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Directional Statistics-based Deep Metric Learning
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Abstract—Deep distance metric learning (DDML), which is
proposed to learn image similarity metrics in an end-to-
end manner based on the convolution neural network, has
achieved encouraging results in many computer vision tasks.
L2-normalization in the embedding space has been used to
improve the performance of several DDML methods. However,
the commonly used Euclidean distance is no longer an accurate
metric for L2-normalized embedding space, i.e., a hyper-sphere.
Another challenge of current DDML methods is that their loss
functions are usually based on rigid data formats, such as the
triplet tuple. Thus, an extra process is needed to prepare data
in specific formats. In addition, their losses are obtained from a
limited number of samples, which leads to a lack of the global
view of the embedding space. In this paper, we replace the
Euclidean distance with the cosine similarity to better utilize
the L2-normalization, which is able to attenuate the curse of
dimensionality. More specifically, a novel loss function based
on the von Mises-Fisher distribution is proposed to learn a
compact hyper-spherical embedding space. Moreover, a new
efficient learning algorithm is developed to better capture the
global structure of the embedding space. Experiments for both
classification and retrieval tasks on several standard datasets
show that our method achieves state-of-the-art performance with
a simpler training procedure. Furthermore, we demonstrate that,
even with a small number of convolutional layers, our model can
still obtain significantly better classification performance than the
widely used softmax loss.

Index Terms—Deep distance metric learning, Directional statis-
tics, Image retrieval, Image similarity learning

I. INTRODUCTION

By combining deep learning with classical distance metric
learning, deep metric learning achieves exciting results on
many visual tasks. For example, by introducing the triplet
loss to the deep learning framework, deep metric learning
is found to be effective in face verification [I]—[3]], person
re-identification [4], [5], 3D object retrieval [6] and image
retrieval [7].

This new combination is also known as deep distance metric
learning (DDML) or deep metric learning (DML). Among
many DDML methods, the triplet embedding is the most
widely used one. For instance, deep metric learning with triplet
shows competitive results on fine-grained visual categorization
(FGVC) tasks [8]. FaceNet [1]] uses the triplet loss with L2-
normalization to handle face related tasks better. The work
in [4] achieves the state-of-the-art performance on the re-
identification problem. Besides triplet based methods, many
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other deep metric learning approaches have been proposed in
recent years, e.g., the quintuplet loss [9] and lifted structure
loss [10]. Most existing deep metric learning methods are
designed based on the Euclidean distance. Several recent
studies [1f), [11] use L2-norm to normalize the embedding
space. Though L2 normalization as an effective method is
widely used to deal with the curse of dimensionality, little
attention is paid to the fact that the normalization process
projects a p-dim Euclidean space to a high dimension sphere,
SP~1. In such a manifold, the Euclidean distance is no longer
an accurate measurement. Therefore, it is reasonable to exploit
geometric properties of the manifold, the hyper sphere here,
for applying machine learning models to data with the unit
norm [12].

Although there is little attention paid to the conflict between
the Euclidean metric and the spherical embedding space in
DDML, the studies on the data with the unit norm have
achieved promising results in several disciplines [13]], such
as image clustering, text mining and gene expression analysis.
This kind of data is also known as directional data for which
the “direction” of data contains richer information than the
“magnitude”. It has already been shown by many studies that
direction can represent data better than magnitude [14]], [15].

Besides the metric problem, it is widely complained that
training with deep metric learning models is usually more
complicated compared with the softmax loss. Most of existing
DDML methods rely on specific mini-batch formats, such as
triplets [1] and n-pair tuples [16]. Preparing these formats
is very time-consuming. Besides, the pair selection strategies
have a significant influence on the final performance. Other
methods such as the algorithm in [11] do not require preparing
data in any formats. However, extra steps are needed to solve
their local facility function.

To address the above issues, we first replace the Euclidean
distance in deep metric learn with the cosine similarity which
is more suitable for L2-normalized embedding space. Then,
by introducing the directional distribution, a novel deep metric
learning model is proposed. More specifically, the von Mises-
Fisher distribution, which can be treated as the Gaussian
distribution for spherical data, is used to defined a new
loss function named von Mises-Fishes loss (VMF loss) for
our model. Besides the loss function, an alternative learning
algorithm is proposed to efficiently train our model. Extensive
experiments on both classification and retrieval tasks show that
our method achieves the state-of-the-art performance with an
simple training process. More over, our method obtains a bet-
ter performance with shallow convolutional neural networks,
which indicates our method has a wide potential use for many



mobile applications. The main contributions of this paper are
summarized as follows:

e To our knowledge, it is the first time that directional
statistics is introduced to deep distance metric learning.

e A novel loss function based on the von Mises-Fisher
distribution is proposed for deep metric learning to learn
an embedded probability space on a hyper sphere.

o An alternative learning algorithm is proposed to train our
model efficiently.

The rest of this paper is organized as follows. We firstly
review some deep metric learning methods and briefly intro-
duce directional statistics in machine learning in Sec. [} Some
preliminary knowledge about directional statistics is given in
Sec. In Sec. we present our deep metric learning
model, followed by the learning algorithm. A toy example
is used to show the embedding spaces at the end of this
section. Experiments on both classification and retrieve tasks
are conducted in Sec. |V} In Sec. we show the performance
of vMF on convolutional neural networks with different depths
and clustering performances with different clustering methods.
The conclusion and future works of this paper are drawn in
the final section.

II. RELATED WORK

This section briefly discusses two active research areas
highly related to our approach. After the review of the latest
deep metric learning research, the directional statistics in
machine learning will be briefly discussed.

A. Deep Metric Learning

Deep metric learning aims to learn a non-linear projection
function which can transform an image from the pixel level
to a discriminate space where samples from the same class
will be gathered together, and samples from different classes
will be pushed apart. Recent studies of deep metric learning
advance performance of many visual tasks, such as fine-
grained categorization [§]], image retrieval [[10], deep hashing
[17], face verification [1], and person re-identification [4], [18].
In following parts, several latest deep metric learning methods
are briefly reviewed.

1) Triplet loss: The main idea of the triplet loss is that dis-
tances between dissimilar pairs should be larger than distances
between similar pairs with a margin m. Given an anchor image
denoted with X, a similar image X, and a dissimilar image
X, are selected to form a triplet, the triplet loss function can
be defined as:

Z = [(d(fO(Xa)’fG(XP))_d(fG(Xa)af@(Xn))+m]+7 (1

where d is a distance function and f is a mapping function
with parameters 6. The [-] ;. operator denotes the hinge function
which equals to max(+,0). The performance of triplet-based
deep metric learning highly relies on the quality of triplet pairs.
Many methods have been proposed to deal with this, e.g., min-
ing hard negative samples [[1]] or containing more pairs within
a mini-batch [[10f], [[19]]. As a consequence, the training process
becomes more complicated. Moreover, the slow convergence
problem of the triplet loss is widely complained. [20], [21]

2) Lifted structured loss: The lifted structured embedding
[10] considers that each similar pairs should compare the
distance with all the negative pairs. The loss function is given
as a log-sum-exp formulation:
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where D; ; = || f(X;) — f(Xj)||2 is the Euclidean distance in
the embedding space of samples X; and X, P is the set of
positive (similar) pairs and V is the set of negative (dissimilar)
pairs, and « is a constraint margin.

3) N-pair loss: N-pair [16] considers to make full use
of all pairs in a mini-batch. Given a (N + 1)-pairs tuple:
{(X4, X;7)}Y|, where samples from N classes are selected
and Xjr is a similar sample to X;, the loss function can be
formulated as follows:

N
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where 7 is a L2 regularization on the embedding vectors.

4) Magnet: The Magnet [21] suggests to punish overlaps
between different clusters. The mini-batch structure is based
on clusters. One cluster is first randomly selected, then M — 1
closest clusters are chosen based on the distances on the
embedding space. D images per selected cluster will be
randomly selected (M x D in total) to form a mini-batch.
The loss function can be presented as

exp{—g,z [’ — fimlI3}

— > exp{—gg= |l — iill3}
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where 7" = f(X4) is a point in the embedding space belong
to m-th cluster. The cluster center, [i,,, is estimated based on
each batch data as follows:

1 D

Though the convergence is claimed to be faster than triplet
based methods, it is still very time consuming for generating
mini-batch by retrieving images from adjacent clusters.

B. Directional Statistics in Machine Learning

Besides visual tasks, the directional statistics methods in
machine learning have been successfully introduced to many
disciplines, e.g., text mining [22], gene expression analy-
sis [[13]], and bio-medical data analysis [23]]. More recently,
an SNE method based on von Mises-Fisher distribution is
proposed to deal with the high dimensional spherical data
visualization. More detail can be found in a review paper [12].



III. PRELIMINARY

In this section, we will provide a brief introduction to the
directional statistics.

A. Directional Data

The directional data refer to data with unit norm ||x|| = 1,
corresponding to points on a hyper sphere in RP. Usually we
can transform any kinds of data to directional data by L2-
normalization.

B. Von Mises-Fisher Distribution

The von Mises-Fisher (vMF) distribution is a probability
distribution in directional statistics for spherical data. The
probability density function for a unit vector r in SP~1! is
given as follows:

bo(rip, k) = Zy(k) exp(kp’r), 4

where x > 0, ||p|| = 1 and the normalization parameter Z, (k)
is defined as follows:
Kkp/2—1

(2m)P/ 221 (k)

where I, is the modified Bessel function of the first kind
with order v. Similar to the Gaussian distribution, the vMF
distribution is captured by two parameters: the mean direction
p and the concentration parameter «. Here s characterizes
the tightness of the distribution around the mean direction p.
The larger value of x is, the more strongly the distribution is
concentrated to the mean direction. Given N sample points
r;, the mean direction can be estimated as follows,
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Figure %ﬂshows points generated from different vMF dis-
tributiond’l More information can be found in Directional
Statistics [24].

C. Hyper-surface Area of a Unit Hyper Sphere

It is essential to understand the geometric properties of fea-
ture spaces for deep metric learning. However, for the feature
space of the directional statistic, the property of the hyper-
surface area of a unit hyper sphere is seldomly addressed.
For a unit sphere in RP, the area of hyper-surface is given as
follows [25],

o(p+1)/2, (p—1)/2

o7P/2 CEI if p is odd,
P = 1 = op/2.p/2 . . (8)
F(gp) e=n if p is even,

'This figure is adopted from the Wikipedia https://en.wikipedia.org/wiki/
Von_Mises-Fisher_distribution,

Fig. 1: Points generated from three von Mises-Fisher distri-
butions with the following parameters: blue: x = 1, green:
K = 10 and red: k = 100. Better viewed in color.

where I refers to the Gamma function, p! is the factorial and
p!! is the double factorial. We plot the area of hyper sphere
in Figure 2] The area of a unit hyper sphere firstly increases
to a maximum at dimension p = 7 then decreases when p
increases. A distinct advantage of L2-normalization is that
it can attenuate the curse of dimensionality. The volume of
the Euclidean space increases exponentially as the dimension
increase. However, the input data are mapped to the surface of
the surface of a hyper-sphere. The area of the sphere increases
as the sphere increases as the dimension increases initially, but
then decreases as the dimensionality increases further. Thus, a
more compact feature space is created through the mapping.
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Fig. 2: The area of a unit hyper sphere as a function of
dimension.

IV. METHOD

In this section, we provide the problem definition of our
deep metric learning model. Then we propose a loss function
based on the von Mises-Fish (vMF) distribution along with an
alternative learning algorithm. The overview of our model is
presented in Figure [3]
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Fig. 3: Overview of the model structure. A fully connected
layer is followed by an L2-normalization layer. The output
feature will be used to compute the vMF loss.

A. Problem Definition

Given a training set with N pairs of labeled data
{%n, yn }1_, that belong to C classes, our model aims to learn
a non-linear mapping function f(-;©), which is a convolu-
tional neural network here. The learned non-linear mapping
function projects an image x to a point, r and ||r|| =1, on a
p-dimension hyper sphere space dominated by C' learned vVMF
distributions {r;, p; }_;. In this probability space, a point r is
assigned to class ¢ with the following normalized probability:

T
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where Z,(k;) is defined in Equation (3) and ||r|| = 1. The
learned mapping function should project image data x,, to a
point r,, in the new pace, which has the higher probability
assigned to the right class y,, = c than assigned to the other
classes.
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B. Von Mises-Fisher Loss

The above goal can be summarized as maximizing the
following probability:

N
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where X and Y represent the training data and labels, ©
represents all the parameters in the mapping function f and
U = {1}, K = {k}S0. 1 = f(x030) and [|r,]| =
1,n = 1,2,..., N. By taking the negative log-likelihood of
Equation (T0), the objective function is obtained as follows:

min J = —log P(Y|X;0,U,K)
o,U

N
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subject to

where r, = f(x,;60), 7, i € SP7L, and the concentration
parameters {x;}$_, is treated as hyper parameters to capture
the divergence of each class. Here we simply set the same
for every class as a global scaling factor. Then Equation (9)
can be simplified to,

exp(kpl rr)
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We name this loss function as von Mises-Fisher Loss (VMF
Loss) and it will be used for all experiments in this paper.
Because Equations and are differentiable, they can
be used directly to train the neural network with the back
propagation method.

C. Learning

Our vMF loss has two types of parameters: the mean
directions of vVMF distributions U and the parameters of
the mapping function ©. It is difficult to optimize them
simultaneously. So we apply an alternative training algorithm
to learning these two types of parameters. In summary, we fix
the mean directions of VMF distributions U when we train
CNN by the mini-batch based stochastic gradient descent for
some iterations. Then we use the learned CNN to forward pass
all training data to obtain the representation vectors {r,,} and
update the mean directions by the following expression,

_ 25;1 I‘g )

- N; )’
[paasl

where NN; is the number of samples that belongs to class ¢ and

v = f (xn; ©). The overall learning algorithm is described
in Algorithm{T] and illustrated in Figure [4]

i (13)

Algorithm 1 Learning algorithm

1: initialize CNN parameters ©

2: repeat

3 get r%m) by forward passing training data

4:  update the mean directions {p;} by Eq.
5 train CNN with Eq. (I2) for [ iterations

6: until converge.

The training CNN step in the proposed alternative learning
algorithm does not rely on any rigid data formats. Even we
do not need to guarantee the class number in a mini-batch as
in [11]. The training procedure is as simple as training with
the softmax loss. More important is that the global structure
of the embedding space is represented by the estimated class
mean directions. For each sample, the loss computed with all
mean directions is an approximation computed with the whole
training set, which indicates that our method can capture the
global information of the embedding space. Previous works
usually are insensible of the global landscape of the embedding
space. Taking the triplet loss as an example, the loss (see
Equation (I)) of an anchor image is only computed with
one similar sample and one dissimilar sample. The anchor
image is kept in the dark about all other training points in
the embedding space except the selected two. That leads to a
unstable training process, especially at the beginning, and the
model is easy to be trapped in bad local optimal [[11]], [21].

D. Inference

After training, we can predict the labels of samples by
measuring the cosine similarity between sample features and
the learned mean directions {w;}. Each Sample will be
assigned with a class labels, of which the mean direction
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Fig. 4: Tllustration of the learning process. Different colors represent points from different classes. Symbol * represents one

mean direction of a class.

has the largest cosine similarity with the sample features.
An interesting feature of this scheme is that, this prediction
process also can enjoy the common nearest neighbor classifier
based on the Euclidean distance. For two direction points r,,
and p;, their distance is

will3 = [lrall3 + [lpill3 — 2rFpi. (14)

Considering ||r,||3 = ||p:]|3 = 1, their Euclidean distance
reduces to d(r,, pt;) = 2—2cos < r,, p; >, which means that
their Euclidean distance is inversely proportional to the cosine
similarity. The largest cosine similarity pair can be found by
looking for the pair with the shortest Euclidean distance.

d(rn, pi) = ||rn —

E. Visualization of the Learned Space

We used the MNIST [26] dataset as a toy example to
give a simple comparison of different embedding spaces
with different loss functions. A simple multi-layer perceptron
(MLP) [26] is used here. The models are first trained with the
training set then the learned model projects the validation set
to the embedding spaces. The embedding spaces of softmax,
triplet loss [[1]] and center loss [27]] are also presented here for
comparison. From Figure [5d] it can be seen that each class
takes over an arc on a unit circle. Figures [5¢] and [51] provide
the visualization results of different x in a 3D unit sphere.
Both figures show that our model can learn a discriminant
space for classification.

V. EXPERIMENTS

In this section, experiments on both classification and re-
trieval are conducted to verify the performance of our model
for different tasks. For the classification task, we test our
model on three fine-grained data sets: Flower-102 [28]], Oxford
IIT Pet [29] and Stanford Dog [30] For the retrieval task,
the performance are evaluated base on three standard data

sets: CUB-200-2011 [31]], Cars196 [32] and Stanford Online
Products [33].

A. Implementation Details

We implement our model with MXNet [34], an open source
deep learning software. We initialize parameters of CNNs
before the final fully connected layer with models pre-trained
on the ImageNet [35]]. The parameters in last fully-connected
layer are initialize with Xavier initialization [36]. Experiments
are run on a single NVIDIA GTX-1080 GPU.

B. Classification on Fine-grained data

Classifing object images in subordinate classes is known
as fine-grained visual categorization (FGVC). For instance, in
the general image classification task, a classifier only needs
to recognize that it is a dog from a given picture of a dog.
But for the FGVC task, the classifier need to distinguish
the breed which a dog belongs to, such as a Beagle or a
Basset Hound. Many types of FGVC datasets have been built,
including identification different species of animals and plants,
classifying galaxies [37] and categorizing different air crafts
[38]]. One of main challenges for FGVC comes from the fol-
lowing two paradoxical properties. (1) FGVC has a high inter
class similarity along with a large intra-class similarity. The
difference caused by different sub classes may be smaller than
that caused by various viewpoints or different shapes from the
same sub-classes. (2) FGVC tasks usually have a large number
of classes but a small number of samples for each class. Taking
Oxford Flowers data set [28] as an example, it contains 102
categories of flowers and only allows to use ten images for
training and 10 for validation for each class. Compared with
CIFAR-10 [39]] (6000 images per class) and ImageNet [35]]
(around 1200 images for each class), the number of samples
for each class in FGVC is challenging to learn a reliable
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model. Several deep metric learning approaches are proposed
as promising solutions for FGVC tasks.

We evaluate our method on three FGVC datasets. To
conduct a fair comparison, we follow the experiment setting
in the Magnet [21]. The Inception with batch normalization
[40] is used as our CNN part. The SGD with momentum is
used to fine-tuning models. Rich data augmentation methods
are used during training. The results of the Magnet and the
triplet are directly cited from the original paper. The results
of softmax and n-pairs are obtained by training with the same
condition as the vMF loss. We set the dimension p = 128 and
k = 15 for three experiments. Neither the bounding box nor
part information is used in our experiments.

1) Flower-102: The flower-102 data set contains 102 cate-
gories of flowers. The number of images of each class varies
from 40 to 258 and there are 8189 images in total. For each
category, there are 10 images for training, 10 images for
validation, and the rest images for testing. We use all training
and validation images as the training set. The concentration
parameters {p}1%2 are updated every three epochs (around
100 iterations for 64 images per mini-batch ). The accuracy
results are presented in Table [I}

2) Oxford-IIIT Pet: The Oxford-IIIT Pet data set
provides image data from 37 different breeds of dogs and cats,
among which 25 categories are dogs and 12 classes are cats.
For each breed, there are around 200 images. Half number

(f) YMF: 3D, k = 70
Fig. 5: Visualization of embedding spaces with different loss functions. Better viewed in color.

TABLE I: Classification results on Flower-102

Mehtod Mean Accuracy
Softmax 0.891
Triplet 0.830
N-Piars 0.885
Magnet 0.94
VMF 0.956
Nilsback [41] 0.856
Sharif [42] 0.868
Qian [43] 0.8945

of images of each class are used for training and the rest are
used for testing. Compared with previous flower-102 dataset,
this pet data set has a larger variance in shapes, colors and
scales. We update the mean direction of each class for every
100 iterations.

3) Stanford Dogs: The Stanford Dogs data set [30]] contains
120 categories of dog breads, and around 150 images per class
and 20, 580 in total. Considering that this data set is a subset
from ImageNet [35]], we follow the suggestion in the Magnet
that a model that only trained two epochs on the ImageNet
is used as initialization to avoid over-fitting.

The mean directions are updated after every epoch. The



TABLE II: Classification results on Oxford-IIIT Pet

Method Mean Accuracy
Softmax 0.879
Triplet 0.865
N-pairs 0.880
Magnet 0.894
VMF 0.901
Mirray [44] 0.568
Parkihi [29] 0.592
Qian [43] 0.812

results are reported in Table [ITI]

TABLE III: Classification results on Stanford Dogs

Method Mean Accuracy
Softmax 0.704
Triplet 0.642
N-pairs 0.688
Magnet 0.751
VMF 0.760
Qian [43] 0.699
Xie [45] 0.57
Gavves [46] 0.57

4) Conclusion: It can be found from above classification
results that our vMF model achieves state-of-the-art perfor-
mance on the tree fine-grained datasets. Only the Magnet and
our method obtain better performance than the softmax for all
three datasets. On Flower-102, our model achieves 95.61%,
which is 1.61% higher than the result of the Magnet. On
Oxford-IIIT pet, our method has very close performance with
the Magnet and is 0.7% higher than the Magnet. Our model
exceeds the Magnet with 0.9% on the Stanford Dogs.

C. Retrieval Task

In this part, we focus on comparing retrieval performance
with several state-of-the-art deep metric learning methods
including (1) triplet learning with semi-hard negative mining
strategy [1I], (2) lifted structure embedding [10], (3) N-pairs
metric loss and (4) local facility clustering [11]]. Because
the Magnet only demonstrates the classification results in the
original paper [21]], we do not include the Magnet in this part.
The evaluation is conducted following the experiment protocol
in [10]}, (T1]], [16]], which is & nearest neighbor retrieval results
on data whose classes are not appeared in the training sets. The
retrieval quality is measured by Recall@K (R@k), that
is, the proportion of query images for which relevant items
appear in the top K neighbors. As suggested in [I1]], the
embedding size does not significantly influence performance.
The embedding size is fixed at d = 64 for all experiments,
which is the same as in [11]]. Comparison results are based on

three data sets: CUB200-2011 [31]}, Cars196 [32]] and Stanford
Online Products [[I0]. All models are trained on data of first
half classes then tested on images from the left half classes.
Images are resized to 256 x 256 then cropped at 227 x 227.
Random cropping and random mirroring are used for training
data augmentation and single center crop are used for testing
images. The stochastic gradient descent (SGD) is used to
training our vMF model for the retrieval task. The learning rate
is reduced from 0.001 to 0.00001 with the batch size of 96.
Due to the much larger number of classes in Stanford Online
Product than in Cars196 and CUB-200-2011, the parameter
K 1is experimentally set to 15 for Stanford Online Product
and 40 for the other two datasets. The mean directions g
are updated after every epoch. Because the same experiment
setting is applied as [I1]], the results of other deep metric
learning methods are directly cited from [I1].

1) Cars196: Cars196 is a large car dataset that in-
cludes 16,185 images from 196 classes of cars. Images from
the first 98 classes are used for training and the rest are used
for testing. The results at 20,000 iterations are presented in
Table [[V] Our model outperforms other state-of-the-art meth-
ods. The vMF achieves 62.34% at R@1, which is 4% higher
than previous best one. The successful and failed retrieval
examples are presented in Figures [f] and [7} respectively. It
can be observed that our model is sensitive to the view points
to the cars.

TABLE IV: Retrieval performance on Cars196 @20k itera-
tions.

Method R@1 R@2 | R@4 RS
Triplet semihard [1 51.54 | 63.78 | 73.52 | 82.41
Lifted structure []10 5298 | 65.70 | 76.01 | 84.27

N-pairs [16] 53.90 | 66.76 | 77.75 | 86.35
Clustering [11] 58.11 | 70.64 | 80.27 | 87.81
vMF 62.34 | 73.39 | 82.52 | 89.45

Fig. 6: Successful retrieval examples of CARS196. The first

image of every row is a query image. Images denoted with x
are false items.

2) CUB-200-2011: CUB-200-2011 [31]] collects 11,718
images from 200 bird species. From the dataset, 5, 864 images
of the first 100 categories are used for training and the rest
5,924 images are used for testing. The quantitative result at



Fig. 7: Failed retrieval examples of CARS196. The first image
of every row is a query image. Images denoted with x are false
items.

10, 000 iterations is shown in Table[V] It clearly shows that the
vMF achieves the state-of-the-art performance. Our method
is 1.3% higher than the Clustering method for R@1. The
successful and failed retrieval results are shown in Figures
[ and O] respectively. It can be found that large variants
of different poses for the same class are one of the main
challenges for CUB-200-2011.

N ¥
i S < (0

Fig. 8: Successful retrieval examples of CUB-200-2011. The
first image of every row is a query image. Images denoted
with x are false items.

TABLE V: Retrieval performance on CUB-200-2011 @20k
iterations.

Method R@1 R@2 | R@4 R8
Triplet semihard [1 42.59 | 55.03 | 66.44 | 77.23
Lifted structure []10 43.57 | 56.55 | 68.59 | 79.63

N-pairs []lg]_ 45.37 | 58.41 | 69.51 | 79.49
Clustering [11] 48.18 | 61.44 | 71.83 | 81.92
vMF 4948 | 61.77 | 73.35 | 83.17

3) Stanford Online Products: The Stanford online Prod-
ucts dataset includes 120,053 images of 22,634 online

Fig. 9: Failed retrieval examples of CUB-200-2011. The first
image of every row is a query image. Images denoted with x
are false items.

products collected from eBay.com. Each product is treated as
one class. The average number of images for each product
is around 5.3. The images of the first 11,318 products are
used as training samples in this experiment. The rest data
are used for testing. The RQK metric results are presented
in Table [VIl Our vMF method surpasses other compared
latest deep metric learning methods. Some successful and
failed retrieval examples are presented in Figures [I0] and [T1]
respectively. Though the viewpoints and product poses change
dramatically, our method still can return the correct images
from the same class. Most of false retrieval results come from
the products from the same category but belong to different
products with few differences.

TABLE VI: Retrieval performance on Stanford Online Prod-
ucts @20k iterations.

Method R@1 | R@10 | R@100
Triplet semihard [|1 66.67 | 82.39 91.85
Lifted structure []10 62.46 | 80.81 91.93

N-pairs [[16] 66.41 | 83.24 93.00
Clustering [11] 67.02 | 83.65 93.23
VvMF 67.53 | 84.51 93.36

VI. DISCUSSION
A. Classification Performance on Different Depths

It has been a trend that improving the performance of CNN
by making it deeper and more complicated. However, it is very
challenge to apply large networks to many real applications,
such as mobile phones and robotics. As an advantages of
our model, vMF can achieves better results with “shallow”
networks compared with wildly used softmax. To demonstrate
this property, we evaluate our model with different depths
of ResNet on the CIFAR-100 dataset [39]]. The CIFAR-
100 provides 60,000 images from 100 classes (600 image
per class). The train and test sets contain 50,000 and 10, 000



Fig. 10: Successful retrieval examples of Stanford online
products. The first image of every row is a query image.
Images denoted with x are false items.

images respectively. We firstly resize images to 240 x 240, then
the random cropping and random mirroring are used as data
augment. The mean directions are updated after every epoch.
We report the quantitative results in Table [VII] and plot results
in Figure for easy comparison. It can be found that our
method surpasses softmax with a significantly margin for all
tested depths. VMF is 15.8% higher than softmax for ResNet-
18 and 10.6% higher for ResNet-101. Moreover, vMF obtains
79.25% accuracy for ResNet-18, which is 7.8% higher than
softmax with ResNet-101. It clearly shows that our method
has a higher depth efficiency.

TABLE VII: Classification on different depths

Acc
Structure | Depth | —rm—T—orm0—ro
18 0.7925 | 0.6340
34 | 0.8001 | 0.6501
ResNet 30 0.8065 | 0.6859
101 | 0.8205 | 0.7143
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Fig. 11: Failed retrieval examples of Stanford online products.
The first image of every row is a query image. Images denoted
with x are false items.
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Fig. 12: Mean Accuracy on CIFAR-100.

B. Clustering Performance

The clustering task is another important application for
the deep distance metric learning. In practice, the clustering
performance not only depends on the learned features, but
also is influenced by how well the clustering methods works
with the features. In this parts, we show that, with the help of
von Mises-Fisher distribution-based clustering methods, our
method can outperform other state-of-the-art DDML for the
clustering task.

In previous works, [10], [I1], [16], all clustering perfor-
mance is conducted with the affinity propagation clustering
with bisection methO(ﬂ (apk). However, it is worthwhile

Zhttp://www.psi.toronto.edu/affinitypropagation/apclusterK.m
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to choose the clustering methods that can better exploit the
geometric properties of the embedding space. Besides the apk
method, we presents the clustering results with other three
clustering methods based on the von Mises-Fisher distributio
[13], including: (1) spherical k-means, (2) mixture of vMF-
soft, (3) mixture of vMF-hard. The features of testing data
are first extracted by models trained in Sec then used
for different clustering methods to obtain the cluster labels.
The clustering performance is measured by normalized mutual
information (NMI) [10]. We refer the clustering performance
reported in [11] as a comparison, which is the previous best
one. The results are presented in Table

It can be found that, using the apk method, our model
achieves 0.5915 and 0.5889 for the Cars196 and CUB-200-
2011, respectively. These results are close to the state-of-
the-art performance achieved by [11]. More over, Working
with all three von Mises-Fisher distribution-based clustering
methods, our model can outperforms the clustering method
[11] with apk. Using movMF-hard clustering method, our
method surpasses the clustering [[11] with 3.39% and 5.10%
for the Cars196 and CUB-200-2011, respectively.

TABLE VIII: Clustering performance

DDML Clustering methods | Cars196 | CUB-200-2011
apk 59.15 58.89
spherical k-means 60.08 62.23
VME (ours) movMF-soft 61.20 62.20
movMF-hard 62.43 64.33
Clustering [|11] apk 59.04 59.23

C. Impacts of k

In this part, we experimentally investigate how the hyper
parameter x influences our model. The Cars196 [32] is used as
an exemplar dataset. To simultaneously monitor classification
and retrieval performances, 20 images per class of first 98
classes are randomly selected as testing set for classification.
The rest data in the first 98 classes are used for training. All
images in rest 98 classes are used to test retrieval performance.
The mean accuracy and Recall@1l (R@1) are presented as
measurements for classification and retrieval, respectively. The
results are plotted in Figure It can be observed the
value of « has little influence for classification performance.
However, the selection of « significantly impacts the retrieval
performance. The retrieval performance first increases with the
value of «, and reaches a peak around 30 ~ 40. Then recall@1
goes down when k continues increasing.

To better understand how « influences the VMF model,
we calculate the distribution of train data in the learned
embedding space based on the Average < and the Average
Cosine value between class mean directions. The & here is the
true concentration parameter for each class of training data
in the embedding space defined in Equation [/} The larger
value of &, the higher the concentration of the distribution
around the class mean direction. A smaller average < suggests
that the training samples are more evenly distributed among

3https://github.com/clara-labs/spherecluster

the hyper sphere. The average cosine value between mean
directions of training data is used to represent the class gap.
The smaller average cosine value indicates that the class
mean directions are far away from each others. The results
are presented in Figure [4] It shows that the average cosine
between class mean directions is proportional to the hyper
parameter . It indicates that the class gap is smaller when
is greater. However, too large or too small value of x makes
the training data being tightly concentrated around their mean
directions. The smallest average & is reached by x around
30 ~ 40. A comparison of the curves of the average 4 and
R@1 shows that R@1 is roughly inversely proportional to the
average K. Theoretical discussion of the relationship between
the distribution of training data in the embedding space and
the retrieval performance is beyond the scope of this paper.
We give following hypothesis and leave the analysis to future
work. Different from classification task, the classes in testing
data for the retrieval task are not included in the training set.
To achieve better retrieval performance, the DDML models
should have better global generalization ability. In order to
achieve better global generalization ability, training points
should not tightly concentrate around the mean directions. So
a small value of & usually has a better retrieval performance.
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Fig. 13: Accuracy and Recall@]1.
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VII. CONCLUSION

In this work, we introduce directional statistics to deep met-
ric learning. By considering the feature space as a directional
statistical probability space, we propose a new deep metric
learning approach. Specifically, a novel loss function named
von Mises-Fisher loss is proposed based on the von Mises-
Fisher distribution. Then an alternative learning algorithm is
applied to train a neural network efficiently with our vMF loss.
Extensive experiments shows that our vMF can surpass other
state-of-the-art methods on both classification and retrieval
tasks.

For the future work, we will provide a more analytic method
to decide the hyper-parameters in our model. As the proposed
method can effectively handle the fine-grained categorization
problem, applying our model to handle one-shot or zero-shot
learning problem will be the top concern for our future work.
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