
1

Learning a Robust Representation via a Deep
Network on Symmetric Positive Definite Manifolds

Zhi Gao, Yuwei Wu, Xingyuan Bu, and Yunde Jia Member, IEEE

Abstract—Recent studies have shown that aggregating convo-
lutional features of a pre-trained Convolutional Neural Network
(CNN) can obtain impressive performance for a variety of visual
tasks. The symmetric Positive Definite (SPD) matrix becomes
a powerful tool due to its remarkable ability to learn an ap-
propriate statistic representation to characterize the underlying
structure of visual features. In this paper, we propose to aggregate
deep convolutional features into an SPD matrix representation
through the SPD generation and the SPD transformation under
an end-to-end deep network. To this end, several new layers
are introduced in our network, including a nonlinear kernel
aggregation layer, an SPD matrix transformation layer, and a
vectorization layer. The nonlinear kernel aggregation layer is
employed to aggregate the convolutional features into a real SPD
matrix directly. The SPD matrix transformation layer is designed
to construct a more compact and discriminative SPD repre-
sentation. The vectorization and normalization operations are
performed in the vectorization layer for reducing the redundancy
and accelerating the convergence. The SPD matrix in our network
can be considered as a mid-level representation bridging convolu-
tional features and high-level semantic features. To demonstrate
the effectiveness of our method, we conduct extensive experiments
on visual classification. Experiment results show that our method
notably outperforms state-of-the-art methods.

Index Terms—Feature Aggregation, SPD Matrix, Riemannain
Manifold, Deep Convolutional Network

I. INTRODUCTION

DEEP Convolutional Neural Networks (CNNs) have
shown great success in many vision tasks. There are

several successful networks, e.g., AlexNet [1], VGG [2],
GoogleNet [3], Network In Network [4] and ResNet [5].
Driven by the emergence of large-scale data sets and fast
development of computation power, features based on CNNs
have proven to perform remarkably well on a wide range of
visual recognition tasks [6], [7]. Two contemporaneous works
introduced by Liu et al. [8] and Babenko and Lempitsky [9]
demonstrate that convolutional features could be seen as a set
of local features which can capture the visual representation
related to objects. To make better use of deep convolutional
features, many efforts have been devoted to aggregating them,
such as max pooling [10], cross-dimensional pooling [11], sum
pooling [9], and bilinear pooling [8], [12]. However, modeling
these convolutional features to boost the feature learning abil-
ity of a CNN is still a challenging task. This work investigates
a more effective scheme to aggregate convolutional features

The authors are with Beijing Laboratory of Intelligent Information Technol-
ogy, School of Computer Science, Beijing Institute of Technology (BIT), Bei-
jing, China. Email:{gaozhi 2017,wuyuwei,buxingyuan,jiayunde}@bit.edu.cn.

Corresponding author: Yuwei Wu.

to produce a robust representation using an end-to-end deep
network for visual tasks.

Recently, the Symmetric Positive Definite (SPD) matrix
has been demonstrated the powerful representation ability and
widely used in computer vision community, such as face
recognition [13], [14], image set classification [15], transfer
learning [16], and action recognition [17], [18]. Through
the theory of non-Euclidean Riemannain geometry, the SPD
matrix often turns out to be better suited in capturing desirable
data distribution properties. Accordingly, we attempt to ag-
gregate the deep convolutional features into an powerful SPD
matrix as a robust representation.

The second-order statistic information of convolutional fea-
tures, e.g., the covariance matrix and Gaussian distribution,
are the widely used SPD matrix representation endowed with
CNNs [19], [20], [21]. The dimensionality of convolutional
features extracted from CNNs may be much larger than that
of hand-craft features. As a result, modeling convolutional fea-
tures from CNNs by using the covariance matrix or Gaussian
distribution is insufficient to precisely model the real feature
distribution. When the dimension of features is larger than the
number of features, the covariance matrix and Gaussian distri-
bution is a symmetric Positive SemiDefinite (PSD) matrix, i.e.,
the singular matrix. Singular matrix makes the data have an
unreasonable manifold structure. In this case, the Riemannain
metrics, e.g., the affine-invariant distance and Log-Euclidean
distance, are unsuitable to measure the manifold structure of
SPD matrices. Moreover, most SPD matrix embedding on
deep networks only contains the linear correlation of features.
Owning the ability of capturing nonlinear relationship among
features is indispensable for a generic representation.

It is thus desirable that a more discriminative and suitable
SPD representation aggregated from deep features should be
established in an end-to-end framework for visual analysis.
To this end, we design a series of new layers to overcome
existing issues aforementioned based on the following two
observations.
• Kernel functions possess an ability of modeling nonlinear

relationships of data, and they are fiexible and easy to
be computed. Beyond covariance [22] have witnessed
significant advances of positive definite kernel functions
whose kernel matrices are real SPD matrices, no mat-
ter what the number of the feature dimension and the
number of features are. Since many kernel functions are
differentiable, such as Radial Basis Function (RBF) ker-
nel function, Polynomial kernel function and Laplacian
kernel function [23], they can be readily embeded into
a network to implement an end-to-end training, which

ar
X

iv
:1

71
1.

06
54

0v
2

 [
cs

.C
V

]
 2

0
N

ov
 2

01
7

2

…
High-level

Feature

The Proposed Aggregation Method

Visual
Classification

Pre-trained CNN

Input Image

Back Propagation

Vectorization

SPD
Matrix

SPD Matrix
Transformation

1 × 1
Convolutional

Layer

Kernel
Aggregation

SPD Matrix

Fig. 1. The flowchart of our SPD aggregation network. We focus on both how to generate an SPD matrix from convolutional features and gain a more
discriminative SPD representation by the transformation operation. Our general representation can be used for different tasks. To gain the processed convolutional
features, the PCA and 1 × 1 convolutional layer are applied on the last convolutional features from the pre-trained CNN network. The kernel aggregation
operation, SPD matrix transformation operation and vectorization operation correspond to the proposed three new layers. The kernel aggregation operation is
to generate an SPD representation from the convolutional features. The SPD matrix transformation operation is to map the SPD matrix to a more compact and
discriminative one by learnable parameters. The vectorization operation involves vectorization and normalization operations on the transformed SPD matrix.

is well aligned with the design requirements of a deep
network.

• Several deep SPD networks [24], [25], [26] transform the
SPD matrix to a new compact and discriminative matrix.
The network input is an SPD matrix. The transformed
matrix is still an SPD matrix which can capture desirable
data properties. We find that the transformed SPD matrix
after the learnable layers leads to better performance than
the original SPD matrix. The output SPD matrix not only
have characteristics of a general SPD matrix that captures
the desirable properties of visual features but also is more
suitable and discriminative to the specific visual task.

Motivated by empirical observations mentioned above, we
introduce a convolutional feature aggregation operation which
consists of the SPD generation and the SPD transformation.
Three new layers including a kernel aggregation layer, an
SPD matrix transformation layer and a vectorization layer, are
designed to replace the traditional global pooling layers and
fully connected (FC) layers. Concretely, we deem each feature
map as a sample and present a kernel aggregation layer using
a nonlinear kernel function to generate an SPD matrix. The
proposed kernel matrix models a nonlinear relationship among
feature maps and ensures that the SPD matrix is nonsingular.
More importantly, our kernel matrix is differentiable, which
entirely meets requirements of a deep network. The SPD
matrix transformation layer is employed to map the SPD
matrix to a more discriminative and compact one. Thanks to
the symmetry property, the vectorization layer carries out the
upper triangle vectorization and normalization operations to
the SPD matrix followed by the classifier. The architecure of
our network is illustrated in Fig. 1. The proposed method first
generates an SPD matrix based on convolutional features and
then transforms the initial SPD matrix to a more discriminative
one. It can not only capture the real spatial information but also
encode high-level variation information among convolutional
features. Actually, the obtained descriptor acts as a mid-level
representation bridging convolutional features and high-level
semantics features. The resulting vector can contribute to
visual classification tasks, as validated in experiments.

In summary, our contributions are three-fold.
(1) We apply the SPD matrix non-linear aggregation to the

convolutional feature aggregation field by the generation and
the transformation two processes. In this way, it can learn
an compactness and robustness SPD matrix representation to
characterize the underlying structure of convolutional features.

(2) We carry out the nonlinear aggregation of convolutional
features under a Riemannain deep network architecture, where
three novel layers are introduced, i.e., a kernel aggregation
layer, an SPD matrix transformation layer and a vectorization
layer. The state-of-the-art performance of our SPD aggregation
network is consistently achieved over the visual classification
tasks.

(3) We exploit the faster matrix operations to avoid the
cyclic calculation in forward and backward backpropagations
of the kernel aggregation layer. In addition, we present the
component decomposition and retraction of the Orthogonal
Stiefle manifold to carry out the backpropagation on the SPD
matrix transformation layer.

The remaining sections are organized as follows. We review
the recent works about feature aggregation methods in both
Euclidean Space and Riemannain Space in Section II. Section
III presents the details of our SPD aggregation method. We
report and discuss the experimental results in Section IV, and
conclude the paper in Section V.

II. RELATED WORK

Feature aggregation is an important problem in computer
vision tasks. Recent works have witnessed significant advances
of CNNs. It is still a challenging work to find a suitable way
to aggregate convolutional features. In this section, we review
typical techniques of feature aggregation in both the Euclidean
space and Riemannain space.

A. Convolutional Feature Aggregation in the Euclidean Space

An effective image representation is an essential element
for visual recognition due to the object appearance varia-
tions caused by pose, view angle, and illumination changes.

3

Traditional methods typically obtain the image representation
by aggregating hand-crafted local features (e.g., SIFT) into a
global image descriptor. Popular aggregation schemes include
Bag-of-words (BOW) [27], Fisher Vector (FV) [28], and
Vector of Locally Aggregated Descriptor (VLAD) [29]. Gong
et al. [30] introduced a multi-scale orderless pooling scheme to
aggregates FC6 features of local patches into a global feature
using VLAD. The VLAD ignores different effects of each
cluster center. Cimpoi et al. [31] treated the convolutional layer
of CNNs as a filter bank and built an orderless representation
using FV. In addition, Liu et al. [32] proposed a cross convo-
lutional layer pooling scheme which regards feature maps as
a weighting filter to the local features. Tolias et al. [10] max
pooled convolutional features of the last convolutional layer to
represent each patch and achieved compelling performance for
object retrieval. Babenko et al. [9] compared different kinds of
aggregation methods (i.e., max pooling, sum pooling and fisher
vector) for last convolutional layer features and demonstrated
the sum-pooled convolutional descriptor is really competitive
with other aggregation schemes.

Works mentioned above only treat the CNN as a black-
box feature extractor rather than studying on properties of
CNN features in an end-to-end framework. Several researchers
[8], [33], [34] suggested that the end-to-end network can
achieve better performance because it is sufficient by itself
to discover good features for visual tasks. Arandjelovic et al.
[34] proposed a NetVLAD which adopts an the end-to-end
framework for weakly supervised place recognition. Based on
the ResNet, Zhang et al. [33] introduced an extended version
of the VLAD, i.e., Deep-TEN, for texture classification. Lin
et al. [8] presented a general orderless pooling model named
Bilinear to compute the outer product of local features. He
et al. [35] introduced a spatial pyramid pooling method
eliminating the constrain of the fixed-size input image.

Recent research shows that exploiting the manifold struc-
ture representation is more effective than the hypothetical
Euclidean distribution in some visual tasks. The difference
between our method and the traditional aggregation methods
in the Euclidean space is that we use the powerful SPD
manifold structure to aggregate the desirable data distributions
of features. We design an SPD aggregation scheme to generate
the SPD matrix as the resulting representation, and transform
the SPD representation to more discriminative one by learnable
layers.

B. Convolutional Feature Aggregation in the Riemannain
Space

The aggregation methods in the non-Euclidean space have
been successful applied. It can capture more appropriate
feature distributions information. The second-order statistic
information has better performance than the first-order statistic
[19], such as average pooling. Some works directly regard the
second-order statistic information as the SPD matrix. Ionescu
et al. [20] proposed a DeepO2P network that uses a covariance
matrix as the image representation. They mapped points on
the manifold to the logarithm tangent space and derived a
new chain rule for derivatives. Li et al. [19] presented a

matrix normalized covariance method exploring the second-
order statistic. This work can tackle the singular issue of the
covariance matrix by the normalization operation. Yu and Salz-
mann [21] introduced a covariance descriptor unit to integrates
second-order statistic information. The covariance matrix of
convolutional features is generated and then transformed to a
vector for the softmax classifier. Compared with our network,
these three works are confined to the drawbacks of covariance
matrices. Engin et al. [36] designed a deep kernel matrix based
SPD representation, but didn’t contains the transformation
process.

Other SPD Riemannain networks mainly project an SPD
matrix to a more discriminative one. Dong et al. [24] and
Huang and Gool [25] proposed Riemannain networks con-
temporaneously, in which the inputs of their networks are
SPD matrices. The networks projects high dimensional SPD
matrices to a low dimensional discriminative SPD manifold
by a nonlinear mapping. Zhang et al. [26] introduced new
layers to transform and vectorize the SPD matrix for action
recognition, where the input is a nonlinear kernel matrix
modeling correlation of frames in a video. However, these
three works only focused on how to transform the SPD matrix
without utilizing the powerful convolutional features. The
generation of the input SPD matrix can not be guided by the
loss function. In contrast, our method focuses on not only
the SPD matrix transformation but also the generation from
convolutional features.

Our work is closely related with [19], [21], [36]. We make
it clear that the proposed convolutional feature aggregation
method is composed of generation and transformation pro-
cesses. Compared with [19], our method utilizes the ker-
nel matrix as the representation instead of the second-order
statistic covariance matrix, characterizing complex nonlinear
variation information of features. In addition, our aggregation
method contains a learnable transformation process than [19],
making SPD representation more compact and robust. The
generated SPD matrix in our method is more powerful than the
covariance matrix in [21], avoiding some drawbacks of PSD
matrix. In addition, instead of a transformation from a matrix
to a vector, the vectorization operation in our work is taking
the upper triangle of a matrix since there are already trans-
formation operations between the SPD matrices. Compared to
[36], our SPD representation can be more compact and robust
through the transformation process.

III. SPD AGGREGATION METHOD

Our model aims to aggregate convolutional features into
a powerful SPD representation in an end-to-end fashion. To
this end, we design three novel layers including a kernel
aggregation layer, an SPD matrix transformation layer and a
vectorization layer. Our SPD aggregation can be applied to
the visual classification. Specifically, the convolutional features
pass through the proposed three layers followed by an FC
layer and a loss function. The intermediate generated SPD
matrix can be treated as a mid-level representation which is
a connection between convolutional features and high-level
features. The architecture of our network is illustrated in
Fig. 1(c).

4

Deep Convolutional Features

Kernel Function
i-th feature map

j-th feature map

Mid-level feature

Fig. 2. Using the kernel function to generate an SPD matrix from convolu-
tional features. The input is convolutional features and the output is an SPD
kernel matrix.

A. Preprocessing of Convolutional Features

A CNN model trained on a large dataset such as ImageNet
can have a better general representation ability. We would like
to fuse the convolutional features of the last convolutional
layer and adjust the dimension of convolutional features for
different tasks. We introduce a convolutional layer whose
filter’s size is 1 × 1 between the last convolutional layer of
the off-the-shelf model and the kernel aggregation layer to
make the processed convolutional features more adaptive to
the SPD matrix representation. A Relu layer follows the 1×1
convolutional layer to increase the nonlinear ability.

B. Kernel Aggregation Layer

We present the kernel aggregation layer to aggregate con-
volutional features into an initial SPD matrix. Let X ∈
RC×H×W be 3-dimensional convolutional features. C is the
number of channels, i.e., the number of feature maps, H and
W are the height and width of each feature map, respectively.
Let xi ∈ RC denote the i-th local feature, and there are N
local features in total, where N = H×W . fi ∈ RH×W is the
i-th feature map.

Although several approaches have applied a covariance
matrix Cov to be a generic feature representation and obtained
promising results, two issues remain to be addressed. First,
the rank of covariance matrix should hold rank(Cov) ≤
min(C,N − 1), otherwise covariance matrix is prone to be
singular when the dimension C of local features is larger
than the number of local features extracted from an image
region. Second, for a generic representation, the capability of
modeling nonlinear feature relationship is essential. However,
covariance matrix only evaluates the linear correlation of
features.

To address these issues, we adopt the nonlinear kernel
matrix as a generic feature representation to aggregate deep
convolutional features. In particular, we take advantage of
the Riemannain structure of SPD matrices to describe the
second-order statistic and nonlinear correlations among deep
convolutional features. The nonlinear kernel matrix is capable
of modeling nonlinear feature relationship and is guaranteed

to be nonsingular. Different from the traditional kernel-based
methods whose entries evaluates the similarity between a pair
of samples, we apply the kernel mapping to each feature
f1, f2, · · · , fC rather than each sample x1, x2, · · · , xN . Mer-
cer kernels are usually employed to carry out the mapping
implicitly. The Mercer kernel is a function K(·, ·) which can
generate a kernel matrix K ∈ RC×C using pairwise inner
products between mapped convolutional features for all the
input data points. The Kij in our nonlinear kernel matrix K
can be defined as

Kij = K (fi, fj) =
〈
φ(fi), φ(fj)

〉
, (1)

where φ(·) is an implicit mapping. In this paper, we exploit
the Radial Basis Function (RBF) kernel function expressed as

K (fi, fj) = exp
(
−‖fi − fj‖2/2σ2

)
, (2)

where σ is a positive constant and set to the mean Euclidean
distances of all feature maps. What Eq. (2) reveals is the
nonlinear relationship between convolutional features.

We show an important theorem for kernel aggregation
operation. Based on the Theorem 1, the kernel matrix K of
the RBF kernel function is guaranteed to be positive definite
no matter what C and N are.

Theorem 1. Let X = {xi}Mi=1 denotes a set of different points
and xi ∈ Rn. Then the kernel matrix K ∈ RM×M of the
RBF kernel function K on X is guaranteed to be a positive
definite matrix, whose (j, k)-th element is Kjk = K (xj ,xk) =
exp

(
−α‖xj − xk‖2

)
and α > 0.

Proof. The Fourier transform convention K̂(ξ) of the RBF
kernel function K (xi,xj) = exp

(
−α‖xj − xk‖2

)
is

K̂(ξ) = (2π/α)
n/2
∫
Rn

eiξxje−iξxke−‖ξ‖
2/2αdξ. (3)

Then we calculate the quadratic form of the kernel matrix K.
Let c = (c1, · · · , cM) ∈ RM×1 denote an arbitrary nonzero
vector. The quadratic form Q is

Q = c>Kc =

M∑
j=1

M∑
k=1

cjckexp
(
−α‖xj − xk‖2

)
=

M∑
j=1

M∑
k=1

cjck(2π/α)
n/2
∫
Rn

eiξxje−iξxke−‖ξ‖
2/(2α)dξ

= (2π/α)
n/2
∫
Rn

e−‖ξ‖
2/(2α)‖

M∑
k=1

cke
−iξxk‖2dξ,

(4)
where > is the transpose operation. Because e−‖ξ‖

2/(2α) is a
positive and continuous function, the quadratic form Q = 0
on the condition that

M∑
k=1

cke
−iξxk = 0. (5)

However, the complex exponentials e−iξx1 , · · · , e−iξxM is
linear independence. Accordingly, Q > 0 and kernel matrix
K is a positive definite matrix.

5

In this work, K is the generated SPD matrix as the mid-
level image representation. Any SPD manifold optimization
can be applied directly, without structure being destroyed.
The toy example of the kernel aggregation is illustrated in
Fig. 2. As we all known, the kernel aggregation layer should
be differentiable to meet the requirement of an end-to-end
deep learning framework. Clearly, Eq. (2) is differentiable with
respect to the input X . Denoting by L the loss function, the
gradient with respect to the kernel matrix is ∂L

∂K . ∂L
∂Kij

is an
element in ∂L

∂K . We compute the partial derivatives of L with
respect to fi and fj , which are

∂L
∂fi

=

H×W∑
j=1

∂L
∂Kij

Kij

−2σ2
(fi − fj)

∂L
∂fj

=

H×W∑
i=1

∂L
∂Kij

Kij

−2σ2
(fj − fi) .

(6)

In this process, the gradient of the SPD matrix can flow back
to convolutional features.

During forward propagation Eq. (2) and backward prop-
agation Eq. (6), we have to do C2 cycles to compute the
kernel matrix K and 2C2 cycles to gain the gradient with
respect to convolutional features ∂L

∂X , where C is the num-
ber of channels. Obviously, both the forward and backward
propagations are computationally demanding. It is well known
that the computation using matrix operations is preferable
due to the parallel computing in computers. Accordingly, our
kernel aggregation layer is able to be calculated in a faster
way via matrix operations. Let’s reshape the convolutional
features X ∈ RC×H×W to a matrix M ∈ RC×N . Each
row of M is a reshaped feature map fi ∈ R1×N obtained
from fi and each column of M is the convolutional local
feature xi. Note that, ‖fi − fj‖2 in Eq. (2) can be expanded
to ‖fi−fj‖2= fif

>
i −2fif

>
j +fjf

>
j . For each of inner products

fif
>
i , 2fif

>
j and fjf

>
j , it needs to be calculated C2 times

in cycles of Eq. (2). Now, we can convert C2 times inner
products operation to a matrix multiplication operation which
only needs to be computed once,

K1 = 1 (M◦M)
>

K2 = (M◦M)1>

K3 = MM>,

(7)

where ◦ is the Hadamard product and 1 ∈ RC×N is a matrix
whose elements are all “1”s. K1, K2 and K3 are all C × C
real matirces. The element K1 (i, j) is the 2-norm of i-th row
vector of M , and is equal to the calculation output of fif

>
i .

The element K2 (i, j) is the 2-norm of j-th column vector of
M , and is equal to the calculation output of fjf>j . The element
K3 (i, j) is equal to fif

>
j . K1, K2 and K3 can be calculated

in advance.
Therefore, we compute −‖fi − fj‖2/2σ2 in Eq. (2) by the

matrix addition and multiplication, and implement the exp (·)
to the matrix in a parallel computing way instead of calculating
each element in the cycle. Then the kernel matrix K can be
calculated by matrix operations as follows.

K = exp
(
− (K1 +K2− 2K3) /2σ2

)
, (8)

where exp (A) means the exponential operation to each ele-
ment in the matrix A. Although calculating directly the exp (·)
function is time-consuming, it can be computed efficiently in
a matrix form through Eq. (8), which is faster than through
Eq. (2). Similarly, back propagation process in Eq. (6) can
also be carried out in the matrix operation which is given by

∂L
∂M

= 4

(
1>

(
∂L
∂K ◦K
−2σ2

)
◦M> −M>

(
∂L
∂K ◦K
−2σ2

))>
.

(9)
Remark: The covariance matrix descriptor, as a special case

of SPD matrices, captures feature correlations compactly in an
object region, and therefore has been proven to be effective for
many applications. Given the local features x1, x2, · · · , xN ,
the covariance descriptor Cov is defined as

Cov =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)>, (10)

where µ = 1
N

∑N
i=1 xi is the mean vector. The covariance

matrix can also be seen as a kernel matrix where the (i, j)-th
element of the covariance matrix Cov can be expressed as

Covij =

〈
fi√
N − 1

,
fj√
N − 1

〉
, (11)

where 〈·, ·〉 denotes the inner product, fi = fi − µi1 and
µi is the mean value of fi. Therefore, the covariance matrix
corresponds to a special case of the nonlinear kernel matrix
defined in Eq. (1), where φ(fi) = (fi − µi1)/

√
N − 1.

Through this way, we can find that covariance matrices contain
the simple linear correlation features. Whether the covariance
matrix is a positive definite matrix depends on the C and N ,
i.e., rank(Cov) ≤ min(C,N − 1).

C. SPD Matrix Transformation Layer

As discussed in [24], [25], [26], SPD matrix transformation
networks are capable of achieving the better performance
than the original SPD matrix. Inspired by [37] and [21],
we add a learnable layer to make the network more flexible
and more adaptive to the specific task. Based on the SPD
matrix generated by the kernel aggregation layer, we expect
to transform the existing SPD representation to be a more
discriminative, suitable and desirable matrix. To preserve the
powerful ability of the SPD matrix, the transformed matrix
should also be an SPD matrix. Moreover, we attempt to adjust
the dimension to make the SPD matrix more flexible and
compact. Here, we design the SPD matrix transformation layer
in our network.

Let’s define the Riemannain manifold of n×n SPD matrices
as Sym+

n . The output SPD matrix K of the kernel aggregation
layer lies on the manifold Sym+

C . We use a matrix mapping to
complete the transformation operation. As depicted in Fig. 3,
we map the input SPD matrix which lies on the original
manifold Sym+

C to a new discriminative and compact SPD

6

Csym

'Csym

Fig. 3. The illustration of the projection from a manifold to another.

matrix in another manifold Sym+
C′ , where C ′ is the dimension

of the SPD matrix transformation layer. In this way, the desired
transformed matrix can be obtained by a learnable mapping.
Given a C × C SPD matrix K as an input, the output SPD
matrix can be calculated as

Y = W>KW, (12)

where Y ∈ RC′×C′ is the output of the transformation layer,
and W ∈ RC×C′ are learnable parameters which are randomly
initialized during training. C ′ controls the size of Y . Based
on the Theorem 2, the learnable parameters W should be a
column full rank matrix to make Y be an SPD matrix as well.

Theorem 2. Let A ∈ RC×C denote an SPD matrix, W ∈
RC×C′ and B = W>AW , where C ≥ C ′. B is an SPD
matrix if and only if W is a column full rank matrix, i.e.,
rank(W) = C ′.

Proof. If A is an SPD matrix, W is a column full rank matrix
and rank(W) = C ′. For homogeneous equations Wx = 0
and x ∈ RC′×1, Wx = 0 only has a zero solution, where 0
is the zero vector. For arbitrary nonzero vector x, Wx 6= 0.
We calculate the quadric form x>Bx,

x>Bx = x>W>AWx = (Wx)>A(Wx). (13)

Because Wx 6= 0 and A is an SPD matrix, x>Bx > 0. This
proves that B is an SPD matrix.

On the other hand, if B is an SPD matrix, for arbitrary
nonzero vector x ∈ RC′×1, x>Bx = (Wx)>A(Wx) > 0.
Beccause A is an SPD matrix, Wx 6= 0. Only if x = 0 can
lead to Wx = 0. Accordingly, rank(W) = C ′ and W is a
column full rank matrix.

Since there are learnable parameters in the SPD matrix
transformation layer, we should not only compute the gradient
of loss function L with respect to the input K, but also
calculate the gradient with respect to parameters W . The
gradient with respect to the input K is

∂L
∂K

= W
∂L
∂Y

W>, (14)

where ∂L
∂Y is the gradient with respect to the output Y .

Since W is a column full rank matrix, it is on a non-
compact Stiefel manifold [38]. However, directly optimizing
W on the non-compact Stiefel manifold is infeasible. To

overcome this issue, we relax W to be semi-orthogonal, i.e.,
W>W = IC′ . In this case, W is on the orthogonal Stiefel
manifold St (C ′, C). The optimization space of parameters
W is changed from the non-compact Stiefel manifold to
the orthogonal Stiefel manifold St (C ′, C). Considering the
manifold structure of W , the optimization process is quite
different from the gradient descent method in the Euclidean
space. We first compute the partial derivative with respect to
W . Then we convert the partial derivative to the manifold
gradient that lies on the tangent space. Along the tangent
gradient, we find a new point on the tangent space. Finally,
the retraction operation is applied to map the new point on the
tangent space back to the orthogonal Stiefel manifold. Thus,
an iteration of the optimization process on the manifold is
completed. This process is illustrate in Fig. 4. Next we will
elaborate each step.

First the partial derivative ∂L
∂W with respect to W is com-

puted by

∂L
∂W

= K>W
∂L
∂Y

+KW

(
∂L
∂Y

)>
. (15)

The partial derivative ∂L
∂W doesn’t contain any manifold con-

straints. Considering W is a point on the orthogonal Stiefel
manifold, the partial derivative needs to be converted to the
manifold gradient, which is on the tangent space. As shown in
Fig. 5, on the orthogonal Stiefel manifold, the partial derivative
∂L
∂W is a Euclidean gradient at the point W , not tangent to
the manifold. The tangential component of ∂L

∂W is what we
need for optimization, which lies on the tangent space. The
normal component is perpendicular to the tangent space. We
decompose ∂L

∂W into two vectors that are perpendicular to each
other, i.e., one is tangent to the manifold and the other is the
normal component based on the Theorem 3.

Theorem 3. Let M denote an orthogonal Stiefel manifold and
X is a point on M . F (X) denotes a function defined on the
orthogonal Stiefel manifold. If the partial derivatives of F with
respect to X is FX, the manifold gradient ∇F at X which is
tangent to M is ∇F = FX −XF>XX.

Proof. Because X is a point on the orthogonal Stiefel mani-
fold, X>X = I , where I is an identity matrix. Differentiating
X>X = I yields X>∆ + ∆>X = 0, where ∆ is a tangent
vector. Thus, X>∆ is a skew-symmetric matrix. Note that,
the canonical metric for the orthogonal Stiefel manifold at the
point Y is gc (∆1,∆2) = tr

(
∆>1 (I − 1

2Y Y
>)∆2

)
. For all

tangent vectors δ at X, we can get that

trF>X∆ = gc(∇F,∆) = tr(∇F)
>

(I − 1

2
XX>)∆. (16)

Because X>(∇F) is a skew-symmetric matrix, Eq. (16) can
be solved, i.e., ∇F = FX −XF>XX.

Then the tangential component ∇LW at W can be ex-
pressed by the partial derivative ∂L

∂W ,

∇LW =
∂L
∂W

−W
(
∂L
∂W

)>
W. (17)

∇LW is the manifold gradient of the orthogonal Stiefel
manifold. Searching along the giadient ∇LW gets a new point

7

Tangent Space

Retraction
Operation

Search

Direction

Orthogonal Stiefle Manifold

Fig. 4. The illustration of the optimization process of W . W is an original
point on the orthogonal Stiefel manifold. W ′ is a new point after an iterative
update. ∂L

∂W
is the partial derivative of the loss function with respect to W .

∇LW is the manifold gradient lying on the tangent space.

Tangent Space

Orthogonal Stiefle Manifold

Normal
component

Fig. 5. The illustration of tangential and normal components of a vector.
These two components are perpendicular. v is the vector on the surface.
The tangential component of v is a vector on the tangent space and normal
conpoment is perpendicular to the tangent space.

on the tangent space. Finally, we use the retracting operation to
map the point on the tangent space back to the Stiefel manifold
space,

W := q (W − λ∇LW) , (18)

where q (·) is the retraction operation mapping the data back
to the manifold. Specificly, q (A) denotes the Q matrix of QR
decomposition to A. A ∈ Rn×p, A = QR, where Q ∈ Rn×p is
a semi-orthogonal matrix and R ∈ Rp×p is a upper triangular
matrix. λ is the learning rate.

Note that, we can make a Relu activation function layer
follow the SPD matrix transformation layer. The output of the
Relu layer is still an SPD matrix based on the Theorem 4.

Theorem 4. The relu activation function on a matrix Y is
f(Y). Let Z = f(Y),

Zij =

{
0, if Yij<0
Yij , if Yij ≥ 0

.

If Y is an SPD matrix, Z is an SPD matrix.

Proof. The detailed proof of this theorem is shown in the
appendix section of [24].

layer

CNN

…

…

The Proposed New Layers

Loss
Function

Fig. 6. Illustration of the forward and backward propagations of networks
with the proposed aggregation method.

D. Vectorization layer

Since inputs of the common classifier is all vectors, we
should vectorize the SPD matrix to a vector. Because of
the symmetry of the robust SPD matrix achieved by the

transformation layer, Y is determined by
C′×(C′+1)

2 elements,
i.e., the upper triangular matrix or the lower triangular matrix
of Y . Here, we take the upper triangular matrix of Y and
reshape it into a vector as the input of the loss function. Let’s
denote the vector by V ,

V =
[
Y11,
√

2Y12, ...,
√

2Y1C′ , Y22,
√

2Y23, ...,
√

2YC′(C′−1), YC′C′
]

=
[
V1, V2, ..., VC′×(C′+1)

2

]
.

(19)

Due to the symmetry of the matrix Y , the gradient ∂L
∂Y is

also a symmetric matrix. For the diagonal elements of Y , its
gradient of the loss function is equal to the gradient of its
corresponding element in the vector V , while the gradient of
non-diagonal elements of Y is

√
2 times of the element in the

vector V . The gradient with respect to Y is given by

∂L
∂Y

=



∂L
∂V1

√
2∂L
∂V2

· · ·
√
2∂L

∂VC′−1

√
2∂L

∂VC′√
2∂L
∂V2

∂L
∂VC′+1

√
2∂L

∂VC′+2

· · ·
√
2∂L

∂V2×C′−1

...
...

... · · ·
...√

2∂L
∂VC′

√
2∂L

∂V2×C′−1

√
2∂L

∂V3×C′−3

· · · ∂L
∂VC′×(C′+1)

2


.

(20)

The normalization operation is important as well. We use the
power normalization

(
Vi := sign (Vi)

√
|Vi|
)

and l2 normal-
ization (V := V/‖V ‖2) operation following the vector V . The
gradient formulation Eq. (9), Eq. (14) and Eq. (18) calculate
the gradient with respect to the input of the corresponding
layer, respectively. Once these gradients are obtained, the stan-
dard SGD backpropagation can be easily employed to update
the parameters directly with the learning rate. Fig. 6 shows
the data flow in our network with the proposed three layers
including forward and backward propagations. fc denotes the
output of the last fully-connected layer. In Algorithm 1, we
summarize the training process of our model. We can use more
than one SPD transformation layers in the network, where each
one can be followed by a Relu layer as the activation layer.

8

TABLE I
COMPARISON FOR CNNS BASED METHODS IN TERMS OF AVERAGE PRECISION (%). OUR METHOD IS BOLD IN THE LAST LINE.

Method DTD FMD KTH-T2b CUB-200-2011 FGVC-aircraft
FV-CNN [31] 67.3 73.5 73.3 49.9 -

FV-FC-CNN [31] 69.8 76.4 73.8 54.9 -

B-CNN [8] 69.6 77.8 79.7 74.0 74.3

Deep-TENResNet50 [33] - 80.2 82.0 - -

VGG-16 [2] 66.8 77.8 78.3 68.0 75.0

Ours 68.9 79.2 81.1 72.4 77.8

Algorithm 1 Trainging Process of Our Model
Input: Training data I = {Ii}ni=1, where n is the number

of training samples. SPD matrix transformation layer’s
initial parameters W . The other parameters in the CNN
θ. Learning rate λ.

Output: SPD matrix transformation layer’s parameters W .
Other layer’s parameters θ.

1: while not converge do
2: Compute the convolutional features M by forwarding

Ii through convolutional layer.
3: Compute the SPD matrix K by Eq.(8).
4: Compute the transformed SPD matrix Y by Eq.(12).
5: Compute the vector representation V by Eq.(19).
6: Compute the loss L.
7: Compute the gradient ∂L

∂V .
8: Compute the gradient ∂L

∂Y by Eq.(20).
9: Compute the gradient ∂L

∂K by Eq.(14).
10: Update the parameters W by Eq.(15), Eq.(17) and

Eq.(18).
11: Compute the gradient ∂L

∂M with respect to the last
convolutional features.

12: Compute the gradient ∂L
∂θ with respect to the other

parameters.
13: Update the other parameters θ = θ − λ∂L∂θ .
14: end while
15: return θ and w

IV. EXPERIMENT

To demonstrate the benefits of our method, we conduct
extensive experiments on visual classification tasks. We con-
duct experiments on visual classification tasks to show the
performace of the SPD aggregation framework including the
generation and transformation processes. We present the visual
classification tasks on five datasets. We choose the challenging
texture and fine-grained classification tasks. The texture clas-
sification tasks need a powerful global representation, because
of the features of texture should be invariant to translation,
scaling and rotation. Differences among fine-grained images
are very small. It is challenging to represent these differences
in the aggregation process.

A. Datasets and Evaluation Protocols

We choose three texture datasets in the experiments. They
are Describable Textures Dataset (DTD) [39], Flickr Material
Database (FMD) [40] and KTH-TIPS-2b (KTH-2b) [41]. DTD

DTD(lined) FMD(plastic) KTH-TIPS2 (wool)

Fig. 7. Example images on the DTD, FMD and KTH-2b datasets. We can
see that images of the same category have huge differences, particularly the
plastic class.

FGVC-aircraft CUB-200-2011

Fig. 8. Example reference images on the FGVC-aircraft and CUB-200-2011
datasets. The gaps between the pictures are very small.

and FMD are both collected in the wild conditions while KTH-
2b is under the laboratory condition. DTD has 47 classes,
and each class contains 120 images. There are totally 5640
images in DTD. FMD contains 1000 images of 10 classes,
each class has 100 images. KTH-2b contains 4752 images
of 11 classes. Fig. 7 illustrates the texture datasets for our
experiments. For these texture datasets, we follow the standard
train-test protocol. We divide DTD and FMD into three subsets
randomly, and use two subsets for training and the rest one
subset for testing. Images of KTH-2b are splited into four
samples. we train the framework using one sample and test

9

TABLE II
COMPARISON FOR THE COMPONENTS OF THE PROPOSED AGGREGATION METHOD IN TERMS OF AVERAGE PRECISION (%).

Method DTD FMD KTH-T2b CUB-200-2011 FGVC-aircraft
B-CNN [8] 67.9 77.8 79.7 74.0 74.3

512 conv 1× 1 + B-CNN [8] 66.3 74.9 77.9 67.2 65.3

VGG-16 [2] 66.8 77.8 78.3 68.0 75.0

512 conv 1× 1 + VGG-16 [2] 64.5 74.3 76.7 64.5 75.1

no conv 1× 1 + Kernel Aggregation Layer 66.8 76.7 81.0 72.2 75.8

128 conv 1× 1 + Kernel Aggregation Layer 67.8 78.3 81.1 64.6 72.3

512 conv 1× 1 + Kernel Aggregation Layer 67.1 78.6 81.3 72.1 76.7

Ours 68.9 79.2 81.1 72.4 77.8

on the rest three samples. Inspired by [1], the texture images
are augmented. We do 15 times augmentation to the training
data, including randomly cropping 10 times and picking from
center and four corners. The test images are only picked from
the center and four corners. The size of cropped images are
resized to 224× 224.

We report results on birds and aircrafts fine-grained recogni-
tion datasets. The birds dataset [42] is CUB-200-2011 which
contains 200 classes and 11788 images totally. The FGVC-
aircraft dataset [43] contains 10000 aircraft images of 100
classes. Fig. 8 illustrates some fine-grained images. We train
and test the birds and aircrafts fine-grained datasets through
the inherent training document. The data augmentation is not
applied to the fine-grained images. We resize them to the size
of 224 × 224. All the texture and fine-grained images are
normalized by subtracting means for RGB channels.

B. Implementation Details

The basic convolutional layers and pooling layers before our
SPD aggregation are from the VGG-16 model which is pre-
trained on the ImageNet dataset. We remove layers after the
conv5-3 layer of VGG-16 model. Then we insert our SPD
aggregation method into the network following the conv5-
3 layer. Finally, a FC layer and a softmax layer follow the
vectorization layer where the output dimension of the FC
layer is equal to the number of classes. All our networks run
under the caffe framework. We use SGD with a mini-batch
size of 32. The training process is divided into two stages. At
the first training stage, we fix the parameters before the SPD
aggregation method and train the rest new layers. The learning
rate is started from 0.1 and reduced by 10 when error plateaus.
At the second training stage, we train the whole network. The
learning rate is started from 0.001 and divided by 10 when
error plateaus.

C. Experiments for the SPD Aggregation Framework

In this section, we compare the SPD aggregation framework
with some state-of-the-art convolutional feature aggregation
methods. First a 1 × 1 convolutional layer whose number of
channels is 512 follows the conv5-3 convolutional layers. Then
our SPD aggregation method including a kernel aggregation
layer, an SPD matrix transformation layer and a vectorization
layer is inserted after the 1×1 convolutional layer. The output

size of the SPD matrix transformation layer is 512 × 512.
Considering these datasets are not big enough, we only use
one SPD matrix transformation layer to avoid the overfitting.
Table I shows the comparison on texture datasets and fine-
grained datasets respectively.

The following methods are evaluated in our experiments,
FV-CNN [31], FV-FC-CNN [31], B-CNN [8], Deep-TEN [33]
and the pure VGG-16 model [2] is used as the baseline. FV-
CNN aggregates convolutional features from VGG-16 conv5-
3 layer. The dimension of it is 65600 and is compressed to
4096 by PCA for classification. FV-FC-CNN incorporates the
FC features and FV vector. B-CNN uses the Bilinear pooling
method on the conv5-3 layer of VGG-16 model. The Deep-
TEN uses 50-layers ResNet and larger number of training
samples and image size, while the other methods use VGG-
16 model. It is not scientific to compare Deep-TEN with the
other feature aggregation methods.

We can see that, our method gets a better performance,
especially on KTH-2b and FGVC-aircraft datasets. The av-
erage precision of our method on KTH-2b and FGVC-aircraft
datasets are 81.1% and 77.8%. In contrast, B-CNN achieves
79.7% and 74.3%. On DTD and CUB-200-2011 datasets, our
method is slightly worse than the B-CNN. The reason may be
that the linear relationships among features are dominant on
some datasests and the nonlinear relationships are important
on the others.

D. Experiments for the Components of the Proposed Aggre-
gation Method

1×1 convolutional layer. As mentioned above, we employ
a 1×1 convolutional layer to accomplish the preprocessing of
convolutional features. In this section, we provide experiments
for the necessity of the preprocessing of convolutional features
in our method. We design experiments in Table II. We combine
different numbers of channels of conv 1 × 1 layer with the
kernel aggregation layer. We also add the conv 1 × 1 layer
to the B-CNN and pure VGG network. No conv 1 × 1,
128 conv 1 × 1 and 512 conv 1 × 1 in the Table indicate
that whether there is a conv 1 × 1 layer before the kernel
aggregation layer and the number of channels of the conv
1× 1 layer. The kernel aggregation layer in the Table means
that there is only the kernel aggregation layer without the SPD
matrix transformation layer and the vectorization layer in the

10

network. Table II shows that, the conv 1×1 layer is beneficial
to our nonlinear kernel aggregation method. However, it is
useless or even harmful to the B-CNN and pure VGG-16
model. Our benefits are brought about by the powerful SPD
matrix instead of the preprocessing of convolutional features.
But the preprocessing of convolutional features can actually
lead to better performance to the SPD aggregation. The reason
may be that the convolutional features are totally different
from the kernel matrices but have some similarities to the
Bilinear matrices or FC features. We can also observe that the
number of channels of conv 1 × 1 layer has small influence
for the texture datasets. But when it is reduced to 128, the
performance on fine-grained datasets is declined. So we argue
that the convolutional features are redundant for the texture
datasets but not redundant for the fine-grained datasets.

SPD Matrix Generation Process. To evaluate the effec-
tiveness of the nonlinear SPD matrix generation process, we
establish a network that only contains the kernel aggregation
layer without the SPD matrix transformation layer and vector-
ization layer. The outcome is shown in Table II. Without the
conv 1×1 layer, i.e., no conv 1×1 + kernel aggregation layer
in the Table, our network is comparable with the B-CNN and
pure VGG-16 model. When the conv 1× 1 layer is added to
the network, i.e.,, 512 conv 1×1 + Kernel Aggregation Layer
in the Table, it has a obvious better performance than the other
methods on FMD, KTH-2b and FGVC-aircraft datasets.

SPD Matrix Transformation Process. We design experi-
ments to evaluate the effectiveness of the proposed transforma-
tion process in this subsection. Compared with ours, 512 conv
1 × 1 + kernel aggregation layer in Table II only lacks the
SPD matrix transformation layer and the vectorization layer,
the rest is the same. Through Table II, we find that the SPD
matrix transformation process transforms the SPD matrix to a
more suitable and discriminative representation. Especially on
DTD dataset and FGVC-aircraft datasets, the performance is
improved by 1.8% and 1.1% respectively.

V. CONCLUSION

In this paper, we have proposed a new powerful SPD
aggregation method which models the convolutional feature
aggregation as an SPD matrix non-linear learning problem
on the Riemannain manifold. To achieve this goal, we have
designed three new layers to aggregate the convolutional
features into an SPD matrix and transform the SPD matrix to
be more discriminative and suitable. The three layers include a
kernel aggregation layer, an SPD matrix transformation layer
and a vectorization layer under an end-to-end framework. We
investigated the component decomposition and retraction of
the Orthogonal Stiefle manifold to carry out the backpropaga-
tion of our model. Meanwhile, the faster matrix operation was
adopted to speed up forward and backward backpropagations.
Compared with alternative aggregation strategies such as FV,
VLAD and bilinear pooling, our SPD aggregation achieves
appealing performance on visual classification tasks. Extensive
experiments on 11 challenging datasets have demonstrated that
our approach outperforms the state-of-the-art methods.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems (NIPS), 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[4] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[6] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proceedings of the European Conference on
Computer Vision (ECCV). Springer, 2014, pp. 818–833.

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in Proceedings of the International Conference on
Machine Learning (ICML), vol. 32, 2014, pp. 647–655.

[8] T. Y. Lin, A. Roychowdhury, and S. Maji, “Bilinear cnn models for fine-
grained visual recognition,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1449–1457.

[9] A. B. Yandex and V. Lempitsky, “Aggregating local deep features for
image retrieval,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2016, pp. 1269–1277.

[10] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with inte-
gral max-pooling of cnn activations,” arXiv preprint arXiv:1511.05879,
2015.

[11] Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-dimensional weight-
ing for aggregated deep convolutional features,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2016, pp. 685–701.

[12] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact bilinear
pooling,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 317–326.

[13] Z. Huang, R. Wang, X. Li, W. Liu, S. Shan, L. V. Gool, and
X. Chen, “Geometry-aware similarity learning on spd manifolds for
visual recognition,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. PP, no. 99, pp. 1–1, 2017.

[14] M. Harandi, M. Salzmann, and R. Hartley, “Dimensionality reduction
on spd manifolds: The emergence of geometry-aware methods,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PP,
no. 99, pp. 1–1, 2017.

[15] Z. Huang, R. Wang, S. Shan, X. Li, and X. Chen, “Log-euclidean metric
learning on symmetric positive definite manifold with application to
image set classification,” in Proceedings of the International Conference
on Machine Learning (ICML), vol. 33, 2015, pp. 720–729.

[16] S. Herath, M. Harandi, and F. Porikli, “Learning an invariant hilbert
space for domain adaptation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3845–
3854.

[17] J. Zhang, L. Wang, L. Zhou, and W. Li, “Exploiting structure
sparsity for covariance-based visual representation,” arXiv preprint
arXiv:1610.08619, 2016.

[18] L. Zhou, L. Wang, J. Zhang, Y. Shi, and Y. Gao, “Revisiting metric
learning for spd matrix based visual representation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 3241–3249.

[19] P. Li, J. Xie, Q. Wang, and W. Zuo, “Is second-order information
helpful for large-scale visual recognition?” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2070–
2078.

[20] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Matrix backpropagation
for deep networks with structured layers,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2965–
2973.

[21] K. Yu and M. Salzmann, “Second-order convolutional neural networks,”
Clinical Immunology and Immunopathology, vol. 66, no. 3, pp. 230–238,
2017.

[22] L. Wang, J. Zhang, L. Zhou, and C. Tang, “Beyond covariance: Feature
representation with nonlinear kernel matrices,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015, pp.
4570–4578.

11

[23] L. Bo, X. Ren, and D. Fox, “Kernel descriptors for visual recognition,”
in Advances in neural information processing systems (NIPS), 2010, pp.
244–252.

[24] Z. Dong, S. Jia, C. Zhang, M. Pei, and Y. Wu, “Deep manifold
learning of symmetric positive definite matrices with application to face
recognition,” in Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI), 2017, pp. 4009–4015.

[25] Z. Huang and L. J. Van Gool, “A riemannian network for spd matrix
learning,” in Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI), 2017, pp. 2036–2042.

[26] T. Zhang, W. Zheng, Z. Cui, Y. Zong, and Y. Li, “Deep manifold-to-
manifold transforming network for action recognition,” arXiv preprint
arXiv:1705.10732, 2017.

[27] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2003, pp. 1470–1477.

[28] L. Liu, C. Shen, L. Wang, A. van den Hengel, and C. Wang, “Encoding
high dimensional local features by sparse coding based fisher vectors,”
in Advances in neural information processing systems (NIPS), 2014, pp.
1143–1151.

[29] Y. H. Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep
networks for image retrieval,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2015,
pp. 53–61.

[30] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless
pooling of deep convolutional activation features,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2014, pp. 392–407.

[31] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture
recognition and segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3828–
3836.

[32] L. Liu, C. Shen, and A. V. D. Hengel, “Cross-convolutional-layer
pooling for image recognition,” IEEE transactions on Pattern Analysis
and Machine Intelligence, vol. PP, no. 99, pp. 2305–2313, 2017.

[33] H. Zhang, J. Xue, and K. Dana, “Deep ten: Texture encoding network,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 708–717.

[34] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad:
Cnn architecture for weakly supervised place recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 5297–5307.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[36] L. Z. X. L. Melih Engin, Lei Wang, “Deepkspd: Learning kernel-matrix-
based spd representation for fine-grained image recognition,” arXiv
preprint arXiv:1711.04047, 2017.

[37] K. Yu, B. Leng, Z. Zhang, D. Li, and K. Huang, “Weakly-supervised
learning of mid-level features for pedestrian attribute recognition and
localization,” arXiv preprint arXiv:1611.05603, 2016.

[38] P. A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on
matrix manifolds, 2009.

[39] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 3606–
3613.

[40] L. Sharan, C. Liu, R. Rosenholtz, and E. H. Adelson, “Recognizing
materials using perceptually inspired features,” International Journal of
Computer Vision, vol. 103, no. 3, pp. 348–371, 2013.

[41] B. Caputo, E. Hayman, and P. Mallikarjuna, “Class-specific material
categorisation,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2005, pp. 1597–1604.

[42] L. Xie, Q. Tian, R. Hong, S. Yan, and B. Zhang, “Hierarchical part
matching for fine-grained visual categorization,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2013, pp.
1641–1648.

[43] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” arXiv preprint arXiv:1306.5151,
2013.

	I Introduction
	II Related Work
	II-A Convolutional Feature Aggregation in the Euclidean Space
	II-B Convolutional Feature Aggregation in the Riemannain Space

	III SPD Aggregation Method
	III-A Preprocessing of Convolutional Features
	III-B Kernel Aggregation Layer
	III-C SPD Matrix Transformation Layer
	III-D Vectorization layer

	IV Experiment
	IV-A Datasets and Evaluation Protocols
	IV-B Implementation Details
	IV-C Experiments for the SPD Aggregation Framework
	IV-D Experiments for the Components of the Proposed Aggregation Method

	V Conclusion
	References

