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Abstract

We tackle the problem of predicting a grasping action in ego-centric video for

the assistance to upper-limb amputees. Our work is based on paradigms of

neuroscience that state that human gaze expresses intention and anticipates

actions. In our scenario, human gaze fixations are recorded by a glass-worn

eye-tracker and then used to predict the grasping actions. We have studied two

aspects of the problem: which object from a given taxonomy will be grasped,

and when is the moment to trigger the grasping action. To recognize objects,

we using gaze to guide Convolutional Neural Networks (CNN) to focus on an

object-to-grasp area. However, the acquired sequence of fixations is noisy due

to saccades toward distractors and visual fatigue, and gaze is not always reliably

directed toward the object-of-interest. To deal with this challenge, we use video-

level annotations indicating the object to be grasped and a weak loss in Deep

CNNs. To detect a moment when a person will take an object we take advantage

of the predictive power of Long-Short Term Memory networks to analyze gaze

and visual dynamics. Results show that our method achieves better performance

than other approaches on a real-life dataset.

Keywords: Human perception, grasping action prediction, weakly supervised

active object detection



1. Introduction

In this work we tackle the problem of predicting a grasping action in ego-

centric video. We understand the ‘grasping action’ as grasping an object of

a given category in a complex visual scene which might contain a variety of

objects in a cluttered environment. Known paradigms of neuroscience indicate

that human gaze expresses intention of a subject and anticipates action [1],

which can be helpful for driving recognition of objects in videos with cluttered

scenes, and constitute valuable cues about subjects’ intention. Hence, using

visual data and gaze capturing devices (eye-trackers) can provide deep insights

into human perception and behavior as they show what a person is looking at

while moving freely in a real-world setting.

The rationale behind this assumption is related to the notion of active per-

ception [2] and intentionality [3], which can be defined as the commitment of

a person to perform a particular action [4]. Intention requires skills such as

foresight and planning. Perception and action are intimately linked, because

a large part of perception is an active process in which the subject anticipates

the sensory consequences of its actions. Thereby, perception and generation of

behavior can be considered as belonging to the same neural process [5] aiming at

testing hypothesis about subjects environment [6]. Among the sensory signals

that elaborate perception-anticipation, vision occupies a key position and visual

searches might be considered as experiments that generate sensory data. During

this search of information, ocular saccades can be viewed and modeled as active

experiments that generate the sensory data necessary to perception itself [7].

Although various behavioral traits can be used to catch intention, gaze seems

to be preferred because it clearly indicates attention in cooperative tasks where

partner gaze is supposed to be the next space to be acted on [8, 9]. Hence, eye

gaze can be used efficiently to identify targets during face-to-face conversation

[10]. Intent content of gaze was demonstrated to be used in scenarios like col-

laborative information search in which one sees where the other is looking at

[11, 12, 13], gaze-based image retrieval [14] or meal preparation [15, 13]. All
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Figure 1: Examples of sequences of geometrically aligned gaze points shown in one frame of

the video sequence. Points are labeled in color from the frame in which the user first fixates

the object being grasped (red) until the moment before the object is grasped (yellow).

these studies point out the planning information contained in gaze as an ac-

tive anticipatory process and support our goal of using gaze to anticipate the

intention of grasping an object of a given category in egocentric video.

Our target application is assistance to upper-limb amputees wearing neuro-

prostheses. Although there have been several recent attempts at using computer

vision to assist prosthesis control, such as in adjusting a robotic or prosthetic

grasp to a recognized object [16, 17], they were typically conducted in very sim-

ple visual environments. A critical aspect of our contribution is to enable robust

object identification and prediction of grasping actions in more challenging and

real visual scenarios, including occlusions and variety of objects of potential per-

ceptual interest present in the scene. Addressing this task appropriately would

also be useful in a wide range of applications where identifying the object-of-

interest in a scene becomes a key step for subsequent activity recognition [18],

video summarization [19] and other visual pattern recognition tasks.

We decompose the prediction of grasping actions into two sequential pro-

cesses that rely on physiological signals such as gaze or ego-motion. First, we

aim to recognize the object to-be-grasped, the ‘active object’, frame by frame.

Second, we use the detection scores together with gaze measurements to identify

the moment when a subject aims to grasp this object. For object recognition
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we use gaze-driven Convolutional Neural Networks (CNN) as they simulate the

capacity of human visual system to focus on particular details in images. Next,

we take advantage of the predictive power of Recurrent Neural Networks (RNN),

and in particular Long-Short Term Memory (LSTM) cells, to analyze gaze and

visual dynamics and detect when the subject will grasp an object.

The use of gaze as a guiding signal for grasping action prediction is very

promising. User’s foveation helps restricting recognition process to the region-

of-interest. For example, in the particular task of active object detection, gaze

can be used to efficiently generate weak annotations yet useful to learn object

detectors [20]. However, despite these advantages, it remains an open problem

as many challenges arise in real environments.

First, a subject aims to grasp one particular object in the scene at a time,

and its detection requires to identify which of the many elements in the scene

is the ‘active’ one. This task goes beyond the traditional object detection prob-

lem so that object recognition techniques have to be combined with automatic

algorithms understanding user perception. Furthermore, in contrast to previ-

ous works where the action recognition is done while an object is manipulated

[21, 22, 23], in our scenario the subject only intends to grasp objects of interest

in an immediate future. Hence he/she does not manipulate them yet. This

causes an important loss of visual support as the detection must be performed

before actions are actually carried out.

Second, gaze measurements are particularly noisy in our scenario due to

several factors. The presence of distractors in a cluttered natural environment

yields saccades, peripheral vision is activated to identify objects to grasp, and

visual fatigue impacts oculomotor control. Therefore subject’s gaze is not always

reliably directed toward the object-of-interest. This behavior is much more

common when a subject is identifying the object to be grasped than when the

object is already being manipulated. This issue is illustrated in Figure 1.

Third, gaze recording provides only partial information about the object

location, which is limited to a simple point within the object. It is not sufficient

to generate ground truth bounding boxes that are usually required for learning

4



with CNN architectures, the current dominant paradigm for object detection.

All these observations lead to our weakly-annotated scenario, where the gran-

ularity of the annotations moves away from the desired frame-by-frame bound-

ing boxes to the set of clip-level labels and noisy sequences of gaze fixations. In

particular, our labels indicate a sequence of frames in which an object is fixated

before being grasped in a near future. However, due to the aforementioned fac-

tors, it is not ensured that the object is reliably fixated in all frames (see Figure

1). To address this challenging problem, we present several contributions in this

paper: a) A gaze-driven detection CNN for objects to be grasped in egocentric

video. We train this model using only gaze fixations and weak video clip-level

annotations. b) Two alternative methods for noise handling: one that reduces

the noise level in gaze data, and another that estimates confidence measures

over the gaze points. c) A novel loss to train a LSTM tackling the automatic

prediction of grasping actions, which overcomes known limitations of traditional

losses in our scenario. d) A new public dataset, Grasping In The Wild (GITW)

which, in contrast to previous databases, addresses the detection of grasping

actions in natural environments before the objects are actually manipulated.

This paper extends the work proposed in [24], which focused on active object

recognition. Here, we present the whole system for grasping action prediction,

introduce the block to perform the action recognition, describe all modules in

detail, and present an extended set of experiments and conclusions. The re-

mainder of the paper is organized as follows: in Section 2 we discuss related

works, in Section 3 a detailed description of our approach is provided, in Sec-

tion 4 we show our experiments and results; finally, conclusions are drawn and

perspectives of research are outlined in Section 5.

2. Related work

2.1. Weakly supervised active object recognition

We consider a weak label as an annotation provided at a granularity different

than the element to be recognized in a particular task: e.g. learning segmen-
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tations using image-level labels that indicate the presence of an object in an

image, but do not provide any cue about its location in the scene [25].

Although scene analysis based on weak labels allows reducing the human ef-

fort devoted to annotate training datasets [14], it is yet a challenging and open

problem due to the distinct granularity of data and labels. In our particular case,

whereas object detection networks provide object scores at bounding boxes, our

active object labels are given for short video clips, which correspond with those

segments of the videos when a subject fixates an object to be grasped. In con-

sequence, aggregation methods are required to bridge the gap between training

data and labels. Many works formulate this problem using Multiple Instance

Learning (MIL) principles and develop aggregation operators: avg [26], max

[27, 28], Log-Sum-Exp (LSE) [26], global weighted rank-pooling [29], negative ev-

idence models [30], weighted average of regions with maximum and minimum

scores [31], etc. Other approaches incorporate aggregation methods into novel

losses dealing with the different granularities of data and labels: Papandreou et

al. [32] use a latent model to generate this loss, Pathak et al. [25] propose a

constrained weak loss with inequalities applied over the accumulated probabili-

ties along pixels. In other works, losses are implemented over latent SVMs and

the object location becomes a latent variable [33][34].

Detecting the object to be grasped goes beyond traditional object recognition

as it also requires to identify which of the objects in a cluttered visual scene

is the active one. In this scenario, class-agnostic Region Proposal Networks

(RPN) [34, 35, 36], or even specialized CNN proposing category-aware candidate

boxes [28], do not perform well; they cannot identify which is the active object

among those present in a scene. However, if gaze fixations are available, this

physiological signal becomes a valuable cue of the subject intention that might

be used to predict the object location. There are methods that, learning from

sequences of fixations of subjects observing images, derive bounding boxes that

can be used to train object detectors [37, 38]. Closely related to our scenario,

some works drive active object detection in egocentric videos using gaze fixations

[39] or automatically predicted saliency of pixels [40].
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However, none of previous approaches have considered the noisy nature of

gaze due to cognitive and physiological factors. Some attempts at reducing

noise on the basis of attention models in natural scenes with toy objects have

been made in egocentric video, where fragments of initial scene exploration were

just removed, and per-frame detection results were filtered in a temporal buffer

[1]. We go further, and adapt noise removal approaches to each subject, using

his/here recorded data. Confidence measures are also incorporated to a weak

loss used in the learning process, with the ultimate goal of learning better visual

models for active objects.

2.2. Action prediction

We also aim to predict the exact moment when a subject wants to perform

the grasping action. Despite the availability of a very large literature on action

recognition in video using 3D CNNs [41] or Recurrent Neural Networks (RNN)

[42][43], action prediction has clearly received much less attention and still re-

mains addressed by quite a small number of researchers [44][45]. Perhaps the

most related problem that has been thoroughly analyzed is action anticipation,

in which the observed action has to be identified as soon as possible [46, 47].

Previous works in this task designed specific losses over time to encourage the

early prediction of actions [48, 49].

However, our task is even more challenging since the action has not even

been started yet. As we do not have strong visual support about the upcoming

action, we rely on physiological signals gathered from the subject, such as his

visual field, his tracked gaze, and his head/body motion.

3. Proposed model for gaze-driven grasping action prediction

This section describes our model for gaze-driven grasping action prediction

in egocentric video. Figure 2 illustrates the steps of the method. It contains

three different blocks: a) the Geometric Alignment module, described in Section

3.1, estimates and compensates ego-motion to produce normalized gaze points,
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Figure 2: Proposed scheme to predict the action of grasping an object. Our system involves

three different building blocks: a) a Geometric Alignment module, b) a Gaze-driven active

object detection module (A.O. Detection); c) an Action Prediction module.

b) the Gaze-driven active object detection module, introduced in Section 3.2,

recognizes what is the active object in the scene; and c) the Action Prediction

module, detailed in Section 3.4, studies the sequence of gaze points and active

object detections to decide when a subject is aiming to grasp an object.

3.1. Geometric Alignment Module

In our egocentric scenario, the subject wears a camera (mounted in his/her

glasses). Thus, there is motion between consecutive frames caused by the nat-

ural movement of subject’s body and head. Even if the subject is looking at

the same point in the scene (e.g. the active object), the projected gaze coordi-

nates in the images will vary between two consecutive frames due to ego-motion.

Therefore, measured gaze locations in two frames cannot be directly compared

unless camera and eye motions have been first decoupled.

To do this, we need to estimate and to compensate the ego-motion between

every two consecutive frames. Given a short video clip with N frames and a

sequence of gaze points gn = {(gxn, gyn), n = 1...N}, our system operates as

follows: for each pair of consecutive frames, it detects and describes local fea-

tures (SURF features [50] in our case), establishes an initial set of matches, and

applies a robust estimation algorithm to compute a projective transformation
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Figure 3: Processing pipeline for Gaze-driven active object detection: a) Data Processing

and Noise Handling in gaze fixations, b) Gaze-driven Active Object Detection using weak

annotations. Filter sizes are provided when necessary within the layer blocks, in the form of

height x width x channels in x channels out. Bottom row shows size of the tensors produced

by every block, in the form of height x width x channels x instances.

Hn−1,n (3x3 homography) between frames n−1 and n (e.g. DLT algorithm [51]

and RANSAC [52]). Since a projective homography only explains transforma-

tions of planar surfaces, we restrict the process to a circular area surrounding

the gaze point, where depth variations can be neglected without too much error.

The radius of this area is initially set to F=100 pixels, and then increased if not

enough local features are detected.

Once the sequence of geometric transformations Hn,n−1 between consecutive

frames has become available, we can compute the sequence of aligned fixations

ĝrn of every frame n with respect to a reference frame r. This reference frame will

vary depending on the part of the method the aligned fixation is used in: during

the action prediction task in frame n, the reference r will be the previous frame

r = n− 1; in contrast, for noise handling in weakly supervised object detection,

there will be a common reference r, the central frame in each video sequence.
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3.2. Gaze-driven active object detection

The processing scheme of the Gaze-driven active object detection module

is depicted in Figure 3. It is decomposed into two sub-modules: a) a Data

Processing and Noise Handling block, and b) the Gaze-driven Active Object

Detection using weak annotations. The first sub-module processes the aligned

gaze points provided by the Geometric Alignment module and generates a set

of Regions of Interest (ROIs) per video frame, candidates to contain the object-

of-interest. It also incorporates several processing modules that estimate and

reduce the level of noise present in gaze recordings. The second module evaluates

the candidate ROIs detecting the object-of-interest along frames of a video clip.

3.2.1. Data Processing and Noise Handling in gaze fixations

The goal of this block is to generate a set of candidate ROIs to search

active objects. Hence, two operations are performed sequentially. First, the

noise present in the sequence of gaze fixations is processed by one of the two

alternatives: 1) reducing fixation noise or 2) estimating a confidence measure

associated with each fixation. Then, a set of candidate ROIs is proposed.

Gaze fixations are noisy and quite scattered especially during segments of

videos when subjects explore the scene. Since current classifiers are quite sen-

sitive to noise in training data, we perform noise filtering at this phase in order

to generate more confident object proposals in each frame.

We consider both the original gn and the aligned sequence of gaze points

ĝrn, where the latter have been computed with respect to a common reference

frame r. In this case r = bN2 c, standing for the central frame of the video clip.

Examples of aligned gaze sequences are shown in Figure 1.

The sequence of aligned gaze points is used to predict the most probable

location of the active object in a training scene. This was achieved using Kernel

Density Estimation (KDE) with 2D Gaussian kernels [53] over the sequence ĝn

to estimate a 2-dimensional probability distribution modeling the active object

location. The global maximum of this distribution becomes our prediction of the

object location in the reference frame or = (orx, ory). Although we tested other
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kernels such as the flat kernel, we finally used Gaussian kernels as they provided

the best results and are in line with the concept of central and peripheral vision

in human retina, whereby human vision resolution decreases as we go away from

the gaze fixation. Figure 4 shows two examples of the KDE prediction (in blue).

Considering a training video sequence, our objective is to provide a set of

triplets (xn, wn) = (xn, yn, wn) with the weak annotations of the active object

location along the frames n. Here xn, yn are the coordinates of the points and

wn stands for a confidence measure about the quality of the corresponding point.

We have developed two complementary methods to compute these triplets:

1. Noise Reduction : with this method, we generate the final sequence of

points on in the video clip by applying the inverse accumulated homographies

H−1
n,r over the predicted object location or; on = H−1

n,ror. Hence, the final set

of points used as weak annotations is xn = on, and wn = 1 for every frame

n in the clip. This method strongly reduces the level of noise in the training

data as it associates every frame to the same element in the scene (the location

predicted by the KDE). Figure 5 depicts two examples of the original sequences

of candidate ROIs (left column) together with the ones generated by the method

(right column). This example illustrates well the performance of the method.

2. Estimation of confidence in gaze fixations: in a second approach,

we keep the original captured gaze points in our weak annotations xn = gn and,

alternatively, estimate some weights wn that represent a confidence in each gaze

point. The weights wn are inversely proportional to the distance between the

aligned gaze point ĝrn and the active object location or predicted by the KDE.

wn ∝ exp(−γd(ĝrn,or)) (1)

where d(·) stands for the euclidean distance, and γ is a parameter of the model.

It has been set to γ = 0.001 based on some preliminary tests, which is approx-

imately equivalent to normalize the distance between gaze points and object

locations by the maximum dimension of the input frame (W = 960 in our case).

Gaze fixations that, when aligned to the reference frame, are close to the pre-

dicted location, are considered as ‘good’ samples. They receive high weights,
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Figure 4: Examples of object prediction using KDE over aligned gaze points. Aligned gaze

points are in red to yellow according the time stamp, predicted object location is in blue.

whereas points situated far from the object location receive lower weights. In

this second approach, rather than explicitly removing noise (we are keeping the

original gaze points), we are estimating a confidence measure that will be used

to train our model for active object detection (see Section 3.3). The rationale

behind this alternative is that keeping the original gaze points may provide more

visual diversity than simply generating all the annotation points as projections

of the same location.

During testing phase the original gaze fixations xn = gn without confidence

and without filtering are considered, as the algorithm performs online, on a

frame-by-frame basis.

We also perform data augmentation rotating input images using angles in

the range [−45, 45]◦. These rotations imitate subjects’ views when approach-

ing the active object from different angles/locations in the scene. Preliminary

experiments have shown that data augmentation provided an improvement of

about 2-4% in performance. In addition, for each image and annotation point,

we adapt to the varying scale and shape of objects, proposing regions-of-interest

(ROIs) at 3 scales s = (78, 125, 200) px and 3 aspect ratios r = (0.8, 1, 1.25). We

therefore use B = 9 bounding boxes of size w×h, with w = s/
√
r and h = s

√
r,

centered on random shifts around the annotation point xn of the frame. This

particular number of bounding boxes yielded good performance in some pre-

liminary experiments and is similar to the number of anchors used in reference

approaches for object detection [54][55]. Figure 5 shows several examples of our

ROI candidate set.
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Figure 5: An illustration of Noise Reduction technique. (Left) Frames with candidate ROIs

computed over the original sequence of gaze points. (Right) Noise-free candidate ROIs by

back-projecting the predicted object location to the frame sequence.

3.3. Gaze-driven Active Object Detection using weak annotations

This block aims to perform a robust detection of active objects using gaze

as a weak and noisy guiding signal. The system is depicted in the bottom row

of Fig. 3 and involves several building blocks. It builds over the well-known

ResNet- 50 CNN [56]. Residual networks do not learn the desired underlying

mapping at each layer, but rather fit a nonlinear residual mapping by summing

it to a direct linear connection between inputs and outputs. Hence, residual

layers avoid the degradation problem when additional layers are stacked to the

network, as they easily learn zero mappings when no additional transformations

are required. This is why the residual networks have become very popular.

Among all the ResNet variations (ResNet-18, 50, 101 and 152), we found that

a ResNet-50 yielded very competitive results at acceptable computational times.

In particular, we incorporated several new layers at the top of ResNet-50 to

perform the object detection in our weakly-annotated scenario. For the sake of
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completeness, we will introduce all these new layers, but our main contribution

here is the weak loss described in Section 3.3.3.

The network is initialized with the original weights up to the layer res4f,

being the remaining layers discarded. Our own blocks are stacked instead to

enable object detection with weak annotations. Furthermore, we use Batch

Gradient Descent algorithm for training, where each batch contains frames of

the same video clip, which allows to learn from labels at a video clip level.

3.3.1. ROI pooling and detection layers

The output of the ResNet-50 subnet is a high-level visual representation of

the input image. In practice, for an input crop of 300 × 300 (centered on the

gaze point) we generate a tensor of size 19× 19× 2048, with a reduced spatial

dimension (19× 19) and an extended set of 2048 high-level feature channels. A

nice consequence of our approach is that all this processing is made just once

as it is common for every evaluated ROI in the frame.

Then, we need to generate individual representations for each considered

candidate ROI, for which we use the efficient ROI Pooling method described in

[57], and produce a set of B 14 × 14 × 2048 tensors associated to each of the

candidate ROIs. Once we have an independent representation of each ROI, we

can compute a detection score for each object category. With this purpose, the

so-called detection layer is a fully-connected layer that transforms the 14×14×

2048 input tensor into a C-length vector fc,b with the scores of the different

classes c in the ROI b. Finally, concatenating the vectors of all ROIs, we can

generate the matrix of ROI scores {fc,b} shown in Figure 3, where c stands for

the object class and b for the bounding box.

3.3.2. MIL aggregation

Given the matrix with the ROI scores {fc,b}, we generate a vector of frame-

level predictions using Multiple Instance Learning (MIL), assuming that there

exists at least one candidate ROI corresponding to the active object. In par-

ticular, we have used Log-Sum-Exp (LSE) aggregation proposed in [26]. Given
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a set of class scores fc,b for the B ROIs in a frame, the aggregated score at the

frame level fc is computed as:

fc = log

(
1

B

B∑
b=1

exp (fc,b)

)
(2)

The aggregation will produce the vector of frame-level scores for the object

categories. This vector can be finally transformed into a set of object probabilities

using a simple softmax operator: pc = softmax(fc).

3.3.3. Weak Loss

Our training process requires an additional step as the weak labels indicating

the presence of an active object are given for each short video clip. Since we

cannot ensure that the object to be grasped is being fixated at every frame, we

do not have annotations at frame level, and therefore need an additional layer

aggregating the frame scores at the video level, and a loss function stacked at

the top of our network, that compares the video scores with the video labels.

To cope with all these requirements, we have adopted a constrained loss for

learning under weakly annotated scenarios [25], which was initially developed

for pixel-wise weak semantic segmentation. In our work, instead, it has been

adapted for active object detection in weakly annotated video, defining con-

straints over the accumulated scores along frames, and incorporating the con-

fidence weights wn. Considering C object categories in our problem, marginal

independence between frames, the probability distribution of a video clip with

N frames can be factorized as:

P (c|θ) =
N∏
n=1

p(cn|θ)wn (3)

where c is a random variable of the active object classes, θ stands for the param-

eters (weights) of the CNN, p(cn|θ) = pncn stands here for the class probabilities

cn in the frame n, and wn is the weight associated with each training frame in

the video (as defined in Section 3.2.1). This leads to an optimization problem

with inequality constraints:

find θ; subject to A
−→
P ≥

−→
b (4)
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where
−→
P is the vectorized version form of the network output P (c|θ), and A ∈

RK×C·N and
−→
b ∈ RK define K linear constraints over the output distribution

P . Since this problem is not convex with respect to the network parameters

θ, the authors in [25] defined a variational latent probability distribution Q(c)

over the object categories (independent from the CNN parameters θ), applied

the constraints to this new distribution rather than to the original network

output P (c|θ), and enforced Q(c) to be similar to P (c|θ) by minimizing their

Kullback-Leibler divergence. The interested reader is referred to the original

paper [25] for an in-depth derivation of the equations involved in the learning

process (let us note that the set of weights wn was not included in the original

approach).

By setting proper values of the parameters A and
−→
b , we can impose con-

straints over the object class probabilities along each video clip. In particular,

given a category c, we impose the following constraint:

Kc,min ≤
1∑
n wn

N∑
n=1

wnp
n
c ≤ Kc,max (5)

Here pnc is the probability score of the class c in the frame n, Kc,min,Kc,max ∈

[0, 1] are model parameters that stand for the minimum and maximum percent-

age of accumulated probability that corresponds with the category c in the video

segment, respectively. Intuitively, we are imposing that the percentage of the

frames that show the object c in the fixation area should range between Kc,min

and Kc,max. Setting appropriate values for these parameters allows to deal with

the presence of noise, and the existence of frames showing background or even

other non-active objects. In particular, we have validated these parameters and

found that the following values yielded reasonable results: a) if c represents the

active object in a video clip, then Kao,min = 0.85, and Kao,max is deactivated;

b) for those classes c that are considered as non-active in a video segment,

Knao,max = 0.01, whereas Knao,min is deactivated; and c) for the background

class c = 0, K0,min = 0 and K0,max = 1−Kao,min = 0.15.

These values deserve a discussion: Kao,min is dependent on the dataset, as it

models the percentage of time a subject fixates the object, and is closely related
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to the probability of finding gaze deviations from the active object. Hence, the

presence of very cluttered scenes with many potential distractors would lead

to lower values of the parameter whereas simple scenarios in which the active

object is not surrounded by any other element would probably accept larger

values closer to 1. For non active objects, the maximum accumulated probability

Knao,max has to be low as the object should not be regularly fixated. We found

that very low but non-zero values (Knao,max = 0.01) provided the best results.

With respect to the background class, K0,max has been automatically set from

the value Kao,min so that this parameter does not need an individual validation.

3.4. Grasping Action Prediction

The last block of our system is the Grasping Action Prediction module shown

in Figure 2. It uses aligned gaze points provided by the Geometric Alignment

module (Section 3.1) and the active object probabilities computed by the Gaze-

driven Active Object Detection module (Section 3.3), to detect when a subject is

aiming to grasp an object. We define this problem as a multi-class classification

problem, with C+1 action classes, c = 0 standing for the class ‘No grasp’,

and c = 1...C for the actions ‘Grasp the object of class c’. This multi-class

formulation of the problem allows us to temporally filter the scores of the active

object detector and better account for potential subject’s gaze deviations.

As in a real test scenario we do not have future information to perform noise

filtering over the gaze fixations (as we do during training of object detectors),

we propose to use Recurrent Neural Networks and, in particular, Long-Short

Term Memory cells [58, 59] to perform a temporal filtering of the data. For the

sake of conciseness we will not include a detailed description of the equations

that govern the LSTM; the interested reader is referred to the work of Graves

et. al [60] for an in-depth explanation of LSTMs in deep neural networks. We

feed the LSTM with a shallow concatenation of four features:

a) Magnitude of the gaze motion vector : It is computed over gaze points of

consecutive frames, where the new gaze point is first aligned to the previous

frame to remove the ego-motion: un = ĝn−1
n − gn−1. Gaze motion is a
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physiological measure that becomes a valuable cue about the user’s intention.

It helps distinguishing between different kinds of subject’s interaction with

the environment: scanning the scene, identifying the object to be grasped,

starting the grasping action, etc.

b) Magnitude of the ego-motion: modeling the subject’s head and body move-

ment might also be useful to understand subject’s interaction with the en-

vironment. This magnitude is computed by subtracting the gaze-motion

vector from the total displacement of the gaze point: vn = gn−gn−1−un =

gn − ĝn−1
n .

c) Distance of the gaze point to the center of the image: This feature was added

on the basis of our observations on the so-called ‘central bias’ hypothesis.

When looking at a still image or video, a subject first foveates near the

center of the frame. Furthermore, in ego-centric setting, the subject adapts

his/her body and head pose in such a way that the active object is in the

center of the frame.

d) Vector of active object scores for the frame pn, as including the sequence of

active object detections is fundamental to trigger the grasping action.

The particular architecture of our network is as follows: for each frame in

a video, the aforementioned input vector feeds a bottom LSTM layer with 256

units. The hidden state cells of this last layer are finally passed to a fully

connected layer that produces the output sn ∈ R(C+1)×1 of the system: the

vector of scores of the C+1 considered actions. This vector can be in turn

converted into a vector of probabilities using a softmax layer yn = softmax(sn).

In addition, during learning we incorporate a dropout layer with a factor of 0.5

to reduce over-fitting. Similar architectures have been successfully applied to

action recognition [42].

3.4.1. A novel loss for action prediction

In many multi-class problems, the cross-entropy loss is used in training. It

is the cross-entropy between the action label distribution An and the system

output yn. For a given frame n, and considering C+1 action classes, the label
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An is a (C+1)×1 index vector with a 1 in the position of the true class label an

and zero elsewhere. Hence, for a video sequence of N frames, the cross-entropy

loss is as follows:

L(y,A) = −
N∑
n=1

log yn(an) (6)

where yn(an) is the probability of the true class an.

However, in our particular problem of action prediction, this general loss

shows two limitations:

1. If during training, we find sequences in which users hardly fixate the active

object (e.g., if they use peripheral vision all around the segment of interest,

before the object is grasped), the sequence of active object scores is wrong,

and the LSTM trained with cross-entropy loss tends to revert the situation

by learning a wrong mapping between object and action scores. We observed

that this anomaly leads to over-fitting and, as we will show in the experimental

section, strongly limits performance in test. Thus, we would like to enforce some

degree of alignment between the detected objects and the predicted actions.

2. To reduce the impact of the system on the subject’s natural behavior, we

would like to successfully predict a grasping action early on, even if users only

fixate the active object during short temporal segments. Hence, we would like

a loss function that encourages early predictions of actions.

To satisfy these two requirements, and following similar procedures in the

field of early action detection [49], we have developed a new loss function:

L(f ,A) = −
N∑
n=1

log yn(an)
pn(an)τn (7)

where pn(an) is the probability given by the gaze-driven active object detec-

tion that the object corresponding to the true class an is the active one, and τn

is a weight of temporal importance. Considering that nfix is the frame in which

a user starts to fixate the active object, we define τn as:

τn =


1, n ≤ nfix −Np

nfix−n
Np

, nfix −Np < n ≤ nfix
1, n > nfix

(8)
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where Np stands for the number of frames, previous to the annotated start

of active object fixation, during which our learning procedure penalizes less

deciding the grasping action. This value has been heuristically set to 10 frames.

Intuitively, our loss function behaves as follows: during the segment before the

subject fixates the object of interest n < nfix −Np, τn = 1 and the network

completely learns the label ‘no grasping action’. However, Np frames before the

subject fixates the object and, due to the reasons mentioned above, the learning

weight starts at τn = 1 and decreases linearly until the exact moment when

the active object is fixated n = nfix. This means that the classification errors

in training are less important during this short segment. Finally, during active

object fixation, the learning weight is again τn = 1 and the network completely

learns again the action ’grasping the object c’.

Hence, with this new loss, we are decreasing the influence of two kinds of

frames during the learning phase: a) frames in which a user is not looking at the

active object (pn(an) will be small), causing a wrong score in the active object

detector, and b) frames that occur just before the subject starts to fixate the

object of interest.

4. Experiments and results

In this section we present our experiments and results for grasping action

prediction. We will first assess the performance of the module of gaze-driven

active object detection, focusing on the impact of our proposed noise handling

techniques. Then, the experiments carried out using the system for gaze-driven

grasping action prediction will be described.

4.1. Dataset and experimental set-up

We run our experiments using a new recorded egocentric dataset: Grasping

In The Wild (GITW)1; which was designed and recorded because all previous

1www.labri.fr/projet/AIV/dossierSiteRoBioVis/GraspingInTheWildV2.htm
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databases focused on the detection of active objects during their manipulation

[39, 21, 22] and did not fit with our goal of to-be-grasped object detection.

GITW has been recorded with Tobii Glasses 2 worn by subjects performing

activities of everyday life in an ecological environment (7 kitchens). It contains

404 egocentric videos of lengths varying between 3.5 and 26 seconds, with a total

length of 62 minutes. Videos have been recorded with a resolution of 1920x1080

at a frame rate of 25 fps, whereas gaze points were acquired at 50 Hz. As we

have two gaze recordings per frame duration, the gaze fixation point associated

with each frame has been computed using spline interpolation based on previous

and current gaze recordings.

The dataset contains 16 categories of objects to be grasped, which correspond

to objects often found in a kitchen: bowl, can of coca-cola, frying pan, glass, jam

container, pan lid, milk container, mug, oil bottle, plate, rice container, sauce

pan, sponge/scourer, sugar container, vinegar bottle, and washing up liquid.

A maximum of 4 different subjects perform activities in each kitchen. The

recording protocol was as follows: Each subject first listened to the instruction

with the name of the object-to-grasp. Hence the subject explored a visual scene

to find the location of target object and finally grasped it. We have annotated

the dataset labeling the temporal segment starting when the user fixates the

active object and ending at the instant just before the object is grasped. This

segment corresponds with the moment during which we aim to detect the object

to-be-grasped. GITW dataset is very challenging because active objects should

be recognized before they are actually manipulated (the subject is just looking

at them) and scenes usually contain many objects that are not active.

We have divided our dataset into 5 folds of 80-81 video clips and around

18700 frames each, out of which 2290 correspond to the temporal segment of

interest. In order to obtain statistically significant results, we have followed a

5-fold cross-validation approach, repeating the experiments 5 times and leaving

each time one fold for test. In addition, we decreased the initial resolution of

the videos by a factor of 2, working with frames of size 960x540.
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Table 1: Results of our proposals and several compared methods in GITW dataset, given

in mean Average Precision (mAP) and Accuracy (mAcc) % with standard deviations. In

addition, p-values comparing references algorithms with our GDOD-COMB method are given.

Type Algorithm mAP ± std (p-value) mAcc ± std (p-value)

Strongly

supervised

Strong Ours 75.0± 1.8 (0.01) 68.4± 3.9 (0.02)

DEEPMASK 67.0± 5.2 (< 0.01) 60.5± 6.4 (< 0.01)

YOLO 63.8± 6.5 (< 0.01) 62.0± 5.0 (< 0.01)

Weakly

supervised

MIL-AVG 72.2± 3.1 (< 0.01) 66.7± 6.1 (0.03)

MIL-LSE 78.0± 3.3 (0.15) 71.0± 2.5 (0.06)

CCNN 78.2± 2.8 (0.14) 69.4± 3.8 (0.04)

Our method

GDOD-CE 80.5± 4.3 73.5± 4.4

GDOD-NR 81.6± 2.5 74.7± 2.9

GDOD-COMB 81.9± 3.7 75.3± 3.3

4.2. Results for active object detection

In this section, we assess the performance of our gaze-driven and weakly-

supervised object detection method. Our goal is not yet to detect when an

object has to be grasped but to simply identify which is the active object in

each video sequence. In order to do so, we compare proposed method with

several reference methods that can be decomposed into two blocks: First, we

have included methods for strongly supervised object detection:

1. Baseline Strong (Strong): a strongly supervised classifier that considers

each candidate ROI in every frame a positive sample of the active object.

2. Deepmask [36]: Deepmask is a Region Proposal Network (RPN) that

generates a set of candidate boxes with high objectness scores. Those

candidate boxes proposed by Deepmask that contain the gaze point of the

frame are considered positive samples. If several candidate boxes contain

the gaze point, MIL-LSE is used to generate frame-level scores.

3. YOLO [55]: It is a state-of-the-art method for object detection which is

particularly suited for our real-time scenario due to its low computational

complexity. YOLO integrates proposal of candidate boxes and evalua-

tion of object detections. During training, the B=9 ROIs described in
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Subsection 3.2.1 are taken as strong samples and used to set the network

anchors. Then, during test, the network is in charge of both proposing

the candidate ROIS and evaluating the presence of the objects in them.

In addition, we included methods used in weakly annotated object detection:

1. Multiple Instance Learning methods: including Average aggregation (MIL-

AVG), and Log-Sum-Exp aggregation (MIL-LSE) [26]: used both to gen-

erate frame and video-level outputs from ROI scores. We did not include

Max aggregation [27, 28] as it yielded poor performance in our scenario.

2. Constrained CNN (CCNN) [25]: a constrained weak loss over the video

accumulated object probabilities.

Finally, we included three versions of our Gaze-Driven Object Detection

(GDOD) approach in the comparison:

1. GDOD-NR: that employs our Noise Reduction (NR) mechanism.

2. GDOD-CE: which uses our Confidence Estimation (CE) method.

3. GDOD-COMB: a fusion of the previous ones, combining the ROIs and

weights proposed by GDOD-NR and GDOD-CE.

To establish a fair comparison, we use gaze points to guide the detection

process of every method. In addition, all methods but YOLO employ the same

detection network, except of the noise handling block, the aggregation methods

and the learning losses, which differ between approaches.

We have used mean Average Precision (mAP) and mean Accuracy (mAcc)

as our performance metrics, computed over all the object categories (after back-

ground class removal). Video clip labels were used as the ground truth, which

implies that, even in test, we need to aggregate our scores to produce a uni-

fied value for the whole video clip. This contrasts with the action detection

evaluation of the next section, where we will use frame-level annotations.

Results of our experiments on GITW dataset are shown in Table 1. The

conclusions are as follows. First, region proposal methods such as Deepmask

[36] or traditional strongly-supervised object detection methods as YOLO [55],
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fail in our problem. When the gaze does not point to a particular object but

to intermediate areas, they tend to propose boxes over non-active objects, thus

confusing the learning algorithms. Then, among aggregation methods, LSE

achieves better results than AVG. This is due to the apparition of distracting

elements in the scene, which guide gaze to spatial areas without active objects.

Simple average including these frames decreases performance. In contrast, LSE

aggregates scores considering those frames with highest values (those in which

the active object is fixated), and therefore yields better performance. The weak

loss proposed in CCNN [25] also considers the presence of distractors, providing

similar results to LSE and outperforming the strongly-supervised approaches.

However, none of these weak learning techniques explicitly handle noise in

the way we propose in this work, analyzing the whole video sequence and es-

timating the most probable area to contain the active object. Hence, we can

see in the table that our two proposed techniques for noise handling improve

the performance of any other compared method in both mAP and mAcc. Fur-

thermore, although individual results show that reducing noise in gaze fixations

might be preferable than using confidence measures over the original gaze points,

our combined version (GDOD-COMB) takes the best of the two approaches and

achieves the top performance on our dataset. Regarding the consistency of our

results, for all the compared algorithms the standard deviation values are low

compared to the average performances. In addition, in Table 1 we also provide

p-values of every reference method computed with respect to our GDOD-COMB

approach. With this value we measure the probability that results achieved by

two methods come from two distributions with the same means. Despite the

statistical limitations of a 5-fold cross-validation, p-values demonstrate that our

improvements are significant with respect to every compared method in mAcc,

and almost every method in mAP.

In addition to the average results discussed above, in Figure 6, we include the

accuracy confusion matrix of the GDOD-COMB version of our approach. From

the figure, we cannot see any particular correlation in the errors (e.g. an object

category that is often confused with another one). In fact, after observing the
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Figure 6: Accuracy Confusion Matrix (%) of the GDOD-COMB version of our approach.

videos, most errors are made between objects that often appear closely located

in some of the recorded kitchens regardless of their categories. Our approach

thus successfully discriminates between objects, and the main source of errors

is the noise associated with the gaze recordings (e.g. our system might predict

that a distracting object gathering some gaze points is the one to be grasped).

We have also studied those video sequences that can be considered as hard

cases. Some examples are displayed in Fig. 7. We show three cases in which

our system successfully detects the object to grasp (left) and other three where

it makes errors. Successful examples illustrate that, even if the object is not

fixated all the time and gaze may be partly directed to distractors, our system

is able to automatically detect the right object as long as it is fixated for a

longer time than the remaining elements. However, when more fixations are

located at another object (see right examples), our system detects a wrong

object to grasp. To get some insight on the limitations of our approach, it is

worth identifying when this situation happens: sometimes, there are several

distracting objects located very close to the active one (plate is very close to the
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Figure 7: (Left) Examples with successful predictions: from top to bottom: milk container,

mug and jam container. (Right) Examples in which our system predicts a wrong class.

From top to bottom we list predicted/real class: plate/mug, frying pan/sauce pan and frying

pan/can of coca-cola.

mug in the top-right image), other times the object is dramatically occluded by

another (e.g. the frying pan located over the sauce pan in middle-right image)

and, finally, we have observed cases, mainly on clean areas of the scene, in which

the subject uses peripheral vision to grasp an object (e.g. the can of coca-cola

in the bottom-right image is never fixated).

Finally, we have also evaluated if all frames during the segment of interest

are equally informative about the object to grasp. Our initial intuition was

that the frames close to the moment of grasping are perhaps more stable and

would provide better performance. Results are presented in Figure 8 and show

the performance of our best solution GDOD-COMB as a function of the time
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Figure 8: Performance of proposed gaze-driven active object detection as a function of the

time before grasping considered during test

before grasping considered during test. The length of the fixation segments

varies in our dataset from 280 ms to 3 seconds. Although using the whole video

segments is very useful during training, as we include frames showing active

objects under different viewpoints and scales, optimal active object detection

results (mAP = 83.4 and mAcc = 77.9) are obtained when considering the last

600ms before grasping. Hence, we can conclude that frames are more valuable

as they are closer to the final moment at which a subject is grasping the object.

4.3. Results for grasping action prediction

In this section, we evaluate the performance of the global system for grasping

action prediction. In this case, the evaluation is based on the annotations of

temporal segments in which the user fixates the object before grasping it. Our

goal is to detect the grasping action within those segments.

We evaluate our system using F-score F (∆t) computed at different times

∆t = t − tfix, where tfix = nfix/Fr is the time stamp indicating when a user

starts to fixate the object, and Fr = 25 Hz. F-score is a common metric to

evaluate detection that joins precision and recall into one measure as follows:

F (∆t) = 2
Prec(∆t) ·Rec(∆t)
Prec(∆t) +Rec(∆t)

(9)

where Prec(∆t) and Rec(∆t) are the precision and recall measures computed

at the times ∆t, respectively.

In addition, we consider two problems being addressed: first, the multi-

class detection evaluation with C+1 classes (‘no grasp’ and C classes indicating

‘grasp the c-th object’); second, a binary detection problem in which we are

only concerned about detecting the grasping action at the right moment.
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Figure 9: Performance of our grasping action detection as a function of ∆t, the time passed

since the object is being fixated. (Top) Performance of a multi-class problem with C+1 classes.

(Bottom) Performance of an object agnostic binary problem grasp/no grasp.

Results from both experiments are shown in Figure 9 in terms of F (∆t). For

the sake of completeness, we also provide Recall and Precision measures that

gave place to each particular F-score. We have compared the performance of a

baseline detection network trained with a Cross-Entropy Loss with our proposed

loss. We can see that our novel loss outperforms the baseline due to two reasons:

first, it avoids over-fitting by decreasing the learning weights of cases in which

object scores and object labels disagree, and second, it encourages detecting the

action as early as possible once the object has been fixated. Indeed, the results

of the binary classification problem show that the relative improvement of our

proposal is larger at low values of ∆t, which validates our approach. In the

multi-class problem, the effect of the temporal weights is less evident as other

factors such as detecting the right object affect the F-score.
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Table 2: Analysis of the execution times of different steps in our algorithm during test

Block Time (ms)

Geometric Alignment 8.8 ms

Object Detection 25 ms

Action Detection 0.8 ms

Total 34.6 ms

The difference in performance between the two evaluations demonstrate that

most errors in our system come from sequences in which subjects use peripheral

vision to perform the action and do not directly fixate the object to be grasped.

4.4. Assessment of the method in the target application

a)Evaluation of perception-driving hypothesis: Our method is based on the

assumption that the human looks at the object to grasp; thus we incorporate

the knowledge from neuroscience on visual anticipation of an action. Hence it

is interesting to evaluate the validity of this hypothesis when human observers

take decisions. We have asked 6 subjects to predict the active object looking

at the sequence of aligned gaze points shown in Figure 1. We obtained the

following results in average and standard deviations: mAP = 81.7± 1.7 and

mAcc = 78.2± 2.6, a performance very similar to our automatic method (see

optimal performance in Figure 8). This result shows that identifying the active

object is not a simple task for a human when the object is not yet manipulated,

and validates the usefulness of our automatic approach. Hence, looking and

fixating the object of interest is a sine qua non condition for the perceptually

guided recognition. This hypothesis is quite reasonable for our target application

of assistance to upper-limb amputees wearing neuro-prostheses.

b) Computational times: We have measured execution times for every step

necessary during test and obtained the following figures presented in Table 2,

running our detection system using a NVIDIA TITAN X GPU takes 34.6 ms per

frame. Let us note that we are using CUDA implementations of OpenCV 3.4

and Caffe learning frameworks. Hence, our method is very efficient and meets

our real-time requirements of 25 fps.
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5. Conclusions and Future Work

We have presented a system for perceptually-guided prediction of grasping

actions with the ultimate goal of automatic control of prosthetic arms. We ex-

ploit physiological signals such as gaze information produced by visual search

and used the hypothesis from neuroscience that humans anticipate actions by

gaze. Our scenario is particularly challenging as predicting actions before they

are actually carried out introduces many problems, including loss of visual sup-

port as objects are not manipulated, as well as several artifacts/noise in gaze

sequences related to the physiology of human perception.

We have developed a method that first identifies the objects of interest on

a frame-by-frame basis, and then uses this information together with captured

physiological signals (gaze movements, position and head/body ego-motion) to

predict the upcoming grasping action.

Our scenario for active object detection included weak and noisy labels.

Hence, we have designed methods that estimate and reduce noise present in gaze

sequences, and incorporated them to a weakly-labeled active object detection

system. We showed that our methods achieve better performance than other

reference approaches on a dataset specifically designed for our target application.

Furthermore, we have proposed a novel loss over RNNs to perform grasping

action prediction, which addresses two drawbacks of traditional losses in our

scenario: 1) wrong predictions of object detection block may lead to over-fitting

during training, and, 2) they do not encourage early predictions of the grasping

action, a key factor to optimize system usability. Our experiments have demon-

strated that our loss successfully addresses both issues and enhances the system

performance by a 2 − 5% with respect to a baseline method trained using the

cross-entropy loss function.

Our future lines of research will focus on the study of multitask models that

concurrently address action prediction and gaze forecasting using shared latent

variables that encode the state of the visual dynamics.
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