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Abstract

We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and 

feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image 

patches in tissue images into sparse feature maps that encode both the location and appearance of 

nuclei. A primary contribution of our work is the development of an unsupervised detection 

network by using the characteristics of histopathology image patches. The pretrained nucleus 

detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in 

an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art 

results. In addition, we are able to achieve comparable performance with only 5% of the fully- 

supervised annotation cost.
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1. Introduction

It is widely accepted that understanding and curing complex diseases require systematic 

examination of disease mechanisms at multiple biological scales and integration of 

information from multiple data modalities [1, 2, 3, 4]. Tissue specimens have long been used 

to examine how disease manifests itself at the sub-cellular level and modifies tissue 

morphology [5, 6]. Advances in digital pathology imaging have made it feasible to capture 

high-resolution tissue images rapidly and facilitated quantitative analyses of tissue image 

data. Nuclear characteristics, such as size, shape and chromatin pattern, are important factors 

in distinguishing different types of cells and diagio nosing disease. Automatic analysis of 

nuclei can provide quantitative measures and new insights to disease mechanisms that 

cannot be gleaned from manual, qualitative evaluations of tissue specimens. Nucleus/cell 

detection and segmentation is a common methodology in histopathology image analysis [7, 

8, 9] - a recent survey of nucleus segmentation algorithms can be found in [8]. Xie et al. and 

Xing et al. [10, 11] show i5 that it is difficult to develop highly accurate, robust and efficient 

tissue image segmentation algorithms. The algorithmic issues arise from heterogeneity in 

structure and texture characteristics across tissue specimens from different disease regions 

and from different disease subtypes. Even within a tissue specimen, structure and texture 

characteristics can vary from region to region. Moreover, images may contain tissue prepa- 

20 ration, staining and image acquisition artifacts, such as variation in staining intensity and 

folded tissue regions, which create problems for computer algorithms.

In this work, we research and evaluate deep learning methods, more specifically 

Convolutional Neural Networks [12, 13] - a recent survey of research on CNNs can be found 

in [13], for detection and segmentation of nuclei in 20X histopathology image 25 patches 

with a typical resolution of 50 by 50 square microns (100 by 100 pixels). We design a novel 

Convolutional Autoencoder (CAE) that unifies nuclei detection and feature/representation 

learning in a single network and can be trained end-to-end without supervision. We also 

show that with existing labeled data, our network can be easily fine-tuned with supervision 

to improve the state-of-the-art performance of nuclei 30 classification and segmentation. Our 

contributions can be summarized as follows.

First, we propose a CAE architecture with crosswise sparsity that can detect and represent 

nuclei in histopathology images with the following advantages: A primary contribution of 

our work is the development of an unsupervised detection network by using the 

characteristics of histopathology image patches. To the best of our knowl- edge, this is the 

first unsupervised detection network in this type of computer vision application. Our method 

can be fine-tuned for end-to-end supervised learning. Second, our experimental evaluation 

using multiple datasets shows the proposed approach performs significantly better than other 

methods. The crosswise constraint in our method boosts the performance substantially. Our 
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unsupervised CAE achieves comparable nu- cleus detection results compared to recent 

supervised nucleus detection methods. (b) Our method achieves comparable results with 5% 

of training data needed by other methods, resulting in considerable savings in the cost of 

label generation. Our method reduces the error of the U-net method [14] by 20% in nucleus 

segmentation. Third, we eliminate pooling layers and strided convolutional layers in the 

CAE and CNN architec- ture for the nucleus segmentation task. Since each nucleus has only 

around 400 pixels, such spatial reduction layers discard important spatial information for 

pixel-wise segmentation. Our approach outputs more accurate segmentation predictions. The 

CAE architecture presented here has been employed as one component of a complex CNN 

based architecture employed in a National Cancer Institute sponsored cancer research 

project - the Pan Cancer Research Atlas. This cancer research project involved 

characterization of tumor infiltrating lymphocyte patterns in whole slide images along with 

elucidation of relationships between lymphocyte patterns and molecular tumor 

characterization [15]. The characterization analysis involved roughly 5,000 whole slide 

images obtained from 13 cancer types.

2. Related Work

Image segmentation is a fundamental image analysis method in computer vision [16, 17, 8, 

18]. Machine learning has been extensively employed in image analysis tasks in biomedical 

research [19, 7, 20, 21, 22]. Rasti et al. [23] proposed an approach that employs a mixture 

ensemble of CNNs (ME-CNNs) to tumor classification in DCE-MRI breast cancer images. 

Their approach shows good performance even when trained with limited number of image 

samples. A multi-crop CNN method is proposed by Shen et al. [24] for classification of lung 

module malignancy in CT images. Their method models salient information in images 

through a multi-crop pooling strategy, which extracts regions from convolutional feature 

maps and executes max-pooling different times. Manivannan et al. [25] developed a method 

to detect and classify subcellular patterns in images of HEp-2 cells. The method trains 

ensembles of SVMs to classify cells into multiple classes. Tajbakhsh and Suzuki [26] 

compared massive-training artificial neural networks (MTANNs) and convolutional neural 

networks (CNNs) for lung nodule detection and classification. Khatami et al. [27] 

investigated the use of manifold learning for classification, regression and hypothesis testing 

with diffusion MR images. Their results show improved accuracy for supervised 

classification and regression and increased power for hypothesis testing.

Development of methods for tissue image analysis remains an active area of research. 

Numerous studies have devised methods for the detection, extraction, recog- nition of 

pathological patterns at various scales [7, 8, 28, 29]. Zheng et al. [28] developed a method 

based on convolutional neural networks (CNNs) to extract features from histopathology 

images, including patterns and distributions of nuclei. Al-Milaji et al. [29] proposed a CNN 

method for identification of stromal and epithelial tissue regions in images obtained from 

H&E stained tissue specimens. Deep learning based so automatic nuclei analysis methods 

[30, 31, 32, 33, 34, 35] requires a large-scale annotated dataset. Collecting annotated data is 

a labor intensive and challenging process since it requires the involvement of expert 

pathologists whose time is a very limited and expensive resource [36]. Thus many state-of-

the-art nucleus analysis methods are semi-supervised [37, 38, 39, 40, 41]. They pretrain an 
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autoencoder for unsupervised representation learning and construct a CNN from the 

pretrained autoencoder. To better capture the visual variance of nuclei, one usually trains the 

unsupervised autoencoder on image patches with nuclei in the center [42,43,44]. This 

requires a separate nucleus detection step [34] which in most cases needs tuning to optimize 

the final classification performance. Instead of tuning the detection and classification 

modules separately, recent works [45, 46, 47, 48] successfully trained end-to-end CNNs to 

perform these tasks in an unified pipeline. Prior work has developed and employed 

supervised networks. Unsupervised detection networks do not exist in any visual application 

domains, despite the success of unsupervised learning in other tasks [49, 50].

3. Overview of Our Method

We design a novel Convolutional Autoencoder (CAE) that unifies nuclei detection and 

feature/representation learning in a single network and can be trained end-to-end without 

supervision. Our approach modifies the conventional CAE to encode not only appearance, 

but also spatial information in feature maps. To this end, our CAE first learns to separate 

background (eg.cytoplasm) and foreground (eg.nuclei) in an image patch, as shown in Fig. 2. 

We should note that an image patch is a rectangular region in a whole slide tissue image. We 

use image patches, because a tissue image can be very large and may not fit in memory. It is 

common in tissue image analysis to partition tissue images into patches and process the 

patches. We will refer to the partitioned image patches simply as the images. The CAE 

encodes the input image in a set of low resolution feature maps (background feature maps) 

with a small number of encoding neurons. The feature maps can only encode large scale 

color and texture variations because of their limited capacity. Thus these feature maps 

encode the image background. The high frequency residual between the input image and the 

reconstructed background is the foreground that contains nuclei.

We design our network to learn the foreground feature maps in a “crosswise sparse” manner: 

neurons across all feature maps are not activated (output zero) in most feature map locations. 

Only neurons in a few feature map locations can be activated. Since the non-activated 

neurons have no influence in the later decoding layers, the image foreground is 

reconstructed using only the non-zero responses in the foreground encoding feature maps. 

This means that the image reconstruction error will be minimized only if the activated 

encoding neurons at different locations capture the detected nuclei.

Learning a set of crosswise sparse foreground encoding feature maps is not straightforward. 

Neurons at the same location across all foreground feature maps should be synchronized: 

they should be activated or not activated at the same time depending on the presence of 

nuclei. In order to achieve this synchronization, the CAE needs to learn the locations of 

nuclei by optimizing the reconstruction error. Hence, the nucleus detection and feature 

extraction models are learned simultaneously during optimization. To represent the inferred 

nuclear locations, we introduce a special binary feature map: the nucleus detection map. We 

make this map sparse by thresholding neural activations. After optimization, a neuron in the 

nucleus detection map should output 1, if and only if there is a detected nucleus at the 

neuron’s location. The foreground feature maps are computed by element-wise 

multiplications between the nucleus detection map and a set of dense feature maps (Fig. 2). 
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In the next section we first introduce the CAE then describe our crosswise sparse CAE in 

detail.

4. Crosswise Sparse CAE

4.1. CAE for Semi-supervised CNN

An autoencoder is an unsupervised neural network that learns to reconstruct its input. The 

main purpose of this model is to learn a compact representation of the input as a set of 

neural responses [51]. A typical feedforward autoencoder is composed of an encoder and a 

decoder, which are separate layers. The encoding layer models the appearance information 

of the input. The decoder reconstructs the input from neural responses in the encoding layer. 

The CAE [38] and sparse CAE [37,40,52] are autoencoder variants. One can construct a 

CNN with a trained CAE. Such semi-supervised CNNs outperform fully supervised CNNs 

significantly in many applications [53, 42].

The architecture of our CAE is shown in Fig. 2. We train the CAE to minimize the input 

image reconstruction error. The early stages of the CAE network consists of six 

convolutional and two average-pooling layers. The network then splits into three branches: 

the nucleus detection branch, the foreground feature branch, and the background branch. 

The detection branch merges into the foreground feature branch to generate the foreground 

feature maps that represent nuclei. The foreground and background feature maps are 

decoded to generate the foreground and background reconstructed images. Finally the two 

intermediate images are summed to form the final reconstructed image.

4.2. Background Encoding Feature Maps

We first model the background (tissue, cytoplasm etc.) then extract the foreground that 

contains nuclei. Usually a majority of a tissue image will be background. The texture and 

color of the background vary usually in a larger scale compared to the foreground. Thus, a 

few small dense feature maps capture background information, because parts of the image 

encoded by these feature maps have the two properties that match the background: these 

parts are distributed throughout the whole image (because these feature maps are dense) and 

a larger scale texture and color (because there are limited number of neurons in these feature 

maps). In practice we represent the background of a 100 × 100 image by five 5 × 5 maps.

Large but crosswise sparse feature maps (foreground encoding maps) can only re- construct 

color and texture at sparse locations. However, the background has large- scale color and 

texture through the whole patch. By minimizing the reconstruction error, a few small dense 

feature maps must encode the background information which cannot be encoded by the 

crosswise sparse feature maps.

4.3. Foreground Encoding Feature Maps

Once the background is encoded and then reconstructed, the residual between the 

reconstructed background and the input image will be the foreground. The foreground 

consists of nuclei which are roughly of the same scale and often disperse throughout the 

image. The foreground encoding feature maps encode everything about the nuclei, including 
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their locations and appearance. A foreground feature map can be viewed as a matrix, in 

which each entry is a vector (a set of neuron responses) that encodes an image patch (the 

neurons’ receptive field). The vectors will encode nuclei, if there are nuclei at the center of 

the image patches. Otherwise the vectors contain zeros only. Since a small number of non-

zero vectors encode nuclei, the foreground feature map will be sparse.

4.3.1. Crosswise Sparsity—We formally define crosswise sparsity as follows: We 

denote a set of f feature maps as X1, X2, … Xf. Each feature map is a matrix. We denote the 

i, j-th entry of the l-th feature map as Xl
i, j, and the size of a feature map is s × s. A 

conventional sparsity constraint requires:

∑i, j, l 1 Xl
i, j ≠ 0

f s2 ≪ 1 1

where 1(•) is the indicator function that returns 1 if its input is true and 0 otherwise. The 

crosswise sparsity requires:

∑i, j 1 ∑l 1 Xl
i, j ≠ 0 > 0

s2 ≪ 1 2

In other words, in most locations in the foreground feature maps, neurons across all the 

feature maps should not be activated. This sparsity definition, illustrated in Fig. 3, can be 

viewed as a special form of group sparsity [54, 55].

If a foreground image is reconstructed by feature maps that are crosswise sparse, iso as 

defined by Eq. 2, the foreground image is essentially reconstructed by a few vectors in the 

feature maps. As a result, those vectors must represent salient objects in the foreground 

image- nuclei, since the CAE aims to minimize the reconstruction error.

4.3.2. Ensuring Crosswise Sparsity—Crosswise sparsity defined by Eq. 2 is not 

achievable using conventional sparsifi- cation methods [52] that can only satisfy Eq. 1. We 

introduce a binary matrix D with its i, j-th entry Di,j indicating if Xl
i, j are activated for any l 

or not:

Di, j = 1 ∑
l

1 Xl
i, j ≠ 0 > 0 3

Therefore Eq. 2 becomes:
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∑i, j D
i, j

s2 ≪ 1 4

The foreground feature maps X1; X2, … Xf are crosswise sparse, iff there exists a matrix D 
that satisfies Eq. 3 and Eq. 4. To satisfy Eq. 3, we design the CAE to generate a binary 

sparse feature map that represents D. The CAE computes Xl based on a dense feature map 

Xl′ and D by element-wise multiplication:

Xl = Xl′ ⊙ D 5

We call the feature map D the detection map, shown in Fig. 2. The dense feature map Xʹl; is 

automatically learned by the CAE by minimizing the reconstruction error.

The proposed CAE also computes the D that satisfies Eq. 4. Notice that Eq. 4 is equivalent 

to the conventional sparsity defined by Eq. 1, when the total number of feature maps f = 1 

and Xf is a binary feature map. Therefore, Eq. 4 can be satisfied by existing sparsification 

methods. A standard sparsification methods is to add a sparsity penalty term in the loss 

function [52]. This method requires parameter tuning to achieve the desired expected 

sparsity. The k-sparse method [56] guarantees that exactly k neurons will be activated in D, 

where k is a predefined constant. However, in tissue images, the number of nuclei per image 

varies; the sparsity rate also should vary.

In this paper, we propose to use a threshold based method that guarantees an overall 

expected predefined sparsity rate, even though the sparsity rate for each CAE’s input can 

vary. We compute the binary sparse feature map D as output from an automatically learned 

input dense feature map Dʹ:

Di, j = sig r D′i, j − t 6

where sig(ˑ) is the sigmoid function, r is a predefined slope, and t is an automatically 

computed threshold. We choose r = 20 in all experiments, making D a binary matrix in 

practice. Different r values do not affect the performance significantly based on our 

experience. Our CAE computes a large t in the training phase, which results in a sparse D. 

We define the expected sparsity rate as p%, which can be set according to the average 

number of nuclei per image. We determine the sparsity rate, p%, by randomly sampling 20 

unlabeled lung adenocarcinoma patches and counting the average number of nuclei per 

patch. We then compute the desired p (p = 1.6 in all experiments) such that the number of 

activated neurons in the detection map equals to the count of average number of nuclei in a 

patch. This process takes less than 20 minutes. We compute t as
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t = E[percentilep D′i, j ], 7

where percentilep(D’i,j) is the p-th percentile of D’i,j for all i,j, given a particular CAE’s 

input image. In the training phase, we compute t using the running average method: t ← (1 

– α)t + α percentilep(D’i,j). We set the constant α = 0.1 in all experiments. This running 

average approach is also used by batch normalization [57]. To make sure the running 

average of t converges, we also use batch normalization on D’i,,j to normalize the 

distribution of D’i,j in each stochastic gradient descent batch.

In total, three parameters are introduced in our CAE: r, p, and α. The sparsity rate p can be 

decided based on the dataset easily. The other two parameters do not affect the performance 

significantly in our experiments. After the training phase, the threshold t is fixed as a 

constant.

With crosswise sparsity, each vector in the foreground feature maps can possibly 205 encode 

multiple nuclei. To achieve one-on-one correspondence between nuclei and encoded vectors, 

we simply reduce the size of the encoding neurons’ receptive fields, such that a vector 

encodes a small region that is in the same size of a nucleus.

5. Experiments

We initialize the parameters of CNNs with the parameters of our trained cross- wise sparse 

CAEs. We empirically evaluate this approach on four datasets: a selfcollected lymphocyte 

classification dataset, the nuclear shape and attribute classification dataset [43], the 

CRCHistoPhenotypes nucleus detection dataset [34], and the MICCAI 2015 nucleus 

segmentation challenge dataset [58].

5.1. Datasets

Dataset for Unsupervised Learning.—We collected 0.5 million unlabeled small 

images randomly cropped from 400 lung adenocarcinoma histopathology images obtained 

from the public TCGA repository [60]. The cropped images are 100×100 pixels in 20X (0.5 

microns per pixel). We will refer to cropped images simply as images in the rest of this 

section.

Datasets for Nucleus Classification (Sec. 5.6.1).—We evaluate the classification 

performance of our method on two datasets: a self-collected lymphocyte classification 

dataset, and the nuclear shape and attribute classification dataset [43].

Lymphocyte is a type of white blood cell in the immune system. Automatic recognition of 

lymphocytes is very important in many situations including the study of can- cer 

immunotherapy [61, 62, 63]. We collected a dataset of 1785 images of nuclei that were 

labeled lymphocyte or non-lymphocyte by a pathologist. These 1785 images were cropped 

from 12 representative lung adenocarcinoma whole slide tissue images from the TCGA 

repository [60]. We use labeled images cropped from 10 whole slide tissue images as the 
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training set and the rest as the test set. We show randomly selected image 230 examples in 

Fig. 5. In addition, we apply our method on an existing dataset [43] for nuclear shape and 

attribute classification. The dataset consists of 2000 images of nuclei labeled with fifteen 

morphological attributes and shapes.

Dataset for Nucleus Detection Experiments (Sec. 5.6.2).—We test our method for 

nucleus detection using the CRCHistoPhenotypes nucleus detection dataset [34] which 235 

contains 100 colorectal adenocarcinoma images of 500×500 pixels. In total there are 29,756 

marked locations of nuclei.

Dataset for Nucleus Segmentation Experiments (Sec. 5.6.4).—For training, we 

use the MICCAI 2015 nucleus segmentation challenge dataset [58] which contains 15 

training images. The ground truth masks of nuclei are provided in the training dataset.

In addition, we collect a large-scale weakly supervised nucleus segmentation training set 

with DAPI staining techniques. It contains 763 images of 500×500 pixels. For testing, we 

use the MICCAI 2015 nucleus segmentation challenge test set which contains 18 images. A 

typical resolution of the MICCAI 2015 images is 500×500.

5.2. CAE Architectures

Our CAEs in all experiments are trained on the same unlabeled dataset, the 0.5 million lung 

adenocarcinoma image patches. The CAE architectures are different depending on 

applications.

CAEs for Classification and Detection.—We use the same architecture illustrated in 

Fig. 2, Tab. 1 and Tab. 2. Note that we apply batch normalization [57] before the 250 leaky 

ReLU activation function [59] in all layers.

CAEs for Nucleus Segmentation.—The average size of nuclei in the dataset for 

nucleus segmentation experiments (Sec. 5.6.4) is around 20×20 pixels. Therefore pooling 

and strided convolutional layers can discard important spatial information which is 

important for pixel-wise segmentation. The U-net [14] addresses this issue by adding skip 

connections. However, we find in practice that eliminating pooling and strided convolutional 

layers completely yields better performance. The computational complexity is very high for 

a network without any spatial reduction layers. Thus, compared to Tab. 1 and Tab. 2, we use 

smaller input dimensions (40 × 40) and fewer (80 to 200) feature maps in the CAE for 

nucleus segmentation. Other settings of the CAE for segmentation remain unchanged.

5.3. CNN Architectures

We construct all of our supervised CNNs based on trained CAEs. We use CAE trained on 

lung adenocarcinoma patches to initialize the CNNs. Note that the proposed CAE is fully 

convolutional and can initialize CNNs with different size inputs.

For the classification tasks (Sec. 5.6.1), the supervised CNN is constructed from Parts 1–6 of 

the CAE. We initialize the parameters in these layers to be the same as the parameters in the 

CAE. We attach four 1 × 1 convolutional layers after the foreground encoding layer and two 
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3×3 convolutional layers after the background encoding layer. Each added layer has 320 

convolutional filters. We then apply global average pooling 270 on the two branches. The 

pooled features are then concatenated together, followed by a final classification layer with 

sigmoid activation function.

For the nucleus detection task (Sec. 5.6.2), the supervised CNN is constructed from Parts 1, 

2, 5 of the CAE. After Part 5, we attach five 1 × 1 convolutional layers. The activation 

function of the last layer is sigmoid. Thus, our detection CNN outputs a 275 probability map 

(matrix). The ground truth for training the detection CNN is a binary matrix with the same 

size of the output probability map. We do not model the problem of touching cells explicitly. 

The CAE that initializes the detection CNN is forced to represent a large clump of nuclei by 

multiple separate detected objects. The receptive field of one encoding neuron in the CAE is 

designed to be large enough to contain only 280 one regular size nucleus in most cases. Note 

that the size of the output probability map is one quarter of the size of the input image. In 

order to obtain pixel-level nucleus detection results, after obtaining the predicted probability 

map, we resize it with bilinear interpolation to the same size of the input image.

For the nucleus segmentation task (Sec. 5.6.4), the supervised CNN is constructed from 

Parts 1 and 3 of the CAE which forces the segmentation CNN to learn separate 

representations for each nucleus. The final segmentation of each nucleus is computed from 

the separate intermediate representations. The training label is class-level (not instance-

level) for all segmentation CNNs. Currently we do not model the touching cell/nuclei 

problem explicitly. Each segmented region is considered one nucleus. After Part 3, we add 

six 3 × 3 convolutional layers followed by a segmentation layer. The segmentation layer is 

the same to the patch-CNN’s [64] segmentation layer which is a fully-connected layer with 

sigmoid activation function followed by reshaping. In addition, inspired by the U-net [14], 

we add two skip connections in the network. Note that the skip connections are added when 

constructing the CNN only, not on the CAE.

For all tasks, we randomly initialize the parameters of the added layers. We train the 

parameters of the added layers until convergence before fine-tuning the whole network.

5.4. Training and Testing Details

We train our CAE on the unlabeled dataset, minimizing the pixel-wise root mean squared 

error between the input images and the reconstructed images. We use stochas- tic gradient 

descent with batch size 32, learning rate 0.03 and momentum 0.9. The loss converges after 6 

epochs. We show randomly selected examples of the nucleus detection feature map as well 

as the reconstructed foreground and background images in Fig. 4. The crosswise sparsity 

does not guarantee that the foreground pixels get activated if there is a nucleus. As is shown 

in Fig. 4, however, during optimization of the 305 reconstruction loss, the foreground 

encoding feature maps detect and encode the position and appearance of nuclei. This is 

because the background encoding feature maps can only encode large scale color 

information (thus foreground pixels) and are responsible for reconstructing the details of the 

input patch such as nuclei. The performance of unsupervised detection of nuclei is reported 

in Tab. 4.
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For the CNN (constructed from the CAE) training, we use stochastic gradient descent with 

batch size, learning rate, and momentum selected for each task independently. For all tasks, 

we divide the learning rate by 10 when the error has plateaued. We use sigmoid as the 

nonlinearity function in the last layer and log-likelihood as the loss function. We apply three 

types of data augmentation. First, the input images are 315 randomly cropped from a larger 

image. Second, the colors of the input images are randomly perturbed. Third, we randomly 

rotate and mirror the input images. During testing, we average the predictions of 25 image 

crops. We implemented our CAE and CNN using Theano [65]. We trained the CAE and 

CNN on a single Tesla K40 GPU (1/4 of the speed of GTX 1080TI).

The proposed CAE takes less than 0.01 seconds on a Tesla K40 GPU to compute the 

encoding feature maps for one input patch in the test phase using the network in Tab. 1. For 

a typical size slide which contains 125k non-overlapping tissue patches, thepro- posed 

networks take 21, 19 and 18 minutes, respectively, for all the patches. To speed up the 

testing phase, we plan to reimplement the network (currently running under Theano 0.9) 

using an updated deep learning toolbox, which supports more recent versions of CUDA and 

cuDNN. With recent deep learning hardware such as Nvidia V100, we expect the testing 

time to drop significantly per WSI. We will also consider incorporating recent techniques for 

reducing the network size such as the SqueezeNet [66].

5.5. Methods Tested

CSP-CAE Our crosswise sparse CAE shown in Fig. 2. We use the detection map directly as 

an unsupervised nucleus detection output. This method is only evaluated on the nucleus 

detection dataset.

CSP-CNN Our CNN initialized by the proposed crosswise sparse CAE shown in Fig. 2. The 

CNN construction is described in Sec. 5.3. We set the sparsity rate to 1.6%, such that the 

number of activated foreground feature map locations roughly equals to the average number 

of nuclei per image in the unsupervised training set.

SUP-CNN A fully supervised CNN. Its architecture is similar to our CSP-CNN except that: 

1). There is no background representation branch (no Part 4, 8 in Fig. 2). 2). There is no 

nucleus detection branch (no Part 2, 5 in Fig. 2). The SUP-CNN has a very standard 

architecture, at the same time similar to our CSP-CNN.

SUP-CSP-CNN A fully supervised CNN with the exact same architecture as the proposed 

CSP-CNN. It is trained from random initialization instead of an unsupervised CSP-CAE.

U-NET We use the authors’ U-net architecture and implementation [14] for nucleus 

segmentation and detection. The U-net is fully supervised and not initialized by an 

autoencoder. We test five U-nets with the same architecture but different number of feature 

maps per layer and select the best performing network. All five U-nets perform similarly.

DEN-CNN CNN initialized by a conventional Convolutional Autoencoder (CAE) with- 350 

out the sparsity constraint. Its architecture is similar to our CSP-CNN except that it has no 
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nucleus detection branch. In particular, there is no Part 2 and Part 5 in Fig. 2 and Part 6 is an 

identity mapping layer.

SP-CNN CNN initialized by a sparse CAE without the crosswise constraint. Its architecture 

is similar to our CSP-CNN except that it has no nucleus detection branch 355 and uses the 

conventional sparsity constraint defined by Eq. 1. In particular, there is no Part 2 and Part 5 

in Fig. 2 and Part 6 is a thresholding layer: define its input as D’, its output 

D = ReLU D′ − t , where t is obtained in the same way defined by Eq. 7. We set the sparsity 

rate to 1.6% which equals to the rate we use in CSP-CNN.

VGG16 We fine-tune the VGG 16-layer network [67] which is pretrained on Ima- 360 

geNet [68]. Fine-tuning the VGG16 network has been shown to be robust for pathology 

image classification [69,42].

5.6. Results

5.6.1. Classification of Nuclei—We evaluated our method on two nucleus 

classification datasets. The first dataset is used to classify lymphocytes vs. non-lymphocytes. 

We compared our method with an unsupervised nucleus detection and feature extraction 

method [70], which is based on level sets. We split training and testing images 4 times and 

average the results. As the baseline method we carefully tuned the unsupervised method [70] 

and applied a multilayer neural network on top of the extracted features. We should note that 

the feature extraction step and the classification step have to be tuned separately in the 

baseline method, whereas our CSP-CNN method can be trained end-to-end. As is shown in 

Tab. 3, CSP-CNN achieves the best results and reduces the error of SP-CNN by 25%.

The second dataset is the nuclear shape and attribute classification dataset [43]. For this task, 

we adopt the same 5-fold training and testing data separation protocol and report the results 

in Tab. 3. Our methods improves less over the state-of-the-art with this dataset than with the 

other datasets, because the images of nuclei are results of a fixed nucleus detection method 

which we cannot fine-tune with our proposed method.

5.6.2. Detection of Nuclei—We use a sliding window approach to train and test our 

methods. A CNN outputs a 380 feature map of one quarter the size of its input. The output 

map is resized with bilinear interpolation to the same size of the input image. Finally we 

apply Gaussian filtering followed by non-maximum suppression and thresholding to obtain 

detected nucleus locations. For evaluation, we follow the standard 2-fold cross-validation 

method used in the baseline method [34]. A detected nucleus location is correct if there is a 

ground 385 truth nucleus location within 6 pixels. If there are multiple detected locations 

within 6 pixels of a ground truth location, only the nearest detected location is considered 

correct and all other detections are considered false positives. We achieve state-of- the-art 

results with this dataset (see Tab. 4). Even with no supervision, our crosswise sparse CAE 

(CSP-CAE) trained on lung adenocarcinoma image patches outperforms supervised methods 

trained on the CRCHistoPhenotypes colorectal adenocarcinoma dataset. We show randomly 

selected detection results in Fig. 6.
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5.6.3. Evaluation of unsupervised nucleus detection and representation—We 

show the performance of the proposed CAE on unsupervised detection and feature 

extraction of nuclei with the CRCHistoPhenotypes nucleus detection dataset [34] and our 

lymphocyte classification dataset. Additionally, we show the effect of the sparsity rate p for 

both tasks. Recall that we determine the sparsity rate, p% by the process described in 

Section 4.3.2 by randomly sampling 20 unlabeled lung adenocarcinoma (LUAD). To assess 

the variability of p, we repeat the process three times and have p = 1.664, p = 1.696, p = 

1.720. In our experiments, we use p = 1.6. In this section, we also test p =1.2 and p = 2.0 

with the proposed CAE.

We show experimental results for our unsupervised detection method CSP-CAE in Tab. 5. 

To evaluate the unsupervised nucleus representation features, we use the features with a 

Multi-Layer Perceptron for lymphocyte classification. We name the method CSP-CAE-MLP 

and show performance results in Tab. 6. To implement the CSP-CAE-MLP, we simply use 

the CSP-CNN but fix all its parameters initialized by the CSP-CAE (we only train the multi-

layer perceptron on top of the representation features). In both experiments, our method 

achieves comparable results to many of the existing supervised methods. We should also 

note that p =1.2 and p =1.6 yield similar results as p = 1.6 which is used in all of the other 

experiments.

5.6.4. Segmentation of Nuclei—We use a sliding window approach to train and test 

our CNNs. A CNN outputs a feature map of the same size as its input. For evaluation, we 

follow the standard metric used in the MICCAI challenge: the DICE-average (average of 

two different versions of the DICE coefficient). We show results in Tab. 7. The proposed 

method achieves a significantly higher score than that of the challenge winner [33] and U- 

net [14]. Because the size of nuclei are only around 20 × 20 pixels, we eliminate our 

network’s pooling layers completely and use no strided convolutional layers to preserve 

spatial information. We believe this is an important reason our method outperforms U- net. 

We show randomly selected segmentation examples in Fig. 7.

5.6.5. Training CNN with Weakly Labeled Data—Manual generation of training 

datasets for segmentation is a labor intensive and time consuming process. Even a relatively 

small patch in a tissue image can contain hundreds or thousands of nuclei. Manual 

segmentation of nuclei in such patches can take several hours. For example, the preparation 

of the MICCAI challenge dataset took several weeks. Multiple students were hired to 

manually segment each and every nucleus in a set of patches. Work done by each student 

was reviewed by pathologists to refine the segmentations and produce accurate results. This 

process generates highly accurate training data, which we call strongly labeled data.

In some studies, multiple types of staining are applied on tissue specimens. For example, a 

tissue slice may be stained with the Hematoxylin and Eosin (H&E) stain and imaged. The 

same tissue slice may then be rinsed to remove the H&E stain and re-stained with the 

immunohistochemistry (IHC) or DAPI stain and imaged. We have examined the utility of 

images from DAPI stained tissue specimens to produce training segmentation datasets for 

CNN. Tissue images from DAPI stained tissue specimens exhibit higher contrast between 

background and nuclei. We used this characteristic of the DAPI images to generate 
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segmentation masks using a parameterized segmentation algorithm. We call this type of 

training data weakly labeled data. Fig. 8 shows two randomly selected examples of DAPI 

stained images with corresponding H&E images.

In our experiment, H&E slides were first digitized under 20X objective with Olym- pus 

VS120 whole slide scanner, then de-coverslipped in Acetone and rinsed in 100% Alcohol, as 

well as descending percentages. De-staining was carried out by sequentially rinsing slides in 

deionized water, 1% potassium permanganate (1 min), water, and 2% Oxalic Acid (30 sec or 

as long as it takes to bleach out potassium permanganate). Finally the slides were rinsed in 

water before coverslipped with DAPI (hardset) using #1 coverslips. The DAPI re-stained 

slides were ringed with nail polish to seal and once again imaged with VS120. The DAPI 

images and the corresponding H&E images were obtained from a tissue microarray (TMA). 

This microarray contained 100 disc images. Each disc was originated from a separate tissue 

specimen. The respective DAPI and H&E disc images were registered using an FFT-based 

registration method [72]. We employed a level-set based segmentation algorithm [73] to 

segment the DAPI images. The algorithm first converts H&E images to gray scale for 

segmentation. The DAPI images were already converted to gray scale during the image 

acquisition and postimaging steps. After the DAPI images had been segmented, the output 

masks were overlayed on the matching H&E images. The overlaid images were then 

reviewed by a pathologist who selected a subset of the images for inclusion in the training 

dataset.

The CNN was trained with using the selected masks generated from the DAPI images along 

with the respective H&E images. The trained CNN was applied on the MICCAI 2015 

segmentation challenge test set in the test phase. We computed average DICE coefficient 

values for the CNN models trained using the DAPI training dataset, the MICCAI 2015 

training dataset, and a dataset containing both the DAPI and MIC- CAI training datasets. 

Training using DAPI images shows good results. The CNN trained with the DAPI images 

achieved a DICE coefficient of 0.77. The DICE coefficient value of the CNN trained with 

the MICCAI 2015 training dataset was higher at 0.87. We attribute this to the fact that the 

MICCAI training dataset is generated through a meticulous, yet very time-consuming, 

manual process and have much more accurate nucleus boundaries. Inaccuracies in the DAPI 

based training dataset stems from: (1) DAPI stained cells, though remained firmly in place, 

bear subtle morphological changes from H&E due to additional chemical treatment applied, 

this resulted in the fact that registration between a DAPI image and an H&E image is not 

perfect. Hence, segmentation boundaries from the DAPI image will not match the actual 

boundaries of nuclei in the H&E image. (2) Boundaries generated from computer 

segmentation algorithms generally are not as accurate and tight as manual segmentations. 

Nevertheless, a primary advantage of using DAPI images is that we are able to generate the 

training dataset in a few days compared with multiple weeks for the MICCAI challenge 

dataset.

6. Conclusions

We propose a crosswise sparse CAE that uses the visual characteristics of nuclei for 

unsupervised nucleus detection and feature extraction simultaneously. Using the CAE to 
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initialize a supervised CNN makes it possible to carry out the nucleus detection, feature 

extraction, and classification/segmentation training steps in an end-to-end fash-ion. Our 

experimental evaluation shows that this approach performs much better than other 

approaches and that the crosswise constraint plays an important role in boosting 

performance. In addition, our approach achieves comparable results with 5% of training data 

needed by other methods. We also investigated the use of weakly labeled data generated 

from DAPI stained images for training. An experimental evaluation showed this approach 

achieves good results. Generating ground truth data in digital pathology is a labor-intensive 

process. This can be a limiting factor in the application of deep learning methods. The use of 

crosswise sparse CAE and weakly labeled data addresses this problem and can lead to more 

effective application of deep learning in digital pathology. In future work, we plan to use 

domain knowledge to regularize the encoding layers, using techniques such as the N-cut loss 

[74] and better detect nuclei of various shapes and texture. For the supervised instance-level 

segmentation of nuclei, we will test the deep watershed method. To speed up the testing 

phase, we will investigate techniques for reducing the network size such as the SqueezeNet 

[66].
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Figure 1: 
Our autoencoder decomposes histopathology image patches and detect nuclei in a fully 

unsupervised fashion. It first decomposes an input image patch into foreground (eg.nuclei) 

and background (eg.cytoplasm). It then detects nuclei in the foreground by representing the 

locations of nuclei as a sparse feature map. Finally, it encodes each nucleus to a feature 

vector. Our autoencoder is trained end-to-end, minimizing the reconstruction error.
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Figure 2: 
The architecture of our sparse Convolutional Autoencoder (CAE). The CAE minimizes 

image reconstruction error. The reconstructed image patch is a pixel-wise summation of two 

intermediate reconstructed image patches: the background and the foreground. The 

background is reconstructed from a set of small feature maps (background feature map) that 

can only encode large scale color and texture. The foreground is reconstructed from a set of 

crosswise sparse feature maps (foreground feature map). The foreground maps capture local 

high frequency signal: nuclei. We define crosswise sparsity as follows: when there is no 

detected nucleus at a location, neurons in all foreground feature maps at the same location 

should not be activated. The details of network parts 1–8 are in Tab. 1 and Tab. 2.
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Figure 3: 
An illustration of how each nucleus is encoded and reconstructed. First, the foreground 

feature map must be crosswise sparse (Eq. 2). Second, the size of the receptive field of each 

encoding neuron should be small enough that it contains only one nucleus in most cases.
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Figure 4: 
Randomly selected examples of unsupervised nucleus detection representation results. 

Detection: the detection map. Foreground/Background: reconstructed foreground/

background image. Reconstruction: the final reconstructed image.
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Figure 5: 
Randomly selected examples of our self-collected lymphocyte classification dataset. Top 

row: image patches with a lymphocyte in the center (positive class). Bottom row: image 

patches with a nonlymphocyte object in the center (negative class).
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Figure 6: 
Randomly selected examples of nucleus detection using our CSP-CNN, on the 

CRCHistoPheno- types nucleus detection dataset [34] (best viewed in color).
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Figure 7: 
Randomly selected examples of nucleus segmentation using our CSP-CNN, on the MICCAI 

2015 nucleus segmentation challenge dataset (best viewed in color). The segmentation 

boundaries are in green.
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Figure 8: 
Randomly selected examples of DAPI stained image patches (left) with corresponding H&E 

stained image patches (center) after image registration. The weak segmentation labels are 

displayed on the right using green contours.
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Table 1:

The encoding layers in our CAE. Please refer to Fig. 2 for the overall network architecture. We apply batch 

normalization [57] before the leaky ReLU activation function [59] in all layers.

Part Layer Kernel size Stride Output size

1

Input - - 1002 × 3

Convolution 5×5 1 1002 × 100

Convolution 5×5 1 1002 × 120

Average Pooling 2×2 2 502 × 120

Convolution 3×3 1 502 × 240

Convolution 3×3 1 502 × 320

Average Pooling 2×2 2 252 × 320

Convolution 3×3 1 252 × 640

Convolution 3×3 1 252 × 1024

2
Convolution 1×1 1 252 × 100

Convolution 1×1 1 252 × 1

3
Convolution 1×1 1 252 × 640

Convolution 1×1 1 252 × 100

4

Convolution 1×1 1 252 × 128

Average Pooling 5×5 5 52 × 128

Convolution 3×3 1 52 × 64

Convolution 1×1 1 52 × 5

5 Thresholding Defined by Eq. 6 252 × 1

6 Element-wise multiplication Defined by Eq. 5 252 × 100
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Table 2:

The decoding layers in our CAE. Please refer to Fig. 2 for the overall network architecture. We apply batch 

normalization [57] before the leaky ReLU activation function [59] in all layers.

Part Layer Kernel size Stride Output size

7

Deconvolution 3×3 1 252 × 1024

Deconvolution 3×3 1 252 × 640

Deconvolution 4×4 0.5 502 × 640

Deconvolution 3×3 1 502 × 320

Deconvolution 3×3 1 502 × 320

Deconvolution 4×4 0.5 1002 × 320

Deconvolution 5×5 1 1002 × 120

Deconvolution 5×5 1 1002 × 100

Deconvolution 1×1 1 1002 × 3

8

Deconvolution 3×3 1 52 × 256

Deconvolution 3×3 1 52 × 128

Deconvolution 9×9 0.2 252 × 128

Deconvolution 3×3 1 252 × 128

Deconvolution 3×3 1 252 × 128

Deconvolution 4×4 0.5 502 × 128

Deconvolution 3×3 1 502 × 64

Deconvolution 3×3 1 502 × 64

Deconvolution 4×4 0.5 1002 × 64

Deconvolution 5×5 1 1002 × 32

Deconvolution 5×5 1 1002 × 32

Deconvolution 1×1 1 1002 × 3
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Table 3:

Classification results measured by AUROC on two nucleus classification tasks described in Sec. 5.6.1. The 

proposed CSP-CNN outperforms the other methods significantly. Comparing the results of SP-CNN and our 

CSP-CNN, we see that the proposed crosswise constraint boosts performance significantly. Even with only 5% 

labeled training data, our CSP-CNN (5% data) outperforms other methods on the first dataset. The CSP-CNN 

(5% data) fails on the second dataset because when only using 5% training data, 5 out of 15 classes have less 

than 2 positive training instances which are too few for CNN training.

Methods
Nucleus Classification Datasets

Lymphocyte Classification Nuclear Attribute & Shape [43]

SUP-CNN 0.4936 0.8487

SUP-CSP-CNN 0.5024 0.8480

DEN-CNN 0.5576 0.8656

SP-CNN 0.6262 0.8737

CSP-CNN 0.7856 0.8788

CSP-CNN (5% data) 0.7135 0.7128

Unsupervised features [70] 0.7132 -

Semi-supervised CNN [43] - 0.8570

VGG16 [67] 0.6925 0.8480
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Table 4:

Nucleus detection results on the CRCHistoPhenotypes nucleus detection dataset [34]. We achieved state-of-

the-art results on this dataset. Even with no supervision, our crosswise sparse CAE (CSP-CAE) trained on 

lung adenocarcinoma image patches outperforms supervised methods trained on the CRCHistoPhenotypes 

colorectal adenocarcinoma dataset.

Methods Precision Recall F-measure

SUP-CNN 0.7779 0.8921 0.8311

SUP-CSP-CNN 0.7625 0.8910 0.8218

DEN-CNN 0.7806 0.8625 0.8195

SP-CNN 0.8182 0.8268 0.8225

CSP-CNN 0.7883 0.8864 0.8345

CSP-CNN (5% data) 0.7349 0.8764 0.7994

CSP-CAE (fully unsupervised) 0.5796 0.6572 0.6159

U-net [14] 0.7681 0.8814 0.8209

Spatially Constraint CNN [34] 0.781 0.823 0.802

Structural Regression CNN [31] 0.783 0.804 0.793

Stacked Sparse Autoencoder + Softmax [40] 0.617 0.644 0.630

Local isotropic phase symmetry measure [40] 0.725 0.517 0.604

CRImage (morphological features) [71] 0.657 0.461 0.542
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Table 5:

We evaluate the performance of the unsupervised nucleus detection with the CRCHistoPhenotypes nucleus 

detection dataset [34] with different sparsity rates p. The fully unsupervised detection results are comparable 

to many supervised methods. We can see that p = 1.2 and p = 2.0 yield similar results as p = 1.6 which is used 

in all other experiments.

Methods Precision Recall F-measure

CSP-CAE (fully unsupervised) with p = 1.2 0.6141 0.6010 0.6075

CSP-CAE (fully unsupervised) with p = 1.6 0.5796 0.6572 0.6159

CSP-CAE (fully unsupervised) with p = 2.0 0.S298 0.6698 0.5916

CSP-CNN 0.7883 0.8864 0.8345

Spatially Constraint CNN [34] 0.781 0.823 0.802

Structural Regression CNN [31] 0.783 0.804 0.793

Stacked Sparse Autoencoder + Softmax [40] 0.617 0.644 0.630

Local isotropic phase symmetry measure [40] 0.725 0.517 0.604

CRImage (morphological features) [71] 0.657 0.461 0.542
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Table 6:

To evaluate the unsupervised nucleus representation features, we use the features with a Multi-Layer 

Perceptron for lymphocyte classification. We name the method CSP-CAE-MLP. Our unsupervised features 

yield significantly better performance than baseline methods. Additionally, we test the CSP-CAE-MLP and the 

CSP-CNN with different sparsity rates p. Notice that p = 1.2 and p = 2.0 yield similar results as p = 1.6 which 

is used in all other experiments.

Methods AUROC

CSP-CAE-MLP with p = 1.2 0.7536

CSP-CAE-MLP with p = 1.6 0.7591

CSP-CAE-MLP with p = 2.0 0.7410

CSP-CNN with p = 1.2 0.7714

CSP-CNN with p = 1.6 0.7856

CSP-CNN with p = 2.0 0.7841

Unsupervised features [70] 0.7132

VGG16 [67] 0.6925
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Table 7:

Nucleus segmentation results on the MICCAI 2015 nucleus segmentation challenge dataset. Our CSP-CNN 

outperforms the highest challenge score which is a DICE-average of 0.80, even with only 5% of the sliding 

windows during training. We do not use pooling layers nor strided convolutional layers. Those layers discard 

important spatial information, because the size of nuclei are only around 20 × 20 pixels.

Methods DICE-average

SUP-CNN 0.8216

SUP-CSP-CNN 0.8010

DEN-CNN 0.8235

SP-CNN 0.8338

CSP-CNN 0.8362

CSP-CNN (5% data) 0.8205

Contour-aware net (challenge winner) [33] 0.812

U-net [14] 0.7942
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