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Abstract

Clustering is an essential data mining tool that aims to discover inherent cluster structure in
data. For most applications, applying clustering is only appropriate when cluster structure
is present. As such, the study of clusterability, which evaluates whether data possesses
such structure, is an integral part of cluster analysis. However, methods for evaluating
clusterability vary radically, making it challenging to select a suitable measure. In this paper,
we perform an extensive comparison of measures of clusterability and provide guidelines that
clustering users can reference to select suitable measures for their applications.
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1. Introduction

Clustering is an ubiquitous data analysis tool applied across diverse disciplines, such as
bioinformatics, marketing, and image segmentation. Its wide utility is perhaps unsurprising,
as its intuitive aim - to divide data into groups of similar items - applies at various stages of
the data analysis process, from exploratory data analysis to collaborative filtering.

Despite its popularity, we have barely scratched the surface on fundamental questions about
clustering. Issues as basic as the definition of clustering are being raised [1, 2]. Differences
between clustering algorithms are studied to decide which should be used under different
circumstances [3, 4, 5, 6]. Yet, perhaps an even more fundamental issue than algorithm
selection is when clustering should, or should not, be applied.
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Cluster analysis may be utilized with either realistic or constructive aims [7]. The goal of
realistic clustering is to uncover real groupings inherent in the data. For instance, phylogenetic
analysis and other life science clustering applications look for real groupings in the data, and
as such have realistic aims. By contrast, constructive clustering is relevant when clustering
should take place irrespective of whether inherent cluster structure is present. Yet, even when
the goal of clustering is constructive, for instance, while the application of cluster analysis
to market segmentation may be primarily constructive, users may be interested in realistic
groups when such are present in the data.

Clustering with realistic aims, which is our focus here, is only appropriate when cluster
structure is present in the data. Otherwise, the results of any clustering technique become
necessarily arbitrary and consequently potentially misleading. For concreteness, consider a
data set generated from a single Gaussian distribution. Because the data contains only one
cluster, further subdivision would be artificial. Most clustering algorithms (e.g. k-means with
k ≥ 2) would find multiple clusters in this data, even though no multi-cluster structure is
present. As such, the application of these data mining tools rely on the presence of inherent
structure, rendering notions of clusterability, which aim to quantify the degree of cluster
structure, integral to cluster analysis. Clusterability analysis should precede the application
of clustering algorithms, as the success of any clustering method depends on the presence of
underlying cluster structure.

To see how clusterability fits within the clustering process, consider the pipeline depicted
in Figure 1.2 The process begins with data preprocessing, often involving feature selection
or extraction. Next, clusterability analysis determines whether the data possesses inherent
cluster structure. If the data does not possess sufficient cluster structure to be meaningfully
partitioned, then clustering may not be suitable for the given data, or the data may need to
be reprocessed. Otherwise, if the data is found to be clusterable, a clustering algorithm may
be selected or developed.3 Finally, the solution is validated by applying clustering quality
measures [2, 10], which may result in the selection of an alternate algorithm if a sufficiently
high quality clustering has not been found.

Not unlike clustering algorithms, notions of clusterability, summarized in Section 2,
disagree with each other in surprising ways [3]. An analysis by Ackerman and Ben-David [11]
reveals that many notions of clusterability are pairwise distinct - despite the fact that they all
attempt to evaluate the same characteristic. The plethora of clusterability methods presents a
dilemma: how should one select a clusterability measure suited to their data?4 Ben-David [12]
approaches the problem from a theoretical standpoint, offering several properties that notions
of clusterability should satisfy. In particular, he argues that clusterability notions need to be

2A similar pipeline is presented in the famous survey of clustering algorithms by Xu and Wunsch [8], sans
the second step. Figure 1 shows how clusterability fits within the clustering process.

3Note that multiple methods should be considered at this step, because different algorithms are apt at
identifying different types of cluster structures [3, 9].

4The original “user’s dilemma” refers to the problem of selecting a clustering algorithm for a given task.
Selecting a notion of clusterability is another dilemma that the clustering user faces, addressed in the current
work.
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Figure 1: Clustering pipeline. This figure shows the feedback pathways in cluster analysis and the role of
clusterability in this process.

Figure 2: Data with ambiguous cluster structure. Outliers can be ignored or considered a small cluster.
Whether or not this data is considered clusterable depends on the needs of the given application.

computationally efficient and effective; see section 2.1 for details.
The effectiveness requirement is complicated by the inherent ambiguity of cluster analysis.

Whether an algorithm is effective for a given application depends on the needs of that
applications [3]. Similarly, the needs of the application at hand may dictate whether the given
data is clusterable. For example, allowing small clusters can change how we evaluate the
clusterability of the data in Figure 2; If small clusters are appropriate for the given application,
then the data would be clusterable, whereas otherwise it would be unclusterable. Distant
elements are typically considered important when clustering phylogenetic data, whereas
outliers are often ignored when clustering is applied to market segmentation; a detailed
discussion is provided elsewhere [6]. Such considerations make room for multiple legitimate
clusterability measures, and create the need for guidelines that would help a user determine
which notion to choose for their data.

In this paper, we perform an extensive empirical statistical analysis of clusterability
measures. We not only identify effective notions, but also discover important differences
amongst them that can enable a clustering user to make informed decisions when selecting a
clusterability technique.

We begin by formalizing clusterability and presenting several properties that notions of
clusterability should satisfy. This enables us to identify promising clusterability measures,
which we overview in Section 2 We then present our extensive simulations, which allow us
to discern between approaches to clusterability and determine which are more appropriate
under different circumstances. Next, we apply these measures of clusterability to real data.
We conclude with a summary of our findings and recommendations.
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2. Measures of Clusterability

A plethora for measures of clusterability have been proposed in the literature. We begin by
formalizing clusterability and propose several requirements. This formal framework enables
us to focus our analysis on the most promising measures. An extensive statistical analysis of
these measures is performed in Section 3.

2.1. Requirements of Clusterability Measures
While the aim of clustering - to group similar items - is both intuitive and highly applicable,

formalizing clustering has proven to be a difficult task. Despite extensive research in the
field, clustering remains ill-defined [2]. In particular, we do not have a formal definition
of clusterability (or even a formal definition of clustering 5). Recently, Ben-David [12]
began tackling the challenge of formalizing clusterability by proposing several interesting
properties. In this section, we distill several properties that will help sift through the plethora
of clusterability measures to identify those that are most likely to be useful in practice. Two
of our properties, the first and third, are based on Ben-David’s requirements.

A measure of clusterability is a function that takes in a data set and outputs a number
quantifying its degree of inherent cluster structure.6 Naturally, additional requirements are
necessary, as functions (e.g. constant functions that declare all data sets to be clusterable)
can easily contradict our intuition about how a measure of clusterability should behave. To
this end, we propose several properties. We rely on these properties to select clusterability
measures for our analysis in Section 3.

• Efficiency: For practical utility, a measure of clusterability should be efficiently com-
puted. Without being overly restrictive, we require that the measures be computable
in low polynomial time. In particular, this eliminates measures that are NP-hard to
compute. This requirement relates to Ben-David’s third requirement [12].

• Algorithm Independence: The clusterability measure should not be based on a
specific clustering algorithm or objective function. Notions of clusterability that are
based on a specific algorithm ask a different question than ours; While we ask whether
data is clusterable, algorithm-specific notions aim to discover if the data can be clustered
using a particular method.

• Effectiveness: The measure of clusterability should be highly accurate in identifying
data as clusterable or unclusterable. As discussed in section 1, the inherent ambiguity
of clustering necessitates flexibility on what it means to be “clusterable.” Yet, there are
many clear examples of both clusterable and unclusterable data, such as, for instance,
a single Guassian (unclusterable) or two well-separated Guassians (clusterable). This
property is related to the first requirement in Ben-David’s paper [12].

5While axioms and properties have been proposed, e.g. [1, 2, 3], we do not yet have a formal definition of
clustering, clustering functions, or clusterability.

6Outputs may be real values, binary indicators (“clusterable” or ”unclusterable”), or probability measures.
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The first requirement is that measures be efficient in practice. We address this requirement
in section 5.1. They should certainly be computable in polynomial timeand run in reasonable
time on large data sets. Our second requirement concerns the role of clusterability in the
clustering pipeline in Figure 1. Since different clustering algorithms are adept at identifying
distinct types of cluster structure [13, 9], centering a measure of clusterability on a specific
algorithm restricts it from identifying structure that the underlying algorithm cannot capture.

Finally, the third and most challenging requirement, the identification of methods that
satisfy effectiveness, is the focus of our work. We first collect a body of existing measures
and propose additional measures that satisfy the first two requirements. Next, we empirically
compare the performance of these methods on a large number of real and simulated data sets.
Our data includes many examples that leave no room for ambiguity, allowing us to determine
which clusterability measures are effective. Differences in their behavior on more ambiguous
data allow us to identify guidelines that can be used to help clustering practitioners select
suitable notions of clusterability for their tasks. The combination of extensive simulations
and analysis on real data allows us to gain insight into different approaches to clusterability
evaluation, compare their effectiveness and fit for distinct clustering scenarios.

2.2. Effective Approaches to Clusterability Evaluation
A large, practical class of clusterability notions rely on one or more of the following:

dimensionality reduction and statistical tests of multimodality. The reduced data informs
the clusterability of the original data, as shown in Figure 3. When data is generated from a
single bivariate normal distribution, the original data forms one cluster, and the pairwise
distance and first principal component distributions are unimodal. By contrast, when the
data is generated from multiple clusters, the pairwise distances and first principal component
distributions are multimodal. It is important to note that the the modes of the reduced data
need not correspond with the clusters. For example, the distribution of pairwise distances
generated from three clusters, depicted in Figure 3h, has only two modes, corresponding to
the smaller within-cluster and larger between-cluster distances.

In the following two subsections, we briefly review data reduction methods and multi-
modality tests, before delving into clusterability methods.

2.2.1. Data reduction methods
Data sets often contain a large number of features, which may even outnumber the

observations. Due to the computational and theoretical challenges associated with high
dimensional data, reducing the dimension while maintaining the structure of the original data
is desirable. If dimensions are measured on different scales, then the data may be centered
about its mean or scaled to have unit variance, as recommended in [14]. Specific techniques
to reduce data to one dimension are now discussed in greater detail.

One famous data reduction method is principal component analysis (PCA), which projects
the data onto independent dimensions that explain the original variance [15]. There are natural
connections between PCA and clustering. In fact, the principal components (PC) correspond
to the k-means cluster membership indicators [16, 17]. PCA has been recommended to
visually inspect for grouping structure [18]. While multiple components are often retained,
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the first PC, by definition, explains most of the variation in the data [19, 20]. PCA is less
prone than other data-reduction methods to the curse of dimensionality but is not well suited
to non-linear structures [19], for which principal curves [21, 22], which produce a non-linear
transformation of the data, may be more appropriate.

The set of dissmilarities between pairs of points in a data set forms another one-dimensional
summary. Distances, which can be calculated using a variety of metrics, are often used as
inputs to clustering algorithms, can be calculated for any data set, and have been shown to
preserve structural features, such as correlation [23]. Yet, distances are sensitive to the curse
of dimensionality, potentially yielding misleading results for data with many features. Also,
the use of pairwise distances increases the sample size of the summary to nearly the square
of the original size, rendering this approach impractical for datasets with a large number of
observations.

2.2.2. Multimodality tests
Intuitively, if a data set contains multiple clusters, then there should be some separation

between the clusters. For example, a histogram of pairwise distances should show a group
of small distances, representing those within clusters, and a group of large between-cluster
distances. On the other hand, homogeneous data should not show such a separation. See
Figure 3 for an illustration.

A statistical test of multimodality can formally determine if the set of distances for a
given dataset has multiple modes, indicating that there are multiple clusters. Likewise,
tests on data reduced by other methods help detect cluster structure. Multimodality tests
[24] are used for other clustering purposes, such cluster splitting, merging, and validation
[25, 26, 27, 28, 29].

Multimodality tests initially assume that data is generated from a unimodal distribution
(the null hypothesis), but may refute that assumption based on the data. The p-value is the
probability of observing the given input or a more extremely multimodal input under the
null hypothesis. If only a single mode is present, then the p-value should be large, indicating
that the underlying data is deemed unclusterable. By contrast, small p-values make us
question the original assumption of unimodality and instead conclude that multiple modes
(and multiple clusters) are present in the population from which the data was generated.

Two multimodality tests are widely used and available in standard software. The dip
test computes a statistic called the dip, defined as the maximum distance between the
empirical distribution and the closest uniform distribution. Details on the dip statistic
and the algorithm used to implement it are described elsewhere [30, 31, 32]. The dip test
rejects the assumption of unimodality if the dip is sufficiently large, indicating that the
data is sufficiently different from the closest uniform distribution. Another popular test
by Silverman [33] rejects the unimodality assumption if the kernel density estimate requires
a sufficiently large bandwidth to produce an empirical distribution based on one Gaussian
component rather than a Gaussian mixture. In particular, the critical bandwidth hcrit, is
defined by Equation 1

hcrit = inf{h : f̂(., h) has at most one mode} (1)
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Figure 3: An illustration of dimension reduction for clusterability evaluation. The left column, Figures 3a, 3d
and 3g, depicts data generated from one, two, or three Gaussian clusters using the same parameters as in
Table 2 (row 1) and Table 4 (rows 11 and 16). The middle column, Figures 3b, 3e and 3h, includes histograms
of the pairwise dissimilarities of the data. The right column, Figures 3c, 3f and 3i, includes histograms of the
first principal component of the data. Distributions of reduced data contained a sole mode for data generated
from a single cluster and multiple modes for data generated from multiple clusters.
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where

f̂(t, h) = n−1h−1

n∑
i=1

K(h−1(t−Xi)), (2)

X1, . . . , Xn denotes the observed data, and K is the density of the standard normal distribu-
tion.

One may be tempted to forgo dimension reduction, apply a multimodality test, and
conclude that the data is clusterable if the data set rejects the null hypothesis for unimodality
[34]. Unfortunately, the asymptotic behavior of these multimodality tests is unknown when
the data is multi-dimensional [34, 35, 20, 36]. These severe limitations render these methods
unpredictable for real data sets, most of which have multiple, if not high dimensions, unless
the user first reduces the data to one dimension.

2.3. Clusterability via Multimodality
We now introduce previous notions of clusterability and several new notions. For these

notions, if the user fails to reject the null hypothesis of unimodality of the reduced data, then
the data does not have clear evidence of cluster structure and should not be clustered.

The majority of this section describes the idea behind each clusterability methods and
how it was implemented. All methods described in this paper were implemented using readily
available functions in R statistical software version 3.3.2 [37]. Details are found in Subsections
2.3.1-2.5.3.

Runtime analysis is presented in Section 5. This section concludes with a brief summary
of notions of clusterability that are not well-suited to the goals of the current analysis.

2.3.1. Dip Test on Pairwise Distances (Dip-dist)
Dip-dist [25] tests for clusters in the set of dissimilarities using the Dip test [30]. The

lengths of the pairwise distances are sufficient for clusterability analysis without needing to
consider how the distances are arranged to form the data. Multiple modes in the distance
distribution suggest the presence of multiple clusters. The implementation of the dip test is
detailed by Hartigan [31]. In brief, the (one-dimensional) set of pairwise Euclidean distances
is calculated, sorted, and used as inputs to the Dip test. We utilized the dist() function
within R [37] and the dip.test() function within the diptest package [32].

2.3.2. Silverman Test on Principal Curve (PC Silv.)
One method proposes to use Silverman’s test for multimodality of the principal curve

proposed by Ahmed [38]. The first dimension of the principal curve is extracted and
Silverman’s test is used to determine if that dimension is unimodal or multimodal. A
multimodal principal curve suggests that the original, higher dimensional data exhibits cluster
structure. The implementation of Silverman’s test was based on the silvermantest package
in R [39], which includes the calibration recommended by Hall and York [40]. Corrections
for both Silverman’s original test and the dip test have been proposed [40, 41], but only the
correction for Silverman is available in standard software, such as R. Principal curves were
created using the princurve package [42].
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2.3.3. Silverman Test on Principal Component (PCA Silv.)
A linear alternative to the principal curve is to extract the first principal component, also

suggested by Ahmed [38], which explains the maximum variation in the data. The Silverman
test [33, 39, 40] is then applied to this first principal component. The implementation in
the paper performs PCA using the singular value decomposition of the centered data, and
then the rotated variables are extracted. Computationally, the program calls the prcomp()
function, available in the stats package in R [37]. A multimodal first principal component
suggests that the original data is clusterable.

2.3.4. Classic Methods
While it is known that multimodality tests may be problematic in higher dimensions, we

include these methods in our comparisons for completeness. That is, Classic Silverman (Cl.
Silverman) and Classic Dip (Cl. Dip) conduct, respectively, Silverman’s and the Dip test of
multimodality on the original, multi-dimensional data.

2.4. Clusterability via Spatial Randomness
Another method [43, 44], a test of spatial randomness, tells us if a feature is distributed

non-randomly across the data set. Hopkins (Hop.) compares the distances between a sample
of data points and their nearest neighbors to the distances from a sample of pseudo points
– with each feature randomly selected from the full data set – and their nearest neighbors.
If the data are not distributed in clusters, then both sets of distances should be similar on
average. Clusterability can be inferred by comparing to a threshold calcuated based on the
distribution of the Hopkins statistic. Under the null hypothesis that the data is unclusterable,
the test statistic follows a beta distribution with both parameters equal to the number of
points selected to sample n [43, 44]. Thus, Hopkins’ statistic should be compared to a Beta
quantile qα(n, n). The Beta quantile qα(n, n) is defined as the value such that, assuming the
data was generated without clusters, the chance of concluding that the data is clustered, i.e.
P (H < qα(n, n)) is 100α%. We use a one-sided test, because if the data were more spatially
random than expected by chance, it would still be considered unclusterable. Yet, the choice
of n requires caution. According to Lawson and Jures [44], “if too few points are chosen, then
the nearest-neighbor distances chosen will not be representative of the entire distribution
of distances.” If too many points are chosen, [45] warn that the “assumptions about the
Beta distribution will be invalid.” Previous authors recommend sampling 5 − 10% of the
data [44, 46]. In this paper, we use a 10% sampling rate. In this manuscript, Hopkins was
implemented using the hopkins() function in the clustertend package [47].

2.5. New Clusterability Methods
This section describes our new proposed approaches for evaluating clusterability. Since

both the dip and Silverman’s test are valid multimodality tests, we propose to use both on
each reduced version of the data. To our knowledge, the following methods below have not
been previously proposed.
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2.5.1. Silverman’s test on dissimilarities (Silv.-dist)
Rather than using the dip test on the set of pairwise Euclidean distances [25], we propose

to use Silverman’s test, with the necessary correction [40].

2.5.2. Dip test on principal component (PCA Dip)
Instead of using Silverman’s test of whether the first principal component is multimodal,

this method uses the dip test.

2.5.3. Dip test on principal curve (PC Dip)
The dip test classifies the modality of the principal curve.

2.6. Other Clusterability Methods
Some notions of clusterability in the literature have been omitted from our study, as

they are either impractical or otherwise unsuited to our goals. The effectiveness requirement
allowed us to eliminate several notions of clusterability. For example, worst pair ratio [48]
identifies data as clusterable if and only if there is a k-clustering where the minimum between-
cluster distance is greater than the maximum in-cluster distance. Despite the simplicity
and elegance of this notions, it identifies many clearly clusterable data sets as unclusterable
(for example, three Gaussian distribute clusters positioned closer to each other, so that the
separation between them is smaller than the radius of the clusters), and as such fails the
effectiveness condition.

Other elegant clusterability measures that have been useful in theoretical analysis are
omitted from our study since they are either NP-hard to compute [11] or too strict for
practical application due to their high sensitivity to noise and outliers. Since we seek notions
that are efficient, and applicable in practice, we had to omit all such measures from our
analysis. Notions based on specific algorithms or objective functions [11, 49, 50, 51, 26, 52],
are omitted from our analysis, which seeks to identify the presence of any cluster structure,
not only that which can be discovered by a specific clustering technique. Approaches to
clusterability, such as [53], relying on subjective judgment rather than a quantifiable measure,
are also omitted.

3. Simulations

Our analysis of clusterability measures begins with extensive simulations. The purpose of
the simulations is twofold. First, simulations allows us to perform basic tests to ensure that
clusterability measures behave reasonable on clearly clusterable data and clearly unclusterable
data. If we discover, for instance, that a measure fails to identify data generated from two
well-separated Gaussian distrbutions as clusterable, then the measure fails our effectiveness
requirement. Similarly, failure to identify data generated from a single Gaussian distribution
as unclusterable would preclude the application of a measure in practice, as it would contradict
basic intuition about what it means to be clusterable.

The other major goal achieved by simulations is identifying under what conditions
different measures are most appropriate. In addition to testing clear cut cases, we also include
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simulations with noise, varied number of cluster sizes and diameters, outliers, etc, to check for
robustness of clusterability methods. For example, in some contexts, the inclusion of a single
distant outlier in otherwise unclusterable data may indicate the formation of a second cluster.
Yet, for other applications, the outlier is best ignored. Our simulations let us identify which
clusterability technique allows for small clusters, and which exhibit outlier robustness. This
information can then be used by clustering users to make informed choices when selecting a
clusterability approach for their data.

One of the main approaches to the study of clustering involves the analysis of common
statistical distributions (see, for example, [54, 55, 56]). Our extensive simulations evaluate
each approach to clusterability using all clusterability tests in Sections 2.3-2.5. The simulations
include 31 types of data sets, each generated with the same parameters 1000 times, for a total
of 31,000 simulations. Simulations consist of clusters generated from one or more Gaussian
or t-distributions, sometimes with a small number of outliers, and chaining data with one
or more lines or circles. Simulations were performed in R version 3.3.2 [37]. Code is found
at the following link: http://www.mayaackerman.info/clusterability.R. Further details
for each simulation scenario are included in Section 3.1.

Tables 2 through 5 include the the percentage of data sets on which the test yielded a
p-value less than 0.05, indicating that the tests rejected the null hypothesis of unimodality at
the traditionally used 5% significance level. High values in Tables 2-5 indicate clusterable data,
while low values indicate poor clusterability. For unambiguously unclusterable data sets, the
proportion of rejections corresponds to type I error, the rate of erroneously classifying data
sets generated without clusters as clusterable. Type I error greatly exceeding 5% indicates
that the method is invalid and produces excessive false positives.

For unambiguously clusterable data sets, the proportion of rejections corresponds to the
statistical power, or ability of the test to correctly classify clusterable sets as having cluster
structure. Higher power is desirable. Yet, results are complicated by the ambiguous nature
of clustering. When a small number of outlying points are present, the decision to classify
the data as clusterable depends on whether outliers should be considered as small clusters.

3.1. Simulation Details
Table 1 summarizes the parameters used in the simulations. Unless otherwise specified,

observations have independent and identically distributed dimensions with the given pa-
rameters. N(µ, σ) denotes data generated from independent Gaussian distributions in each
dimension with mean µ and standard deviation σ. For example, lines 3 and 4 each include
data generated from a single Gaussian cluster in 10 and 50 dimensions, respectively, each with
mean and standard deviation equal to 2. Td(λ) denotes data generated independently in each
dimension from a T distribution with d degrees of freedom and non-centrality parameter λ.
In lines 22-24, each scenario was generated from two 2-dimensional non-central T distributed
clusters with either 5,10, or 15 degrees of freedom and non-centrality parameters of 50 and
150. U(a, b) means that data independently generated in each dimension from a uniform
distribution with density equally distributed between a and b.

When dimensions are non-identical, each dimension is specified as needed. For example,
N((µ1, µ2, . . . , µd), σ) denotes data generated from a d−dimensional Gaussian distribution

11
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Row Clusters Dim Distribution(s) Clust size Total
1 1 2 N(100, 2) 50 50
2 1 3 N(100, 2) 50 50
3 1 10 N(2, 2) 50 50
4 1 50 N(2, 2) 100 100
5 1 2 N(50, 2) 50 51

+1 outlier N(µ, 2) : µ ∼ U(60, 65) 1
6 1 2 N(50, 2) 250 251

+1 outlier N(µ, 2) : µ ∼ U(60, 65) 1
7 1 2 N(50, 2), 50 53

+3 outliers N(µ, 2) : µ ∼ U((40, 55), (45, 60)) 1
N(µ, 2) : µ ∼ U((65, 65), (70, 70)) 1
N(µ, 2) : µ ∼ U((65, 45), (70, 50)) 1

8 1 2 T5(100) 100 100
9 1 2 T10(100) 100 100
10 1 2 T15(100) 100 100
11 2 2 N(30, 2), N(50, 2) 50 100
12 3 2 N((30, 20), 2), N((40, 20), 2), N((35, 30), 2) 50 150
13 3 2 N((30, 40), 2), N((70, 40), 2), N((50, 80), 2) 50

+noise N(50, 20) 80 230
14 3 2 N((30, 20), 1), N((40, 20), 3), N((35, 30), 5) 50 150
15 3 2 N((35, 40), 2), N((65, 40), 2), N((50, 60), 2) 100,66,33 199
16 3 2 N((35, 40), 2), N((65, 40), 2), N((50, 60), 2) 50 150
17 3 2 N(20, 2), N(40, 2), N(60, 2) 50 150
18 2 10 N(10, 2), N(20, 2) 50 100
19 4 10 N(10, 2), N(20, 2), N(60, 2), N(80, 2) 50 200
20 2 50 N(5, 2), N(10, 2) 100 200
21 2 50 N(3, 2), N(6, 2) 100 200
22 2 2 T5(50), T5(150) 100 200
23 2 2 T10(50), T10(150) 100 200
24 2 2 T15(50), T15(150) 100 200
25 1 2 unit circle 50 50
26 2 2 2 concentric circles (radii: 1,2) 50 100
27 3 2 3 concentric circles (radii: 1,2,3) 50 150
28 5 2 5 concentric circles (radii: 1,2,3,4,5) 50 250
29 1 2 1 line (x = 50, y ∼ N(50, 25)) 100 100
30 2 2 2 lines (x1 = 30, x2 = 55, y ∼ N(50, 25)) 100 200
31 2 2 circle (radii: 3) at origin 100 200

line (x = 5, y ∼ N(0, 2)) 100

Table 1: Parameters Used in Simulations. Simulations include clusters with Gaussian, T, and uniform
distributions, separate outlying points, as well as parallel lines and circles. Dimensions are generated
independently and identically unless specified otherwise. Notation is described in Section 3.1.
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with means located at µi for independent dimensions i = 1, 2, . . . , d and standard deviation σ
in each dimension. In particular, in line 12, data was generated from three two-dimensional
Gaussian distributions, each with standard deviation 2 in each independent dimension, and
centers at (30, 20), (40, 20), and (35, 30).

In some cases, additional points are added to represent outliers and noise. Line 13 describes
data generated from three two-dimensional Gaussian distributions, similar to line 12 but with
means at (30, 40), (70, 40), and (50, 80), and a fourth, much wider, Gaussian distribution
with mean 50 and standard deviation 20 in both dimensions. The outliers in lines 5-7 include
between one and three additional Gaussian observations generated with high probability to
be far apart from the rest of the data. In particular, while all two-dimensional data in line 5
is generated from a Gaussian distribution with standard deviation 2 in each dimension, the
main cluster of 50 points was generated from a mean at (50,50), and the remaining point
was generated with mean in each dimension randomly selected from a uniform distribution
bounded by 60 and 65.

A subset of simulations, shown in lines 25-31 of Table 1 include data generated with
chaining structure, including one or more circles or lines. The circles were all centered at
the origin (0,0), and the radius of each was an integer between 1 and 5. The lines were
each vertical, with constant x-coordinates (denoted in the table by x = c) and y-coordinate
generated from a univariate Gaussian distribution. Line 31, which includes both a circle and
a lines exemplifies this notation. The circle, centered at (0,0) has a radius of 3, and the line,
located to the right of the circle at x = 5, has points vertically generated from a Gaussian
distribution with mean 0 and standard deviation 2.

3.2. Type I error: Results for Unclusterable Data
Principal curve methods were invalid, concluding that single-cluster data sets were

clusterable at a much higher rate than 5%. Hopkins, PCA-Silverman and classic Silverman
have type I error around 5% as expected in two dimensions. 7 Hopkins (in multiple dimensions)
and distance based methods have excessively low type 1 error of less than 1%, indicating
that they may be overly conservative. All methods except principal curves have low false
positive rates for single Gaussian clusters.

3.3. Performance with Outliers and Small Clusters
When outlying points are introduced to otherwise unclusterable data, one could argue

either for or against clusterability. Methods vary in their conclusions: Dip-based methods

7For valid methods, values in Table 1 should be below or reasonably close to 0.05. If the true false
positive rate is 5%, then we would expect with 95% confidence that the observed value should be below
0.05 + 1.96 ∗

√
0.05 ∗ 0.95/1000 ≈ 0.064. Based on this threshold, PCA Silverman has slightly inflated type I

error in 50 dimensions, and Classic Silverman has inflated type I error in 3 dimensions. However, because
we would expect 5% of the results for unclusterable data sets to exceed this value, it is not unusual to see
2 results with slightly inflated type I error rates. In fact, if we adjust for the total number of comparisons
for unclusterable data, then the false positive rates would be compared to a different threshold (0.072) and
would not be considered excessive.
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

1. 1 cluster 2D 0.000 0.042 0.057 0.001 0.055 0.001 0.053 0.179 0.346
2. 1 cluster 3D 0.000 0.042 0.012 0.000 0.068 0.002 0.062 0.213 0.444
3. 1 cluster 10D 0.000 0.035 0.000 0.000 0.055 0.003 0.057 0.235 0.585
4. 1 cluster 50D 0.000 0.033 0.000 0.000 0.052 0.002 0.064 0.220 0.764

Table 2: Results of Simulations for Data Generated from A Single Cluster. Proportion of data sets considered
clusterable out of the 1000 data sets for each type. Entries are interpreted as type I error, which should not
greatly exceed 5%. Strike-through denotes entries that have excessive Type I error. Methods had reasonably
low false positive rates, with the exception of those using principal curves.

Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

5. 1 cluster 2D
with outlier 0.000 0.987 0.858 0.000 0.890 0.005 0.998 0.136 0.984

6. 1 large cluster 2D
with outlier 0.000 0.975 1.000 0.000 0.911 0.001 0.989 0.331 0.980

7. 1 cluster 2D
with 3 outliers 0.101 0.976 0.815 0.000 0.954 0.003 0.942 0.016 0.935

8. 1 T-dist cluster
with df=5 0.007 0.573 0.852 0.000 0.440 0.000 0.463 0.070 0.490

9. 1 T-dist cluster
with df=10 0.000 0.214 0.657 0.000 0.240 0.000 0.282 0.095 0.348

10. 1 T-dist cluster
with df=15 0.000 0.117 0.579 0.002 0.209 0.000 0.220 0.098 0.344

Table 3: Results of Simulations Generated from Data with Outliers. Proportion of data sets considered
clusterable out of the 1000 data sets of each type. Methods differed in their conclusions on such data sets,
reflecting the ambiguous nature of clustering for data with outliers. Methods using Hopkins or Silverman
tended to consider outliers as separate clusters, while dip-based methods tended to be robust to outliers.

classify the data as unclusterable, while the Hopkins statistic and Silverman-based methods
classify such data as clusterable, identifying the outliers as separate clusters. Dip-based
methods consider the data clusterable less than 10% of the time, even for t-distributions
with 5 degrees of freedom, when multiple outliers are likely; Hopkins and Silverman-based
methods frequently conclude that the data is clusterable, ranging from 44% to 85% of the
time. As expected, the proportion decreases as the degrees of freedom increases and the
distribution converges to Gaussian. Where the dip test is robust to outliers, Silverman’s test
and the Hopkins statistic allow for small clusters. This finding reflects the inherent ambiguity
of clustering; for some applications, small clusters are acceptable, while for others, robustness
to outliers is desired. In fact, clustering algorithms display the same phenomenon: some tend
to identify small clusters, while others effectively view such data as outliers [13].
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

11. 2 separated
clusters 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12. 3 close
clusters 2D 0.996 1.000 0.789 1.000 1.000 0.801 0.974 0.757 0.826

13. 3 noisy
clusters 2D 1.000 0.996 0.989 0.999 0.995 1.000 0.999 1.000 0.983

14. 3 clusters 2D,
varied radii 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

15. 3 clusters 2D,
varied density 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

16. 3 separated
clusters 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

17. 3 separated
clusters 3D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

18. 2 separated
clusters 10D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

19. 4 separated
clusters 10D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.884

20. 2 close
clusters 50D 1.000 1.000 1.000 0.691 0.999 1.000 1.000 1.000 1.000

21. 2 partially
overlapping 50D 1.000 1.000 0.445 0.000 0.041 1.000 1.000 0.995 0.997

22. 2 T-dist cluster
with df=5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

23. 2 T-dist cluster
with df=10 1.000 1.000 0.999 1.000 0.998 1.000 1.000 1.000 0.999

24. 2 T-dist cluster
with df=15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Results of Simulations Generated with Multiple Clusters. Proportion of data sets considered
clusterable out of the 1000 data sets of each type. These numbers corresond to statistical power to detect
the cluster structure. Numbers in bold denote methods with much lower power than others. In particular,
Hopkins and especially classic multimodality tests lose power in high dimensions. All other methods had
reasonably high power for these simulations.
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

25. Single
Circle 0.010 0.309 0.837 0.951 0.945 0.909 0.988 0.626 0.775

26. 2 concentric
circles 1.000 1.000 0.873 0.533 0.751 0.322 0.472 0.619 0.802

27. 3 concentric
circles 1.000 1.000 0.894 0.167 0.486 0.079 0.193 0.607 0.774

28. 5 concentric
circles 1.000 1.000 1.000 0.364 0.394 0.159 0.364 0.726 0.895

29. Single
Line 0.004 0.049 0.378 0.000 0.112 0.000 0.055 0.642 N/A

30. 2 parallel
lines 1.000 0.889 1.000 1.000 0.996 0.000 0.055 0.997 0.989

31. Line and
Circle 0.998 0.999 1.000 1.000 0.958 0.209 0.894 0.876 0.982

Table 5: Results of Simulations for Chaining Data. Proportion of data sets considered clusterable out of
the 1000 data sets of each type. Results correspond to type I error for data sets with a single cluster circle
or line and statistical power for data sets with multiple circles and/or lines. Strike-through denotes entries
that have excessive Type I error. Looking at the columns shows that the only method that had type I
error controlled, and thus the only valid method for chaining data, is Dip-Dist. Principal curves, which are
non-linear reductions, failed to converge for linear data.

Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data n d Dist Dist Dip Silv Dip Silv Dip Silv
Faithful 272 2 0.0000 0.0000 1.00 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000
Iris 150 4 0.0000 0.0000 1.00 0.0014 0.0010 0.0000 0.0000 0.0164 0.0022
Rivers 141 1 0.2772 0.0000 0.92 0.9922 0.0192 0.9922 0.0334 0.9922 0.0291
Swiss 47 6 0.0000 0.0000 0.41 0.1386 0.0000 0.0001 0.0000 0.0000 0.0010

Table 6: Results of Clusterability Tests for Non-Simulated Data with Previously Known or Visually Ambiguous
Cluster Structure. This table presents the p-values, rounded to the nearest ten-thousandth, for the each
clusterability test on real data sets from the R Datasets package. Recall that p < 0.05 signals clusterable data
and p ≥ 0.05 signals that data is unclusterable at the 5% significance level. The Hopkins value presented is
the proportion of the time out of 100 runs that the Hopkins statistic was below the appropriate beta quantile.
For the Hopkins results, high values indicate clusterability. The top two rows illustrate famous datasets
known to possess multiple large clusters. The bottom two rows include datasets with a small number of
outliers. The letter “n” refers to the number of observations in the dataset, and “d” the number of dimensions,
or features.
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data n d Dist Dist Dip Silv Dip Silv Dip Silv
Attitude 30 7 0.9040 0.9598 0.00 0.9113 0.9150 0.6846 0.1534 0.1823 0.2174
Cars 50 2 0.6604 0.9931 0.19 0.8613 0.3396 0.8320 0.4213 0.7680 0.5866
Trees 31 3 0.3460 0.2900 0.18 0.0001 0.0000 0.8414 0.3675 0.6717 0.2282
Ratings 43 12 0.9938 0.7313 0.69 0.0014 0.0187 0.8550 0.1412 0.4501 0.0000
Arrests 50 4 0.9394 0.1887 0.01 0.6261 0.0171 0.5545 0.1286 0.0045 0.0000

Table 7: Results of Clusterability Tests for Non-Smulated Data Lacking Known Cluster Structure. This table
presents the p-values, rounded to the nearest ten-thousandth, for the each clusterability test on real data sets
from the R Datasets package. The Hopkins value presented is the proportion of the time out of 100 runs
that the Hopkins statistic was below the appropriate beta quantile. For the Hopkins results, high values
indicate clusterability. Recall that p < 0.05 signals clusterable data (entries are in bold) and p ≥ 0.05 signals
that data is unclusterable at the 5% significance level. Notably, the only bold entries are from methods that
performed poorly in simulations.

3.4. Power: Results for Clusterable Data
When clusters were well-separated, all methods approached or reached 100% power, even

in the presence of noise. When two fifty-dimensional clusters were close to each other as
in row (20), all methods have nearly perfect power except for Classic Dip with around 70%
power. For partially overlapping 50D clusters, e.g. row (21), the power of the Hopkins
test drops to 32% and both classic methods drop below 5%. This indicates that classical
methods perform poorly in high dimensions for overlapping clusters. By contrast, utilizing
either PCA or pairwise distances, both Dip and Silverman tests maintain near perfect power
to detect the presence of close or overlapping high dimensional clusters. We also examine
two-dimensional data generated from independent t-distributions with 5, 10, and 15 degrees
of freedom. All methods have nearly 100% power to detect the t-distributed clusters. Most
methods had high power to detect three or four clusters, except that power for PCA dip and
the Hopkins statistic dropped when the separation between clusters decreased. Specifically,
classic, distance-based methods, and PCA-based methods considered all or nearly all (95+%)
datasets as clusterable.

3.5. Results for Data with Chaining Structure
Finally, we examine data with chaining structure, including a single line, two parallel lines,

one, two, three, and five concentric circles, and both a line and a circle. For data arranged in
one line, classic dip, PCA methods and distance methods did not conclude that the data had
multiple clusters. Hopkins classified the line as clusterable nearly 40% of the time, and classic
Silverman concluded the data had structure over 10% of the time. Surprisingly, all methods
except dist-dip considered a single circle as clusterable. Distance Silverman concluded that
the single circle had cluster structure about 30% of the time, while PCA, classical methods,
and Hopkins concluded the same over 85% of the time. Principal curve methods nearly
always failed to converge for data comprising a single line. Thus, dip-dist may be the only
valid method for chaining data.
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While both classic and PCA methods have relatively low power to detect the inherent
structure of multiple groups of chaining data, distance-based methods and Hopkins continue
to detect the clusters. Multiple parallel lines, depicted in row 18, are considered clusterable by
distance based methods and reasonably well (87% power) by Hopkins. PCA based methods
have less than 6% power, failing to detect the separate lines most of the time. Distance based
methods have 100% power and Hopkins has nearly 90% power to detect distinct circles, while
PCA and classic methods have reduced power for 2 or 3 circles. Curiously, power for PCA
methods did not change monotonically with the number of circles. Power was highest for two
circles, lowest for three circles, and in between for five circles. However, strange behavior for
PCA based methods is likely due to fact that PCA forms linear projections, which may not
be appropriate for clearly non-linear data, such as circles.

All methods had high power (≥89%) to detect cluster structure in data consisting of one
circle and one line except PCA dip, which only concluded the data was clusterable 20% of the
time. In sum, dip-dist was the most effective method for chaining data, retaining high power
to detect clustered chaining data and being the only method that didn’t excessively conclude
that data generated to lack groups was clusterable.

4. Results on Non-Simulated Data

In this section, we apply our methods of clusterability evaluation to non-simulated data
sets from the R datasets package, a collection of datasets from prior studies.8 The datasets
we present were selected among data sets of standard structure (e.g. time series were not
considered) to ensure sufficient sample size and varied dimension. For the sake of completeness,
we include all tests, but the reader should recall based on Section 3 that some tests may be
inappropriate under various conditions (e.g. principal curve methods due to their inflated
false positive rates and classic tests for data with multiple dimensions). References for all data
sets [57, 58, 59, 60, 61, 62, 63, 64, 65, 66] were examined for evidence of previously known
cluster structure. Data sets were also visually inspected for clear outliers, which could indicate
ambiguous structure. Figures in an accompanying article depict two-dimensional projections
of each dataset and histograms of the data reduced by distances and PCA, respectively. All
methods were implemented using R functions as described in section 2.3.

Overall, results of the clusterability tests were consistent with expectations based on the
references and simulations, detailed in Section 3. Methods agreed in capturing clear structure
in famous data sets and differed in their treatment of data with ambiguous structure, showing
similar response to outliers as in the simulations. (The use of Silverman’s tests corresponded
to considering outliers as separate clusters, while the use of the dip test corresponded to
considering outliers as noise.) Similarly, methods generally failed to declare cluster structure
in data sets with no prior evidence of clusters, with a few expections. For example, the
finding for classic methods to deem some multidimensional data sets as clusterable when
no prior evidence could be found to confirm the existence of clusters was consistent with

8Due to the use of sampling in Hopkins’ method, we run the method 100 times for each dataset and report
the proportion of p-values less than 0.05.
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prior knowledge that the methods have unknown asymptotic behavior. Principal curve
methods both considered as clusterable some data sets that lacked known evidence of cluster
structure and failed to converge on a famous highly linear data set, paralleling its problems
in simulations with convergence and excessive false positives. Specific results for each dataset
follow.

Two famous data sets that were known a priori to have cluster structure were considered
clusterable under all methods. First, the iris data set [57] is known to have three clusters
corresponding to three species of iris flowers. Second, the faithful data set [58, 59], which
captures eruption duration and waiting time for the Old Faithful geyser, has previously been
shown to have two groups [60]. All of the tests conclude that both data sets are clusterable,
agreeing with previous knowledge.

Paralleling our simulations, we find that methods relying on the Hopkins statistics or
the Silverman tests may be preferred when small clusters are of interest, while techniques
using the Dip test may be desired when the application calls for robustness to outliers. The
one-dimensional rivers data set [61], which contains the lengths, in miles, of 141 major
North American rivers, exhibits inherent cluster structure if we allow small clusters. Hopkins
method and all methods that use Silverman indicate that the data is clusterable (p < 0.05),
while all dip-based methods fail to reject the null hypothesis of lack of structure. Similarly,
swiss [62], consisting of 6 measures of socio-economic status and fertility for 47 French-
speaking nineteenth-century Swiss provinces, illuminated logically pre-existing structure.
While Classic Dip considers the data as unclusterable, and Hopkins considers the data as
clusterable 40% of the time, all other tests detect clusters. Results support literature that
economic indicators between and within countries may fall into clusters, including a richer
cluster much smaller than the others [67, 68].

The remaining data sets lacked previously known structure. Most tests of clusterability
that weren’t known or shown to be questionable in simulations provided little or no evidence
of clusters. Methods based on distances or PCA concluded that cars [63], attitude [64],
USArrests [61], trees [65], and USJudgeRatings [66], were unclusterable. Hopkins’ method
agreed for attitude and USArrests. Most methods (principal curve and classic) that concluded
that any of these remaining data sets, without known structure, were clusterable also exhibited
questionable behavior on our simulations in section 3. Classic methods may be unreliable
in multiple dimensions (see section 2.2.1), and principal curve methods had high false
positive rates in our simulations. Classic Silverman and principal curve methods declared the
USArrests [61] and USJudgeRatings [66] data sets clusterable, Curiously, Hopkins considered
USJudgeRatings clusterable nearly 70% of the time, trees clusterable 18% of the time, and
cars 19% of the time.

Overall, the methods with the most reasonable results include distance dip, distance
Silverman, PCA dip, and PCA Silverman. Although classic Dip and Silverman methods
appear to produce reasonable conclusions in some famous data sets such as iris, they have
produced counterintuitive results when classifying other real data, such as USJudgeRatings
and USArrests. This finding, which supports theory on the unpredictability of these tests in
multiple dimensions, reflects the importance and value of carefully utilizing dimensionality
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reduction in clusterability evaluation.

5. Runtime

In this section, we discuss the runtime of the clusterability methods studied in this paper.
The computational complexity of the methods is addressed in Subsection 5.1. We report
on the average observed times to complete the simulations in Subsection 5.2, as well as the
elapsed time to apply each method to the non-simulated data in Subsection 5.3.

5.1. Quantifying Efficiency
There are significant differences in the computational complexity of clusterability tech-

niques that render some of them impractical when the number of elements (n) or the dimension
(d) is large. Classic Dip is linear in n [20]. Hopkins, Classic Silverman, and Dip-Dist have
quadratic running time in n. The dimensionality of the data impacts the running time of
PCA-based approaches, with PCA dip having asymptotic running time of O(nd2 + d3) [69].
Silverman-dist is bounded by a quartic function in n. Finally, PCA Silverman has complexity
of O(n2 + d2n+ d3).9

5.2. Simulation times
The average runtime of one execution of each clusterability method on each dataset is

provided in Tables 8 and 9. Methods utilizing the Silverman critical bandwidth test are
slower than the corresponding methods relying on the dip test, which lasted less than one
hundredth of a second. As such, Dip-dist is much faster than Silv-dist, and PCA Dip is much
faster than PCA Silv. The runtime of Hopkins’ method generally fell in between the runtime
of methods that utilize the dip test and methods that utilize the Silverman test, averaging
between approximately 0.01s and 0.3s.

For all simulations, the use of Silverman’s test on the pairwise distances was slower than
all other methods by one to three orders of magnitude, requiring between nearly 1s and
over 8.5s. This occurs due to the quadratic number of operations required for processing all
pairwise distances, followed by the Silverman test, as discussed in Subsection 5.1.

5.3. Runtime for non-simulated data
The relative runtime for non-simulated data was comparable to that of the simulations,

and confirmed expectations based on the methods’ computational complexity. Hopkins is
slower than dist-dip and PCA dip but faster than Silverman methods. PCA dip is similar to
distance dip, both of which ran in one to three thousandths of a second. Reducing the data
using PCA and then testing with the Silverman critical bandwidth test took about seven-
tenths to eight-tenths of a second on non-simulated data. By contrast, running Silverman’s
test on the set of pairwise distances takes much longer, nearly ten seconds for the largest
dataset, faithful, compared to about three seconds for the two datasets that are about half of
the size.

9As shown in [69], PCA Silverman needs O(nd2+d3) operations to calculate the principal component. Then
it performs Silverman’s test, which is bounded by O(n2). Therefore, the total complexity is O(n2 + d2n+ d3).
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

1. 1 cluster 2D 0.0016 0.9885 0.0130 0.0017 0.7333 0.0016 0.7221 0.0212 0.7445
2. 1 cluster 3D 0.0016 0.9817 0.0128 0.0014 0.7476 0.0016 0.7227 0.0295 0.746
3. 1 cluster 10D 0.0016 0.9755 0.0132 0.0014 0.8213 0.0017 0.7249 0.0742 0.7871
4. 1 cluster 50D 0.0032 1.8049 0.0578 0.0018 1.8045 0.0037 0.7415 0.3119 0.728
5. 1 cluster

2D with outlier 0.0016 1.0028 0.0146 0.0013 0.7429 0.0016 0.7295 0.0240 0.7444
6. 1 large cluster

2D with outlier 0.0062 8.5395 0.3186 0.0014 0.8264 0.0016 0.7738 0.0834 0.8509
7. 1 cluster 2D

with 3 outliers 0.0016 1.0331 0.0141 0.0013 0.7443 0.0016 0.7363 0.0249 0.7551
8. 1 T-dist cluster

with df=5 0.0021 1.8717 0.0505 0.0013 0.7908 0.0016 0.7692 0.0270 0.7937
9. 1 T-dist cluster

with df=10 0.0021 1.8487 0.0509 0.0013 0.7835 0.0016 0.7605 0.0270 0.7832
10. 1 T-dist cluster

with df=15 0.0021 1.8402 0.0508 0.0013 0.7820 0.0016 0.7564 0.0273 0.7828
11. 2 separated 0.0020 1.8538 0.0506 0.0013 0.7762 0.0016 0.7487 0.0329 0.7846

clusters 2D
12. 3 close 0.0030 3.3283 0.1132 0.0013 0.7880 0.0016 0.7530 0.0267 0.7728

clusters 2D
13. 3 noisy 0.0054 7.2108 0.2673 0.0014 0.8380 0.0016 0.7840 0.0479 0.8285

clusters 2D
14. 3 clusters 2D,

varied radii 0.0031 3.3522 0.1133 0.0013 0.7960 0.0016 0.7667 0.0299 0.7937
15. 3 clusters 2D,

varied density 0.0042 5.4950 0.1899 0.0014 0.8100 0.0016 0.7769 0.0307 0.8064
16. 3 separated 0.0030 3.3443 0.1139 0.0013 0.7896 0.0016 0.7587 0.0225 0.7802

clusters 2D
17. 3 separated 0.0030 3.3533 0.1140 0.0014 0.8297 0.0016 0.7662 0.0324 0.7944

clusters 3D
18. 2 separated 0.0023 1.8576 0.0528 0.0014 0.9477 0.0017 0.7561 0.1042 0.8567

clusters 10D
19. 4 separated 0.0048 5.5649 0.2122 0.0015 1.1694 0.0018 0.7929 0.0441 0.8227

clusters 10D
20. 2 close 0.0086 5.5515 0.2382 0.0024 3.0199 0.0046 0.7871 0.5654 1.3229

clusters 50D
21. 2 partially over-

lapping 50D 0.0087 5.5314 0.2369 0.0025 2.9757 0.0046 0.7752 0.5429 1.2955
22. 2 T-dist clust.

with df=5 0.0042 5.5759 0.2007 0.0013 0.8323 0.0016 0.7985 0.0450 0.8346
23. 2 T-dist clust.

with df=10 0.0043 5.5694 0.2012 0.0013 0.8359 0.0016 0.7890 0.0423 0.8352
24. 2 T-dist clust.

with df=15 0.0042 5.5745 0.2019 0.0013 0.8381 0.0016 0.7952 0.0489 0.8363

Table 8: Average runtime in seconds of all methods for each simulated dataset over 1000 computations.
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Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data Dist Dist Dip Silv Dip Silv Dip Silv

25. Single Circle 0.0016 0.7516 0.0026 0.0013 0.6916 0.0017 0.6822 0.0183 0.6994
26. 2 concentric 0.0022 1.8257 0.0510 0.0013 0.7524 0.0016 0.7274 0.0399 0.7653

circles
27. 3 concentric 0.0029 3.3041 0.1129 0.0013 0.7760 0.0016 0.7431 0.0503 0.7869

circles
28. 5 concentric 0.0062 8.4360 0.3162 0.0014 0.8157 0.0017 0.7628 0.0736 0.8357

circles
29. Single line 0.0025 2.0360 0.0595 0.0017 0.8681 0.0019 0.8393 0.1624 0.1608
30. 2 parallel lines 0.0044 5.5498 0.2024 0.0013 0.8232 0.0016 0.7801 0.0687 0.8394
31. Line and 0.0022 1.8136 0.0524 0.0016 0.7590 0.0018 0.7417 0.0544 0.7971

circle

Table 9: Average run time in seconds of all methods for each simulated dataset with chaining structure over
1000 computations.

Dip Silv Hop Cl. Cl. PCA PCA PC PC
Data n d Dist Dist Dip Silv Dip Silv Dip Silv
Faithful 272 2 0.0113 9.8536 0.3696 0.0020 0.8126 0.0015 0.7910 0.4809 1.2679
Iris 150 4 0.0030 3.2233 0.1136 0.0015 0.8166 0.0020 0.7305 0.0270 0.7530
Rivers 141 1 0.0030 3.0371 0.0970 0.0010 0.7530 0.0015 0.8021 0.1386 0.9036
Swiss 47 6 0.0020 0.9872 0.0099 0.0015 0.8286 0.0015 0.7285 0.0605 0.8351
Attitude 30 7 0.0015 0.8063 0.0048 0.0015 0.7770 0.0015 0.7410 0.0555 0.7475
Cars 50 2 0.0015 0.9537 0.0126 0.0010 0.7270 0.0020 0.7856 0.0070 0.7435
Trees 31 3 0.0010 0.7906 0.0049 0.0010 0.7780 0.0015 0.7350 0.0110 0.6890
Ratings 43 12 0.0015 0.9156 0.0093 0.0010 0.8071 0.0015 0.7090 0.0405 0.7846
Arrests 50 4 0.0015 1.0182 0.0129 0.0015 0.7921 0.0015 0.7595 0.0085 0.7565

Table 10: Runtime in seconds of each method on each non-simulated dataset. Recorded time for Hopkins is
the average of 100 runs. The numbers of observations and number of features of the data are denoted by n
and d.
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6. Discussion

Though many approaches to clusterability evaluation have been previously proposed,
they vary radically and often result in different conclusions. Here, we perform an extensive
analysis of a variety of clusterability methods, identifying which are most effective as well as
when certain measures are better suited than others based on the needs of the application
at hand. While other notions of clusterability may also warrant investigation, our paper
is the most comprehensive study to date. We compare several approaches, which apply
either spatial randomness tests to the original data or multimodality tests to one-dimensional
reductions of the data. Extensive simulations allow us to identify effective approaches, as well
as differentiate amongst them. Notably, experiments on real data sets parallel the conclusions
of our simulations. Our findings indicate that spatial randomness tests and multimodality
tests on one-dimensional reductions are frequently effective at classifying data sets by their
level of clusterability. Both clusterable and unclusterable data sets were identified as such in
most simulations.

Methods perform differently according to dimension, treatment of outliers, and shape
and separability of clusters. Distance-based methods perform well in most scenarios. PCA
methods detect structure in data with two or three clusters and does not detect spurious
clusters in data with a single cluster. However, in low dimensions, PCA power is lower than for
distance-based methods, and PCA performs poorly for non-linear data. Outliers are treated
as clusters by all variations of Silverman and the Hopkins statistic. The Hopkins statistic
loses signal when clusters touch or overlap. Classical methods are inappropriate in multiple
dimensions and for chaining data. Finally, principal curve methods were highly problematic
on both simulated and non-simulated data sets. Even on the famous, well-defined data set
faithful, the principal curve failed to converge after 1000 iterations. Principal curve methods
also had excessive false positives on simulated data generated from a single distribution.

We summarize several qualitative criteria that can be used to select a suitable clusterability
measure for a given application. Quantitative comparison based on the efficiency of these
methods could also be integrated, particularly when data is large in number of observations
or dimensions or both. See Section 5 for a comparison of the methods considered in this
analysis based on their computational complexity and empirical runtime on simulated and
non-simulated data.

• False Positives: Methods proclaiming to discover cluster structure when none is present
have excessive false positives (Type I error) and are considered statistically invalid. Reducing
data using the principle curve consistently yielded inflated Type I error rates and is not
recommended.

• Outliers/Small Clusters: Clusterability measures vary in their treatment of sparse
distant points. Hopkins and Silverman-based methods treat the points as small clusters;
Dip-based methods exhibit outlier robustness.

• Chaining Data: Dip-dist was the only method that consistently performed well on
chaining-type data, identifying both clusterable and unclusterable structures of these types.
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• High Dimensionality: We tested data sets on up to 50 dimensions. In our experiments,
PCA dip, PCA Silverman, and Dip-dist did well and were reasonably efficient, suggesting
that these methods may be better suited to high dimensional data than the other techniques
considered in this analysis.

While our results suggest that some of the methods considered here work well for data of
reasonably high dimension, for very high dimensional data (particularly when the number of
dimensions is much greater than the number of elements), additional investigation is desirable.
It is possible that simply modifying the data reduction method, such as by using Sparse PCA
[70], may be sufficient. These avenues of investigation are left for future work. However, we
would expect that Dist-dip would be the most efficient method, followed by Hopkins, for such
data based on the theoretical complexity discussed in Subsection 5.1.

The choice of dimension reduction method should be made carefully. For example, if
applicable, an appropriate distance metric is crucial for proper analysis in both cluster
analysis and clusterability evaluation. For the purpose of this paper, we focus on Euclidian
distance, which is the most common metric. Investigation of other metrics, while a popular
topic of recent interest [71], is left for future research. Similarly, if the data is known to be
highly non-linear, then the user may not wish to use PCA. Other data reduction methods for
non-linear data will be explored in future work.

7. Conclusions

The application of clustering algorithms presupposes the existence of cluster structure.
Clustering techniques tend to produce some partition for any given data set, which can
lead to invalid conclusions when the data is unclusterable. Consequently, we advocate for
the integration of clusterability into cluster analysis, allowing users to determine whether
clustering is appropriate for the given data before proceeding with further processing.

A succinct, practical summary of our results is shown in the table below. The table
includes only methods that were found to be effective in our simulations, and allows users
to select from amongst these methods on the basis of three simple metrics: whether small
clusters should be treated as outlier (do we want an outlier robust measure, or one that allows
for small clusters?), whether the target clustering may consists of clusters with chaining
structure, or is high dimensional (up to 50 dimensions). The following table focuses on
qualitative analysis, see Section 5 for runtime analysis.

Outliers/Small Clusters Chaining Data High Dimensional
PCA dip small clusters x X
PCA Silverman small clusters x X
Dist dip outlier robust X X
Dist Silverman outlier robust x x
Hopkins small clusters x x

Please see Section 6 for a thorough discussion.
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We look forward to the widespread application of clusterability tests as part of the
clustering process. As of the writing of the present manuscript, implementation of the
clusterability methods described in this paper is in progress. To this end, two macros were
written to conduct multimodality tests in SAS, as the procedures were previously unavailable
in SAS [72]. Software development is in progress to facilitate user-friendly applications of the
clusterability methods in common statistical software SAS and R. Documentation of these
clusterability algorithms is also in development and will be published in future manuscripts.

We close with the following quote to remind of the importance of testing for clusterability
before proceeding with further – potentially unnecessary – cluster analysis tasks.

“There is nothing so useless as doing efficiently that which should not be done at
all.” -Peter F. Drucker
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