    (6) 

𝑜𝑡 =  𝜎(𝜔𝑥𝑜𝑥𝑡 +  𝜔ℎ𝑜ℎ𝑡−1 +  𝜔𝑐𝑜𝑐𝑡 +  𝛣𝑜)                                          (7) 

ℎ𝑡  =  𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)                                                            (8) 

 

where i, o and f correspondingly denote the input, output and forget gates.  σ refers to the logistic 

sigmoid function and c stands for cell. The subscripts of the weight matrix are self-explanatory 

like 𝜔ℎ𝑓 which means the hidden-forget gate matrix, 𝜔𝑥𝑜 means the input-output gate matrix etc. 

The cells to gate weight matrices are diagonal. A particular element A of the cell vector is the 

sole input to element A of each gate vector. The bias expressions (𝛣𝑖, 𝛣𝑓, 𝛣𝑐, 𝛣𝑜) have been 

discarded to keep simplicity.  

Following the method in Shi et al. [23], we stacked two LSTM layers for better abstraction 

ability. The number of time steps in the LSTM layer depends on the number of patches obtained 

for each image. Hence time steps can vary from 1 to D. The output from each time steps is a 512 

dimension feature vector. 

ℎ𝑑
(𝑖)

 𝜖  ℝ512   ∀ 𝑑 = 1 → 𝐷                                                     (9) 

 

Back Propagation Through Time (BPTT) is chosen for learning of the parameters. Gradients are 

usually curtailed for clarity without disturbing the performance evidently. The overall process is 

shown in Figure 3. In the next section we will introduce an attention network to compute the 

patch weights.  
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Fig.3. Illustration of the training process of the proposed approach 

 

3.3. Attention based Patch weight calculation 

Attention is a powerful mechanism that allows neural networks to focus on some particular 

portions of the input image in order to minimize the task complexity and discard irrelevant 

information. In the literature there are two types of attention [49]: “hard” attention and “soft” 



 
 

attention. In this work soft attention mechanism is employed. This means that we will be 

focusing everywhere at all times, but we will learn where to place more attention.  

The output from the LSTM unit is passed through an attention network. The attention scores are 

computed by  

𝑞𝑑
(𝑖)

=   𝑣𝑎
𝑇 . tanh ( 𝑊𝑎. ℎ𝑑

(𝑖)
+ 𝑏𝑎 )  ∀ 𝑑 = 1 → 𝐷 

                                      (10) 

where  𝑊𝑎 𝜖 ℝ256×512 , 𝑏𝑎 𝜖 ℝ256, 𝑣𝑎  𝜖 ℝ256 are all trainable parameters. 

 

Now these scores are tied to a softmax layer to produce the end probability weight distribution, 

such that the summation of all attention weights covering the required patches equals to 1. 

 

𝑝𝑑
(𝑖)

=  
exp (𝑞𝑑

(𝑖)
)

∑ exp (𝑞𝑑
(𝑖)

)𝐷
𝑑=1

 

                                                           (11) 

𝑝𝑑
(𝑖)

=   𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑑
(𝑖)

)  ∀𝑑 = 1 → 𝐷 

where [ 𝑝𝑑
(𝑖)

 𝜖 ℝ𝐷  , ∑ 𝑝𝑑
(𝑖)

𝑑 = 1] 

Thus, the attention weights are calculated for the patches. The patch-wise multiplication of these 

attention weights with the extracted CNN feature vectors yields the local features for individual 

patches. For certain scripts like English, Greek, Russian, some characters have similar layouts. 

Hence, it is necessary to capture some local patch specific information for discriminating them 

because global information is not sufficient in such scenarios. In other words, we intend to focus 

more on some of the specific patches which contain better script specific distinguishing features. 

The local features contain this fine-grained information of the text images. The reason for 

including Attention weights is to give importance to those features which hold more significance. 

For any image with D patches, local feature calculation: 

𝐿𝑓𝑑
(𝑖)

=   𝑝𝑑
(𝑖)

. 𝑌𝑑
(𝑖)

  ∀ 𝑑 = 1 → 𝐷 

                                               (12) 

To retain the holistic information of the images, a comprehensive feature representation is 

obtained from the last cell state of the LSTM unit. This is global feature of the entire sequence of 

patches. As stated in [47], LSTMs can be trained to link time intervals which are over 1000 steps 



 
 

even for noisy sequences without losing short-time-lag capabilities. Hence we can easily extract 

the global image representation from the last cell state which takes into account all the patches in 

a text line image. Though there are many local features for a particular image, there is only one 

global feature. Now that we have extracted both local and global features, each patch image is 

represented by two set of features (𝐿𝑓𝑑
(𝑖)

, 𝐺𝑓(𝑖)). In the next section we deal with their dynamic 

fusion. 

 

3.4. Dynamic weighting of Global and Local features 

Local and global features are essential in representing an image. Local features generally hold 

the fine-grained information of objects, while global features represent the contextual 

information around objects. Thus integration of the local features and global features is an 

important step for script identification. These two features are combined to effectively improve 

the description accuracy. For fusing the two features at patch level, we introduce attention 

mechanism in our methodology. The low value of attention weight signifies less importance of 

that particular patch and subsequently we aim to prioritize the global feature using dynamic 

weighting in case of such instances. Similarly, the high value of attention weights encourages the 

network to give higher priority to local patch feature than the global holistic feature 

representation adaptively.  

 

This module dynamically assigns weights to the two features 𝑓𝑑
(𝑖)

𝜖 {𝐿𝑓𝑑
(𝑖)

, 𝐺𝑓(𝑖)} by evaluating 

the coherence between them according to the following Equation: 

𝜑𝑑
(𝑖)

= ∑ 𝑐𝑑,𝑘
(𝑖)

𝑓𝑑,𝑘
(𝑖)

2

𝑘=1

  ∀ 𝑑 = 1 → 𝐷 

                                            (13) 

The coherence score  𝑐𝑑,𝑘
(𝑖)

 are obtained in a similar way to the attention mechanism.  

 𝑐𝑑,𝑘
(𝑖)

 =
exp (𝑣𝑑,𝑘

(𝑖)
)

∑ exp (𝑣𝑑,𝑘
(𝑖)2

𝑘=1 )
 

                                                         (14) 

where    

𝑣𝑑,𝑘
(𝑖)

=  𝑤𝑘
𝑇 . tanh(𝑊𝑘. 𝑓𝑑,𝑘

(𝑖)
+ 𝑏𝑘) 



 
 

                                               (15) 

where 𝜑𝑑
(𝑖)

𝜖 ℝ256 , 𝑣𝑑,𝑘
(𝑖)

 𝜖 ℝ1 and 𝑤𝑘
𝑇, 𝑊𝑘, 𝑏𝑘 are trainable parameters. 

Through this manner the final feature representation of each patch image is obtained. The 

resulting feature maps of individual patches are then fed to a fully connected layer that has the 

same number of neurons as the number of classes. Finally, a softmax layer outputs the 

probability distribution over class labels for each patch. 

𝜙𝑑
(𝑖)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝜑𝑑
(𝑖)

+ 𝑏𝑓)  ∀ 𝑑 = 1 → 𝐷 

                                    (16) 

where 𝜙𝑑
(𝑖)

𝜖 ℝ𝑛 , n is the number of class. Now the final decision rule would be weighted sum of  

𝜙𝑑
(𝑖)

 over all the patches. 

𝑧(𝑖) = ∑ 𝑝𝑑
(𝑖)

.

𝐷

𝑑=1

𝜙𝑑
(𝑖)

 

       (17) 

where 𝑝𝑑
(𝑖)

 is the attention weight we obtain earlier. In this way, we obtain the final probability 

distribution  𝑧(𝑖) over all the classes for a query image. The following average negative log-

likelihood error over the training set combined with a regularization term yields the cost 

function.  

𝐿(𝑍(𝑖), 𝑤) =
1

𝑁
∑[−

𝑁

𝑖=1

𝑍(𝑖)log (𝑧(𝑖))] + 𝜆‖𝑤‖2
2 

(18) 

where, 𝑍(𝑖) is the ground truth of the word image, 𝑤 represents the learning weights, 𝜆 is weight 

decay parameter and 𝑁 is the number of word images in a particular batch.  

 

Please note that the proposed framework is an end-to-end network where the model takes the 

image patches extracted from an input text line/word image as input, and at the end it gives the 

final class distribution of that particular text line/word image. We impose the supervision with 

respect to every text line/word image using the loss function mentioned in eqn. 18 in order to 

train the network in an end-to-end manner. We follow a particular patch extraction strategy 

where a 32 × 32 window slides over the entire image with a stride of 8 in the both vertical and 

horizontal direction. Not all the patches are equally important for discriminating a particular 



 
 

script and therefore attention mechanism helps to calculate the relative importance of the image 

patches by assigning a weight to all the patches. Hence, a CNN network is used to extract a 256 

dimensional latent feature vector from each image patch. Thereafter, these feature 

representations are fed to LSTM following the same order of patch extraction in order to obtain 

the attention weights. We use the attention weights for two times – (1) at first it is multiplied 

with the patch features to obtain the local level features. Low value of attention weight will cause 

the local features to be less important for that particular patch and adaptively give more priority 

to global feature through dynamic weighting. (2) The same weights are also used in the last step 

while computing the final classification results. This will force the network to learn the relative 

importance of the image patches and overcome the limitations of using simple element-wise 

summation.  

 

Algorithm1. Script identification in natural scene text images and video scripts 

Input: Natural scene text images converted to D patches of size 32x32 

Output: Identified script.  

 

For each patch Xd of X1...XD do 

Step 1: Feed patch Xd into CNN and obtain feature vector Yd as output  

Step 2: Yd  is given as input to the d
th

 cell state of LSTM 

Step 3: Obtain attention weight pd as output from LSTM 

Step 4: Patch wise multiplication of pd with Yd to extract local feature Lfd 

𝐿𝑓𝑑 =   𝑝𝑑. 𝑌𝑑    

Step 5: If d = D, extract global feature Gf as output from the last cell state of LSTM  

End for 

 

For each patch Xd of X1...XD do 

Step 6: Dynamic weighting of global feature Gf with local feature Lfd and apply fully 

connected layer to classify into scripts 

End for 

Step 7: Final classification which involves attention based weighted summation of D 

classifications 𝑧 = ∑ 𝑝𝑑 .𝐷
𝑑=1 𝜙𝑑    

 

 



 
 

4. Experiments 

4.1 Datasets 

There exist many datasets [50,40,51] containing scripts of different languages. In this work we 

evaluated our proposed model over four multilingual video word datasets – CVSI-2015, SIW-13, 

ICDAR-2017 and MLe2e dataset. The CVSI-2015 [43] dataset contains scene text images of ten 

different scripts: English, Hindi, Bengali, Oriya, Gujrati, Punjabi, Kannada, Tamil, Telegu, and 

Arabic. Each script has at least 1,000 text images collected from different sources (i.e. news, 

sports etc.). The dataset has three sets – training set (60%), validation set (10%) and test set 

(30%).  

 



 
 

Fig.4. Examples of scene text scripts in the SIW-13, CVSI-2015, ICDAR2017 and MLe2e 

datasets 

 

The SIW-13 dataset [23] consists of 16,291 multi-scripts text images in 13 classes: Arabic, 

Cambodian, Chinese, English, Greek, Hebrew, Japanese, Kannada, Korean, Mongolian, Russian, 

Thai, and Tibetan. The images are collected from Google street view. Some samples of this 

dataset are shown in Figure 4. Since they are natural scene images, the texts appearing in the 

images are in different orientation, fonts, colour and size. These factors make the datasets much 

more challenging for script identification task.  

The ICDAR-2017 [64] dataset has 68,613 cut out word images for training. The validation set 

has 16,255 word images. The dataset consists of 9 languages Arabic, English, French, Chinese, 

German, Korean, Japanese, Italian, Bangla. Out of the above languages English, French, 

German, Italian share the same Latin script. However, in our current work, these scripts are 

assigned the same script class: Latin. Additionally, isolated punctuation or other special 

characters are considered as a special script class, namely Symbols. Hence, we have total 7 script 

classes.  

We also used the MLe2e [26] dataset which is considered as a Multi-Language end-to-end 

dataset for the evolution of the scene text images starting from text region detection to script 

identification and text recognition tasks. But, as we are more interested in script identification 

task, we used the pre-segmented text version of the dataset containing the cropped word images. 

The dataset contains 1178 and 643 word images for training and testing respectively of four 

different scripts, namely Latin, Chinese, Kannada, and Hangul. Some examples are shown in 

Figure 4.  

4.2. Implementation Details 

Here, we describe the architecture of the model used in this paper. To achieve the optimum CNN 

architecture that would fit into our model, we varied necessary parameters and tested the 

different versions of CNN on CVSI-2015 dataset. The following parameters were tuned in this 

procedure: the size and step of the sliding window, the base learning rate, the number of 

convolutional, the number of neurons in the fully connected layers, the convolutional 

 

 

 



 
 

Table I. Network configuration of the basic CNN model 

 

 

 

 

 

 

 

 

 

 

kernel sizes, and the feature map normalisation schemes. Finally, we concluded that the CNN 

architecture proposed in [26] gave the most promising results for our end-to-end model. The 

configuration of the CNN model is summarized in Table I. 

After CNN, we implemented a simple 2-layer LSTM model. Then a Softmax layer is used to 

obtain attention patch weights. This part has the following configuration: 

 layer1: 512 hidden LSTM units 

 layer2: 512 hidden LSTM units 

 Softmax layer 

To prevent over-fitting dataset is enlarged using data augmentation. We use same CNN 

parameters for all the patches. We initialize the weights of the model according to the Xavier 

initializer [52]. Rectified Linear Units (ReLU) [53] is applied after the convolution and fully 

connected layers. Batch normalization [54] is employed to effectively increase the training 

speed. The architecture associates the dropout [55] strategy with fully connected layers. The 

Type` Configuration 
Input 32 × 32 patches 

Convolution Filters: 96, kernel size: 5 × 5, Stride: 1, 

Output size: 96 × 28 × 28. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 96 ×15 × 15. 

Convolution Filters: 256, kernel size: 3 × 3, Stride: 1, 

Output size: 256 × 13 × 13. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 256 ×7 × 7. 

Convolution Filters: 384, kernel size: 3 × 3, Stride: 1, 

Output size: 384 × 5 × 5. 

Max pooling kernel size: 3, stride: 2, pad: 1, 

Output size: 384 ×3 × 3. 

Convolution Filters: 512, kernel size: 1 × 1, Stride: 1, 

Output size: 512 × 3 × 3. 
Fully connected layer 4096 neurons 
Fully connected layer 256 neurons 



 
 

dropout rate was maintained at 0.5 throughout training. The network is built with ≈ 12M 

parameters. However, usage of deeper and wider convolutional layers can be beneficial in 

extracting more complicated features. 

We implement our framework in TensorFlow on a server with Nvidia Titan X GPU. 

Optimization of the network is done with Adam Optimizer. The model is trained for 20k 

iterations with batch size 32 and learning rate 0.001. The weight decay regularization parameter 

is fixed to 5 × 10−4. The computational cost increases with the length of the images resulting 

more time to converge. Usually the number of patches for each image varies from 10 to 60 in the 

CVSI dataset. But for a lengthy script this number goes beyond 100. Thus maximum number of 

patches allowed is set to a threshold value N. If the number of patches is more than this 

threshold, then we will choose randomly N patches. In our experiments we take value of N as 

100. Also batch size was reduced to 32 to accommodate the GPU’s memory. During evaluation 

we noticed that each image takes roughly 85ms on average on GeForce Titan X.  

 

4.3. Baseline approaches 

We compare our proposed method with several baseline methods including some traditional 

approaches like LBP, Basic CNN, Single-Layer Network, MSPN, DisCNN, Convolutional 

Recurrent Neural Network and Ensembles of Conjoined Networks.  

 (1)  Local Binary Patterns (LBP): LBP [56] is a widely adopted texture analysis technique. 

Fixed face images are divided into several 8 x 8 grids. LBP features are extracted from them 

using the vl_lbp function in the VLFeat library [57]. These features when combined into a new 

2784-dimension vector act as image descriptor. Finally, they classify using simple SVM. 

(2) Basic CNN (CNN): A traditional CNN architecture, named CNN-Basic, is also used as a 

baseline. Since the fully connected layers are present, only fixed dimension images (here 

samples are cropped to 100 x 32) can be fed into a conventional CNN structure. SGD is adopted 

for training the CNN-Basic. 

(3) Single-Layer Networks (SLN): In [25] Coates et al. proposed a simple unsupervised feature 

learning technique using K-Means clustering to obtain state-of-the-art results in image 

classification. We extracted features using the feature learning code made public by the authors. 



 
 

(4) MSPN: Multi-Stage Pooling Network as proposed in [44]. It has architecture of CNN 

network that contains multiple stage horizontal pooling. The outputs of the three pooling layers 

are concatenated as a long vector, which is fed to later fully-connected layers. We use the same 

architecture as used in [44] for comparisons. 

(5) DisCNN: In [48], deep representations and mid-level features are jointly trained into an end-

to-end deep network. Training the images with a pre-defined CNN architecture, we densely 

extract the local deep feature maps. Based on the learned discriminative patterns, mid-level 

representation is derived by encrypting the local features.  

(6) Convolutional Recurrent Neural Network (CRNN): In [27] they combined a Convolutional 

Neural Network (CNN) and a Recurrent Neural Network (RNN) into a globally trainable deep 

model. The CNN network generates expressive image representations, while the RNN module 

helps to efficiently handle input images of arbitrary sizes. 

(7) Ensembles of Conjoined Networks (ECN): In [26] a patch based classification method is 

introduced. Image patches are obtained from the input images following a certain sampling 

strategy. Feature representation of each patch is obtained by using a deep CNN architecture. 

They used a simple global decision rule that takes average of the output feature representation of 

the network for all patches in a given script image.  

 



 
 

Fig.5. The generated Attention maps for three scripts from SIW-13 dataset. – (a) Kannada 

(b) English and (c) Chinese  

4.4. Experiments in SIW-13 dataset 

We train and test our model on the SIW-13 dataset consisting of 13 scripts. For comparison, 

we evaluate seven other methods as described in the baseline section.  

The results in this dataset using our method and the baseline methods are illustrated in Table II. 

From Table II we can see that, the proposed method consistently outperforms other methods. The 

LBP approach performs well on those scripts which have larger appearance differences. They are 

easier to distinguish via texture features. The method does not perform well on scripts containing 

certain characters that have strikingly similar layout. LBP is bettered by both Basic-CNN and 

SLN in logographic type scripts. But on the similar-subset scripts, they also do not perform that 

well. Then we evaluated DisCNN and found that it leads to improvement over previous methods 

in almost all types of scripts. More recent methods CRNN and ECNN which employed CNN-

RNN fused deep networks and patch based CNN network respectively, not only bettered 

performance in logographic scripts but also brought huge change in the Alphabetic scripts like 

English, Greek, Russian etc. Comparing the accuracies of different script classes, we have shown 

the confusion matrix in figure 8. 

 Here it is noticed that Arabic scripts and Thai scripts have higher accuracies than that on other 

languages. The uniqueness in writing styles is the reason why these scripts can be easily 

differentiated from other scripts. However, scripts like Greek, English, Russian etc. that are 

mostly based on Latin, are comparatively more challenging for identification. On these scripts, 

all previous methods obtain lower accuracies because they have similar holistic representation. 

This makes it more challenging to identify these scripts. But, in our method attention allows the 

network to focus on more relevant and discriminative part of the scripts. Our framework slightly 

improved the performance of these methods. In figure 5 some samples of generated attention 

maps are shown. We can visualize the relative importance of the patches from the attention 

maps. High attention is shown in white and low attention is shown in black.  

 

 



 
 

Table II. Script wise results of different methods on SIW-13 

Script LBP CNN SLN MSPN DisCNN CRNN ECN Our method 

Ara 64.0 90.0 87.0 - 94.0 96.0 98.0 99.0 

Cam 46.0 83.0 76.0 - 88.0 93.0 99.0 99.0 

Chi 66.0 85.0 87.0 - 88.0 94.0 88.0 92.0 

Eng 31.0 58.0 64.0 - 71.0 83.0 97.0 98.0 

Gre 57.0 70.0 75.0 - 81.0 89.0 99.0 100.0 

Heb 61.0 89.0 91.0 - 91.0 93.0 97.0 99.0 

Jap 58.0 75.0 88.0 - 90.0 91.0 92.0 98.0 

Kan 56.0 82.0 88.0 - 91.0 91.0 89.0 92.0 

Kor 69.0 90.0 93.0 - 95.0 95.0 90.0 93.0 

Mon 77.0 96.0 95.0 - 96.0 97.0 94.0 98.0 

Rus 44.0 66.0 70.0 - 79.0 87.0 95.0 93.0 

Tha 61.0 79.0 91.0 - 94.0 93.0 95.0 95.0 

Tib 88.0 97.0 97.0 - 97.0 98.0 97.0 97.0 

Average 60.0 82.0 85.0 86.0 89.0 92.0 94.0 96.5 

 

 

 



 
 

 

Fig.6. Graphical representation of script wise performance on SIW-13 

 

4.5. Experiments in CVSI-2015 dataset 

We also tested our method on CVSI-15 dataset. Of all text images, 60% assigned for training, 

10% for validation and the remaining 30% are for testing. CVSI2015 is relatively more simple, 

with limited variation compared with SIW13 dataset. Table III compares our method with the 

baseline methods on CVSI2015. As noticed, Google performs the best while our method also 

achieves competitive accuracy for the task. Google’s demerit is that it applies image pre-

processing method based on binarization. This works fine for only text that has great 

background, limiting the method’s ability for text identification in natural scenes. However, our 

method does not suffer from this drawback. It can be used for complex background and also for 

slightly distorted images. HUST [44] also achieves a high accuracy due to usage of multiple 

features. Our model applies local and global features with further dynamic weighting on them. 

Thus, our model is able to achieve better performance. ECN [26] is also able to obtain a good 

result. But the main drawback of this method is that they treat all the image patches equally, 

irrespective of whether they contain relevant information or not. Our method uses attention 

mechanism to give relative importance to the patches. Thus our network is able to achieve a 

better classification result.  



 
 

Table III. Script wise results of different methods on CVSI-15 

Script Google C-DAC HUST CVC-2 CUK ECN Our method 

Eng 97.95 68.33 93.55 88.86 65.69 - 94.20 

Hin 99.08 71.47 96.31 96.01 61.66 - 96.50 

Ben 99.35 91.61 95.81 92.58 68.71 - 95.60 

Ori 98.47 88.04 98.47 98.16 79.14 - 98.30 

Guj 98.17 88.99 97.55 98.17 73.39 - 98.70 

Pun 99.38 90.51 97.15 96.52 92.09 - 99.10 

Kan 97.77 68.47 92.68 97.13 71.66 - 98.60 

Tam 99.38 91.90 97.82 99.69 82.55 - 99.20 

Tel 99.69 91.33 97.83 93.80 57.89 - 97.70 

Ara 100.00 97.69 100.00 99.67 89.44 - 99.60 

Average 98.91 84.66 96.69 96.00 74.06 97.2 97.75 

 

 

 

Fig.7. Graphical representation of script wise performance on CVSI-15 

 

4.6. Experiments in ICDAR-2017 dataset 



 
 

 

We also evaluated our method on ICDAR-2017 dataset. It consists of 7 script classes. The 

dataset is quite large as compared to other datasets. The validation set is used for evaluating our 

model. We compare the results with several other methods like E2E-MLT [65] and ECN [26]. 

We have implemented those methods and obtained the script identification accuracies on 

validation dataset as reported in Table IV. E2E-MLT uses a VGG-16 model pre-trained on 

ImageNet dataset along with Global Average Pooling layer after the final convolution layer. This 

method performs moderately on the dataset. Accuracy obtained from this method is below 90%. 

It is evident that this dataset is more challenging with complex background and stylish fonts. 

ECN [26] also could not perform well on this dataset. The proposed method outperforms all the 

previous entries and increases the classification accuracy on this dataset by 2%. Hence, the result 

justifies that the proposed additional complexity is worth. 

 

 

 

 

Table IV. Script identification results of different methods on ICDAR-17 dataset 

Method Accuracy (%) 

ECN [26] 86.46 

E2E-MLT [65] 88.50 

Our method 90.23 

 

 

4.7. Experiments in MLe2e dataset 

 

The results on MLe2e dataset is illustrated in Table V. It shows that our method performs well 

on the dataset. It is noticed that, with increasing complexity of the script datasets, the use of 

attention mechanism and fusion of local and global features to obtain a robust feature 

representation become more important for better performance. The confusion matrices of all the 

four datasets are shown in Figure 8.  

 



 
 

 

Table V. Script identification results of different methods on MLe2e 

Method Accuracy (%) 

CVC-2 [43] 88.16 

Gomez [58] 91.12 

ECN [26] 94.40 

Our method 96.70 

 

 

Fig.8. Confusion matrices for four datasets (a) SIW-13 (b) CVSI-2015 (c) ICDAR-2017 (d) 

MLe2e 



 
 

4.8. Improvement Analysis 

In this section, we provide breakdown of different sub-variants of our configuration and tested 

them to analyze the gradual improvement. The results are summarised in Table VI.  

#Variant-1: This variant of our configuration was designed with only a CNN-LSTM framework 

without any attention model. This method extracted local features from patches without 

assigning any attention weights. Thereafter, they were simply concatenated with global features 

and classified into required classes. It did not perform so well. This was because due to absence 

of attention mechanism it treated all patches equally, irrespective of whether they provided more 

details or fewer details. 

#Variant-2: This variant used the attention only once and it was in CNN-LSTM framework. The 

patch-wise multiplication of the attention weights with the extracted CNN feature vectors yields 

the local features for individual patches. Global features were also evaluated. This was followed 

by simple concatenation of global and local features and classification into required classes.  On 

applying attention during generation of local features in CNN-LSTM, we could focus more on 

those patches which hold more significance. Due to this change, script identification results 

improved slightly in images having complex background and distortion issues. On the other 

hand, simple fusion was a bad approach since feature vectors became high-dimensional. 

Redundancy crept in, leading to longer processing times. For an image patch we were unable to 

take into consideration, whether its local feature should be given more priority or the global 

feature. 

In this way, we zeroed into our final architecture, which outperformed the previous variants by a 

large margin. Our architecture had attention in CNN-LSTM design for generation of local 

features, which helped while performing dynamic weighting of local and global features. Unlike 

previous variants, during fusion we could decide for a patch, the relative importance of its local 

and global features. Again Attention was involved in summation of patch-wise classification 

scores overcoming the element-wise summation approach that treated all patches equally. 

 

Table VI. Results of different variants of our configuration on different datasets 

Dataset Variant Configuration 
Accuracy 

(%) 



 
 

SIW-13 

Variant 1 CNN+LSTM(no attention)+Fusion(concatenation) 94.10 

Variant 2 CNN+LSTM(with attention)+ Fusion(concatenation) 95.90 

Our method CNN+LSTM(with attention)+Dynamic weighting 96.50 

CVSI-15 

Variant 1 CNN+LSTM(no attention)+Fusion(concatenation) 97.25 

Variant 2 CNN+LSTM(with attention)+ Fusion(concatenation) 97.65 

Our method CNN+LSTM(with attention)+Dynamic weighting 97.75 

ICDAR-

17 

Variant 1 CNN+LSTM(no attention)+Fusion(concatenation) 87.30 

Variant 2 CNN+LSTM(with attention)+ Fusion(concatenation) 89.14 

Our method CNN+LSTM(with attention)+Dynamic weighting 90.23 

MLe2e 

Variant 1 CNN+LSTM(no attention)+Fusion(concatenation) 94.36 

Variant 2 CNN+LSTM(with attention)+ Fusion(concatenation) 95.13 

Our method CNN+LSTM(with attention)+Dynamic weighting 96.70 

 

5. Conclusion 

In this paper, we presented a novel method for script identification in natural scene text images 

and video scripts. We are the first to introduce Attention mechanism in script identification. The 

method generates local features through attention-based patch weighting scheme and thereby 

performs dynamic weighting of local and global features using dynamic weighting technique. It 

is fed to a fully connected layer to get classification scores. Finally, an attention-wise summation 

is carried out on all patch-wise classification scores. Experiments performed in four datasets 

demonstrate state of the art accuracy rates in comparison with other recent approaches. It is 



 
 

worth mentioning that our algorithm handles many common drawbacks very well. It achieves 

better performance when dealing with complex background, distortion, low resolution of images.  

During our experiments, we have noticed that ICDAR 2017 script identification dataset contains 

four different language scripts, namely, English, French, Italian, and German. However, all these 

four different language scripts have been labelled only as Latin script. The exact language script 

is extremely important in order to recognize the word image, since most of the state-of-the-art 

word recognition models are language dependent. Henceforth, in scenarios where a common 

script is used by multiple languages, identification of the exact language would be an interesting 

future research direction. In future we are also looking forward to implement an end-to-end 

method which jointly tackles the problem of multi-lingual text detection and script identification 

to make the system more robust. 
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