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Abstract

Multimodal data fusion has shown great advantages in uncovering information that could be 

overlooked by using single modality. In this paper, we consider the integration of high-

dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. 

With a focus on taking advantage of both phenotype and genotype information, a novel structured 

sparsity, defined by ℓ1, p-norm (p > 1), regularized multiple kernel learning method is designed. 

Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and 

also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, 

followed by grouping the kernels according to modalities. Then, an optimally combined kernel 

presentation of multimodal features is learned in a data-driven approach. Contrary to the Group 

Lasso (i.e., ℓ2, 1-norm penalty) which performs sparse group selection, the proposed regularizer 

enforced on kernel weights is to sparsely select concise feature set within each homogenous group 

and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated 

our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. The effectiveness of the method is demonstrated by the clearly improved prediction 

diagnosis and also the discovered brain regions and SNPs relevant to AD.
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, resulting in a gradual loss 

of memory and cognitive function [1]. Recognized as an early stage of AD, mild cognitive 

impairment (MCI) has a high risk of progressing to AD [2]. Advances in acquiring 
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multimodal imaging, such as magnetic resonance imaging (MRI) and positron emission 

tomography (PET) for the brain, provide unprecedented opportunities for early prediction of 

the disease. In this context, many machine learning methods [3–9] have been introduced to 

identify diverse biomarkers for AD and MCI using different image modalities, yielding 

important insights into the progression patterns of AD [1]. Actually, when used together for 

diagnosis of AD or MCI, different data modalities provide different yet complementary 

information [6,7,10–12]. On the other hand, genotype information has also played an 

increasingly important role in AD research over the past few decades [1,13,14]. Among the 

many factors that increase the risk of getting AD, the genetic variation has been identified as 

an important one [1,13] as AD is heritable. In particular, single nucleotide polymorphisms 

(SNPs) are the most common type of genetic variation [13]. Currently, identifying SNPs 

associated with AD have attracted a lot of attentions [13,14].

Therefore, it is important and beneficial to build prediction models by leveraging both 

phenotype and genotype data, e.g., MRI, PET, and SNPs, for improving diagnosis 

performance. Using biomarkers of multiple modalities may reveal hidden information that 

may be overlooked by using single modality. However, the integration of multimodal data is 

burdened by a number of challenges, such as limited observations, highly-redundant high-

dimensional data, and the heterogeneous nature of the multimodal data. For instance, the 

genetic data usually contain thousands of SNP features with many irrelevant ones, while 

subjects with all modality data are relatively scarce. In fact, high-dimensional problem has 

represented a critical challenge in many fields [17]. While regularization by sparsity-

inducing norms such as ℓ1 norm [15] is a fruitful way of avoiding overfitting through variable 

or feature selection, taking into account structure information among features is another 

important topic [18–21]. Meanwhile, the phenotype and genotype data encode different level 

of knowledge for the disease, and different imaging modalities further capture different 

phenotype information. While directly pooling features together will treat multimodal 

features equally, the strategy that independently selects features from each modality and then 

combines them together is also suboptimal, as most discriminative features in one modal 

may not the best candidate ones for combination with features from other modalities. 

Therefore, feature selection and fusion by taking advantage of the multimodal nature of the 

data become essential to prepare clean, interpretable data and build simpler and more 

powerful models.

In view of the complementary information contained in different modalities in our case, all 

modalities are expected to contribute to AD prediction, although with the possible different 

levels of importance. In fact, for some modalities, their features as a whole are relatively 

weaker than those in other modalities. Therefore, when utilizing the sparsity inducing Lasso/

Group Lasso for feature/group selection [14,22,23], features from weak modalities may have 

less chance to be selected, as illustrated in Fig. 1. To address this issue, we propose to learn a 

better multimodal feature combination by jointly selecting subsets of discriminative features 

from each modality with a novel structured sparsity regularizer.

In this paper, a novel route1 is introduced for multimodal data based AD diagnosis (see Fig. 

2). Specifically, we propose a (weighted) ℓ1, p norm (p > 1) regularized multiple kernel 

learning (MKL) method for multimodal feature selection and fusion (note that a special case 
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(ℓ1, 2 norm) was already considered for regression [25] and multitask learning [26] and also 

analyzed by Kong et al. [27]). Instead of representing each modality with a kernel as 

previous works [10,22,28], we assign each feature with a distinct kernel through its own 

feature mapping and capture feature-wise importance by learning the weight for each kernel. 

Further, the kernels are grouped according to task specific criteria, e.g., feature modalities in 

this multimodal diagnosis task. Then, the proposed structured sparsity regularizer is utilized 

for feature selection through enforcing both feature-level and group-level constraints on 

kernel weights. More specifically, 1) by enforcing ℓ1 sparsity on kernel weights within each 

modality, we can select the informative features from each modality in which the features 

are relatively homogenous, and 2) by performing dense ℓp regularization across different 

modalities, which has the advantage of better combining complementary features than ℓ1 

norm [29], we can better fuse all modalities. In this way, the sparse feature selections from 

different modalities are performed simultaneously and also constrained by each other. 

Accordingly, features that are not only discriminative but also complementary will be more 

likely selected.

1.1. Background and related works

For AD diagnosis, many methods towards heterogeneous multimodal feature selection and 

fusion have been developed [6,9,11,19,30–32]. A straightforward way to fusion multi-

modality data is to pool features from multiple modalities together [33,34], and then feed 

them to train a classifier. However, this simple concatenation strategy has shown to be 

suboptimal to integrate heterogeneous modalities [10], as it tends to ignore relationships 

within and/or across modalities [9,28,35].

An alternative way to leverage multi-modal data is the kernel or graph based methods. In 

Zhang et al. [10] and Hinrichs et al. [36], each modality was represented with a kernel, and 

modality fusion is achieved through linear kernel combination. Many works [23,28,37–40] 

followed this strategy for multimodality fusion. In Gray et al. [41], each modality was 

represented by a graph encoding subject similarity; then, the modality fusion is achieved 

through linear combination of the graphs. Recently, Tong et al. [42] utilized cross diffusion 

among graphs to achieve nonlinear modality fusion.

Feature selection methods (e.g., Lasso [15], t-test, and Fisher Score [43]) are usually applied 

on individual modality before concatenation or on the concatenated feature vector. While 

selecting features individually will ignore the presence of other modalities, selecting features 

from concatenated features treats features from all modalities equally. For improved feature 

selection by incorporation of modality relationship, the concept of multitask learning has 

been introduced for AD diagnosis [6]. In Zu and Co-authors [37–39], each modality was 

regarded a task, and multimodal features are jointly selected. Specifically, they assumed 

different modalities have the same number of features characterizing group of brain 

subregions. With a sparsity regularization, different types of features for the same subregion 

are jointly selected or discarded. However, this assumption prohibits its application to the 

joint selection of genotype and phenotype features, where no direct correspondences 

1A preliminary version of this paper was appeared in Peng et al. [24].
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between them exist. In [14], Wang et al. combined quantitative traits regression and multi-

class classification as multi-task. Multimodal data integration is achieved through two Group 

Lasso regularizers (ℓ2, 1 norm) [16] which performed sparse selection at the group level and 

dense combination features within each group. Specifically, one Group Lasso regularizer 

selected the most discriminative modality; the other one selected the most discriminative 

features from the kept modalities and also enforces the same feature to be kept across 

different modalities.

The most crucial element for a kernel based method is the kernel construction. Multiple 

kernel learning (MKL) [44,45] provides an elegant framework for learning a data-dependent 

kernel representation [29,46]. Specifically, MKL learns from data an optimal combination of 

a set of basis kernels. The selection of certain regularization methods yields different kernel 

selection and/or combination approaches [22,23,47]. In particular, ℓ1-MKL [46] with the 

sparsity inducing ℓ1 norm [15] constraint on kernel weights, is able to sparsely select a few 

most relevant and discriminative kernels. Usually by encoding information of each whole 

modality with a base kernel, the kernel selection yields discriminative modality selection. In 

Yeh et al. [48] and Liu et al. [23], each modality was affiliated with several types of kernels, 

forming kernel groups; then the Group Lasso regularized MKL [47] was utilized to 

simultaneously select a few most relevant modalities and densely combine different kernel 

types within each group. It should be noted that, although some modalities (e.g., SNPs) 

contain large number of irrelevant features, they also encode critical aspects of pathological 

changes associated with AD.

In this paper, we address the problem of the multimodal feature selection and combination 

by kernel representation learning. To facilitate feature selection in kernel space, we firstly 

represent each feature with a basis kernel. Secondly, we explore groups (e.g., modality 

groups) in the multimodal features and use a novel ℓ1, p norm, 1 < p, to achieve structured 

feature selection and modality fusion simultaneously. The advantage of our structured 

sparsity method over the popular Lasso and Group Lasso is illustrated in Fig. 1. Specifically, 

although Lasso supports interpretability and scalability, it can only select the most 

discriminative features without being aware of any group information. Moreover, it is less 

effective to combine complementary features, which has been noticed in many studies 

[16,17] including MKL related methods [29]. Group Lasso can only select some most 

discriminative groups of features. In contrast, the proposed one will select discriminative 

features while being aware of heterogeneous groups and the effect of group combination.

Structured sparsity by ℓq, p (1 ≤p, q) mixed norm [25], which can explore inherent group 

structure of data, has considered in many tasks [18,49,50]. In addition to the most notable 

Group Lasso (ℓ2, 1 norm), more general cases ℓq, 1 norm with q > 1 and p = 1 has been 

considered in Zhao et al. [49]. In Rakotomamonjy et al. [51], the ℓq, 1 norm with 1 < q ≤ 2 

was combined with MKL for multitask learning, and more generally the nonconvex case 

with 0 < p < 1 was also considered. However, with 1 < q and p ≤ 1, the regularizer only 

introduces group-level sparsity and all variables within the selected group will be selected. 

In some applications, it is desirable to also enforce sparsity within groups while keeping all 

groups. Accordingly, Kowalski et al. [25] investigated the effect of general ℓq, p (1 ≤ p, q) 

including the cases q = 1 for regression task with least square fidelity loss. For the case ℓ1, 2, 
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in each group, at least one variable will be selected. The same ℓ1, 2 norm penalty is also 

proposed in Zhou et al. [26] for multitask learning to achieve the competition among tasks. 

In this paper, we consider the combination of the more general case ℓ1, p with 1 < p and MKL 

for multmodal data based diagnosis. A main challenge for this penalty, even for the 

apparently easier case p = 2, is that there is no analytical solution for its proximal operator 

[25], which is usually a essential tool to optimize with sparsity-inducing penalties [18]. By 

employing model structure, a block coordinate descent algorithm applicable to any 1 ≤ p is 

introduced.

The remainder of the paper is organized as follows. Section 2 presents the proposed method 

and optimization algorithm. A number of experimental and comparative results are 

presented in Section 3, followed by discussion and conclusion in Sections 4 and 5.

2. Method

An overview of our framework is illustrated in Fig. 2. Let x(i), y(i)
i = 1
N

 be the training data, 

where x(i) = x1
(i), x2

(i), ⋯, xM
(i) T ∈ RM is the data sample, M is the number of all features from 

all modalities, and y(i) ∈ { 1, −1} is a class label. The aim is to simultaneously learn an 

optimal feature representation and a max-margin classifier in kernel space because of its 

efficient and elegant way of modeling complicated patterns. Specifically, the optimal kernel 

for feature representation is a linear combination of a set of basis kernels, each of which is a 

kernel representation of one raw feature. In this way, the selection of basis kernel amounts to 

feature selection. As both classification and feature representation can benefit from effective 

feature selection, we introduce structured sparse penalty on the weights for kernel 

combination. The learned optimal kernel is employed for classifier learning.

In the following, we denote vectors as boldface letters (e.g., θ) and vector elements as non-

bold letters with subscripts (e.g., θi), the transpose of vector by the superscript T and a vector 

with all entries equal to a constant C as C (e.g., 1). We also denote ‖ · ‖p with p ≥ 1 as the ℓp-

norm of vector and | · | as the absolute value of scalar. Symbol ≜ means definition.

2.1. Structured sparsity feature selection and kernel learning

In this section, we introduce the group structured sparsity penalized multiple kernel learning. 

In detail, as shown in Fig. 2 we separately transform the M-dimensional features into new 

feature spaces via M different feature mappings ϕm m = 1
M , such that the originally 

complicated task is transformed into a easy linear one. By employing kernel trick [45], each 

ϕm gives rise to a basis kernel Km≥0 defined by inner products in the new feature space. In 

the model computation, no feature mappings ϕm m = 1
M  but kernels Km m = 1

M  are needed to 

explicitly specify, which will be clear in Algorithm 1. Exploiting inherent group structures 

[16,18,52] has shown to improve the performance and interpretability of the learned models. 

Let 𝒢 = 1, 2, ⋯, M  be the feature index set which is partitioned into L non-overlapping 

groups 𝒢l l = 1
L  according to task-specific knowledge. For AD diagnosis, multimodal 

heterogenous features are naturally partitioned into groups according to the number of 
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modalities. Although each modality contains large number of irrelevant features, all 

modalities contain crucial factors complementary to each other about AD.

Given the transformed feature space defined by the joint feature mapping Φ(x) = (ϕ1 (x1), ϕ2 

(x2), …, ϕM (xM))T the objective is to learn a linear discriminant function f(x) that can 

generalize well on unseen data,

f (x) = ∑
l = 1

L
∑

m ∈ 𝒢l

θmwm
T ϕm xm + b . (1)

Here, we have explicitly written out the group structure 𝒢l l = 1
L . Further, 

w = w1, w2, ⋯wM
T is the normal vector of the decision hyperplane f(x), b encodes the bias, 

and θ = (θ1, θ2, ⋯, θM)T contains the feature mapping weights. Thus, features with zero 

feature mapping weights would not be active in the discriminant function f(x).

In order to obtain a filtered set of features, we propose to enforce an ℓ1, p mixed norm on the 

weights (i.e., θ) of the feature mappings. More generally, we can further introduce 1) M 
positive weights β = (β1, β2, ⋯, βM)T on the elements in θ, and 2) L positive weights γ = 

(γ1, γ2, ⋯, γL)T on groups in θ to encode prior information. For example, for ROIs or ROI 

groups in brain known to be less relevant to AD, we can specify larger weights. If we have 

no knowledge about feature and/or group importance, we can set β = 1 and/or γ = 1. 

Accordingly, our generalized MKL model with a structured sparsity-inducing constraint can 

be formulated as below:

min
θ, w, b

C ∑
i = 1

N
ℒ f x(i) , y(i) + 1

2 ∑
l = 1

L
∑

m ∈ 𝒢l

wm
2

2

s.t.  θ
1, p; β, γ

≜ ∑
l = 1

L
γl ∑

m ∈ 𝒢l

βm θm

p
1
p

≤ τ,

0 ≤ θ,

(2)

where the first term of the objective function measures the classification error with the hinge 

loss ℒ(t, y) = max(0, 1 − ty), the second term ensures max-margin classification, the 

nonnegative parameter C is a trade-off weight of the two terms. The weighted ℓ1, p mixed 

norm, i.e., ‖ · ‖1 p;β,γ, in the inequality constraint simultaneously promotes sparse selection 

inside groups with the inner weighted ℓ1 norm, and pursues dense combination of groups 

with the outer weighted ℓp norm (p > 1) which is not a sparsity-inducing norm. As has been 

discussed by Kloft et al. [29], although the non-sparse ℓp norm cannot promote feature 
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selection, it has the advantage of better combining complementary features than ℓ1 norm. 

The nonnegative parameter τ in Eq. (2) is used to control the sparsity level of θ. As will be 

shown in Section 2.2, the parameters C and τ can be fold into one parameter and set τ = 1.

Similar to the classical MKL [46], the subproblem about θ in (Eq. 2 is equivalent to learning 

an optimally combined kernel K = ∑m = 1
M θmKm (see Eq. (12) and the Appendix for a proof). 

Therefore, θ also acts as weights for kernels. With the one-to-one correspondence between 

the M features and the M feature mappings (or M kernels), through optimizing Eq. (2), we 

can obtain the optimal coefficients θ* which is implicitly related to all the features. The 

coefficients in θ* indicate the feature contributions.
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Algorithm 1

Block Coordinate Descent Algorithm for the Proposed Model.

1: initial input: C′, {Km}, β, γ, feasible θ, such as θm = ∑l = 1
L γl ∑m′ ∈ 𝒢l

βm′
p − 1

p

2: while optimality condition is not satisfied do

3:  Compute α in Eq. (12) and b using SVM solver [54]

4:  Compute ‖wm‖2 for all m = 1. ⋯, M according to Eq. (13)

5:  Update θm for all m = 1. ⋯, M according to Eq. (4), i.e.,

θm =
wm 2

βm

1
2γlm

1
p + 1 W𝒢lm 1; β

p − 1
p + 1

⋅ 1

∑l = 1
L γl

1
p + 1 W𝒢l 1; β

2p
p + 1

1
p

6: end while

The rationale of using the proposed structured sparsity constraint is that, each individual 

modality contains redundant high-dimensional features and meanwhile offers 

complementary information to other modalities. As for the AD, the genetic and anatomical 

variations encoded by SNPs and imaging modalities are different but crucial measurements 

for the brain structure and function. Consequently, each modality is crucial. Accordingly, the 

proposed structured sparsity constraint 1) promotes sparse feature selection within each 

modality, which is desirable to interpret the results and obtain a simplified decision rule, and 

2) encourages dense ℓp combination across groups to leverage the synergy between different 

modalities. As will be shown later in Eq. (4), θ attains optimal value at the contour of 

constant τ, i.e., ‖θ*‖1,p;β,γ = τ; moreover, the optimal value tends to attain at regions with 

high curvature [17,53]. Specifically, for p ≥ 2, an ℓp norm regularizer encourages all feature 

groups to have similar degrees of importance; for 1 < p < 2, ℓp norm regularizer encourages 

different degrees of importance for different groups, as the high curvature regions are nearby 

the axis. for p = 1, it is well known that the ℓ1 norm promotes some groups to have zero 

weights/contributions. In view of different modality’s strength for AD classification, we take 

a compromise of Lasso (ℓ1 norm) and Ridge (ℓ2 norm) regularization and intuitively set p = 

1.5 for inter-group regularization, thus allowing the assignment of larger weights for leading 

groups/modalities.

Note that the proposed ℓ1, p-norm based regularization is completely different from Group 

Lasso (ℓ2, 1 norm) which gives a sparse set of groups but performs no feature selection within 

each group [16,47]. When all features form a single group, the proposed model degenerates 

to ℓ1-MKL [46]. A comparison of different sparsity patterns selected by Lasso, Group Lasso 

and the proposed structured sparsity is shown in Fig. 1. Specifically, the Lasso and Group 

Lasso tend to sparsely select few most discriminative features and groups, respectively. Thus 

features in some relatively-weak modalities may be mostly or totally discarded. In contrast, 

the proposed model can not only keep information from each modality with the outer 
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nonsparse regularization but also support variable interpretability and scalability with the 

inner sparse feature selection. Moreover, feature selections in different modalities interact 

with each other in our method to finally obtain a better combined feature set.

2.2. Model analysis and computation

For further understanding of the propose d model, we introduce variable changing. 

Specifically, let wm = θmwm for each m and w = (w1, w2, ⋯, wM)T, the proposed model (2) 

can be reformulate into the following convex optimization problem,

min
θ ≥ 0, w, b

C ∑
i = 1

N
ℒ f x(i) , y(i) + 1

2 ∑
l = 1

L
∑

m ∈ 𝒢l

wm 2
2

θm

s.t.  θ
1, p; β, γ

≤ τ,

(3)

where, here and in what follows, we use the convention that 0/0 = 0. We have the following 

lemma, which also gives light on the computation of the sub-problem about θ in Eq. (2).

Lemma 1. (Solution for the subproblem of θ) Given p ≥ 1, positive weights γ and β. Let W 
= (‖w1‖2, ‖w2‖2, …, ‖wM‖2)T. For fixed W ≠ 0 and b, the minimal θ in Eq. (3) is attained at

θm* =
wm 2

βm

1
2γlm

1
p + 1 W𝒢lm 1; β

p − 1
p + 1

⋅ τ

∑l = 1
L γI

1
p + 1 W𝒢l 1; β

2p
p + 1

1
p

,  ∀m = 1, 2, ⋯, M (4)

where W𝒢l 1; β
= ∑m′ ∈ 𝒢l

βm′

1
2 wm′ 2

, and 𝒢lm
 is the index set that m belongs to. Moreover, 

‖θ*‖1,p;γ,β = τ.

Proof. The partial Largrangian function associated to Eq. (3) is

L = C ∑
i = 1

N
ℒ f x(i) , y(i) + 1

2 ∑
l = 1

L
∑

m ∈ 𝒢l

wm 2
2

θm
+ μ

2 θ 1, p; β, γ − τ , (5)

where μ ≥ 0 is the Lagrange multiplier. As the objective function with respect to θ is 

monotone, the convex constraint is active and ||θ||1,p;β,γ = τ. So, the Lagrange multiplier μ> 

0. According to the first order optimality conditions, i.e., the Karush-Kuhn-Tucker (KKT) 

conditions [54], we have
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0 = ∂L
∂θm

= −
wm 2

2

θm
2 + μ θ

1, p; β, γ

∂ θ 1, p; β, γ
∂θm

=   −
wm 2

2

θm
2 + μ θ

1, p; β, γ

2 − p

θ𝒢lm
1

p − 1

γlm
βm .

(6)

Let ξ = 1/ μ θ 1, p; β, γ
2 − p , we have

θm θ𝒢lm 1

p − 1
2 = ξγlm

−1/2βm
−1/2 wm 2

. (7)

Taking into account the definition of ‖θ‖1, p; β, γ, we further have

θ𝒢lm 1
= ξ

2
p + 1γlm

− 1
p + 1 W𝒢lm 1; β

2
p + 1

. (8)

By using τ = ‖θ‖1,p;β,γ and W ≠ 0, we can obtain

τ = θ

1, p; β, γ

= ∑
l

γl θ𝒢l 1

p
1/ p

= ξ
2

p + 1 ∑
l

γl

1
p + 1 W𝒢l 1; β

2p
p − 1

1/ p

. (9)

ξ
2p

p + 1 = τp

∑l = 1
L γl

1
p + 1 W𝒢l 1; β

2p
p + 1

(10)

Resubstitution of ξ
2p

p + 1  and θ𝒢lm 1
 into Eq. (7) yields the claimed results. By using the 

definition of the weighted ℓ1, p mixed norm, we can obtain ‖θ*‖1, p;γ,β = τ. □

For fixed W, Eq. (2) gives an explicit solution for θ. Plugging Eq. (4) into Eq. (2) yields the 

following equivalent form for the proposed model.

Theorem 1. Let p′ = 2p
p + 1 . For p ≥ 1, the model in Eq. (2) (also Eq. (3)) is equivalent to
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min
w, b

 C ∑
i = 1

N
ℒ ∑

l = 1

L
∑

m ∈ 𝒢i

wm
T ϕm xm

(i) + b, y(i)   +   1
2τ ∑

l = 1

L
γl

2 −  p′
p′ ∑

m ∈ 𝒢l

βm

1
2 wm

2

p′
2
p′

(11)

The second term in Eq. (11) is agian a weighted ℓ1,p′, norm penalty on W with p′ ∈ [1, 2). 

By choosing p = 1.5 and thus p′ = 1.2, it shares similar group-level regularization property 

with that in Eq. (2) on θ. As a result, in each group, only a small number of wm can 

contribute to the decision function f(x) with nonzero values. Accordingly, only a few 

features in each group can be selected. Meanwhile, the sparsely filtered groups are densely 

combined, while allowing the presence of leading groups.

After the variable changing, the model in Eq. (2) is convex w.r.t. to θ, w and b, respectively. 

We can optimize it via block coordinate descent, which updates just one block of variables at 

a time. Moreover, from Eq. (11), it is obvious that we can fold τ and C into a single trade-off 

weight C′ and set τ = 1. In this way, we have single model parameter C′ which not only 
acts as the soft margin parameter but also controls the sparsity of θ and W.

The detailed optimization procedure is shown in Algorithm 1. To run this algorithm, we 

need not to specify the feature mappings, and instead we just need to specify the base 

kernels by using the following dual form of Problem (3) (see Appendix for a proof),

min
θ ≥ 0

 max
α

∑
i = 1

N
αi − 1

2 ∑
i = 1

N
∑
j = 1

N
αiα jy

(i)y( j) ∑
m = 1

M
θmKm xm

(i), xm
( j)

s.t.  θ 1, p; β, γ ≤ 1,   ∑
i = 1

N
αiy

(i) = 0,

0 ≤ αi ≤ C′,  i = 1, ⋯, N .

(12)

The vector α is the dual variable of w, and wm =  θm∑i = 1
N αiy

(i)ϕm χm
(i)  in the optimal point 

for the fixed α, hence we have

wm
2

2
= θm

2 ∑
i = 1

N
∑
j = 1

N
αiα jy

(𝔦)y( j)Km xm
(i), xm

( j) (13)

Accordingly, the decision function with kernel is as follows,

f (x) = ∑
i = 1

N
αiy

(i) ∑
m = 1

M
θmKm xm, xm

(i) + b . (14)
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As each base kernel is based on one dimensional feature, the computational time for the 

summed kernel is O(M). Apparently, the running complexity needed to classify a sample is 

O(NM). However, as a max-margin classifier similar to SVM, only Nsv(< N) support vectors 

involve the prediction. Moreover, due to the sparse selection of base kernels, the overall 

complexity is O(NsvMs), where Ms(< M) is the number of selected base kernels.

3. Experiments

In this section, we study the proposed ℓ1, p-norm (p > 1) regularized MKL method in terms of 

efficiency of feature selection and accuracy of diagnosis. To this end, a synthetic data 

experiment was firstly introduced to shed light on the efficiency of structured feature 

selection. For the evaluation of AD diagnosis, we employed data obtained from ADNI 

dataset2.

3.1. Simulation study

The synthetic data with feature groups was generated for classification and feature selection 

tasks as follows. Suppose a dataset with N = 100 observations and M = 100 variables is 

collected in data matrix X ∈ RN×M, in which the M features have L groups. Specifically, we 

used L = 5 groups of equal size in the simulation, i.e., indexes in the lth group are from (l 
− 1) *M/L + 1 to l*M/L. The data matrix X samples from a multivariate normal distribution 

N(1, Σ) with a Toeplitz covariance matrix Σ that encourages different level of correlation 

between groups and within groups. For variables within the lth group, the entry of Σ is 

Σi, j = cl
[i − j|, l = 1. 2, ⋯, L; for variables between groups, the entry of Σ is Σi, j = d i − j . With 

larger cl, the correlation within the lth group will be larger. We set c = (0.1, 0.3, 0.5, 0.6, 

0.7)T to simulate varied within-group correlations, and the parameter d was set 0.1.

We consider the classification model y = sign(Xξ + b + ε). where y contains the true class 

labels, ξ is true parameter with sparsity, b is the bias and ε is white Gaussian noise with a 

standard deviation of 0.3. In each group, ξ has only one non-zero element, which takes value 

from standard norm distribution. In the experiment, the indexes of non-zero elements in 

coefficient ξ were {1, 32, 46, 62, 93}, and the values of non-zero elements were {0.3591, 

−0.7943, −0.2273, 1.5938, 0.1552}, respectively. The bias was set b = −0.8*1. For this 

simulation study, all of the 5 groups have contribution to the prediction, and for each group, 

one feature is expected to be selected.

To investigate the effect of structured feature selection, we compared our method (ℓ1, p-

MKL) with three sparse feature selection methods: 1) the Lasso (ℓ1 norm penalty) with 

logistic loss; 2) the Group Lasso (ℓ2, 1 norm penalty) with logistic loss; 3) the ℓ1-MKL which 

is a widely-used model but does not consider structure information. An graphical 

comparison of Lasso, Group Lasso and the proposed method (p > 1) has shown in Fig. 1. 

Further quantitative studys based on synthetic data are listed in Table 1. The experiment 

showed that, 1) without taking into account structure information, the Lasso method only 

selected features from group 2 and 4, and the ℓ1-MKL selected features from group 2, 4 and 

2http://adni.loni.usc.edu
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1 with higher chance; 2) the Group Lasso selected three whole groups of features, i.e., group 

1, 2, and 3, and the total number of selected features was still large; 3) in contrast, the 

proposed method with p > 1 selected features from all the 5 group, although an alternative 

feature from group 5 was selected due to high correlation in group 5. Moreover, the 

classification accuracy (ACC) of our method, especially with p = 1.5, was higher than Lasso, 

Group Lasso and ℓ1-MKL. For Lasso and Group Lasso, SVM was used as the final classifier; 

for ℓ1-MKL and our method, linear base kernel is assigned for each feature to facilitate 

feature selection. Overall, the results suggest that, when all feature groups are known to 

contain critical information, the ℓ1, p norm penalty is favored. This is the case for AD 

diagnosis, where crucial and complementary information is encoded in data of 

multimodalties. For the proposed method, we also investigated different choices of p, i.e., 

ℓ1, 1.5-MKL, ℓ1, 2-MKL and ℓ1, 6-MKL. With different p, the proposed method selected similar 

top features with possibly different orders of importance. However, the performance with p 
= 1.5 was better. As noted in Zhao et al. [49], for ℓp norm penalty with 1 < p < 2, estimated 

coefficients lying in directions closer to the axis are favored; as p (p > 2) goes larger, 

estimated coefficients tend to concentrate along the diagonals, promoting equal coefficients. 

Roughly speaking, when employed as a group-level regularizer, with 1 < p < 2 some 

dominated groups are allowed, and with p > 2 dominated groups will be not encouraged. 

Therefore, when different groups contribute equally, the larger p > 2 is favored; otherwise, 1 

< p < 2 is more favorable.

3.2. Real data: ADNI data

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies, and nonprofit organizations as a public-private partnership. 

Investigators3 within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. The primary 

goal of ADNI has been to test whether MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. Determination of sensitive and specific markers for AD is intended to aid 

researchers and clinicians to develop new treatments and monitor their effectiveness, as well 

as lessen the time and cost of clinical trials.

We evaluated our method by applying it on two subsets (named Dataset I and Dataset II in 

the following) of the ADNI. The Dataset I contains MRI, PET, and SNP data of 189 

subjects, including 49 patients with AD, 93 patients with MCI, and 47 Normal Controls 

(NC); the Dataset II consists of MRI, PET, and SNP data of 360 subjects, including 85 

patients with AD, 185 patients with MCI, and 90 Normal Controls (NC). The demographic 

information of subjects in the two datasets is summarized in Table 2. For inclusion/exclusion 

of the subjects, we have used the following general criteria: 1) for NC subjects that are non-

depressed, non MCI, and non-demented, the MMSE (Mini-Mental State Examination) score 

is between 24 and 30 with Clinical Dementia Rating (CDR) of 0; 2) For MCI subjects, the 

MMSE score is between 24 and 30, with CDR of 0.5, and each subject is an absence of 

3http://adni.loni.usc.edu
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significant level of impairment in other cognitive domains; 3) the MMSE score of each Mild 

AD subject is between 20 and 26, with the CDR of 0.5 or 1.0. The criteria are according to 

the National Institute of Neurological and Communication Disorders/Alzheimer’s Disease 

and Related Disorders Association for probable AD.

The MRI images acquired from 1.5 T scanners were downloaded from the public ADNI site, 

and then reviewed for quality. The PET images were 18-fluorodeoxyglucose (FDG) PET 

images and acquired 30–60 min post-injection. Firstly, they were spatially aligned, 

interpolated to a standard voxel size, normalized in intensity, and smoothed to a resolution of 

8 mm full width at half maximum. Following the same procedures as in Zhang et al. [6], we 

preprocessed the MRI and PET images by applying anterior commissure-posterior 

commissure correction using MIPAV software4, intensity inhomogeneity correction with the 

N3 algorithm [56], skull-stripping using both brain surface extractor (BSE) [57] and brain 

extraction tool (BET) [58], and cerebellum removal. After that, FAST in the FSL package 

[59] is used to segment structural MR images into three different tissues: gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF). After registration using HAMMER [60], 

the MRI and PET images were segmented into 93 regions-of-interest (ROIs) according to 

the template [61]. The GM volumes of these ROIs in MRI and the average intensity of each 

ROI in PET were calculated and used as features.

The SNPs [1] were genotyped using the Human 610-Quad Bead-Chip (Illumina, Inc., San 

Diego, CA, USA). The SNPs, belonging to the top AD candidate genes listed on the 

AlzGene database5 as of June 10, 2010, were selected after the standard quality control 

(QC) and imputation steps. The QC criteria include (1) gender check, (2) call rate check per 

subject and per SNP marker, (3) sibling pair identification, (4) the HardyWeinberg 

equilibrium test, (5) marker removal by the minor allele frequency, and (6) population 

stratification. Then, the quality-controlled SNPs were imputed using the MaCH software 

[62] to estimate the missing genotypes. For the Data I, the Illumina annotation information 

based on the Genome build 36.2 was used to select a subset of SNPs, belonging or proximal 

to the top 135 AD candidate genes. The above procedure yielded 5677 SNPs. For the Data 

II, we obtained 3123 SNPs extracted from 153 genes (boundary: 20KB) using the 

ANNOVAR annotation. Thus, we totally have 93 + 93 + 5677 = 5863 features on Dataset I, 

and 93 + 93 + 3123 = 3309 features on Dataset II from the three modalities for each subject.

3.3. Experimental settings

To evaluate performances of classification methods, we used a 10-fold cross-validation 

strategy by partitioning the whole dataset into training and testing subsets. The final 

classification results were obtained by repeating the 10-fold cross-validation 10 times, to 

avoid any possible bias during dataset partitioning. All parameters tuning were performed by 

conducting 5-fold inner cross-validation on the training part of the outer cross-validation. 

Four performance measures including classification accuracy (ACC), sensitivity (SEN), 

specificity (SPE) and area under receiver operating characteristic (ROC) curve, also known 

as AUC, were used. Here, the ACC measures the proportion of subjects correctly classified, 

4http://mipav.cit.nih.gov/clickwrap.php
5http://www.alzgene.org
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the SEN represents the proportion of positive class correctly identified, and the SPE denotes 

the proportion of negative class correctly identified. All datasets are standardized to have 

zero-mean and unit-variance for each dimension.

On the ADNI data, we compared the proposed method with 1) feature selection based 

methods, i.e., Fisher Score (FS) [43], and Lasso [15], and 2) MKL based methods, i.e., the 

multimodal multiple kernel learning method (M-MKL) [10], and ℓ1-MKL [46]. FS is one of 

the most widely used supervised feature selection methods due to its general good 

performance. In detail, it selects the features such that the feature values of the samples 

within the same class are small, while the feature values of the samples from different 

classes are large. The Lasso method can select a small set of discriminative features by 

directly pooling all features together and enforcing an ℓ1 norm regularization. M-MKL 

method represented each modality with a base kernel and further learned a linearly-

combined kernel with cross-validation. For FS, Lasso and M-MKL, the support vector 

machine (SVM) [55] implemented in LibSVM software6 was used as the classifier, and they 

are denoted as FSSVM, Lasso-SVM, and M-MKL respectively. The ℓ1-MKL is a special 

case of our method, but treating features from different modalities equally. For our proposed 
model and ℓ1-MKL, each base kernel is defined based a single feature to facilitate feature 
selection.

For FS method, the proportion of selected feature was determined with cross-validation.7 

For Lasso-SVM, M-MKL, ℓ1-MKL, and our proposed method, we used t-test [63] 

thresholded by p-value as a feature pre-selection step to reduce feature size and improve 

computational efficiency. The commonly used p-value < 0.05 was applied for MRI and PET. 

Considering the large number of SNP features, we selected p-value from {0.05, 0.02, 0.01} 

with inner cross validation. As t-test was used as a feature pre-selection step, t-test-SVM that 

combined t-test and SVM was designed for comparison with the same p-value setting as 

well. It should be noted that the t-test based pre-selection was performed on training set in 

the cross-validation procedures. The parameter in Lasso used to control the contributions of 

the loss term and ℓ1-norm term was selected from the range {2−10, 2−9, ⋯, 21} through an 

inner cross-validation. The soft margin parameter C′ in our method and C in SVM were 

selected with grid search from {2−5, 2−4, ⋯, 25}.

To reduce the number of parameters, linear kernel [55] was used as the default kernel type in 

the experiments, and other kernel types [55] such as Gaussian kernel (also known as Radial 

function kernel) and Polynomial kernel also have been tested in Section 4. Furthermore, we 

simply assumed no knowledge on both feature and group weights and thus set γ = 1 and β = 

1.

3.4. Classification results on Data I from ANDI

On Data I, the classification results of AD vs. NC, MCI vs. NC as well as AD vs. MCI using 

all the three modalities, i.e., MRI, PET, and SNPs, are listed in Table 3. By taking advantage 

of both sparse feature selection and dense feature group combination, the proposed method 

6https://www.csie.ntu.edu.tw/cjlin/libsvm/
7The parameter set is {1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 70%}.
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outperforms all competing methods in classification rate. Specifically, for AD vs. NC 

classification, our method achieves an ACC of 96.1% with an improvement of 2.1% over the 

best performance of other methods. For classifying MCI from NC, the improvements by the 

proposed method is 2.4% in terms of ACC. For classifying AD from MCI, the improvements 

by the proposed method is 3.9% in terms of ACC. In comparison with t-test-SVM, we obtain 

4.2%, 7.6% and 10.6% improvements in terms of ACC for AD vs. NC, MCI vs. NC and AD 

vs. MCI, respectively. Furthermore, we performed t-test on the ACCs between our proposed 

method and other compared methods. The asterisk symbols in Table 3 indicate statistically 

significant improvement of our method compared to each method under comparison.

In Fig. 3, we further plot the ROC curves of different methods under comparison for AD vs. 

NC, MCI vs. NC and AD vs. MCI classification, respectively. The corresponding AUC 

values are listed in Table 3. From the ROC curves and AUC values, we can see the superior 

classification performance by our proposed method. Specifically, the AUC obtained by the 

proposed method for AD vs. NC, MCI vs. NC and AD vs. MCI classification are 0.992, 

0.811 and 0.808, respectively, showing better classification ability than other methods. In 

summary, the results show that our proposed method can improve the classification results.

To further investigate the benefit of multimodality fusion and also the effect of SNP data, we 

illustrate the performance of the proposed method w.r.t. different modality combinations. 

Note that, with single modality and thus single group, the proposed method degenerates to 

ℓ1-MKL. Table 4 summaries all the results. First of all, we can see that the performance of 

any single modality is much lower than that of their combinations. Among the three 

modalities, the SNPs show the lowest performance. However, when combined with other 

modalities, genetic data can obviously help improve predictions. For example, in AD and 

NC classification, the performances using MRI+SNP and PET+SNP demonstrate 2.7% and 

5.7% improvements in terms of ACC over the cases of only using MRI and PET, 

respectively; the improvement with MRI+PET+SNP over that with MRI+PET is 3.8%. 

Similar results are obtained for MCI vs. NC and AD vs. MCI classification. All these results 

show that, the combination of multiple modalities including SNP data can help improve 

diagnosis performances.

The most frequently selected features in cross-validation are regarded as the most 

discriminative brain regions or SNPs, which can be potential biomarkers for clinical 

diagnosis. Top 10 ROIs identified from MRI and PET data for AD classification are 

illustrated in Fig 4. Specifically, the ROIs selected from MRI include angular gyrus right, 

amygdala right, uncus right, uncus left, hippocampal formation left, hippocampal formation 

right, inferior temporal gyrus right, middle temporal gyrus right, temporal pole right, and 

perirhinal cortex left; the ROIs selected from PET include hippocampal formation left, 

precuneus left, precuneus right, entorhinal cortex right, entorhinal cortex left, angular gyrus 

left, angular gyrus right, inferior temporal gyrus left, middle temporal gyrus left, and 

superior temporal gyrus left. Generally, these identified ROIs are in agreement with other 

recent AD studies [6,10,11,28,64]. In MRI, hippocampal formation and uncus in 

parahippocampal gyrus are recognized in AD vs. NC classifications, as well as multiple 

temporal gyrus regions. This is in line with the findings of the most affected regions in AD 

in previous neuro-studies [10,11,65]. Amygdala, one of the subcortical regions, is the 

Peng et al. Page 16

Pattern Recognit. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



integrative center for emotions, and is also identified in AD. In PET, angular gyri, 

precuneus, and entorhinal cortices are the regions identified, which are also among the 

altered regions in AD reported in previous studies [10,28,65]. As for the genetic 

information, the most selected SNPs for AD and NC classification are from ApoE gene 

(rs429358 and rs769449), VEGFA gene (rs3025035), and SORCS1 gene (rs822097). 

Generally, our results are consistent with the existing results [1,31]. For instance, the ApoE 

gene and SORCS1 gene are the well-known top candidate genes related to AD and MCI [1]. 

VEGFA, the expression of vascular endothelial growth factor, represents a potential 

mechanism where vascular and AD pathologies are related [66].

3.5. Classification results on Dataset II from ADNI

For further validation of the proposed method, we validate it on Dataset II containing 360 

subjects. Fig. 5 illustrates the comparison results. Specifically, for AD vs NC classification, 

our method achieves an ACC of 94.5%, which is higher than all the other methods, i.e, t-
test-SVM 90.6%, FS-SVM 91.3%, M-MKL 91.0%, Lasso-SVM 91.4%, and ℓ1-MKL 92.1%. 

Moreover, the prediction performances (in ACC) of t-test-SVM, FS-SVM, M-MKL, Lasso-

SVM, ℓ1-MKL, and the proposed method for MCI vs NC classification are respectively 

(73.1%, 74.5%, 74.3%, 74.8%, 77.8%, 80.2%), and for AD vs MCI classification, are 

(74.3%, 75.1%, 74.0%, 75.6%, 78.0%, 80.1%), respectively. With statistical significance (p 
< 0.05), our method outperforms the competing methods in terms of the ACC for all of the 

three tasks.

4. Discussions

To show the effect of different kernel types to our method, we further tested another two 

widely-used non-linear kernels, i.e., Gaussian kernel and Polynomial kernel. Fig. 6 

demonstrates the results for two different classification tasks. In the experiment, all of the 

methods except of t-test-SVM enable feature selection, resulting in a small subset of features 

for classification. As shown in Fig. 6, while non-linear kernels performs better than Linear 

kernel for t-test-SVM, Linear kernel shows competitive performance with well-filtered 

discriminative features. Specifically, for the proposed method, the ACC performances with 

Linear, Gaussian and Polynomial kernel for AD vs NC classification are 94.46%, 94.2%, 

and 94.51%, respectively, and, for MCI vs NC are 80.22%, 79.82%, and 80.36%, 

respectively. The performance of the proposed method using Linear kernel has no 

statistically significant difference (p > 0.05) with that with other two types of kernel. 

Moreover, non-linear kernels contains more parameters than their linear counterpart, which 

requires further cross-validation for parameter selection.

The effects of different choices of p on the ℓ1, p penalty are also illustrated in Fig. 8. Taking 

into account the varied correlations of different modalities with AD, we intuitively selected p 
= 1.5 for a compromise of Lasso and Ridge regularization. This has been further confirmed 

by Fig. 8, and the proposed model with p ∈ [1.5, 2] performs better. In Fig. 7, the model 

performances with the varied trade-off weight C′ are demonstrated. Specifically, the ACC 

performances of our model with parameters in {2−5, 2−4, ⋯, 25} are illustrated. In our 

experiments, this parameter was selected with cross-validation.
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It is interesting to compare the proposed method with more existing multi-modality based 

AD diagnosis methods. Here, we just name some typical works that also used genetic 

data(which may contain only alleles of ApoE gene). Gray et al. [41] combined MRI, PET, 

CSF and alleles of ApoE gene; on a data set containing 147 subject, their graph combination 

method obatained classification accuracies of 89.0% and 74.6% for AD vs. NC and MCI vs. 

NC classifications, respectively. Hinrichs et al. [36] integrated MRI, PET, CSF, ApoE 

genotype data and cognitive data, and achieved an accuracy of 92.4% on 233 subjects for 

AD and NC classification. Tong et al. [42] used MRI, PET, CSF and ApoE of 147 subjects 

for features, and their nonlinear graph fusion method achieved an ACC of 91.8% for AD vs. 

NC and an ACC of 79.5% for MCI vs. NC. Zhang et al. [31] compared several machine 

learning algorithms for multimodal feature selection using MRI, PET, CSF and SNP data on 

a dataset of 189 subjects. They reported that the high-order graph matching based method 

proposed [67] can achieve an accuracy of 92.9% for AD vs. NC classification and an 

accuracy of 76.4% for MCI vs. NC classification; the sparse multimodel learning proposed 

by Wang et al. [68] was also tested and obtained an accuracy of 94.8% for AD vs. NC 

classification and an accuracy of 75.6% for MCI vs. NC classification. Generally speaking, 

our proposed method showed competing or better performance than these methods, which 

further validated the efficacy of our proposed method.

5. Conclusions

In this study, we developed a kernel-learning-based method for multimodal feature selection 

and integration, and further applied it on imaging and genetic data for AD diagnosis. Other 

than independently selecting features from each modality and then combining them together 

[6,10] or performing modality selection [22,35], we integrated the feature selection and 

modal combination in a structured sparsity regularized kernel learning framework, 

performing both individual-level and group-level feature selection and fusion. Different from 

the commonly used structured sparsity or group sparsity regularization methods [16,18,47] 

which focus on sparsely selecting the most relevant feature groups, we proposed to sparsely 

select features within each modality and densely combine different modalities by taking 

account of the correlations and interactions between different modalities. The proposed 

model was formulated into a compact optimization problem with a weighted ℓ1, p-norm 

constraint. A block coordinate descent algorithm applicable to any p > 1 was derived to 

solve the proposed formulation. Comparisons by various experiments on two different 

datasets have shown competing AD/MCI diagnosis performance by our proposed method.

Despite the sound performance of the proposed model, there are also several limitations that 

should be considered in future study. First, in our general framework, we just assumed no 

prior knowledge about feature/group importance. It will be interesting to learn more 

knowledge about feature/group importance and substructures in each modality from data. 

Second, kernel weights are fixed for all subjects, we will consider locally weighted kernel 

weights as [69].
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Appendix

In this appendix, we show the derivation of the dual form of Problem (3). According to 

Theorem 1, we can fold parameter τ and C into a single trade-off weight C′. Further, note 

that we can rewrite C′ℒ(t, y) = maxα ∈ 0, C′ α(1 − ty). Thus, the optimization problem in Eq. 

(3) can be rewritten as follows,

min
θ ≥ 0, w, b

max
α

∑
i = 1

N
αi 1 − y(i) f x(i) + 1

2 ∑
l = 1

L
∑

m ∈ 𝒢l

wm 2
2

θm

s.t.  θ
1, p; β, γ

≤ 1,

0 ≤ αi ≤ C′,  i = 1, ⋯, N .

(15)

where f x(i) = ∑l = 1
L ∑m ∈ 𝒢l

wm
T ϕm xm

(i) + b. It is important to note that the minimization 

and maximization in Eq. (15) are switchable, as the problem is convex in w and b and 

concave in α.

For fixed θ and α, by taking minimization w.r.t wm, we have wm = θm∑i = 1
N αiy

iϕm xm
(i) ; by 

taking minimization w.r.t b, we have ∑i = 1
N αiy

(i) = 0. Then, plugging back w, we get the dual 

form in Eq. (13).
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Fig. 1. 
Illustration of sparsity patterns by different regularizers: a) Lasso (ℓ1 norm) [15] generates 

sparse solution but neglects inherent group structures; b) Group Lasso (ℓ2,1 norm) [16] 

sparsely selects a few groups of variables with predefined group structure; c) structured 

sparsity with ℓ1, p norm (p > 1) in contrast keeps all groups but conducts within-group 

variable selection. This structured sparsity regularizer is particularly valuable for AD 

diagnosis, where features are naturally grouped by modalities and each modality is useful. 

Each box denotes a feature, where box with darker color indicates the feature selected with 

larger weight, and white box denotes the unselected features.
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Fig. 2. 
Schematic illustration of our proposed framework. After representing each feature with a 

distinct basis kernel, a data-driven kernel representation and an optimal discriminant 

function are learnt. With a novel structured sparsity regularizer, the finally learnt kernel is a 

weighted linear combination of the basis kernels, and thus features with zero kernel weights 

would not be active in the discriminant classifier.
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Fig. 3. 
ROC curves on Dataset I for the methods under comparison, i.e., t-test-SVM, FS-SVM, M-

MKL [10], Lasso-SVM, ℓ1-MKL [46] and the Proposed.
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Fig. 4. 
Top 10 ROIs detected for AD vs. NC classification in MRI and PET, respectively.
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Fig. 5. 
Comparison of classification results on Dataset II.

Peng et al. Page 28

Pattern Recognit. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Classification results on Dataset II with different types of kernels. Linear kernel, Gaussian 

kernel, and Polynomial kernel are tested.
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Fig. 7. 
Performance changes on Dataset II with the changes of the trade-off weight C′.
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Fig. 8. 
The effect of different p in the proposed weighted ℓ1, p norm constraint in terms of ACC 

(mean and standard deviation).
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Algorithm 1

Block Coordinate Descent Algorithm for the Proposed Model.

1: initial input: C′, {Km}, β, γ, feasible θ, such as θm = ∑l = 1
L γl ∑m′ ∈ 𝒢l

βm′
p − 1

p

2: while optimality condition is not satisfied do

3:  Compute α in Eq. (12) and b using SVM solver [54]

4:  Compute ‖wm‖2 for all m = 1. ⋯, M according to Eq. (13)

5:  Update θm for all m = 1. ⋯, M according to Eq. (4), i.e.,

θm =
wm 2

βm

1
2γlm

1
p + 1 W𝒢lm 1; β

p − 1
p + 1

⋅ 1

∑l = 1
L γl

1
p + 1 W𝒢l 1; β

2p
p + 1

1
p

6: end while
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Table 1

Prediction and feature selection results on synthetic data. The indexes of true features are {1, 32, 46, 62, 93} 

from the 5 groups. Top 5 selected features with their group indexes are listed. With 10 times 10 fold cross-

validation, only features selected over 20 times are illustrated. The symbol # means all features of the whole 

group are selected.

Methods ACC (%) Top selected features (Group index)

Lasso 79.5 32(2) 62(4) 61(4) 26(2) -

Group Lasso 74.7 #(1) #(2) #(3) - -

ℓ1-MKL 80.6 32(2) 62(4) 1(1) 61(4) 13(1)

ℓ1, 1.5-MKL 84.3 32(2) 62(4) 1(1) 46(3) 85(5)

ℓ1, 2-MKL 83.5 32(2) 62(4) 1(1) 46(3) 85(5)

ℓ1, 6-MKL 81.5 32(2) 62(4) 85(5) 1(1) 46(3)
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