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Abstract

Dynamic Ensemble Selection (DES) techniques aim to select one or more competent classifiers

for the classification of each new test sample. Most DES techniques estimate the competence of

classifiers using a given criterion over the region of competence of the test sample, usually defined

as the set of nearest neighbors of the test sample in the validation set. Despite being very effective

in several classification tasks, DES techniques can select classifiers that classify all samples in

the region of competence as being from the same class. The Frienemy Indecision REgion DES

(FIRE-DES) tackles this problem by pre-selecting classifiers that correctly classify at least one

pair of samples from different classes in the region of competence of the test sample. However,

FIRE-DES applies the pre-selection for the classification of a test sample if and only if its region

of competence is composed of samples from different classes (indecision region), even though this

criterion is not reliable for determining if a test sample is located close to the borders of classes

(true indecision region) when the region of competence is obtained using classical nearest neighbors

approach. Because of that, FIRE-DES mistakes noisy regions for true indecision regions, leading

to the pre-selection of incompetent classifiers, and mistakes true indecision regions for safe regions,

leaving samples in such regions without any pre-selection. To tackle these issues, we propose the

FIRE-DES++, an enhanced FIRE-DES that removes noise and reduces the overlap of classes in

the validation set; and defines the region of competence using an equal number of samples of each

class, avoiding selecting a region of competence with samples of a single class. Experiments are

conducted using FIRE-DES++ with 8 different dynamic selection techniques on 64 classification
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datasets. Experimental results show that FIRE-DES++ increases the classification performance

of all DES techniques considered in this work, outperforming FIRE-DES with 7 out of the 8 DES

techniques, and outperforming state-of-the-art DES frameworks.

Keywords: Ensemble of classifiers, Dynamic ensemble selection, Classifier competence, Prototype

selection

1. Introduction

Dynamic Ensemble Selection (DES) has become an important research topic in the last few years

[1]. Given a test sample and a pool of classifiers, DES techniques select one or more competent

classifiers for the classification of that test sample. The most important part in DES techniques

is how to evaluate the competence level of each base classifier for the classification of a given test

sample [2]. In general, DES techniques evaluate the competence level of base classifiers for the

classification of a test sample, xquery, based on the performance of the base classifier in a local

region surrounding the test sample, named region of competence. Most DES techniques define

the region of competence of test samples using the K-Nearest Neighbors of the test sample in the

validation set, we refer to this validation set as the dynamic selection dataset (DSEL) [3].

Despite being very effective in several classification tasks, DES techniques can select classifiers

that classify all samples in the region of competence of a test sample to the same class, even when

the test sample is located close to a decision border, having neighbors belonging to different classes

(indecision region) [4].

Figure 1 represents a query sample, xquery, located in a indecision region. In this example, the

decision boundary of classifier c1 crosses the region of competence of xquery, and it predicts different

class labels for the samples belonging to this region. It also correctly classifies at least one sample

from each class. On the other hand, c2 does not cross the region of competence of xquery. However,

since it correctly classifies the same number of samples as c1, a DES algorithm could select c2 as a

local competent classifier, instead of c1, misclassifying the query.

To deal with this issue, Oliveira et al. [4] proposed the Frienemy Indecision Region Dynamic

Ensemble Selection (FIRE-DES), a DES framework that pre-selects classifiers with decision bound-

aries crossing the region of competence when the test sample is located in an indecision region.

Given a test sample xquery, FIRE-DES decides if it is located in an indecision region. If so, it uses

the Dynamic Frienemy Pruning (DFP) to pre-select classifiers with decision boundaries crossing
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Figure 1: c1 crosses the region of competence and predict the correct label for samples from different classes, while

c2 can only correctly classify the samples belonging to the blue class.

the region of competence of xquery. Then, only the pre-selected pool is passed down to a DES

technique to select the final ensemble of classifiers.

However, the FIRE-DES does not consider whether or not the region of competence is a good

representation of the type of region in which the test sample is located. For instance, the FIRE-DES

can mistake a safe region as being an indecision region due to the presence of noise in DSEL. In this

case, the DFP can remove local competent classifiers from the pool as they do not correctly classify

the noise instance, leaving only the base classifiers that modeled the noise in the local region for

the DES step.

In addition, when dealing with small sized datasets, some regions of the feature space may not

be well populated. In such cases, the region of competence of xquery can contain samples belonging

to a single class (safe region) even though xquery may be located close to the class borders (true

indecision region). In such cases, the FIRE-DES algorithm will mistake that xquery is located in

a safe region. Hence, the DFP algorithm will not be employed to remove incompetent classifiers.

However, the query is located in a true indecision region since it is close to the decision border of

classes, regardless of the classes represented in its region of competence.

In this paper, we propose the FIRE-DES++, an enhanced FIRE-DES framework that tackles the

noise sensitivity and indecision region restriction drawbacks of the previous framework. The main

differences between the FIRE-DES++ to the original version are: (1) The FIRE-DES++ applies a

prototype selection (PS) technique in order to remove noise from the validation set (DSEL). Hence,

the FIRE framework will not mistake a noisy region for an indecision region when estimating
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the regions of competence. (2) During the test phase, the FIRE-DES++ employs a K-Nearest

Neighbors Equality (KNNE) [5] to define the region of competence. The KNNE is a variation of

the KNN technique which selects the same amount of samples from each class. By using the KNNE,

test instances that are located close to the decision borders (in a true indecision region) will never

be mistaken as belonging to a safe region since its region of competence will always be composed

of samples from different classes. Thus, solving the indecision region restriction drawback of the

FIRE-DES framework. Like FIRE-DES, FIRE-DES++ can be used with any dynamic selection

technique based on the nearest neighbors to estimate the competence level of base classifiers.

The experiments were conducted over 64 datasets from the Knowledge Extraction based on

Evolutionary Learning (KEEL) repository [6]. We evaluated FIRE-DES++ on 8 dynamic se-

lection techniques: Overall Local Accuracy (OLA) [7], Local Class Accuracy(LCA) [7], A Priori

selection [8], A Posteriori selection [8], Multiple Classifier Behavior (MCB) [9], Dynamic Selection

KNN [10] and the K-Nearest Oracles Union (KNU) and Eliminate (KNE) [11]. We also compared

FIRE-DES++ with the better performing dynamic selection technique according to a recent sur-

vey [1]: Randomized Reference Classifier (RRC) [12], META-DES [13], and META-DES.Oracle [14]

as well as several static ensemble approaches.

This paper is organized as follows: Section 2 presents the problem statement, Section 3 presents

the proposed framework, Section 4 presents the experimental study, and Section 5 concludes the

paper.

2. Problem Statement

2.1. FIRE-DES

The Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) framework works as

an online pruning mechanism to pre-select base classifiers before applying the dynamic ensemble

selection techniques. Given a new input query to the system, xquery, the FIRE-DES framework

analyze its region of competence to decide whether or not it is located in an indecision region

(region of competence with samples from different classes). If the sample is located in a safe region,

i.e., the whole region of competence is composed of samples belonging to the same class, all base

classifiers are passed down to the dynamic selection technique. However, when the query is located

on an indecision region, the framework applies the Dynamic Frienemy Pruning (DFP) technique to
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pre-select base classifiers that are able to correctly classify at least a pair of samples belonging to

different classes in the region of competence. This pair of samples is called frienemy. Two instances

xa and xb are considered frienemies if they are located in the region of competence of xquery, and

have different class labels.

Ideally, a local competent classifier would be able to distinguish all frienemies pair in the region

of competence, thus being able to separate between the two classes locally. The DFP is applied

to pre-select only the base classifiers that correctly classify at least one pair of frienemies. Then,

only the pre-selected base classifiers are passed down to the DES algorithm for the competence

estimation and classification. In the example presented in Fig 1, the DFP would remove c2 since

it does not correctly classify a single pair of frienemies. That way, although c1 and c2 may have

the same local competence level, c2 would not be taken into consideration by the DS algorithm.

Hence, the c1 would be selected predicting the correct label of the query. In a case where no

base classifier correctly classifies a single pair of frienemies, all base classifiers are considered for

competence estimation.

Although the FIRE-DES framework can be used to significantly improve the performance of

several DES techniques [4], it suffers from two main drawbacks: the noise sensitivity, and indecision

region restriction.

2.2. Drawback 1: Noise Sensitivity

The noise sensitivity drawback is important because DES techniques are highly sensitive to

noise, outliers, and high level of overlap between classes in DSEL [2, 15]. Figure 2(a) shows a test

sample (N) with true class � located in a noisy region, and three classifiers c1, c2, and c3. In this

figure, the region of competence (Ψ) of the test sample is composed of the samples A, B, C, and N

(sample N is noise). In the example from Figure 2(a), the classifier c1 correctly classifies 4 samples

in Ψ (A, B, C, and the noise instance N), the classifier c2 correctly classifies 2 samples in Ψ (B, and

C), and the classifier c3 correctly classifies 3 samples in Ψ (A, B, and C).

The Overall Local Accuracy (OLA) [7] DES technique estimates the competence of classifiers

using their accuracy in the region of competence, that is, the more samples a classifier correctly clas-

sifies, the more competent it is. OLA selects only the most competent classifier for the classification

of the test sample.

In Figure 2(a), OLA selects c1, the classifier that correctly classify most samples in Ψ, even
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(a) Toy problem of noisy re-

gion of competence (A, B, C,

and N), the markers ◦ (A, B,

C, and D) and � (N, E, and F)

are samples of different classes,

the sample labeled N is a noisy

sample.
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(b) Toy problem of a test sam-

ple N and a filtered - noisy

sample N was removed - region

of competence (A, B, C, and

D), the markers ◦ (A, B, C,

and D) and � (E, and F) are

samples of different classes.

Figure 2: DES applied to the classification of a test sample N of class �. The continuous straight lines are the

decision boundaries of classifiers c1, c2, and c3, the markers ◦ (A, B, C, and D) and � (N, E, and F) are samples

of different classes, N is a noisy sample, and samples connected to the test sample by a dotted line define the region

of competence of the test sample.

though c1 was only considered the best because of a noisy sample (N). This selection leads to the

misclassification of the test sample as ◦. Also in this example, the FIRE-DES will mistake the

noisy region (region with noisy samples) for an indecision region (region composed of samples from

different classes), and pre-select classifiers that correctly classify at least one pair of samples from

different classes (frienemies), in this case c1, also misclassifying the test sample as ◦.
2.3. Drawback 2: Indecision Region Restriction

Figure 2(b) shows the scenario from Figure 2(a) without the noisy sample N . Figure 2(b) shows

a test sample (N) with true class � located in a true indecision region (close to the borders), and

three classifiers c1, c2, and c3. In this figure, the region of competence (Ψ) of the test sample is

composed of the samples A, B, C, and D all from class ◦. In the example from Figure 2(b), the

classifier c1 correctly classify 3 samples in Ψ (A, B, and C), the classifier c2 correctly classify 2

samples in Ψ (B, and C), and the classifier c3 correctly classify 4 samples in Ψ (A, B, C, and D).
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In Figure 2(b), OLA selects the classifier that correctly classify the most samples in Ψ, that is,

c3, even though c3 classify all samples in the region of competence of the test sample as being from

the same class ◦, misclassifying the test sample.

In the example from Figure 2(b), the FIRE-DES does not apply the DFP because it considers

xquery as being located in a safe region, even though it is located in a true indecision region.

Therefore, FIRE-DES with OLA also misclassifies the test sample as being from the class ◦. This
scenario is very likely to happen when dealing with small sized as well as imbalanced datasets, in

which one of the classes may not contain enough examples in the local region.

3. The proposed framework

In this section, we propose an enhanced Frienemy Indecision Region Dynamic Ensemble Se-

lection (FIRE-DES++). FIRE-DES++ is divided into four phases (Figure 3): overproduction,

filtering, region of competence definition and selection. The main differences between the original

FIRE-DES framework and the proposed FIRE-DES++ are the addition of the filtering phase to

deal with the noise sensitivity drawback, and the region of competence definition phase, in which

the KNN-Equality is applied to guarantee that all classes are represented in the region of compe-

tence. Algorithms 1 and 2 present the training and test stages of the FIRE-DES++ framework,

respectively.

1. Overproduction phase, where the pool of classifiers C is generated using the training set

(T ). The overproduction phase is performed only once in the training stage.

2. Filtering phase, where a Prototype Selection (PS) [16] technique is applied to the validation

set DSEL, removing noise and outliers, and reducing the level of overlap between classes in

DSEL. The improved validation set is named D′SEL. The filtering phase is performed only

once in the training stage.

3. Region of competence definition (RoCD) phase, there the framework defines the region

of competence (Ψ) using the K-Nearest Neighbors Equality (KNNE) [5] to select samples from

the improved validation set D′SEL. The KNNE is a nearest neighbor approach that selects an

equal number of samples from each class, avoiding the definition of a region of competence

with samples of a single class. The RoCD phase is performed in the testing stage for each

new test sample.
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4. Selection phase, where the ensemble of classifiers for the classification of each new test

sample is selected. Given a test sample xquery, this phase pre-selects base classifiers with

decision boundaries crossing the region of competence of xquery (Cpruned), if such classifier

exists, using the Dynamic Frienemy Pruning (DFP) [4]. The DFP pre-selects classifiers that

correctly classify at least one pair of samples from different classes ("frienemies") in the

region of competence. The DFP avoids the selection of classifiers that classify all samples

in the region of competence as being from the same class. After the pre-selection, any DES

technique is applied to perform to select the final ensemble of classifiers (C ′). Finally, the

framework uses a combination rule to combine the predictions of the selected classifiers into

a single prediction.

Algorithm 1 FIRE-DES++ training stage
Require: Training data, T

Require: Validation data, DSEL

1: C = PoolGeneration(T ) . Generate a pool of classifiers based on the training dataset

2: D′SEL = PrototypeSelection(DSEL) . Apply prototype selection to modify the distribution of DSEL

3: return C, D′SEL

Algorithm 2 FIRE-DES++ testing stage
Require: xquery: Input sample

Require: C: pool of classifiers

Require: D′SEL: Filtered dynamic selection dataset

1: Ψ = KNN-Equality(D′SEL, xquery) . Get the region of competence Ψ

2: Cpruned ← DFP (Ψ, C) . Apply the DFP pruning

3: C′ = DES(Ψ, Cpruned) . Perform dynamic ensemble selection over the pruned pool

4: class(xquery) = Combination(C′, xquery) . Predicting using the selected ensemble C′

5: return class(xquery)

In Figure 3, T is the training set, Generation is an ensemble generation process (i.e. Bagging

[17]), and C is the generated pool of classifiers; G is the test set, xquery is the test sample; DSEL is

the validation set, Filtering is the process of filtering DSEL using a prototype selection algorithm
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Figure 3: Overview of FIRE-DES++, where G is the test set, xquery is the test sample, T is the training set,

Generation is a ensemble generation process (i.e. Bagging) used to generate the pool of classifiers C, DSEL is the

validation set, Filtering is the process of filtering DSEL using a prototype selection algorithm which results in the

improved validation set D′SEL, Region of competence definition (RoCD) is the process of selecting the region of

competence Ψ of xquery with size K, Dynamic Frienemy Pruning is the Dynamic Frienemy Pruning (DFP) step,

Dynamic Selection is the Dynamic Selection step, Cpruned is the set of pre-selected classifiers, C′ is the ensemble of

selected classifiers for the classification of xquery , Combination is a combination rule, and class(xquery) is the final

classification of xquery .
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which results in the improved validation set D′SEL, Region of Competence Definition is the process

of selecting the region of competence of xquery using the filtered validation set D′SEL, Ψ is the

region of competence of xquery; Dynamic Frienemy Pruning is the Dynamic Pruning step, Cpruned

is the pre-selected ensemble of classifiers, Dynamic Selection is the Dynamic Selection step; C ′ is

the ensemble of selected classifiers, Combination is the process of combining the prediction of the

classifiers in C ′, and class(xquery) is the final prediction of xquery.

The phases of FIRE-DES++ complement each other as the filtering phase tackles the noise

sensitivity drawback, removing noise and reducing the level of overlap between classes; the region

of competence definition phase tackles the indecision region restriction drawback, as it ensures that

all classes are represented in the region of competence of the test sample; and, finally, the selection

phase pre-selects classifiers with decision boundaries crossing the region of competence, without

having to consider the effect of noise (since noise is removed in the filtering phase), or deciding

if a test sample is located in an indecision region or not (as the region of competence definition

phase always selects regions of competence composed of samples of different classes). The phases

of FIRE-DES++ are detailed in the following subsections.

3.1. Overproduction

The overproduction phase uses any ensemble generation technique to generate the pool of clas-

sifiers C trained with the training set T . Since the focus of this work is on dynamic selection, the

Bagging technique [17] [18] is used to generate the pool of classifiers, following the approach used

in [4].

3.2. Filtering phase

The filtering phase tackles the noise sensitivity drawback (Section 2.2), as removing noise from

DSEL, preventing FIRE-DES from estimating the competence level of base classifiers using noisy

data. This step is conducted by applying a PS technique to the validation set (DSEL), resulting in

an improved validation set (D′SEL) with less noise, and less overlap between classes.

In [16], the authors presented a taxonomy of prototype selection, classifying prototype selection

techniques into three categories: (1) Condensation techniques, that remove samples in the center

of classes, maintaining the borderline samples. (2) Edition techniques, that remove sample in the

borders of classes, maintaining safe samples (located in the center of classes). (3) Hybrid techniques,

that combine condensation and edition approaches.
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We expect the filtering phase to cause a high performance gain to the FIRE-DES++ framework,

as in [2], the authors show that state-of-the-art techniques fail to obtain a good approximation of

the decision boundaries of classes when noise is added to DSEL, and also demonstrate that using

PS increases the classification performance of DES techniques.

Two PS techniques are considered: the Relative Neighborhood Graph (RNG) [19] and the Edited

Nearest Neighborhood (ENN) [20]. These two PS techniques were the best approaches for dynamic

selection purposes according to [21]. Furthermore, since our experimental study is focused on small

datasets with different levels of class imbalance, only samples of the majority class are removed from

the validation set. Therefore, they also help to alleviate class imbalance problems when performing

dynamic selection [22].

3.2.1. Relative Neighborhood Graph (RNG)

The RNG technique uses the concept of Proximity Graph (PG) to select prototypes. RNG

builds a PG, G = (V, E), in which the vertices are samples (V = DSEL) and the set of edges E

contains an edge connecting two samples (xi, xj) if and only if (xi, xj) satisfy the neighborhood

criterion in Equation 1:

(xi, xj) ∈ E ⇔ dist(xi, xj) ≤ max(dist(xi, xk), dist(xj , xk))

∀xk ∈ X, k = i, j
(1)

where dist is the Euclidean distance between two samples, and X is the validation set DSEL. The

corresponding geometric is defined as the disjoint intersection between two hyperspheres centered

in xi and xj , and radius equal to dist(xi, xj). Two samples are relative neighbors if and only if this

intersection does not contain any other sample from DSEL. The relative neighborhood of a sample

is the set of all its relative neighbors. After building the PG and defining all graph neighbors,

all samples with class label different from the majority of their respective relative neighbors are

removed from DSEL.

Algorithm 3 presents the pseudo-code of the RNG technique used in this work. Given the

validation set DSEL, all samples are added in the filtered validation set D′SEL (Line 1), and the

proximity graph of the samples in DSEL are stored in PG (Line 2). Now, for each sample xi ∈ DSEL,

the relative neighbors (RN) of xi are selected, and, if the most common class label in RN is different

from the class label of xi, and xi is not from the minority class, xi is removed from the filtered

11



validation set D′SEL (Line 3 - 10). Finally, the filtered validation set D′SEL is returned (Line 11).

Algorithm 3 Relative Neighborhood Graph (RNG)
Require: DSEL: validation set

1: D′SEL ← DSEL
2: PG← proximity-graph(DSEL)

3: for xi ∈ DSEL do

4: RN ← relative-neighbors(xi, PG)

5: labelpred ← most frequent class in RN

6: label true ← class(xi)

7: if label true 6= labelpred ∧ label true 6= minorityclass then

8: D′SEL ← D′SEL \ xi

9: end if

10: end for

11: return D′SEL

3.2.2. Edited Nearest Neighbors (ENN)

The ENN is an edition prototype selection technique well-known for its efficiency in removing

noise and producing smoother classes boundaries. The ENN is used with the changes proposed in

[23], (implemented in [24]), where only majority class samples are removed in order to reduce the

class imbalance.

Algorithm 4 presents the pseudo-code of the ENN technique used in this work. Given the

validation set DSEL, all samples are added in the filtered validation set D′SEL (Line 1), and for

each sample xi ∈ DSEL, if xi is misclassified by its K nearest neighbors in D′SEL\xi and xi is not

from the minority class, xi is removed from the filtered validation set D′SEL (Line 2 - 8). Finally,

the filtered validation set D′SEL is returned (Line 9).
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Algorithm 4 Edited Nearest Neighbors (ENN)
Require: DSEL: validation set

1: D′SEL ← DSEL
2: for xi ∈ DSEL do

3: labelpred ← most frequent class in KNN(xi,DSEL\ xi)

4: label true ← class(xi)

5: if label true 6= labelpred ∧ label true 6= minorityclass then

6: D′SEL ← D′SEL \ xi

7: end if

8: end for

9: return D′SEL

3.3. Region of competence definition phase

In order to solve the indecision region drawback (Section 2.3), the FIRE-DES++ employs the

K-Nearest Neighbors Equality (KNNE) instead of the traditional KNN algorithm in order to define

the region of competence, Ψ, for each new query, xquery. The KNNE is a variation of the KNN

technique which selects the same amount of samples from each class [5].

The advantage of using the KNNE instead of the original KNN method employed by the previous

FIRE-DES algorithm is that we ensure all classes are represented in the region of competence. Thus,

test instances that are located close to the decision borders (i.e., in a true indecision region) will

never be mistaken as belonging to a safe region. Moreover, the uses of KNNE complements the

filtering stage of the FIRE-DES++ framework. By reducing the overlap between the classes, the

filtering phase may remove important samples that are close to the class borders [16, 2], which could

make indecision regions being mistaken as safe regions. By using the KNNE, the FIRE-DES++

framework guarantees that the DFP mechanism will be employed in such scenarios.

The region of competence, Ψ, is then passed down to the selection phase.

3.4. Selection phase

In the selection phase, first, the framework pre-selects classifiers using the DFP. Next, a dynamic

selection technique is employed, over the pre-selected pool, to select the final ensemble C ′, that is

used for the classification of xquery.
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3.4.1. Dynamic frienemy pruning

The Dynamic Frienemy Pruning (DFP) [4] aims to pre-select competent classifiers (classifiers

with decision boundaries crossing the region of competence) for the classification of each new test

sample, before the final selection of classifiers. The DFP algorithm uses the frienemy samples

concept: Given a test sample xquery and its region of competence Ψ, two samples Ψa and Ψb are

frienemy samples in regards to xquery if, Ψa is in Ψ, Ψb is in Ψ, and Ψa and Ψb are from different

classes. Figure 4 shows a test sample N and its region of competence (samples A, B, C, D and E).

In this example, the frienemy samples are the pairs of samples of opposite classes (◦,�), named

(A,C), (A,D), (A,E), (B,C), (B,D), (B,E).

Figure 4: Pairs of frienemies (A,C), (A,D), (A,E), (B,C), (B,D), (B,E) in the region of competence of the test

sample N [adapted from [4]].

For each new test sample, if the test sample is located in an indecision region, the DFP algorithm

pre-selects classifiers with decision boundaries crossing the region of competence. That is, if the

test sample have samples of different classes in the region of competence, DFP pre-selects classifiers

that correctly classify at least one pair of frienemy samples (if such classifier exists).

Algorithm 5 presents the DFP pseudo-code. Given the region of competence (Ψ) of the test

sample, and the pool of classifiers (C), DFP creates an empty list Cpruned in which the pre-selected
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classifiers will be stored (Line 1), finds the pairs of frienemy samples (F) in Ψ (Line 2), and, for

each classifier ci in C, ci is included in Cpruned if ci correctly classify at least one pair of frienemies

(Lines 3 - 8). If no classifier is pre-selected, DFP includes all classifiers in C into Cpruned (lines 9 -

11). Finally, Cpruned is returned (Line 12).

Algorithm 5 Dynamic Frienemy Pruning
Require: Ψ: region of competence of the test sample

Require: C: pool of classifiers

1: Cpruned ← empty ensemble of classifiers

2: F ← all pair of frienemies in Ψ

3: for ci in C do

4: Fi ← pairs of samples in F correctly classified by ci.

5: if Fi is not empty then

6: Cpruned ← Cpruned ∪ ci

7: end if

8: end for

9: if Cpruned is empty then

10: Cpruned ← C

11: end if

12: return Cpruned

3.5. Dynamic Selection

In this step, the pruned pool Cpruned and the region of competence, Ψ, are passed down to a

DES technique which selects an ensemble C ′, from Cpruned, containing the most competence base

classifiers for the classification of xquery.

Figure 5 shows the same scenario from Figure 2, but without the noisy sample N , and using

the KNNE to define the region of competence of the test sample. First, the FIRE-DES++ removes

noise from the validation set (the example from Figure 2(a) is turned into the example from Figure

2(b)), tackling the noise sensitivity drawback of FIRE-DES. Then, the framework uses the KNNE

to define the region of competence, selecting an equal amount of samples from different classes (the

example from Figure 2(b) is turned into the example from Figure 5), tackling the indecision region
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Figure 5: DES applied to the classification of a test sample N of class �. The continuous straight lines are the

decision boundaries of classifiers c1, c2, and c3, the markers ◦ (A, B, C, and D) and � (E, and F) are samples of

different classes, and samples connected to the test sample by a dotted line (A, B, E, and F) define the region of

competence of the test sample.

restriction drawback of FIRE-DES. The region of competence now is composed of the samples A,

B, E, and F (instead of A, B, C, F) due to the use of KNNE.

In this example, the classifier c1 now correctly classifies 2 samples in Ψ, the classifier c2 now

correctly classifies 3 samples in Ψ, and the classifier c3 now correctly classifies 2 samples in Ψ. The

OLA technique now selects c2, correctly classifying the test sample.

By applying the DFP in this example (after the PS technique and the KNNE), FIRE-DES++

pre-selects the classifier c2 as it is the only classifier that correctly classifies at least one pair of

frienemies, correctly classifying the test sample as being from the class �. In this example, FIRE-

DES++ performed optimal classification for OLA and the same concept can be extended to other

DES techniques.

4. Experiments

In this section, we evaluate FIRE-DES++ using different dynamic selection techniques. We

evaluate the impact of the filtering phase using the PS techniques, the region of competence defi-

nition phase using the K-Nearest Neighbors Equality (KNNE), and the selection phase, using the

Dynamic Frienemy Pruning (DFP). We also compare the filtering phase using the ENN and RNG.
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4.1. Dynamic Selection Techniques

We used 8 dynamic classifier selection techniques from the literature. (Table 1): Overall Local

Accuracy (OLA), Local Class Accuracy (LCA), A Priori (APRI), A Posteriori (APOS), Multiple

Classifier Behavior (MCB), Dynamic Selection KNN (DSKNN), K-Nearest Oracles Union (KNU),

and K-Nearest Oracles Eliminate (KNE). These eight techniques were selected since they are the

most well-known dynamic selection techniques, having the highest number of citations according to

Google Scholar. Moreover, they are all based on the KNN to estimate the region of competence. So

they are suitable to be used in the FIRE-DES++ framework. A step-by-step explanation of such

techniques can be found in the following surveys [3, 1].

In addition, we compare the proposed FIRE-DES++ with the three dynamic ensemble selection

frameworks that achieved the best classification performance in [1]: Randomized Reference Classifier

(RRC) [12], META-DES [13], and META-DES.Oracle [14]. They are briefly described below:

• RRC: Instead of estimating the competence of the base classifiers in the neighborhood of the

query, this method uses all samples in Dsel, and weights the influence of each example using a

Gaussian potential function so that samples closer to the query have a higher influence in the

competence estimation than the more distant ones. The source of competence is estimated

based on the concept of randomized reference classifier (RRC) proposed in [12]. The base

classifiers that presented a competence level higher than the random classifier are selected to

compose the ensemble for an input xquery.

• META-DES: The META-DES is a dynamic ensemble selection framework that model the

competence estimation as a meta-problem. Each measure used to estimate the local com-

petence of a base classifier is encoded as a meta-feature. Five sets of meta-features for the

estimation of the classifier competence are considered. Then, a meta-classifier is trained,

based on the training data, to predict whether or not a base classifier is competent enough

for the classification of a new input xquery.

• META-DES.Oracle: The META-DES.Oracle is an extension of the META-DES framework

based on the concept of Oracle, that is an ideal dynamic selection scheme which always selects

the classifiers that predict the correct label for the current sample if such classifier exists [25].

In this case, the Oracle definition is used in an optimization scheme, so that the meta-classifier
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can achieve results that are closer to the Oracle, improving the dynamic selection of base

classifiers.

These state-of-the-art frameworks are not based exclusively on the KNN for the competence

level estimation. Hence, neither the KNNE nor the DFP can be applied to these techniques.

Table 1: Dynamic selection techniques considered in the experiments.

Technique Category Reference

DCS

Overall Local Accuracy (OLA) Accuracy Woods et al. [7]

Local Class Accuracy (LCA) Accuracy Woods et al. [7]

A Priori (APri) Probabilistic Giacinto et al. [8]

A Posteriori (APos) Probabilistic Giacinto et al. [8]

Multiple Classifier Behavior (MCB) Behavior Giacinto et al. [9]

DES

Dynamic Selection KNN (DSKNN) Diversity Santana et al. [10]

K-Nearests Oracles Union (KNU) Oracle Ko et al. [11]

K-Nearests Oracles Eliminate (KNE) Oracle Ko et al. [11]

State-of-the-art

Randomized Reference Classifier (RRC) Probabilistic Woloszynski et al. [12]

META-DES Meta-learning Cruz et al. [13]

META-DES.Oracle Meta-learning Cruz et al. [14]

The experiments were conducted using the Python 3.5 language with the scikit-learn library [26]

for the training of the base classifiers. The dynamic ensemble selection techniques were evaluated

using the DESlib library [27], which contains fast implementation of all dynamic ensemble selection

techniques evaluated in this work. The library is publicly available on GitHub: https://github.

com/Menelau/DESlib.

The size of the region of competence (neighborhood size) K was equally set to 7 for all dynamic

selection technique (as suggested in [1]). This is the only hyper-parameter required for the majority
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of dynamic selection methods. The only exception is the DS-KNN technique, which requires to

predefine the number of selected base classifiers. In this case, the number of base classifiers selected

using accuracy (N) and diversity (J) was set to 30% of the whole pool as suggested in [10].

For the state-of-the-art techniques, the RRC has no hyper-parameter to set. The META-DES

framework has two additional hyper-parameters: The number of samples selected using output

profiles Kp and the sample selection threshold hc. The values of the hyper-parameters Kp and hc

for the META-DES framework were set to 5 and 80% according to the results presented in [13, 14].

4.2. Datasets

We conducted the experiments on 64 datasets from the Knowledge Extraction based on Evolu-

tionary Learning (KEEL) repository [6]. This experimental study is focused on small datasets with

different levels of class imbalance. So, the framework is evaluated under a diverse set of classifi-

cation problems. Table 2 shows the characteristics of the datasets used in this experiment: label,

name, number of features, number of samples and the Imbalanced Ratio (IR). The IR is a common

metric used by several authors [28, 29] to characterize the imbalanced level of a distribution. It is

calculated by the number of instances of the majority class per instance of the minority class.

4.3. Evaluation

For each dataset, the experiments were carried out using a stratified 5-fold cross validation (1

fold for test and 4 folds for training). For the sake of simplicity, we use the 5-fold partitions provided

in the KEEL website. Thus, making it easier to replicate the results of this paper. The process of

creating the dynamic selection dataset (DSEL) was guided by the experiments conducted in [22].

Due to the low sample size, the whole training set is used for the generation of DSEL. There is

an overlap between the training bootstraps and DSEL. However, due to the randomized nature of

the Bagging technique as well as the application of the PS techniques its distribution is not exactly

the same. Moreover, as reported by [30] a small overlap between both datasets can be suitable for

dealing with small sized datasets.

Similar to our previous works [4], the pool of classifiers C was composed of 100 Perceptrons

generated using the Bagging technique [17]. The training process was conducted using the scikit-

learn library [26]. The learning rate and number of iterations used for the training were set to

α = 0.001 and niter = 100. The activation function is the Heaviside function, which predicts
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Table 2: Characteristics of the 64 datasets used in the experiments: label, name, number of features, number of

samples, and imbalance ratio. The imbalance ratio (IR) is is calculated by the number of instances of the majority

class per instance of the minority class.

Name #Feats. #Samples IR Name #Feats. #Samples IR

glass1 9 214 1.82 ecoli-0-2-6-7vs3-5 7 224 9.18

ecoli0vs1 7 220 1.86 glass-0-4vs5 9 92 9.22

wisconsin 9 683 1.86 ecoli-0-3-4-6vs5 7 205 9.25

pima 8 768 1.87 ecoli-0-3-4-7vs5-6 7 257 9.28

iris0 4 150 2.00 yeast-05679vs4 8 528 9.35

glass0 9 214 2.06 vowel0 13 988 9.98

yeast1 8 1484 2.46 ecoli-0-6-7vs5 6 220 10.00

haberman 3 306 2.78 glass-016vs2 9 192 10.29

vehicle2 18 846 2.88 ecoli-0-1-4-7vs2-3-5-6 7 336 10.59

vehicle1 18 846 2.90 led7digit-0-2-4-5-6-7-8-9vs1 7 443 10.97

vehicle3 18 846 2.99 glass-0-6vs5 9 205 11.00

glass0123vs456 9 214 3.20 ecoli-0-1vs5 6 240 11.00

vehicle0 18 846 3.25 glass-0-1-4-6vs2 9 205 11.06

ecoli1 7 336 3.36 glass2 9 214 11.59

new-thyroid1 5 215 5.14 ecoli-0-1-4-7vs5-6 6 332 12.28

new-thyroid2 5 215 5.14 ecoli-0-1-4-6vs5 6 280 13.00

ecoli2 7 336 5.46 cleveland-0vs4 13 177 12.62

segment0 19 2308 6.00 shuttle-c0vsc4 9 1829 13.87

glass6 9 214 6.38 yeast-1vs7 7 459 14.30

yeast3 8 1484 8.10 glass4 9 214 15.47

ecoli3 7 336 8.60 ecoli4 7 336 15.80

page-blocks0 10 5472 8.79 page-blocks-13vs4 10 472 15.86

ecoli-0-3-4vs5 7 200 9.00 glass-0-1-6_vs_5 9 184 19.44

yeast-2vs4 8 514 9.08 shuttle-c2-vs-c4 9 129 20.50

ecoli-0-6-7vs3-5 7 202 9.09 yeast-1458vs7 8 693 22.10

ecoli-0-2-3-4vs5 7 222 9.10 glass5 9 214 22.78

yeast-0-3-5-9vs7-8 8 506 9.12 yeast-2vs8 8 482 23.10

glass-0-1-5vs2 9 172 9.12 yeast4 8 1484 28.10

yeast-0-2-5-7-9vs3-6-8 8 1004 9.14 yeast-1289vs7 8 947 30.57

yeast-0-2-5-6vs3-7-8-9 8 1004 9.14 yeast5 8 1484 32.73

ecoli-0-4-6vs5 6 203 9.15 ecoli-0137vs26 7 281 39.14

ecoli-0-1vs2-3-5 7 224 9.17 yeast6 8 1484 41.40

0 if the sample is on one side of the hyperplane and 1 otherwise. Moreover, each Perceptron

was calibrated to estimate posterior probabilities using Platt’s sigmoid model [31] provided in the

scikit-learn library through the CalibratedClassifierCV class.
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For evaluation metric, we used the Area Under the ROC Curve (AUC) [32]. We used the AUC

because this metric has been widely used to evaluate the performance of classifiers on imbalanced

data [33].

Furthermore, we used the Wilcoxon Signed Rank Test [34] and the Sign Test [35] to conduct

a pairwise comparison between techniques over all datasets. These methods were used since they

were suggested by [36, 37]. The Wilcoxon Signed Rank Test is a non-parametric alternative to

the paired t-test. The Sign test works upon the number of wins, ties and losses obtained by an

algorithm over the baseline. The algorithm is deemed statistically better if its number of wins plus

half of the number of ties is higher than a critical value.

Comparison between multiple techniques over all datasets is conducted using the Friedman test

with the Bonferroni-dunn post-hoc test as suggested by Demsar [36]. The Friedman test is a non-

parametric equivalent of the repeated-measures ANOVA. It ranks the algorithms for each data

set separately, the best one getting the rank of 1, the second best rank 2 and so on. In case of

a tie, i.e., two methods presented the same classification accuracy for the dataset, their average

ranks were summed and divided by two. However, the Friedman test only tells that there is a

difference between the classifiers, but does not present which methods differ. For this reason, the

Bonferroni-dunn post-hoc test is employed to find out which techniques actually differs.

4.4. Filtering Phase: RNG vs. ENN

In this section, we evaluate FIRE-DES++ using RNG and ENN for the filtering phase. Both

techniques follow the same approach of maintaining all samples of the minority class. In other

words, a sample is only considered a noise and removed if it belongs to the majority class. This

comparison is important for verifying whether the FIRE-DES++ is sensitive to changes in PS

techniques in the filtering phase, and also for finding the PS technique that causes the highest

classification performance gain in FIRE-DES++.
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Figure 6: Scatter plots of average AUC of FIRE-DES++ using the ENN (vertical axis) and the RNG (horizontal

axis). Markers above the diagonal line indicates that the using the ENN had a better performance than using the

RNG.

Figure 6 shows the scatter plot of average AUC of FIRE-DES++ using the ENN (vertical axis)

and the RNG (horizontal axis). In this figure, all markers are above the diagonal line, meaning that

using the ENN was, on average, better than using the RNG for all DES techniques in the proposed

framework.

Using the Wilcoxon Signed Rank Test (α = 0.05), we can confirm that using the proposed

framework with the ENN is statistically better than RNG for the majority of DES techniques:

OLA (p-value = 0.0121), LCA (p-value = 0.0011), APRI (p-value = 0.0040), MCB (p-value =

0.0007), DSKNN (p-value = 0.0002), KNU (p-value = 0.0010), and KNE (p-value = 0.0002). The

only exception is for the APOS technique (p-value = 0.0946). Thus, we only consider FIRE-DES++

using ENN for the rest of this paper.

4.5. Comparison among different scenarios

In this section, we analyze eight different scenarios for the dynamic selection techniques (Table

3). Each Scenario corresponds to a different combination of the three modules present in the
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FIRE-DES++ framework: DFP, ENN, and KNNE. Scenario I corresponds to the original dynamic

selection techniques (i.e., no additional step is performed). Scenario IV corresponds to the FIRE-

DES framework, in which only the DFP method is applied without using the modifications proposed

in this paper (ENN and KNNE). Scenario VIII corresponds to the FIRE-DES++, in which the DFP,

ENN and KNNE are all employed in the framework.

Table 3: Eight test scenarios considered this work. Scenarios I, IV and VIII corresponds to the standard DES

techniques, the FIRE-DES framework and FIRE-DES++ framework respectively.
Scenario KNNE ENN DFP

I No No No

II Yes No No

III No Yes No

IV No No Yes

V Yes Yes No

VI Yes No Yes

VII No Yes Yes

VIII Yes Yes Yes

For each scenario, we evaluated the classification performance of each DES technique over the

64 datasets, a total of 512 experiments (64 datasets × 8 DS techniques) per scenario. We performed

the Friedman test to have a comparison between the eight scenarios considering all datasets. For

each dataset and dynamic selection technique, we ranked each scenario from rank 1 to rank 8 (rank

1 being the best), and used the Friedman test to calculate their average rank (Table 4). The

result of the Friedman test was p-value = 2.39× e−70, indicating that there is statistical difference

between the scenarios. In order to know where the difference lies, the Bonferroni-Dunn post-hoc test

is conducted. The result of the post-hoc analysis is presented using a critical difference diagram

(Figure 7). Scenarios significantly different have a difference in ranking higher than the critical

difference (CD = 0.3750).
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Figure 7: Critical Difference diagram using the Bonferroni-dunn post-hoc test considering the eight Scenarios.

Scenarios that are statistically equivalent are connected by a black bar.

Table 4: The average ranks and AUC for each Scenario. The Scenarios are ordered according to their performance.

Algorithm Avg. Rank Algorithm Mean AUC

Scenario VIII 3.75 Scenario VIII 82.95

Scenario III 3.84 Scenario VII 82.70

Scenario VII 3.95 Scenario III 82.13

Scenario V 4.23 Scenario V 82.11

Scenario I 4.93 Scenario VI 81.57

Scenario VI 4.97 Scenario II 81.37

Scenario II 4.99 Scenario IV 81.18

Scenario IV 5.30 Scenario I 80.61

Figure 7 shows that FIRE-DES++ (Scenario VIII) achieved the lowest average ranking (3.75),

statistically outperforming Scenarios I, II, IV, V, and VI. Scenarios VI (DFP+KNNE) and VII

(DFP+ENN) obtained lower average rank when compared to scenario IV (DFP alone). The reason

for Scenario IV obtaining the highest average rank in this analysis is due to the fact that it never

obtained the best result (lowest rank) for any combination of 64 datasets × 8 DES techniques. There

is always a better alternative either by using DFP+ENN to solve the noise sensitivity drawback

(Section 2.2), DFP+KNNE to solve the indecision region definition drawback (Section 2.3 2.3) or

using them all together. Thus, we can conclude the addition of ENN and KNNE really helps in

improving the performance of the FIRE-DES framework.
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Figure 8: Influence of each phase when compared to Scenario I, that is, the difference between the average perfor-

mance Scenarios IV, VI, VII and VIII in relation to Scenario I. The bars represent average classification performance

gain (AUC) when adding DFP (0.57), DFP+KNNE (0.96), DFP+ENN (2.09), and DFP+KNNE+ENN (2.34), over

the 64 datasets.
Figure 8 shows the performance gain (AUC) obtained by adding each step of the proposed FIRE-

DES++ framework in relation to the regular DES techniques. The regular DES techniques corre-

sponds to Scenario I (Table 3), while the DFP, DFP+KNNE, DFP+ENN, and DFP+KNNE+ENN

corresponds to Scenarios IV, VI, VII, and VIII respectively. This figure shows that the three phases

combined (DFP, KNNE, and ENN) causes the highest performance gain (2.34), followed by DFP

and ENN combined (2.09), DFP and KNNE combined (0.96), and finally DFP alone (0.57). These

results indicate that the filtering and the region of competence definition phases in the FIRE-

DES++ framework cause performance gain over FIRE-DES, with the performance best being the

use of both the ENN and KNNE combined.

Thus, we can conclude that all steps of FIRE-DES++ are important. Each step helps in

improving the performance of the DES techniques. Furthermore, using all three combined leads to

the highest overall improvement in classification performance.

4.6. Comparison with FIRE-DES

In this section, we compare FIRE-DES++ and FIRE-DES for each DES technique considered in

this work. The goal of this analysis is to investigate whether FIRE-DES++ significantly improves
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the performance of FIRE-DES as well as to identify which DES techniques are more benefited from

the proposed framework.

The average rank and AUC for each DES techniques is shown on Table 5. Figure 9 presents the

CD diagram comparing FIRE-DES++ (FOLA++, FLCA++, FAPRI++, FAPOS++, FMCB++,

FDSKNN++, FKNU++, and FKNE++) with FIRE-DES (FOLA, FLCA, FAPRI, FAPOS, FMCB,

FDSKNN, and FKNE) using the Bonferroni-Dunn post-hoc test. We can see that FIRE-DES++

outperformed FIRE-DES for 7 out of 8 DES techniques. The only exception was for the LCA

method, in which the FLCA and FLCA++ had statistically equivalent results.
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Figure 9: CD diagram of Bonferroni-Dunn post-hoc test considering all dynamic selection approaches. CD = 1.0608.

In addition, Figure 10 presents a pairwise comparison of FIRE-DES++ and FIRE-DES for

each DES technique. This comparison used the Sign test calculated on the computed wins, ties

and losses of FIRE-DES++. The null hypothesis H0 was that using the FIRE-DES++ did not

make any difference compared to FIRE-DES, and a rejection of H0 meant that FIRE-DES++

significantly outperformed FIRE-DES. In this evaluation, we considered three levels of significance

α = {0.10, 0.05, 0.01}. To reject H0, the number of wins plus half of the number of ties needs to be
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greater or equal to a critical value nc (Equation 2):

nc =
nexp

2
+ zα ×

2
√
nexp

2
(2)

where nexp = 64 (the number of experiments), nc = {37.12, 38.58, 41.30} is the critical value for

each significance level α = {0.10, 0.05, 0.01}, respectively.
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Figure 10: Performance of FIRE-DES++ compared with FIRE-DES using different DES techniques in terms of

wins, ties and losses considering the average AUC over the 64 datasets. each line illustrates the critical values

nc = {37.12, 38.58, 41.30} considering significance levels of α = {0.10, 0.05, 0.01}, respectively.

Figure 10 shows that FIRE-DES++ caused a significant performance gain over FIRE-DES based

on the Sign test. For a confidence level α = {0.10, 0.05} (first 2 lines left to right), FIRE-DES++

significantly improved the performance of 7 out of 8 techniques. In addition, with a more restrict

confidence level α = 0.01, the proposed FIRE-DES++ presented statistically better results for the

A Priori, A Posteriori, MCB, OLA, DSKNN and KNE. Only for the LCA technique the FIRE-

DES++ did not significantly improve over the FIRE-DES framework. However, the FLCA++ still

obtained a higher number of wins (35) than losses (29). Thus, we can conclude that by the addition

of ENN filter and the KNNE, the FIRE-DES++ can significantly improve the performance of a

diverse set of dynamic selection techniques.
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Table 5: Overall results considering the 64 datasets. The average ranks and AUC for each algorithm is presented.

The algorithms are ordered according to their performance

Algorithm Avg. Rank Algorithm Mean AUC

FKNE++ 4.71 FKNE++ 85.17

FDSKNN++ 5.15 FDSKNN++ 85.02

FKNU++ 5.67 FOLA++ 84.35

FAPRI++ 6.59 FAPRI++ 84.23

FOLA++ 6.67 FKNU++ 84.22

FAPOS++ 6.78 FMCB++ 83.95

FMCB++ 7.43 FAPOS++ 83.66

FKNU 8.32 FKNU 82.69

FKNE 8.78 FAPOS 82.59

FAPOS 8.79 FKNE 82.25

FDSKNN 8.92 FMCB 81.92

FMCB 9.71 FDSKNN 81.87

FOLA 10.65 FOLA 81.46

FAPRI 10.87 FAPRI 81.39

FLCA 13.18 FLCA 77.66

FLCA++ 13.70 FLCA++ 77.50

In addition, we measured the processing time of the original FIRE-DES framework and the

proposed FIRE-DES++ framework. The processing time was calculated by computing the average

processing time over the 64 datasets. The average running time of the proposed FIRE-DES++

framework was about 10% slower than the original FIRE-DES framework. Therefore, we can

conclude that the FIRE-DES++ significantly improves the performance of DES techniques with a

minimal increase in the computational time.

4.7. Comparison with state-of-the-art

In this section we compare the results of the FIRE-DES++ with the state-of-the-art dynamic

ensemble selection frameworks (Table 1) as well as static ensemble methods. The following static

ensemble methods were considered: Bagging [17], AdaBoost [38], Random Forests [39], Extremely

Randomized Forest [40], Gradient Boosted Trees [41] and Random Balance ensembles [42]. Each

technique was evaluated with a total of 100 base classifiers. The hyper-parameters of such techniques
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were set with the values suggested in [43].

For the sake of simplicity, only the FKNE++ was considered in this analysis since it performed

better in the previous experiments. Table 6 presents the average AUC and ranking of FKNE++,

the state-of-the-art DES frameworks and the static ensemble methods. The FKNE++ obtained

the lowest average rank (2.84), and the second best average AUC, 85.17 vs 85.37 obtained by the

Random Balance ensemble.

Table 6: Overall results considering the 64 datasets. The average ranks and AUC for each algorithm is presented.

The algorithms are ordered according to their performance

Algorithm Avg. Rank Algorithm Mean AUC

FKNE++ 2.84 Random Balance 85.37

Random Balance 3.32 FKNE++ 85.17

META-DES.O 4.84 META-DES.O 82.56

Boosting 5.09 META-DES 82.18

META-DES 5.20 Gradient Boosting 81.00

Gradient Boosting 5.43 Boosting 80.76

RRC 5.48 RRC 80.50

Bagging 5.93 Bagging 78.41

Extreme Forest 6.68 Extreme Forest 78.00
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Figure 11: Critical difference diagram of Bonferroni-Dunn post-hoc test considering the state-of-the-art DES

frameworks and static ensemble approaches. The critical value was computed using a confidence level α = 0.05

(CD = 1.2028).

Moreover, Figure 11 presents the results of the rank analysis using critical difference diagram.

The critical value was computed using the Bonferroni-Dunn test with a confidence level α = 0.05
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(CD = 1.2028). We can see that the FKNE++ statistically outperformed all state-of-the-art DES

framework based on the rank analysis. Using the Wilcoxon Signed Rank Test (α = 0.05) for a

more robust pairwise analysis, we also observed that FKNE++ statistically outperformed all three

state-of-the-art DES frameworks: META-DES (p-value = 1.29× e−6), META-DES.Oracle (p-value

= 2.95×e−5) and RRC (p-value = 2.33×e−6). Thus, we can conclude the proposed FIRE-DES++

presents a significant performance gain over the state-of-the-art DES frameworks for these datasets.

The FKNE++ also statistically outperformed the majority of static ensemble combination meth-

ods. The only exception being the Random Balance technique. This could be explained by the fact

the Random Balance was proposed to deal specifically with small sized and imbalanced data [42],

which comprises the 64 datasets in this study. Moreover, this technique achieved the state-of-the-

art performance for such datasets in several comparative studies [29, 22]. Hence, the FKNE++ is

competitive with the state-of-the-art methods for dealing with small sized and imbalanced datasets.

5. Conclusion

In this paper, we presented 2 drawbacks of the Frienemy Indecision REgion Dynamic Ensemble

Selection (FIRE-DES) framework: (1) noise sensitivity drawback: the classification performance

of FIRE-DES is strongly affected by noise, as it mistakes noisy regions for indecision regions and

applies the pre-selection of classifiers. (2) indecision region restriction drawback: FIRE-DES uses

the region of competence to decide if a test sample is located in an indecision region, and only

pre-selects classifiers when the region of competence of the test sample is composed of samples from

different classes, restricting the number of test samples in which the pre-selection is applied for its

classification.

To tackle these drawbacks of FIRE-DES, we use the Edited Nearest Neighbors (ENN) [20] to

remove noise from the validation set (tackling the noise sensitivity drawback), and we use the K-

Nearest Neighbors Equality (KNNE) [5] to define the region of competence selecting the nearest

neighbors from each class (tackling the indecision region restriction drawback). We named this new

framework FIRE-DES++.

We compared the results FIRE-DES++ with DES and FIRE-DES with 8 dynamic selection

techniques over 64 datasets. The experimental results show that the FIRE-DES++ significantly

outperform FIRE-DES for 7 out of 8 DES techniques. Moreover, results also show that each

30



individual phase of the new framework, filtering and region of competence definition, helps in

significantly improving generalization performance of DES techniques.

We also compared the performance of the FIRE-DES++ with the state-of-the-art DES frame-

works and ensemble methods. The results showed that the proposed framework significantly outper-

formed all three state-of-the-art DES frameworks with statistical confidence as well as the majority

of the state-of-the-art ensemble methods. Furthermore, the FIRE-DES++ is equivalent to the Ran-

dom Balance method which is considered the state-of-the-art ensemble algorithm for dealing with

the KEEL imbalanced datasets according to [29].

Future works on this topic will involve extending the FIRE-DES++ framework for handling

multi-class classification problems; evaluating the use of different types of base classifier as well

as other ensemble generation methods in the framework, and performing a complete study on the

FIRE-DES++ together with data preprocessing techniques for dealing with imbalanced classifica-

tion problems.
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