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Abstract

In recommender systems, the classical matrix factorization model for collabo-

rative filtering only considers joint interactions between users and items. In

contrast, context-aware recommender systems (CARS) use contexts to improve

recommendation performance. Some early CARS models treat user, item and

context equally, unable to capture contextual impact accurately. More recent

models perform context operations on users and items separately, leading to

“double-counting” of contextual information. This paper proposes a new model,

Joint Interaction with Context Operation (JICO), to integrate the joint inter-

action model with the context operation model, via two layers. The joint in-

teraction layer models interactions between users and items via an interaction

tensor. The context operation layer captures contextual information via a con-

textual operating tensor. We evaluate JICO on four datasets and conduct novel

studies, including varying contextual influence and time split recommendation.

JICO consistently outperforms competing methods, while providing many useful

insights to assist further analysis.
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1. Introduction

Collaborative filtering (CF) is popular for recommender systems in many

applications such as social networks, e-commerce, and music or movie websites

[1, 2, 3, 4, 5, 6, 7]. Typically, CF recommends items to users by learning

user/item similarities from existing ratings. A classical CF model is Matrix

Factorization (MF) [8, 9, 10, 11], which is a latent factor model [12]. It de-

composes the rating matrix into two factor matrices, representing latent factors

for users and items respectively. The predicted rating rij of user i on item j

can be viewed as the joint interaction between latent factors of user i and item

j. Another formulation of the recommender system is to view CF as a matrix

completion problem [13, 14, 15, 16].

The MF model considers only two entities (user and item) involved. In con-

trast, context-aware recommender systems (CARS) aim to achieve better recom-

mendation performance by taking useful context information, such as time, loca-

tion, user age, gender and occupation, into account [17, 18, 19, 20, 21, 22, 23, 24].

For instance, time is an important factor in an e-commerce recommender sys-

tem. Supposing a user bought a T-shirt in the summer, recommending a T-shirt

in the winter would be inconsequential. The term “context” is broadly defined

in this paper. We consider an attribute such as gender, occupation, and age

as a particular context, following [25, 26, 27]. E.g. both occupation and age

can change over time in real applications, such as from students to engineers,

academia to industry, and getting older year by year.

Karatzoglou et al. [25] proposed a Multiverse model to generalize the MF

model directly to incorporate contexts. It is based on the Higher-Order Sin-

gular Value Decomposition (HOSVD) [28], a Tensor Factorization (TF) model

called the Tucker Decomposition [29]. Multiverse generalizes the MF model to

higher order by extending the 2-D user × item matrix with additional context

dimensions into a higher-order data tensor [30], e.g., a user × item × time ten-

sor. This provides good flexibility in incorporating contextual information, but

its computational complexity increases exponentially with the number of con-
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text variables. Instead of extending the rating matrix to a tensor, Rendle [31]

developed a Factorization Machine (FM) model for context-aware recommen-

dation. The FM model extends the latent factor model in MF by transforming

the user-item-context rating data into real-valued feature vectors via one-hot

encoding [32]. Then, it treats user-item, user-context, and item-context inter-

actions as inner products of their latent factors, which can improve the rating

computation to linear time. There are several more complex models developed

based on FM, such as the Gaussian Process FM [33], random partition FM [27],

ensemble-based FM [27] and hierarchical FM [34].

Entities (user and item) and contexts play different roles in recommender

systems. However, all the CARS models above treat contexts as dimensions

similar to user or item, making it difficult to interpret the relationships between

entities and context, and also limiting their recommendation performance. This

motivates the CARS2 model [35] as depicted in Fig. 1(a). It defines the contex-

tual information in its own latent space ck, and treats it differently from user

and item latent spaces. Instead of a direct interaction between entities and con-

texts, CARS2 transforms the original latent factors of users/items into a new

latent space (W/Z), which represents user/item under contexts by a 3-D con-

textual operating tensor. This provides a clear interpretation of the relationship

between entities and contexts.

One limitation of CARS2 is that it uses one vector ck to represent the whole

context, which is inadequate for abundant contextual information. Liu et al. [36]

proposed the Contextual Operating Tensor (COT) model to improve CARS2, as

illustrated in Fig. 1(b), motivated by the semantic compositionality and vector

representation word2vec in Natural Language Processing (NLP) [37]. COT ex-

tends the latent space of context representation from a vector ck to a matrix Ck.

In addition, COT interprets the tensor used in CARS2 as “contextual operating

tensor”, drawing analogy between the entity-context relationship with the noun-

adjective relationship in NLP [38, 39, 40]. Entity is similar to a noun providing

semantic information, while a context is similar to an adjective giving entities

the semantic operation. Thus, COT models a context semantic operation on
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(c) The proposed JICO model.

Figure 1: Illustrations: (a) The CARS2 model, where the cubes denote 3-D contextual oper-

ating tensors and the elongated rectangles denote latent factor vectors; (b) The COT model,

where the square Ck is a matrix representing contextual information; (c) The proposed JICO

model with two layers, the joint interaction layer and context operation layer, which integrates

the virtues of the joint interaction model in MF and the contextual operating tensor in COT.

the original latent vectors of users and items.

Although CARS2 and COT separate contexts from the latent space of enti-

ties to enhance interpretability and performance, the contexts operate on two

entities, user and item separately via two contextual operating tensors W and

Z. Such separate interactions are then added (in CARS2) or multiplied (in
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COT). Because the latent vectors of user ui and item vj lie in a common latent

space, the addition and multiplication in CARS2 and COT “double-count” the

impact of contextual information ck and Ck. This motivates us to consider the

impact of contexts on users and items jointly as in the MF models, rather than

separately.

We propose a new context-aware model named as Joint Interaction with Con-

text Operation (JICO) to integrate the virtues of the joint interaction model

in MF and the contextual operating tensor in COT. We model the joint in-

teraction between users and items as the semantic subject, i.e., the contextual

information operates on the joint interaction between users and items, rather

than separately. As shown in Fig. 1(c), JICO has two layers. In the first layer,

an interaction operating tensor I captures the joint interaction between users

{ui} and items {vj} as in MF, which is then projected to a latent space to

define the joint interaction vector rij . The second layer performs the context

semantic operation as in COT, where the contextual information is represented

as a matrix Ck.

The remainder of this paper is structured as follows. The next section intro-

duces notations and related works briefly. In Section 3, we propose the JICO

model and derive an algorithm based on stochastic gradient descent (SGD).

In Section 4, we evaluate JICO on four popular datasets to demonstrate its

superior recommendation performance over existing methods. We also study

varying contextual influence, more realistic time split recommendation, result

interpretation and analysis, as well as parameter sensitivity. Finally, Section 5

draws conclusions.

2. Preliminaries and Related Works

2.1. Notations

In this paper, we follow the notations in [28, 41, 42]. We denote vectors by

lowercase boldface letters such as a, matrices by uppercase boldface letters such

as A, and tensors by calligraphic letters such as A. An T th-order tensor A ∈
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R
I1×···×IT is addressed by T indices {it}. Each it addresses the t-mode of A.

The mode-t product of a tensor A ∈ R
I1×I2×...×IT by a matrix U ∈ R

Jt×It is a

tensor B ∈ R
I1×...×It−1×Jt×It+1×...×IT , denoted as

B = A×t U, (1)

where each entry of B is defined as the sum of products of corresponding entries

in A and U:

B(i1, ..., it−1, jt, it+1, ..., iT ) =
∑

it

A(i1, ..., iT ) ·U(jt, it). (2)

The Kronecker product (also called the tensor product) of two matrices A ∈

R
r×s and B ∈ R

c×d results in a block matrix of size rc× sd, which can also be

viewed as a fourth-order tensor of size r × s× c× d:

A⊗B =











a11B a12B . . . a1sB

a21B a22B . . . a2sB
...

...
. . .

...

ar1B ar2B . . . arsB











. (3)

2.2. Matrix Factorization (MF)

In an MF model [8], the joint interaction between users and items is repre-

sented with the inner product of their latent vectors. Let ui, vj ∈ R
d represent

the latent vectors of user i and item j. The estimated rating ŷij is:

ŷij = u⊤
i vj . (4)

2.3. CARS2

CARS2 model [35] consists of three parts: the user-item, user-context and

item-context interactions. For the interaction between users and items, it follows

the formula in MF, which is u⊤
i vj .

For the user-context and item-context interactions, two 3rd-order tensors

W ∈ R
d×dp×dc and Z ∈ R

d×dp×dc are given. In CARS2, the specific context k
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is denoted by a distinct vector ck ∈ R
dc . The impact of context k on the user i

and item j is formulated as:

pik =W ×1 ui ×3 ck, (5)

qjk = Z ×1 vj ×3 ck, (6)

where pik and qjk are dp-dimensional vectors that represent the interaction

between user/item and contexts. Then CARS2 introduces aj , bi ∈ R
dp as

weight vectors for pik, qjk. The estimated rating ŷijk is modeled as:

ŷijk = u⊤
i vj + a⊤j pik + b⊤

i qjk. (7)

2.4. Contextual Operating Tensor (COT)

COT [36] extends the latent space of context representation from a distinct

vector ck in CARS2 to a matrix Ck ∈ R
dc×n, where n is the number of contexts.

The latent vectors of users and items under contexts are formulated as:

pik =W ×1 ui ×3 (hiCk), (8)

qjk = Z ×1 vj ×3 (hjCk), (9)

where hi and hj are weight vectors for context Ck on user i and item j respec-

tively. The estimated rating ŷijk is defined as:

ŷijk = b0 + bi + bj +
n∑

m=1

bm,k + p⊤
i,kqj,k, (10)

in which b0, bi and bj represent the global, user and item bias respectively, and

bm,k is the bias of the mth context variable. p⊤
i,kqj,k is the interaction between

user i and item j under context k, which is similar to MF.

Finally, the objective function of all three models can be expressed as below:

min L(Θ) =
∑

(i,j,k∈S)

(ŷijk − yijk)
2 +Ω(Θ), (11)

where Ω(Θ) is the regularization terms for model parameters.
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2.5. Double-Counting of Contextual Information

CARS2 and COT lead to “double-counting” of contextual information since

predicted rating is calculated via their product in COT and their sum in CARS2.

These two methods represent the interaction between user/item and contexts

by latent vector pik or qjk, and the contextual information is “double-counted”

via such product/sum. Our method will address this issue.

3. Proposed JICO Model

3.1. Joint Interaction between Users and Items

We propose JICO to model joint interaction as in MF and context operation

as in CARS2/COT so that the contextual information can be more properly

accounted for. The JICO model has two layers. We name the first layer as the

“joint interaction layer”. In this layer, we capture the joint interaction between

user i and item j. In a typical MF model, the interaction is represented by the

inner product of the latent vectors ui ∈ R
d and vj ∈ R

d, which is an effective

way to estimate ratings. However, this way of joint interaction modelling does

not allow introducing the influence of contextual information. To overcome this

problem, we propose to form an interaction operating tensor I ∈ R
d×dp×d to

capture the joint interaction and enable further context operation. We then

define the joint interaction vector rij as:

rij = I ×1 ui ×3 vj . (12)

In the joint interaction layer, the interaction operating tensor I describes

the common latent interaction space between users and items. With the intro-

duction of I, the interaction can now be represented as a latent vector, rather

than a scalar value as in the MF model. It is intuitive that the interaction

between two entities (user and item) can be evaluated from many different as-

pects rather than a single value. The latent interaction vector rij can reflect

these latent aspects. Moreover, a vector rij enables further combination with

the influence of context, which a single scalar in MF cannot achieve.
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Figure 2: An example of combining two types of latent contextual information in a food rating

dataset.

3.2. Contextual Information Representation

We denote contextual information set by C = {C1, C2, ..., Cn}, where n is the

number of contextual variables and each element Ci represents a specific context

such as age, location, time, etc. Each contextual variable Ci can take different

values {ci1, c
i
2, ...}. Similar to the representation in COT, each specific value cim

is represented by a latent vector cim ∈ R
dc in JICO. The vector representation

is an efficient method to describe the latent properties of contexts. As different

contextual values are not always independent, they can have similar or opposite

effects on the user preferences. For example, doctors and nurses may have a

similar preference on certain books, but the preference of programmers may be

quite different. If we just use a real value to represent the occupation, it is

difficult to describe such similarity properties properly. Therefore, the latent

vector provides a rich representation that can better reflect the relevance of

different contextual information than a single scalar value. In this way, the

whole contextual information of each rating could be individually denoted by

a context combination matrix Ck = [c1m1
, c2m2

, ..., cnmn
] ∈ R

dc×n, where each

column vector cjmj
denotes a latent vector for a specific value mj taken on

contextual variable Cj . Figure 2 gives a simple example of Ck.

With the above observation, we form the context combination vector ck ∈

R
dc as:

ck = Ckwk, (13)

where Ck is the context combination matrix and wk ∈ R
n is a vector denoting
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the weights of each context.

3.3. Context Operation Layer

We name the second layer of JICO as “context operation layer”. In this

layer, we introduce the contextual operating tensor Z ∈ R
dp×d×dc as in COT to

take the influence of contexts into account. In the first layer, we have obtained

the joint interaction vector rij of users and items. Now the tensor Z denotes

the context operation by Ck on rij . Therefore, the joint interaction after the

context operation can be defined as:

rijk = Z ×1 rij ×3 ck, (14)

where rijk ∈ R
d represents the joint interaction vector under contextual infor-

mation ck. The estimated rating ŷijk is then formulated as:

ŷijk = w⊤rijk, (15)

where w ∈ R
d is a weight vector for rijk. The JICO model has been illustrated

earlier in Fig. 1(c).

Next, we do not expect the interaction rijk can fully explain the ratings due

to the existence of bias. We assume that each user or item has its own bias.

For example, if a movie has a good reputation, the average rating of this movie

tends to be higher and users could have different standards for rating scales.

Some may be strict in evaluating a movie and tend to give low ratings but some

may give high average ratings. This means that each movie or user has its own

bias. To take this into accounts, we add the bias to get the following:

ŷijk = bk + bi + bj +w⊤rijk, (16)

where bk is a constant indicating the overall average rating under contexts com-

bination k, bi and bj are the bias of user i and item j respectively. In this way,

the interaction part w⊤rijk can capture information from the dataset more

accurately.
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Algorithm 1 Joint Interaction with Context Operation

Input: Training dataset S, where each real rating yijk is associated with user

i, item j, and context combination k. Parameters η, λ1 and λ2.

Output: Updated parameters {bi}, {bj}, U, V, w, {Ck}, {wk}, I, Z

1: Initialize {bi}, {bj}, {ui}, {vj}, w, {Ck}, {wk}, I, Z with random values

2: Set t = 0

3: while not convergent do

4: η ← 1√
t
and t = t+ 1

5: Randomly select an instance yijk from S

6: ŷijk = bk + bi + bj +w⊤rijk

7: Update bi ← bi − η ∂L
∂bi

8: Update bj ← bj − η ∂L
∂bj

9: Update ui ← ui − η ∂L
∂u i

10: Update vj ← vj − η ∂L
∂vj

11: Update w← w − η ∂L
∂w

12: Update Ck ← Ck − η ∂L
∂Ck

13: Update wk ← wk − η ∂L
∂wk

14: Update I ← I − η ∂L
∂I

15: Update Z ← Z − η ∂L
∂Z

16: end while

3.4. Objective Function and Parameters Inference

After introducing the JICO model, we formulate the JICO objective function

to minimize using the squared error loss function:

min
Θ

L =
∑

(i,j,k∈S)

(ŷijk − yijk)
2

+
λ1

2
(‖ui‖

2+‖vj‖
2+‖Ck‖

2+‖wk‖
2+‖I‖2+‖Z‖2+‖w‖2)

+
λ2

2
(‖bi‖

2+‖bj‖
2),

(17)

where Θ = {ui,vj ,Ck,wk, I,Z,w} represents the set of parameters in the ob-

jective function L, S is the training dataset, λ1 and λ2 denote the regularization
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parameters. We denote the Frobenius norm of a tensor Z ∈ R
dp×d×dc as ‖Z‖,

which is defined as follows:

||Z|| =

√
√
√
√

dp∑

i=1

d∑

j=1

dc∑

k=1

z2ijk, (18)

where zijk is the element at (i, j, k) of Z.

The regularization terms control the magnitude of parameters to avoid over-

fitting. In this paper, we use a common optimization scheme, stochastic gradient

descent (SGD), to update parameters. The gradients with respect to parameters

in L(Θ) can be calculated as:

∂L

∂bi
= 2lijk + λ2bi, (19)

∂L

∂bj
= 2lijk + λ2bj , (20)

∂L

∂Ck

= 2lijk(Z ×1 (I ×1 u
⊤
i ×3 v

⊤
j )

⊤ ×2 w
⊤)⊤wk + λ1Ck, (21)

∂L

∂wk

= 2lijk(Z ×1 (I ×1 u
⊤
i ×3 v

⊤
j )

⊤ ×2 w
⊤)Ck + λ1wk, (22)

∂L

∂w
= 2lijkZ ×1 (I ×1 u

⊤
i ×3 v

⊤
j )

⊤ ×3 (Ckwk)
⊤ + λ1w, (23)

∂L

∂ui

= 2lijkI ×3 v
⊤
j ×2 (Z ×2 w

⊤ ×3 (Ckwk)
⊤) + λ1ui, (24)

∂L

∂vj

= 2lijkI ×1 u
⊤
i ×2 (Z ×2 w

⊤ ×3 (Ckwk)
⊤) + λ1vj , (25)

∂L

∂I
= 2lijku

⊤
i ⊗ (Z ×2 w

⊤ ×3 (Ckwk)
⊤)⊗ vj + λ1I, (26)

∂L

∂Z
= 2lijk(I ×1 u

⊤
i ×3 v

⊤
j )⊗w⊤ ⊗ (Ckwk)

⊤ + λ1Z, (27)
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where lijk = ŷijk − yijk.

Algorithm 1 summarizes the pseudocode for JICO. The matrices U ∈ R
I×d

and V ∈ R
J×d are the user and item latent matrices (I/J is the number of

users/items). The ith row of U denotes the user latent vector ui and the jth

row of V denotes the item latent vector vj . η is the learning rate. It decreases

with the number of iterations increases. In each iteration, the algorithm will

evaluate and update only one relevant ui and vj . To prevent gradient explosion,

the elements of initial matrices and tensors are drawn from a zero-mean uniform

distribution in the range [- 12 ,
1
2 ]. When the iteration converges, we obtain the

final parameters for estimating the rating in test data.

3.5. Computational Complexity and Model Complexity

We follow CARS2 [35] and COT [36] to analyse the computational complex-

ity of JICO. To simplify the analysis, we set dp = dc = d. The computational

complexity of JICO is dominated by the computation of U, V, I and Z, which

have complexity O(d3 × |S|). Therefore, the total computational complexity is

O(d3 × |S|), which is similar to that for CARS2 [35] and COT [36].

The model complexity of JICO (ΓJ) and COT (ΓC) are presented as follows:

ΓJ = d× dp × d
︸ ︷︷ ︸

I

+ dp × d× dc
︸ ︷︷ ︸

Z

+ dc × n2

︸ ︷︷ ︸

{Ck}

+ d× I
︸ ︷︷ ︸

{ui}

+ d× J
︸ ︷︷ ︸

{vj}

+d
↓
w

+ n
↓

{wk}

2 + I
↓

{bi}

+ J
↓

{bj}

,

(28)

ΓC = d× dp × dc
︸ ︷︷ ︸

W

+ d× dp × dc
︸ ︷︷ ︸

Z

+ dc × n
︸ ︷︷ ︸

{Ck}

+ d× I
︸ ︷︷ ︸

{ui}

+ d× J
︸ ︷︷ ︸

{vj}

+ dc × I
︸ ︷︷ ︸

{hi}

+ dc × J
︸ ︷︷ ︸

{hj}

+ n
↓

{bm,k}

2 + I
↓

{bi}

+ J
↓

{bj}

.

(29)

The difference between ΓC and ΓJ is:

ΓC − ΓJ = dc × I + dc × J + d× dp × dc − d− d× dp × d. (30)

In practice I and J are much larger than n, d, dp and dc. Thus, ΓC will be

greater than ΓJ , and model complexity of JICO is smaller than that of COT.
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The reason is that the double-counting in COT requires more parameters than

JICO. Therefore, JICO outperforms COT with a new architecture of lower

capacity, i.e., more compact size by removing “double-counting”.

3.6. JICO with Double-Counting (JICODC)

To explore the effect of “double-counting” on the performance of JICO, we

consider JICO with “double-counting” (JICODC) via directly interacting latent

vector of user ui and item vj with contextual operating tensor Z. This leads

to:

p̂ik = Z ×1 ui ×3 ck, (31)

q̂jk = Z ×1 vj ×3 ck. (32)

The estimated rating ŷijk is:

ŷijk = bk + bi + bj + p̂⊤
ikq̂jk. (33)

After introducing the JICODC model, we formulate the objective function to

minimize using the squared error loss function as follows:

min
Θ

L =
∑

(i,j,k∈S)

(ŷijk − yijk)
2

+
λ1

2
(‖ui‖

2+‖vj‖
2+‖Ck‖

2+‖wk‖
2+‖Z‖2+‖w‖2)

+
λ2

2
(‖bi‖

2+‖bj‖
2).

(34)

JICODC is a variant of JICO by considering “double-counting” procedure. We

will experimentally explore the effect of “double-counting” on JICO.

4. Experiments

4.1. Experimental Design

Compared methods. In this section, we perform experiments on context-

aware recommender systems to evaluate JICO against the following methods:
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• SVD++ [43] is an improved matrix factorization model, via Singular Value

Decomposition (SVD), for recommender systems with L2 regularization.

It is not context aware.

• Multiverse [25] is developed based on Tucker decomposition [29] on the

user × item × context rating tensor. This method has been shown to

outperform pre-filtering and multidimensional approach.

• Factorization Machine (FM) [26] can model contextual information and

provide context-awareness rating predictions by specifying input data.

• CARS2 [35] associates a latent vector and a context-aware representation

to each user and item. This representation can efficiently capture latent

properties of users and items.

• COT [36] extends the latent space of context representation from a dis-

tinct vector to a matrix. In addition, COT performs a context semantic

operation on the original latent vectors of users and items to model con-

texts.

We set the parameters of all methods via 5×5-fold cross-validation (CV).

We use grid search CV to find the best parameters for each method. The grid

for du/dv/dc/dp/d is [1, 2, · · · , 20], and the grid for η/λ1/λ2 is [0.1, 0.05, 0.01,

0.005, 0.001].

Datasets. We conduct experiments on three real datasets and one semi-

synthetic dataset below, with Table 1 summarizing the basic information.

• Food dataset: This is a popular small-scale dataset obtained from the

coauthor (H. Asoh) of [44]. It studies how much one subject wants to

order a dish. It contains 6,360 ratings given by 212 users for 20 food

menus. The data includes ratings in real situations and virtual situations

(really hungry or just imagine). Following the advice of the data provider

(H. Asoh), we only take ratings in real situations to study. Two popular

context variables are selected: situation (hungry, normal, full) and menu
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Table 1: Experiment dataset summary.

Dataset Users Items Context Dim. Ratings Scale

Food 212 20 2 2120 1-5

Movielens-100K 943 1682 3 100K 1-5

Yahoo Webscope 7620 11916 2 221K 1-5

Movielens-1M 6040 3706 3 1M 1-5

genre (Japanese, Chinese, Western), which are user and item contexts

respectively.

• Movielens-100K1: This is a popular dataset collected by the GroupLens

Research Project at the University of Minnesota. It consists of 100K

ratings in a {1, 2, 3, 4, 5} scale from around 943 users on 1,682 movies.

Each user rated at least 20 movies. We pick three types of user contextual

information that are most interesting to us: the gender, occupation, and

age. There are 20 occupations such as lawyer, doctor, and artist, and the

ages are divided into 5 groups: ≤18, 18-25, 25-35, 35-50 and ≥50.

• Movielens-1M1: This is a larger version of Movielens-100K. It contains

1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040

users. Other information is the same as that of Movielens-100K, such as

rating scale and occupation category. The timestamp is separated to hour

and day contextual information.

• Yahoo Webscope Movies2: This dataset is provided as part of the

Yahoo! Research Alliance Webscope program. It contains 221K ratings

in a {1, 2, 3, 4, 5} scale for about 11,916 movies evaluated by 7,620

users, as well as various user contexts such as gender and age, and item

contexts including the timestamp. In order to explore the extent that

1http://movielens.org/
2http://research.yahoo.com/
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contexts affect user ratings, we follow the data preprocessing steps in [25]

to generate six semi-synthetic datasets from the original data using two

user-context features “age” and “gender” in the raw Yahoo dataset by the

following steps.

1. We convert the age feature into a three-class categorical variable

according to three groups: above 50, between 18 and 50 and below

18.

2. We generate a random feature x ∈ {0, 1} for each rating to replace

the original gender feature to artificially affect the ratings.

3. We randomly pick a× 100% movies from the dataset.

4. We randomly choose b× 100% ratings from these movies to increase

(decrease) the rating value by one if the corresponding x = 1 (x

= 0) unless the rating value is already 5 (1). E.g., if 50% of the

dataset’s movies are randomly picked and 10% of the selected movies’

rating would be modified, the synthetic dataset with a = 0.9 and

b = 0.5 has 90% of its items altered with profiles that have half of

their ratings changed. Six semi-synthetic datasets are generated with

a = 0.1, 0.5, 0.9 and b = 0.1, 0.5, 0.9. In this way, a large a× b has a

greater contextual influence on the ratings.

Evaluation metrics. We use two popular metrics in evaluation, the Root

Mean Square Error (RMSE) and Mean Absolute Error (MAE):

RMSE =

√∑

y∈Ωtest
(y − ŷ)2

|Ωtest|
(35)

MAE =

∑

y∈Ωtest
|y − ŷ|

|Ωtest|
(36)

where y denotes the true rating, ŷ is the estimated rating, and Ωtest represents

the test set. The smaller the RMSE and MAE, the better the recommendation

performance. 5×5-fold cross-validation results are reported.
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Table 2: Recommendation performance comparison on four datasets, with seven scenarios

in total. In each scenario, the best results (achieved by JICO) are in bold and the second

best (achieved by COT) ones are underlined. We report the standard deviation of 5×5 cross

validation results for COT and JICO except the time split results. For the time split results

(time), we indicate the performance degradation of each method in a pair of parentheses.

Dataset SVD++ Multiverse FM CARS2 COT JICO JICODC

Food
RMSE 1.114 1.068 1.066 1.062 1.058±0.024 1.040±0.019 1.064±0.013

MAE 0.895 0.844 0.840 0.843 0.838±0.015 0.827±0.014 0.841±0.008

Movielens-100K
RMSE 0.991 0.953 0.952 0.948 0.947±0.006 0.941±0.005 0.948±0.006

MAE 0.772 0.753 0.750 0.748 0.745±0.003 0.739±0.003 0.745±0.003

Movielens-100K

(time)

RMSE 1.256(0.265) 1.113(0.160) 1.105(0.153) 1.082(0.134) 1.068(0.121) 1.055(0.114) 1.071(0.123)

MAE 1.022 (0.250) 0.895(0.142) 0.887(0.137) 0.866(0.118) 0.859(0.114) 0.834(0.095) 0.860(0.115)

Yahoo

(a=0.9, b=0.5)

RMSE 1.049 1.009 1.012 1.008 0.994±0.007 0.988±0.005 0.997±0.005

MAE 0.778 0.726 0.735 0.724 0.720±0.005 0.714±0.003 0.722±0.004

Yahoo

(a=0.9, b=0.9)

RMSE 1.029 0.928 0.939 0.911 0.899±0.005 0.896±0.007 0.912±0.008

MAE 0.786 0.653 0.668 0.651 0.643±0.004 0.637±0.005 0.651±0.006

Movielens-1M
RMSE 0.885 0.876 0.866 0.868 0.864±0.004 0.859±0.003 0.867±0.003

MAE 0.691 0.668 0.664 0.665 0.661±0.004 0.657±0.003 0.662±0.004

Movielens-1M

(time)

RMSE 1.092(0.207) 1.024(0.048) 1.012(0.146) 0.998(0.130) 0.992(0.128) 0.983(0.124) 0.994(0.127)

MAE 0.866(0.175) 0.778(0.110) 0.773(0.109) 0.767(0.102) 0.764(0.103) 0.756(0.099) 0.764(0.102)

4.2. Recommendation Performance Comparison

Table 2 compares the performance of each model on the four datasets. The

best and second-best results in each case, achieved by JICO and COT, are

highlighted in bold and underline, respectively. Table 3 reports the p values of

t-tests performed for the results of JICO and COT, and JICO and JICODC, to

confirm the statistical significance. We have the following observations:

• The context-aware models all significantly outperform the context-free

model SVD++, suggesting that rich contextual information is beneficial

to improve recommendation performance. JICO improves over SVD++ by

6.6%, 5.0%, 5.8%, 12.9%, 2.9% in RMSE and 7.6%, 4.2%, 8.2%, 19.0%,

4.9% in MAE on the Food, Movielens-100K, Yahoo (0.9 × 0.5), Yahoo

(0.9 × 0.9) and Movielens-1M datasets respectively. There is a clear gap

between the improvements of different datasets, since the effect of contex-

tual information is not always the same in different situations. The more
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Table 3: p-value for the results of JICO and COT, and JICO and JICODC reported in Table

2.

JICO vs COT JICO vs JICODC

RMSE MAE RMSE MAE

Food 0.005 0.006 8.611e-06 6.936e-05

Moivelens-100K 0.001 5.892e-07 2.517e-4 2.268e-07

Yahoo (0.9×0.5) 0.001 2.002e-04 1.083e-5 2.232e-08

Yahoo (0.9×0.9) 0.158 1.208e-04 2.015e-05 4.612e-10

Movielens-1M 8.126e-05 4.185e-05 3.746e-10 1.571e-06

relevant the contexts and entities, the greater the improvement in general.

• Among context-aware methods, Multiverse and FM have similar perfor-

mance on all datasets, while inferior to CARS2, COT, and JICO. E.g.,

JICO improves over the best of Multiverse and FM by 2.4%, 1.1%, 2.0%,

3.4%, 0.81% in RMSE and by 1.5%, 1.5%, 1.7%, 2.5%, 1.1% in MAE

on Food, Movielens-100K, Yahoo (0.9 × 0.5) and Yahoo (0.9 × 0.9) and

Movielens-1M datasets. The limited performance of Multiverse and FM

is likely limited due to treating contexts as a dimension similar to users

and items. However, contexts play different roles as users and items in

a recommendation. Therefore, modelling contexts as semantic operators,

as in CARS2, COT, and JICO, can further improve the performance of

context-aware recommendation.

• JICO achieves the best performance consistently in all cases studied. Al-

though CARS2, COT, and JICO all model contexts as semantic operators,

the interaction between contexts and user/item is separately modelled in

CARS2 and COT, leading to double-counting.

Hence, JICO combines joint interaction in MF and context operation in

CARS2 and COT to achieve superior performance over all other methods.

• JICO significantly outperforms JICODC in all datasets, which suggests
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(a) RMSE Evolution

(b) MAE Evolution

Figure 3: Recommendation performance variation with respect to the amount of contextual

influence on Yahoo semi-synthetic dataset.

that eliminating double-counting is beneficial to improve the performance.
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4.3. Varying Contextual Influence

The six semi-synthetic Yahoo datasets enable us to study the various degrees

of contextual influence, as controlled by a × b, as in [25]. Figure 3 depicts

the recommendation performances with respect to the growth of contextual

influence. We can see the following:

• Over all degrees of contextual influence, JICO consistently gives the best

performance, with COT the second, and CARS2 the third. JICO improves

over FM, Multiverse, CARS2, and COT by 4.3%, 2.3%, 1.7%, 1.3% and

0.9% on high context dataset with a × b = 0.81. It means that JICO

can make better use of context in a high context influence situation. This

again demonstrates the benefits of combining joint interaction in MF and

context operation in COT and CARS2.

• The performance gain of context-aware methods over the context-free

method, SVD++, continues increasing with the greater degree of con-

textual influence. This indicates that greater contextual influence can

lead to greater performance improvement. All the context-aware methods

are benefiting from such influence growth.

• Relative to context-aware methods, the influence of contexts on SVD++

is quite limited. It is interesting to note that on the left side of the MAE

subfigure, SVD++ slightly outperformed Multiverse, indicating that when

the contextual information is weak, Multiverse may not model it properly,

leading to a negative impact.

4.4. Realistic Evaluation on Time Split

Although we report the cross-validation results popularly done in perfor-

mance evaluation, it is actually not a realistic assessment in practice. This is

because rating data come in sequence and we can only use past data to predict

future data, not vice versa. Considering this situation, we present experiments

about time split that is a realistic case embodying two challenges: one is cold
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start, and the other is imbalanced training/testing data. We carry out this re-

alistic study by splitting the training/test data at a time point, rather than

random splitting in cross-validation.

For this time split study, we use Movielens-100K and Movielens-1M and

split each dataset into training (80%) and test (20%) data by its attribute

“timestamp”. The results are reported in the rows labelled as “Movielens-100K

(time)”and “Movielens-1M (time)” in Table 2. Compared to the “Movielens-

100K”and “Movielens-1M” rows, we can see that all results get worse (larger

errors) with time split. In Table 2, we indicate the increased amount of error in a

pair of parentheses in the “Movielens-100K (time)” and “Movielens-1M (time)”

rows. SVD++ suffers the most degradation (e.g., 0.265/0.250 in RMSE/MAE

on Movielens-100K, and 0.207/0.175 in RMSE/MAE on Movielens-1M). JICO

has the least degradation (only 0.114/0.095 in RMSE/MAE on Movielens-100K,

and 0.124/0.099 in RMSE/MAE on Movielens-1M).

Due to the time constraint, although the amount of training data are the

same for time split and cross-validation (random split), there are actually less

entity (user/item) information available for the time split case. For example,

new users and movies after the time split point have no information available

for training in the time split case while the cross-validation case could have such

information due to random sampling. In other words, the effective contextual

information is less in the time split case than in the cross-validation case. The

least degradation achieved by JICO again shows the superiority of our two-layer

approach.

4.5. Context Analysis and Interpretation

As a context-aware model, JICO enables interpretation of context impor-

tance, which is captured by the context weight vector wk. Figure 4(a) de-

picts different context weight percentage on Movielens-100K and Food datasets.

The greater the percentage, the higher the importance. This figure shows that

context variable “Situation” has more influence on rating than context “Menu

genre” on the Food dataset. On Movielens-100K, the most important context
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is occupation (50%), followed by age (41%), and genders impact is relatively

small (<10%). This allows an intuitive understanding of the effects of different

contexts on ratings.

As a latent factor model, JICO also learns latent representations of contexts

to reveal the relationships among them. Since the context latent vector’s di-

mension can vary, we follow Wu et al. [45] to use Principal Component Analysis

(PCA) to reduce the context vector’s dimension to 2 to visualize the relation-

ships among different context values in a 2-D space. In the context importance

analysis above, we found that “Occupation” is a dominate context on Movielens-

100K dataset so we visualize this context in 2-D space via PCA in Fig. 4(b).

The figure mainly reflects two facts. We can observe:

• The location of each occupation reflects the occupation’s rating bias. The

top right tends to give higher ratings while the lower left tends to give lower

ratings. For instance, the average ratings for the engineer, programmer,

educator, and artist are 3.541, 3.568, 3.670, and 3.441, respectively. We

can see that the “artist” tends to give lower ratings, due to their unique

artistic taste. In contrast, the “educator” occupation tends to give a higher

rating to movies than “artist”, which is expected.

• The distance between different points reflects their preference similarities

and potential relationships. E.g., programmer and engineer are close,

indicating they have a similar preference on movies, while doctor and

educator are far apart, showing that they tend to have different tastes.

The context latent vector representations in JICO, with PCA, can help

reveal relationships among context values. Such analysis can help us gain

important insights and use such information in subsequent applications.

4.6. Impact of Latent Vector Dimensions

Finally, we show the sensitivity of JICO (in RMSE) to the latent vector

dimensions of user/item and contexts on the Food dataset in Figs. 5(a) and

5(b), respectively. The user/item or context dimension is fixed to 4 when testing

23



(a)

(b)

Figure 4: Contextual information analysis: (a) Different context weight percentages on the

Movielens-100K and Food datasets. (b) Occupation representations in 2-D space, with di-

mension reduced by PCA.

the other. We can see that the best dimensionality of user/item vector de is 5

while that for context dc is 9. Both curves change smoothly with only small
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(a) Entity vector dimension.

(b) Context vector dimensions.

Figure 5: Recommendation performance sensitivity with respect to JICO latent vector dimen-

sions on the Food dataset.

variations, which are much smaller than those observed in similar curves in

COT [27]. This indicates that JICO is much less sensitive to the latent vector

dimension settings than COT.
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5. Conclusion

This paper proposed JICO, a novel context-aware recommendation model

combining joint interaction with the context operation. It models the relation-

ships between user/item and contexts more properly by addressing limitations

of previous models while leveraging their virtues. We performed experiments

on four datasets to show the superior recommendation performance and var-

ious interesting studies, such as varying contextual influence and time split

recommendation. The results show that JICO consistently outperforms other

state-of-the-art models in all cases studied.

In future, we can further develop JICO in two directions. Firstly, since JICO

can be treated as a generic supervised learning model, we can potentially add

deep models with multiple layers to further improve the model performance

[46, 47]. Secondly, Lawrence and Urtasun [48] proposed a non-linear matrix

factorization for collaborative filtering, which can be extended to tensor factor-

ization. This can further extend JICO and other recommendation models based

on the tensor operation to capture non-linear interactions in data.
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