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Abstract

Monitoring the properties of single sample robust analyses of multivariate data

as a function of breakdown point or efficiency leads to the adaptive choice of

the best values of these parameters, eliminating arbitrary decisions about their

values and so increasing the quality of estimators. Monitoring the trimming

proportion in robust cluster analysis likewise leads to improved estimators. We

illustrate these procedures on a sample of 424 cows with bovine phlegmon. For

clustering we use a method which includes constraints on the eigenvalues of the

dispersion matrices, so avoiding thread shaped clusters. The “car-bike” plot

reveals the stability of clustering as the trimming level changes. The pattern of

clusters and outliers alters appreciably for low levels of trimming.
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1. Introduction

Robustness of statistical methods is the ability to provide correct answers

about the generating mechanism of the main body of the data when contami-

nation occurs. Historically, there have been two alternative ways to look at the

outlier contamination problem and to achieve immunization against it.5

The first approach consists in the development of statistical techniques that

are inherently insensitive to the presence of even a substantial fraction of out-

liers. The largest fraction of contamination that the robust method can tolerate

is called the breakdown point (bdp), and methods that can deal with up to 50%

contamination are usually referred to as high-breakdown procedures [1]. Some10

well-known examples in this class include, for multivariate data, the Minimum

Covariance Determinant estimator [2], S and MM estimators [3], and the For-

ward Search estimator [4]. All of them will be introduced in §2 below. Methods

with breakdown point larger than 50% involve additional issues [5] and will

not be considered in this paper. Robust tools also exist for more structured15

multidimensional tasks, such as the clustering problems addressed in our work

[6, 7, 8, 9], and in other contexts not considered here, such as Principal Com-

ponent Analysis [10, 11, 12], multivariate ranking [13, 14], multidimensional

scaling [15], Support Vector Machines [16, 17] and feature extraction [18].

The second path to protecting against contamination is diagnostic and con-20

sists in the explicit identification of deviating observations before the main sta-

tistical analysis is performed. In recent years outlier (or anomaly) detection

has gained considerable popularity also outside the statistical community; see,

e.g., [19, 20, 21]. However, it is important to recall that any outlier detec-

tion technique must satisfy a crucial statistical requirement: it must guarantee25

against masking and swamping. The former arises when the aberrant observa-

tions attract the estimates in such a way that they do not appear anomalous

anymore; conversely, the latter occurs when the estimation bias leads uncon-

taminated observations to be mistakenly labeled as outliers. Safeguard against

these undesirable effects can be obtained by the use of diagnostic tools based30
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on high-breakdown estimators and by a careful design of the related statistical

testing procedures [22, 23, 24, 25, 26].

Cerioli et al. [27, 28] give a brief history of robust statistical methods from

the hopeful dawn at the time of the Princeton Robustness Study [29]. They

suggest that a major disincentive to the routine use of standard robust methods35

is the dependence of the efficient application of these methods on the proportion

of outliers expected in the particular set of data being analysed, that determine

the desired efficiency or, equivalently, breakdown point. They also argue that

monitoring the results of a statistical analysis, i.e. repeating the estimation

process for different choices of the tuning parameters, can greatly enhance the40

applicability of robust statistical methods. The monitoring approach for multi-

variate data that we then exploit in this work, and that we extend to clustering,

is developed by [30] as a fruitful reconciliation of the two alternative paths to

robustness outlined above. Indeed, it can lead to robust estimators that are as

statistically efficient as possible.45

Our first analyses assume that we have a sample from a single population,

contaminated by outliers. Clearly in such cases, a very robust analysis with a

breakdown point of 50% can always be used, but this results in an unnecessarily

low efficiency for data that are virtually outlier free. Standard approaches to

increase efficiency are reweighting and the use of MM, rather than S, estimation.50

The contribution of our paper is to exhibit the use of adaptive methods based

on monitoring a series of fits to the data that indicate good choices of efficiency

or bdp.

Our major example, of measurements on 424 cows, shows a strong cluster

structure with several clusters. We extend our method to the constrained clus-55

ter analysis of [31], in which constraints are placed on the shape of clusters

through specification of the ratio of the largest to the smallest eigenvalues of

dispersion matrices. This ratio is again a quantity which has to be chosen be-

fore the data are analysed. Their method achieves robustness via a specified

level of trimming, which requires pre-specification. Dotto et al. [32] illustrate60

the use of reweighting to increase the efficiency of this procedure. We instead
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use monitoring as an adaptive method that avoids the a priori choice of the

trimming level.

We start with robustly fitting a single multivariate normal distribution to

our data set. In §2 we define three sets of robust methods. The best values65

of bdp or efficiency are found by monitoring the behaviour of the robust fits

over a range of values of these quantities. For hard trimming methods, such

as the MCD, we monitor performance over a range of trimming values. These

procedures are briefly illustrated in §3 where the data fall into two clusters. This

structure is indicated by the patterns in plots of Mahalanobis distances resulting70

from monitoring. However, the emphasis in the examples in the section is on

analyses using the Forward Search in which monitoring is part of the robust

method.

Our major example is in §4 where the plots from monitoring are more com-

plicated, indicating at least a three-part structure to the data. The robust75

cluster analysis of these data is presented in §5, beginning, in §5.1, with the use

of random start forward searches to diagnose the presence of clusters. Cluster

analyses for a variety of trimming levels are presented in §5.2, culminating in

the use of monitoring to choose an appropriate amount of trimming. In this case

we monitor the Adjusted Rand Index to determine the change in cluster mem-80

bership as the amount of trimming decreases; monitoring the “car-bike” plot

reveals the stability of solutions with differing numbers of clusters. This anal-

ysis finds five clusters and around 50 unclassified units. In §5.3 we investigate

how the clustering structure and patterns of residuals change at low trimming

levels. Our monitored clustering of the data illuminates the properties of the85

measurements, which come from cows on seven farms.

Conclusions are in §6 followed by a two-part Appendix, the first part pre-

senting theoretical results for the Forward Search and the second illustrating the

use of the Search in analyses of multivariate data with increasing contamination.
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2. A Taxonomy of Robust Methods and Their Monitoring90

We can identify three classes of robust estimators for multivariate data:

1. Soft Trimming (downweighting). The intention is that observations near

the centre of the distribution essentially retain their value, but a suitable weight

function ensures that increasingly remote observations have an effect on fitting95

that decreases with distance from the centre. We look at two such methods, S

estimation and MM estimation for both of which we employ the Tukey biweight

as the downweighting function [3, 33].

2. Hard (0,1) Trimming: the minimum covariance determinant (MCD) and

the minimum volume ellipsoid (MVE) [34]. In both methods h out of the n100

observations are used to estimate the parameters. The value of h is often taken

as ⌊2⌊(n + v + 1)/2⌋ − n + (n − ⌊(n + v + 1)/2⌋)⌋, where v is the number of

variables. Larger values give more efficient estimates of the parameters but with

lower bdp.

3. Adaptive Hard Trimming. In the Forward Search (FS), the observations105

are again hard trimmed, but the amount of trimming is determined by the data,

being found adaptively by the search. See [22] for multivariate data and [35] for

a general survey of the FS, with discussion.

We obtain adaptive versions of these procedures through the use of “mon-

itoring”; we calculate a series of robust fits as the parameter determining the110

properties of the fit varies over its whole range. For S estimation we vary the

bdp from 0.5 (most robust) to 0.01, virtually the non-robust maximum likeli-

hood (ML) solution. In our MM estimation we start with the most robust scale

estimate found using S estimation and then monitor the fits obtained as the

efficiency varies from 0.5 to 0.99.115

In the hard trimming methods we monitor the fits obtained as h varies for

n/2 to n. We do not need to adapt the FS since this already provides a series

of fits as the subset size m increases from very small to all the data.

Producing such a number of robust fits is no longer a computational bur-
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den. Partly this is due to the continually improving performance of computers.120

However a major factor is the efficient programming in the FSDA toolbox [36],

which allows very fast computation of robust procedures and related graphical

methods.

The idea of monitoring robust procedures was introduced for regression by

[27]. More recently [30] provided a thorough exploration of monitoring single125

population robust methods for multivariate data, where further details of the

soft trimming procedures of §§3 and 4 may be found.

3. A Straightforward Example: Eruption of Old Faithful

To demonstrate the use of monitoring in the analysis of a straightforward

data set, we start with a brief analysis of data on the eruptions of the Old130

Faithful geyser in Yellowstone National Park, Montana. First we provide a

summary of results for monitoring MM estimation. An extended analysis using

monitoring to compare the properties of several robust estimators is in §5 of

[30]. We then use the forward search both to identify outliers and, through the

random start forward search, to identify the cluster structure of the data. These135

analyses serve as an introduction to the procedures for the analysis of the more

complicated data set in §4.

The data are taken from the MASS library [37]. There are 272 observations

with y1i the duration of the ith eruption and y2i the waiting time to the start

of that eruption from the start of eruption i− 1.140

The left-hand panel of Figure 1 shows the effect on estimation of changing

the stipulated efficiency of the MM procedure. The plot shows the values of all

n squared Mahalanobis distances as efficiency varies using a “heat map”. In

the coloured .pdf version areas with many overlapping trajectories are shown

in bright blue with the remaining individual trajectories in dark blue. The145

horizontal line is the 99% point of χ2
v. From values of efficiency from 0.5 to 0.7

a robust analysis is obtained in which the outlying observations correspond to

the smaller of the two clusters into which the data fall, and the standard analysis
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Figure 1: Eruptions of Old Faithful. Left-hand panel, Mahalanobis distances from monitoring

MM estimation. Right-hand panel, monitoring correlation between consecutive distances.

is recovered. On the other hand, for high values of efficiency, from one down to

just above 0.7, the maximum likelihood solution is obtained in which there is no150

indication of any clustered structure. The right-hand panel of the plot provides

a method of obtaining the maximum empirical efficiency for these data, using

various measures of the correlation between the n Mahalanobis distances at

adjacent values of efficiency. These plots clearly indicate a maximum empirical

efficiency of 0.71.155

The standard advice to use a high value of efficiency such as 0.99 is overambi-

tious. The monitoring of Mahalanobis distances leads to the adaptive choice of

the highest possible efficiency for these data and so to the most efficient robust

MM estimator.

Further information can be extracted from Figure 1 by “brushing” the units160

with large Mahalanobis distances in the left-hand part of the figure. In this

process the cursor is used to select a region on the screen in which the tra-

jectories of interest lie. The units corresponding to these trajectories are then

highlighted in a linked scatterplot, in this case showing that they form a cluster

of observations distinct from the greater part of the population. All distances in165

the right-hand part of the plot in the left-hand panel of Figure 1 are relatively

small because a single multivariate normal model is being fitted which has its

centre between the two cluster centres. An example of this for a different set of
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Figure 2: Eruptions of Old Faithful. Left-hand panel, minimum Mahalanobis distances from

the Forward Search. Right-hand panel, + the cluster of non-outlying observations.

data is in [38, §7.3].

We now give a brief description of the analysis of these data using the FS170

in which, as described in §Appendix A.1, monitoring is built into the robust

method. We start by fitting a single multivariate model, the analysis producing

figures similar to those in §Appendix A.2.

The left-hand panel of Figure 2 shows the plot of the minimum Mahalanobis

distance of the observations not in the subset used in fitting against subset175

size, as in Figure A.25. As described in §Appendix A.1 we test for outliers for a

variety of sample sizes n† until we find the largest sample containing no outliers.

For testing we extend the notation for the minimum Mahalanobis distance to

dmin(m,n†). Initially n† = n and the signal for outliers occurs earlier atm = 160

because dmin(160, 272) is greater than the threshold in [22]. In order to detect180

which observations are indeed outlying, we illustrated in Figures A.23 and A.26

the use of the superimposition of envelopes. In these figures the envelopes are

appreciably curved for values of m near n, since more remote observations enter

towards the end of the search, giving rise to larger distances. However, the check

of whether the value of dmin(m,n†) is above or below a threshold is pointwise185

for each m. We can therefore transform the vertical scale at each m without

changing the rule. One possibility for ease of reading the graphs is to use the

normal probability transformation to straighten the envelopes. Let the level

of an envelope be γ. Then the normal probability transformation yields an
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Figure 3: Eruptions of Old Faithful. Resuperimposition of envelopes for minimum Maha-

lanobis distances (MMD) in normal coordinates. The outlier-free cluster contains 177 obser-

vations.

envelope value Φ−1(γ).190

Figure 3 shows several resuperimposition curves in normal coordinates for

the Old Faithful data. The top left-hand plot is for n† = 160, the value at which

a signal occurred. There is no evidence of any outliers in a sample of this size,

nor for that with n† = 170 in the right-hand panel in this row. The bottom

left-hand panel, for n† = 177 likewise shows no outlier but the final panel, for195

n† = 178 reveals that one observation now lies above the 99% bound. Since the

procedure is executed automatically the added clarity from the use of normal

coordinates is solely for illustration of the FS.

The data have therefore been divided into two groups, one with a multi-

variate normal structure containing 177 observations, and the rest of the data.200

From the right-hand panel of Figure 2 it is clear that these form a second clus-

ter. We now illustrate the use of the random start FS introduced at the end of

§Appendix A.2 to determine the membership of the clusters. The trajectories of

minimum Mahalanobis distances from 200 random starts are in Figure 4. The

structure is similar to that of Figure A.28 but now the two peaks, indicating205
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Figure 4: Eruptions of Old Faithful. Minimum Mahalanobis distances from 200 random start

Forward Searches indicating the presence of two clusters.

the two clusters, are at 98 and 177. To identify the two clusters we re-run the

FS twice, starting with the initial subset of observations from a randomly se-

lected trajectory that gave each peak. The left-hand panel of Figure 5 shows

the results of the FS in normal coordinates and the right-hand panel shows the

final classification after resuperimposition. The cluster contains 97 units. Since210

there are 272 units in all, this analysis shows that there are two units that could

belong in either cluster. In contrast, in the robust clustering method of §5.2 a

firm decision is made about the allocation of each unit; it is either allocated to

a specific cluster or is treated as a outlier.

4. Cows with Bovine phlegmon215

In this section we consider an example in which the structure is shown to be

more than a main sample and a second distinct cluster.

The data are 424 readings on four properties of cows suffering from Phleg-

mon, a form of foot rot. The four variables are numerical properties calculated

from photographic measurements of the cows. The left-hand panel of Figure 6220
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Figure 5: Eruptions of Old Faithful. Left-hand panel, minimum Mahalanobis distances in

the normal scale from the Forward Search when initializing the search in the lower group.
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Figure 6: Cows with Phlegmon. Monitoring Mahalanobis distances. Left-hand panel MM

estimation, right-hand panel, reweighted MCD.

shows the monitoring plot of squared Mahalanobis distances for the MM es-

timator. The behaviour is more interesting and complex than the monitoring

plots of Figure 1. There are now three stable regions; the plot of Kendall’s τ

analogously to that in Figure 1, now indicates changes at efficiencies of 0.78 and

0.88.225

We now turn to the monitoring of hard trimming methods. The right-

hand panel of Figure 6 shows the monitoring plot for Mahalanobis distances

for the reweighted MCD, with a pointwise boundary of the 99% point of the

χ2
4 distribution for giving an observation zero weight. The distances form three

groups in which they are roughly parallel, with transitions occurring at bdp230

values around 0.3 and 0.15. The stable structure of this plot with roughly
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Figure 7: Cows with Phlegmon. Left-hand panel, brushing the most outlying distances with

efficiencies between 0.5 and 0.77 in the MM analysis of Figure 6. Right-hand panel, clustering

of brushed units.

parallel sets of distances arises when the reweighting has no effect over some

range of bdp values.

The two panels of Figure 7 help interpret this structure for the MM estima-

tor. The left-hand panel shows a brush for the most outlying distances between235

an efficiency of 0.5 and 0.77. The right-hand panel of the figure shows that the

brushed units form a neat cluster, particularly evident in the plot of y1 against

y2. However, the scatterplot of y3 against y4 suggests that the unbrushed group

of units may also form a compact group, but with a scattering of outliers.

We now briefly report an analysis of the data in which we use the Forward240

Search. Figure 8 shows a plot of the minimum Mahalanobis distances during

the search. There is a signal at m = 246 and 127 outliers are identified. What is

interesting in view of the results from monitoring the MM and reweighted MCD

estimates is the trajectory of the distance in the left-hand panel of Figure 8

which exhibits two large peaks, perhaps indicative of two groups. The scatter-245

plot matrix in the right-hand panel shows that the FS has found an ellipsoidal

group of central observations. As with the results of the MM analysis shown in

Figure 7, there does seem to be some further clustering in the outliers.
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Figure 8: Cows with Phlegmon. Left-hand panel, minimum Mahalanobis distances from the

Forward Search. 127 outliers are identified. Right-hand panel, the cluster of non-outlying

observations.

5. Clustering the Data on Bovine Phlegmon

5.1. Random Start Forward Searches250

The left-hand panel of Figure 9 shows the results of 200 random start forward

searches. Particular interest was in the searches that gave a peak at m = 103.

These have been plotted in a darker colour than the remaining searches.

The obvious feature of the plot is that from m = 241 this plot is the same

as that in the left-hand panel of Figure 8; as the search progresses trajectories255

from various starting points converge. Once they have converged there is no

possibility of divergence. Figure 8 indicated one cluster of observations. Brush-

ing the peak at m = 103 in Figure 9 indicates a second cluster, shown in the

right-hand panel. Thus two clusters have been tentatively identified. The plot

of y2 against y3 shows the clusters in an exemplary way. The third peak in the260

forward plot is formed from units in these two cluster. However, inspection of

the other panels of the scatterplot suggests that these two clusters could perhaps

be further divided. For this we turn to robust cluster analysis.
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Figure 9: Cows with Phlegmon; random start Forward Searches. Left-hand panel, minimum

Mahalanobis distances from 200 random start Forward Searches. There is a peak at m = 103.

Right-hand panel, the cluster of observations from brushing this peak.

5.2. Robust Clustering with Constraints

We base our method of robust clustering on a trimmed version of the con-265

strained likelihood clustering procedure of [39], using monitoring to determine

the amount of trimming. The fitted model is a mixture of multivariate normal

distributions.

This method, in the absence of trimming, overcomes the problem of un-

bounded likelihood associated with fitting an unconstrained mixture of normal270

distributions. For a specified number of clusters K, the fitting procedure for a

v-dimensional problem starts by randomly choosing, without replacement, v+1

observations to form each of K cluster centres. The clusters are then grown

from these centres. The procedure is repeated, in our example 2,000 times.

Since interest is not only in finding the best clustering for a given K, but also275

in finding stable solutions as the other parameters change, we need to look at

a few best solutions. A problem is that these may be virtually identical. The

Adjusted Rand Index (ARI) provides a method of identifying partitions which

are “essentially the same”, all except the best of which are discarded as being

“spurious” [40]. We use a value of 0.7 as the threshold above which clusters are280

considered the same.

We follow [31] and use a constraint c ≥ 1 on the ratio of the largest to smallest
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eigenvalues of the dispersion matrices of the clusters. For a given trimming level

α we find clustering solutions over a range of values of c and K. In standard

clustering, such as [41], the Bayesian Information Criterion (BIC) [42] is used285

to select the value of K. If LK(θ) is the loglikelihood of the observations for a

particular K, this criterion minimizes −2LK(θ) + PK , where

PK = {(Kv +K − 1) +Kv(v + 1)/2} logn,

is a penalty term for the number of free parameters; there are Kv means, K− 1

mixture proportions andK dispersion matrices each with v(v+1)/2 parameters.

But the application of the constraints from the value of c reduces the number of290

free parameters in the model and should be allowed for in the model selection

criterion. We use the modified BIC criterion introduced by [39] when the penalty

term becomes

P c
K = {(Kv +K − 1) +Kv(v − 1)/2 + (Kv − 1)(1− 1/c) + 1} logn.

Now the second term is the number of parameters for orthogonal rotations of the

dispersion matrices, unaffected by the constraints, and the third those related295

to the eigenvalues. This term moves smoothly from the most constrained case,

that is c = 1, to complete freedom in the choice of all eigenvalues when the

criterion become the standard BIC.

Since our earlier analysis of the cows data has indicated the presence of

numerous outliers, we start with the high value of 0.3 for the trimming parameter300

α. Our aim in monitoring is to see how sensitive the clustering solution is to the

value of α, in the hope that we can find a stable solution with a lower amount

of trimming.

Figure 10 shows the plot of the modified BIC, when α = 0.3, for the number

of clusters K going from 1 to 8 and c a power of 2 from 1 to 128. For this high305

level of trimming we find that 5 clusters is optimum with c = 128. The values

of c that give the minimum modified BIC for each K are listed at the top of the

figure; apart from that for K = 1, high values of c are optimum. It is clear that

trimming in this range provides a strong cluster structure.
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Figure 10: Cows with Phlegmon. Modified BIC as a function of cluster number K and

eigenvalue ratio c. Trimming level α = 0.30.
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Figure 11: Cows with Phlegmon. Scatterplot matrix of the five clusters identified when

c = 128 and α = 0.30.
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Figure 12: Cows with Phlegmon. Modified BIC as a function of cluster number K and

eigenvalue ratio c. Left-hand panel, trimming level α = 0.25. Right-hand panel, α = 0.2.

The clusters that are indicated are shown in the scatterplot matrix of Fig-310

ure 11 with the 30% trimmed observations removed from the plot. The plot

shows how the two clusters found earlier have been split. The left-hand half of

the plot of y1 against y3 shows how the elongated cluster in the left-hand half

of the right-hand panel of Figure 9 has been divided into two. The division

of the larger cluster into three parts is less clear. The diagonal panels of the315

matrix give boxplots of the observations in the clusters in that row. The x

co-ordinate of the boxplots is the number of the cluster. These four panels of

the boxplots fail to reveal appreciable differences between the co-ordinate wise

means or scatters of the five groups.

We now repeat the analyses for smaller levels of α, that is for lower levels of320

trimming. Figure 12 shows plots of the modified BIC for α = 0.25 and 0.20. In

both cases the three highest values of c indicate five clusters. Lower values of

c indicate more clusters. The scatterplot matrix of the clusters for α = 0.2 is

in Figure 13. As in Figure 11 for α = 0.3, the trimmed observations have been

removed from the plot. Comparison of the two figures shows particular growth325

in groups 4 and 5, which become less clearly separated from the other groups.

Plots of the modified BIC against K, such as Figure 12, only present in-

formation about the best partition of the data for each value of K and c. In

order to exhibit the stability of the solutions to changes in c, [39] introduced the

“car-bike” plot. An example is shown in Figure 14 for α = 0.2. Of the five best330
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Figure 13: Cows with Phlegmon. Scatterplot matrix of the five clusters identified when

c = 128 and α = 0.2.

solutions found, calculation of the ARI shows that two are very close to some of

the other clusterings of the data; they are therefore discarded as spurious. The

figure shows that, for c = 64 and 128, the best solution has five clusters. The

two numbers in the circle are the ranking after and before spurious solutions

have been removed. The bar indicates the values of c for which these are the335

best solutions. The line, in this case for lower values of c, shows that partitions

into five clusters, similar to these (as measured by the ARI), are obtained for c

= 32 and 16. There are also good solutions for K = 7. The second best solution

overall, ignoring the solutions for five clusters in the figure, is for c = 64; the line

shows that a similar solution is found for c = 128. The third best solution is for340

c = 32 and K = 7. The conclusion is that five group partitions are stable over

a range of c values whereas the other solutions, for seven clusters, are second

best, also being less stable to changes in c.

So far we have considered relatively heavy levels of trimming. As a final

detailed cluster analysis we look at partitions with a 10% trimming level. The345
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Figure 14: Cows with Phlegmon. “Car-bike” plot for α = 0.2 showing the stability of the

five cluster solution to the value of the eigenvalue ratio c. The bar shows that the five cluster

solution is best for c from 64 to 128.

results are shown in Figure 15. The left-hand panel shows the plot of modified

BIC. The minimum of these curves is for a partition with K = 7 when c = 128.

However, the car-bike plot in the right-hand panel shows that this solution is

sensitive to the value of c; the second best partition has six groups, likewise

for c = 128. The only solution stable over a range of values of c is again that350

for five groups, which is the third best solution. The bar, thinner than that in

Figure 14, shows that this is also the third best solution for c = 32 and 64. The

line shows that a similar partition is obtained for c = 16. The conclusion is

that, if highly non-spherical groups are allowed with low levels of trimming, the

seven cluster solution is optimum, but unstable to values of c. As c decreases355

the five cluster solution is preferred. These two values of K are important in

the remainder of our analyses.

A main point of our paper is the importance of monitoring to provide adap-

tive values for the parameters required in a robust analysis. In the form of

robust clustering we have been investigating we need to specify both c and α.360

The two car-bike plots show that, except for low levels of trimming, a value of

32 for c provides a stable five-cluster solution. We now use monitoring of the
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Figure 15: Cows with Phlegmon. Left-hand panel: modified BIC as a function of cluster

number K and eigenvalue ratio c. Trimming level α = 0.1. Right-hand panel: “Car-bike”

plot for α = 0.1 showing the stability of the five cluster solution as c changes.

trimming level to determine the best value of α. For a series of values of α be-

tween 0.3 and 0, that is no trimming, we calculate the ARI between partitions

for adjacent values of α, in all cases for K = 5. As Figure 16 indicates, we obtain365

stable solutions up to α = 0.04; sometimes the solutions are so similar that the

ARI is close to its maximum value of one. For α = 0.03 and lower values the

clustering structure starts to change appreciably with the trimming level and

0.04 is the optimum trimming level. This determination of the optimum value

of α is analogous to the monitoring used in §4 to find data dependent values of370

efficiency and bdp.

In order to avoid excessive random fluctuations in Figure 16 we used a set of

20,000 seeds for the initial cluster centres and mixing proportions. These sets

of points in 4-dimensional space were calculated once and used to initialise the

clustering for each value of α. The alternative, independent random sampling375

of the starts for each value of α, gave a rougher plot than that shown here.

Figure 16 shows rapid change in cluster structure for α < 0.04. As a final

illustration of monitoring we present a plot that monitors two aspects of the

cluster structure as a function of α, throughout for five clusters.

For the jth value of the trimming parameter, αj , let the estimated mean in380

the kth group be µ̂jk. The change in this mean in moving from αj−1 to αj is

δ(µjk). As one diagnostic measure we monitor the squared Euclidean distance of
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Figure 16: Cows with Phlegmon. Monitoring the ARI between consecutive cluster allocations

as a function of the trimming proportion α; K = 5, c = 32.
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covariance matrix with trimming level; K = 5, c = 32.
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these changes ∆(µj) =
∑v

k=1 δ
2(µjk). To monitor the changes in the estimated

covariance matrices Σ̂j we look at the diagonal elements σ̂jkk . Taking the sum

of the squared differences of these elements in going from αj−1 to αj gives a385

second vector of measures ∆(Σ)j . Let

∆(µ) = {∆(µj)} and ∆(Σ) = {∆(Σj)}

be r × 1 vectors. As a measure we form the outer product of the two vectors.

After standardization by the maxima of each vector we obtain the measure of

change in the means and covariance as a function of α

MV (α) =
∆(µ)∆(Σ)T

sup
j
∆(µj)sup

j
∆(Σj)

, (1)

a matrix of dimension r × r.390

The bivariate plot of this matrix monitoring measure is given in Figure 17.

It confirms that the large changes in the structure of the groups, as reflected

through the differences in means and the diagonals of the covariance matrices

of the five groups occur for the low values of α that we have already noted. The

small peaks for values of α between 0.1 and 0.2 are caused by changes in the395

variance measure ∆(Σ).

5.3. Interpretation of the Five Clusters

The data come from measurements at seven different farms, a piece of in-

formation we did not use in the analysis described here. In order to see how

our clustering agrees with the allocation to farms we again plot the ARI as a400

function of α, with the index calculated for the agreement between the trimmed

clustering allocation with K = 5 and c = 32 and the identically trimmed set

of observations from the farms. As Figure 18 shows, there is good agreement

between the two allocations up again to an α value of 0.04. Thereafter, as might

be expected when comparing a five group allocation with one with seven groups,405

the two allocations become less close.

There is no reason why all seven farms should be distinct. If two of the

farms are close in properties to some of the other five, the plot of Figure 18
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Figure 18: Cows with Phlegmon. Monitoring the ARI between cluster allocations and farm

number as a function of the trimming proportion α; K = 5, c = 32.
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Figure 19: Cows with Phlegmon. Scatterplots of y1 against y3, including unclassified units

(Group 0). Top left α = 0.14, top right α = 0.09, bottom left α = 0.04, bottom right α = 0.03.
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Figure 20: Cows with Phlegmon. Scatterplot of y1 against y3, including unclassified units,

grouped by farm.

would continue near one for all α. The high values for much of the range of

α suggest that we have indeed found clusters that correspond to the different410

farms when there is some trimming. The low values from low trimming may

suggest the presence of groups we have not found or perhaps the presence of

some unstructured outliers. A third possibility is a highly non-normal cluster.

To explore these possibilities Figure 19 shows scatterplots of y1 against y3 for

a range of values of α in which unclassified units are included as Group 0. The415

top left-hand plot shows the cluster allocation for α = 0.14. The clustering, in

line with the indication of Figure 16, is similar to that for α = 0.2 (Figure 13) and

α = 0.3 (Figure 11). The differences are that the clusters contain more units,

since α is smaller, and that the unclassified units are included in Figure 19.

Moving to a value of 0.09 for α in the top right-hand panel of the figure shows420

appreciable growth in Group 5, which has moved towards Group 4 by absorbing

some previously unclustered units. The changes in going from α = 0.09 to 0.04

(in the bottom left-hand panel) are slight; Groups 1 and 5 have both gained

some units. As would be expected from the ARI plot of Figure 12, there is an

appreciable change in going to α = 0.03. The chief change is in Groups 1 and 3425

for α = 0.04 with Group 1 expanding and Group 2 being replaced by a different

structure (shown by brown squares in the .pdf).

The comparison with the groups of farms in Figure 20 is instructive. It is
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clear that trimming has an effect on the identification of Farm 4 with Group

5. At least in this projection, the units for Farm 4 are divided from those430

from Farm 7 by some from Farm 1. As α decreases from 0.14 to 0.04, Group 5

expands to include some units from Farm 1. The plot also shows that Group 2

mostly includes units from Farm 2. Farm 1 mostly lies between Groups 4 and 5,

but includes a scattering of units in or near other groups. Farm 5 likewise has a

scattering of units. Trimming is needed to avoid these units from distorting the435

groups corresponding to other farms. Farm 3 is included in Group 3 and Farm

6 in Group 1, close together in the three plots excluding that for α = 0.3.

The least regular behaviour is that for readings from Farm 1, which provide

many of the outliers in the panels of Figure 19. It is interesting that this was the

first farm on which the photographic procedure was tried; the data structure440

is a clear indication of learning and calibration difficulties. Overall, our cluster

analysis of the data on cows with phlegmon shows that trimming of as little as

0.04 achieves an efficient partition of the data at the cost of some misallocations

of units from two very non-normal populations.

6. Conclusions445

Data often contain outliers. Appropriate robust methods, correctly tuned,

can reveal the outliers and provide fitted models with highly efficient parameter

estimates. In this paper we have considered the clustering of data into groups

following multivariate normal distributions. In order to bound the likelihood

for this clustering problem we have used a constraint c on the shapes of the450

covariance matrices of the clusters. Robustness has been obtained by trimming

a proportion α of the observations, those that are furthest from the centre of the

clusters to which they are assigned. For a fixed level of trimming, a modification

of the information criterion BIC can be used to select K, the number of clusters.

Such plots are informative about the best partition of the data for each value455

of K and c.

The stability of the solutions to changes in c is shown by the car-bike plot,
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calculated for a specified level of trimming α. To provide an efficient and robust

clustering procedure, we monitor the behaviour of the partitions of the data as α

changes. The Adjusted Rand Index (ARI) provides a measure of the similarity460

of two partitions of the data. Monitoring this index as α decreases from a high

value to zero (no trimming, appropriate in the absence of outliers) leads to the

estimate of α as the smallest value for which the clustering is stable; smaller

values of α lead to changes in the ARI, indicating changes of cluster structure

as outliers are introduced into the data being fitted. Our example on cows in465

Figure 16 shows how sharp the inference on trimming level can be.

The analyses in our paper extend the single-sample monitoring procedure

presented in [30] to cluster analysis. Monitoring the effect of varying the level

of α leads to a data-adaptive choice of trimming level. The discussion to [30]

contains three contributions ([45], [46] and [47]) which describe other ways of470

monitoring cluster analyses. These further illustrate the power of monitoring,

combined with informative plots, in establishing the structure of the data and

determining the best values of the parameters defining a variety of robust meth-

ods.

Although the focus of our paper is on data with multivariate normal distri-475

butions, the scope is much wider. Use of the approximate normalising transfor-

mation of [48] makes normal theory clustering appropriate for many data sets

with skewed observations. Examples of the use of the Box and Cox transforma-

tion in the analysis of multivariate data are in Chapter 4 and successive chapters

of [38].480
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Appendix A. The Forward Search

The purpose of this two-part appendix is to give a short summary of the For-

ward Search, providing background for the FS analyses in §§4 and 5. Theoretical490

results are in the first part with numerical examples in the second.

Appendix A.1. Key Ideas and Mahalanobis Distances

The forward search (FS) provides an automatic form of monitoring. We start

by fitting a small and supposedly homogenous subset of observations, often

chosen through some robust criterion. The fitting subset is then repeatedly495

augmented in such a way that outliers and other influential observations enter

toward the end of the search. Their inclusion is typically signalled by a sharp

increase in suitable diagnostic measures, the values of which are monitored as the

search progresses from the small starting subset to the final fit that corresponds

to the classical statistical summary of the data.500

The search for a single population starts from a subset of m0 observations,

say S∗(m0), robustly chosen. The size of the fitting subset is increased from m

to m + 1 by forming the new subset S∗(m + 1) from those observations with

the m + 1 smallest squared Mahalanobis distances when the parameters are

estimated from S∗(m). Thus, some observations in S∗(m) may not be included505

in S∗(m + 1). For each m (m0 ≤ m ≤ n − 1), the test for the presence of

outliers is based on the observation outside the subset with the smallest squared

Mahalanobis distance.

The parameters µ and Σ of the v-dimensional multivariate normal distri-

bution of y are estimated in the FS by the standard unbiased estimators from510

a subset of m observations, providing estimates µ̂(m) and Σ̂(m). Using these

estimates we calculate n squared Mahalanobis distances

d2i (m) = {yi − µ̂(m)}′Σ̂−1(m){yi − µ̂(m)}, i = 1, . . . , n. (A.1)

To detect outliers we use the minimum Mahalanobis distance amongst observa-

tions not in the subset

dmin(m) = min di(m) i /∈ S∗(m). (A.2)
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Testing for outliers requires a reference distribution for d2i (m) in (A.1) and515

hence for dmin(m) in (A.2). When Σ is estimated from all n observations, the

squared statistics have a scaled beta distribution. However, the estimate Σ̂(m)

in the search uses the central m out of n observations, so that the variability is

underestimated. Results of [43] on truncated distributions provide a consistency

factor520

c(m,n) =
n

m
Cv+2{χ

2
v,m/n}, (A.3)

where Cr(y) is the c.d.f. of the χ2 distribution on r degrees of freedom eval-

uated at y and χ2
r,ζ = C−1

r (ζ), for 0 < ζ < 1, is the ζth quantile of the same

distribution. Then the scaled and asymptotically unbiased estimate of Σ is

Σ̂SC(m) = c(m,n)Σ̂(m).

The scaled minimum Mahalanobis distance dSC

min(m) follows from (A.2) when

Σ̂(m) in (A.1) is replaced by Σ̂SC(m).525

Further distributional results in [22] lead to the distribution of dmin(m)

(A.2) for a given m. As we show, it is extremely helpful to look at forward

plots of quantities of interest such as dmin(m) during the search and to compare

them with the envelopes formed by the forward plots of several quantiles. Such

monitoring plots, drawn for a range of values of m, provide information about530

departures, if any, of the data from the assumed structure.

For precise outlier identification we perform a series of tests, one for eachm ≥

m0. To allow for the multiple testing involved, we use a rule which depends on

the sample size n to determine the relationship between the envelopes calculated

for the distribution of dmin(m) and the significance of the observed values. But,535

if there are outliers, we need to judge the values of the statistics against envelopes

from appropriately smaller population sizes that exclude potential outliers. To

achieve this we introduce the idea of a “signal”. If at some pointm† in the search

the nearest observation to those already in the subset appears to be an outlier,

as judged by an appropriate envelope of the distribution of the test statistic,540

we call this a signal. Appearance of a signal indicates that observation m†,

and the remaining observations not in the subset, may be outliers. The second
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stage of the analysis consists of superimposing envelopes for a series of smaller

sample sizes n†, starting from m†− 1 onwards, until the first introduction of an

observation recognised as an outlier. The details of the procedure are described545

in [22] and exemplified in the next part of this appendix.

In the procedure described so far, a single population multivariate normal

model is fitted to the data belong to S∗(m), the purpose being robust estimation

and the detection of outliers. If, however, the outliers are clustered this structure

may be determined by starting a FS near each cluster centre, when observations550

in other clusters are revealed as outlying. Since the clusters are unknown, [44]

suggest starting the forward search with a number of randomly selected initial

subsets. Once two searches converge to the same subset, they cannot diverge;

as the search progresses the number of distinct trajectories reduces and peaks

in the forward plots of minimum Mahalanobis distances indicate the presence555

of clusters, provided they are not too many.

Appendix A.2. Numerical Examples

We start the series of examples on simulated data with one in which there

are no outliers. In all examples the data are 300 observations simulated from

a five-dimensional normal distribution, constructed from independent standard560

normal observations. Figure A.21 shows the forward plot of the minimum Ma-

halanobis distances of the data together with the 1%, 50% 99%, 99.9%, 99.99%

and 99.999% points of the null distribution of the distances calculated as in [22].

Over the range m = 150 to 300, all observed distances lie between the 1% and

99% limits and there is no evidence of any outlying observations. The vertical565

line in the plot indicates the change in outlier detection rules given by [22];

the change is necessary because of the increasingly steep shape of the envelopes

towards the end of the search, when the more remote observations, with larger

Mahalanobis distances, enter the subset.

Now we look at a series of similar simulations, but with an increasing number570

of outliers, in each case generated by adding three to the values of y in all five

dimensions. In the first example with outliers, shown in Figure A.22, there are
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Figure A.21: 300 simulated observations, no outliers. Minimum Mahalanobis distances from

the Forward Search together with 1%, 50% 99%, 99.9%, 99.99% and 99.999% pointwise en-

velopes. No evidence of any outliers.

six outlying observations. The forward plot of minimum Mahalanobis distances

in the left-hand panel of the plot shows a signal at m = 294 when the plot of

observed values goes outside the uppermost envelope. It stays outside thereafter.575

We start the resuperimposition of envelopes fromm†−1 = 293. The three panels

of Figure A.23 confirm that the first outlier is identified when n = 295. We

have thus correctly identified the six outliers which are shown in the scatterplot

matrix of Figure A.24.

The process becomes less straightforward as the number of outliers increases.580

Figure A.25 gives the forward plot of minimum Mahalanobis distances when

there are 30 outliers (10% contamination). This is a completely different plot

from those we have seen before. There is a signal at m† = 235. The trajectory

then rises to a sharp peak at m = 271 before returning to lie near the 50%

quantile at the end of the search. It is clear that the presence of outliers would585

be completely missed if deletion methods of 2 or 3 observations were applied to
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Figure A.22: 300 simulated observations, six outliers. Minimum Mahalanobis distances from

the Forward Search. There is a “signal” at m = 294.
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Figure A.23: 300 simulated observations, six outliers. Resuperimposition of envelopes for

minimum Mahalanobis distances (MMD); there are no outliers for m = 293 and 294, but one

is identified when m = 295. All six outliers are identified.

31



-2 0 2 4

Y1

-2

0

2

4

Y
5

-2 0 2 4

Y2

-2 0 2

Y3

-2 0 2 4

Y4

-2 0 2 4

Y5

-2

0

2

Y
4

-2

0

2

Y
3

-2

0

2

4

Y
2

-2

0
Y

1
Normal units

Outliers

Figure A.24: 300 simulated observations, six outliers, scatterplot matrix showing all six out-

liers correctly identified by the Forward Search.

the fit to all the data, the phenomenon known as masking. The sharp peak is

caused by the distance between the outliers and the uncontaminated data when

the subset contains no outliers; as soon as a few are introduced, the parameter

estimates change and the remaining outliers seem less remote. The trajectory590

up to the peak illustrates the necessity of a signal. It is similar in shape to the

calculated quantiles in the plot, but for a smaller value of n; resuperimposition

allows comparison of the trajectory with envelopes from a series of sample sizes.

We start in Figure A.26 with m = 234. Here the trajectory lies below the

envelopes. Similar patterns persist until m = 270, when the trajectory is well595

within the central band. As the remaining two panels of the figure show, there

is no evidence of an outlier for m = 271, but there is for m = 272. Thus

we have found 29 out of the 30 outliers and obtained efficient estimates of the

parameters.

Figure A.27 gives a scatterplot matrix of the 29 outlying observations. As600

would be excepted from the way in which these are simulated, they form a

cluster. We conclude this section with an example of the use of the random
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Figure A.25: 300 simulated observations, 10% outliers. Minimum Mahalanobis distances from

the Forward Search. There is a “signal” at m = 235.
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Figure A.26: 300 simulated observations, 10% outliers. Resuperimposition of envelopes for

minimum Mahalanobis distances (MMD). There are no outliers for m = 234 and 270 and 271,

but one is identified when m = 272; 29 outliers are identified and efficient parameter estimates

obtained.
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Figure A.27: 300 simulated observations, 10% outliers, scatterplot matrix showing the 29

identified outliers.

start forward search in detecting a cluster structure.

We continue with the same data structure but now with 135 outliers (45%).

The automatic procedure for outlier detection based on a signal and resuper-605

imposition of envelopes identifies 131 outliers, but does not offer any indication

of their structure. However, the forward plot of minimum Mahalanobis dis-

tances from 200 random starts in Figure A.28 shows two clear peaks, one around

m = 135 and the other around m = 170. The plot thus indicates the presence of

two clusters, rather than of a single population with many unstructured outliers.610

As Figure 9 shows, this procedure is sometimes particularly useful for identify-

ing clustering structure when there are more than two clusters which cannot be

easily identified from scatterplot matrices. Here the two clusters become evident

on fitting a single multivariate model to the data.
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Figure A.28: 300 simulated observations, 45% outliers. Minimum Mahalanobis distances from

200 random start Forward Searches indicating the presence of two clusters.
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[47] L. A. Garćıa-Escudero, A. Gordaliza, C. Matrán, A. Mayo-Iscar, Com-

ments on “The power of monitoring: How to make the most of a contam-

inated multivariate sample”, Statistical Methods and Applications (2017).

https://doi.org/10.1007/s10260–017–0415–x.

[48] G. E. P. Box, D. R. Cox, An analysis of transformations (with discussion),740

Journal of the Royal Statistical Society, Series B 26 (1964) 211–246.

40


