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Abstract: Microarray gene expression data-based tumor classification is an active and challenging issue. In 

this paper, an integrated tumor classification framework is presented, which aims to exploit information in 

existing available samples, and focuses on the small sample problem and unbalanced classification problem. 

Firstly, an inverse space sparse representation based classification (ISSRC) model is proposed by considering 

the characteristics of gene-based tumor data, such as sparsity and a small number of training samples. A 

decision information factors (DIF)-based gene selection method is constructed to enhance the representation 

ability of the ISSRC. It is worth noting that the DIF is established from reducing clinical misdiagnosis rate and 

dimension of small sample data. For further improving the representation ability and classification stability of 

the ISSRC, feature learning is conducted on the selected gene subset. The feature learning method is 

constructed by complementing the advantages of non-negative matrix factorization (NMF) and deep learning. 

Without confusion, the ISSRC combined with gene selection and feature learning is called the integrated 

ISSRC, whose stability, optimization and the corresponding convergence are analyzed. Extensive experiments 

on six public microarray gene expression datasets show the integrated ISSRC-based tumor classification 

framework is superior to classical and state-of-the-art methods. There are significant improvements in 

classification accuracy, specificity and sensitivity, whether there is a tumor in the early diagnosis, what kind of 

tumor, or whether metastasis occurs after tumor surgery. 

Key words: Tumor classification, microarray gene expression data, decision information genes, layer-wise 

pre-training sparse NMF, inverse space sparse representation. 

1. Introduction

Microarray technology with its ability to simultaneously interrogate 10,000–40,000 genes has changed 
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people’s thinking of molecular classification of tumors [1]. In general, tumor recognition involves three levels: 

early diagnosis, tumor type recognition, and whether cancer metastasis occurs after surgery. It’s necessary to 

effectively explore and analyze tumor pathogenesis from the molecular biology aspects [2, 3]. 

Effective tumor classification plays an important role in clinical diagnosis and treatment. Classifier design is a 

critical issue for tumor classification. Commonly used classification methods for microarray gene expression 

data are random forest [4], neural networks [5], support vector machine (SVM) [6], etc. Most of these methods 

have been developed on statistical learning theory, which relies on model parameters and may produce 

“over-fitting”. Sparse representation is a sparse coding technique based on an over-completed dictionary. Sparse 

representation based classification (SRC) was originally proposed and used for face recognition [7]. SRC 

achieves good result when there are sufficient training samples per subject. Recently, SRC and its improved 

methods have been widely used in microarray gene expression data-based tumor classification [8-12]. Zheng et 

al. [12] made use of singular value decomposition to learn a dictionary and then classified gene expression data 

of tumor subtypes based on SRC. However, it is difficult to acquire sufficient and effective labeled samples for 

tumor classification. In addition, Zhang et al. [13] indicated that the discrimination ability of SRC will be 

reduced when there is a small disturbance on the representation error. In our previous work [14], an inverse 

projection-based pseudo-full-space representation classification (PFSRC) method was proposed for face 

recognition. PFSRC made full use of complementary information between existing face samples. Microarray 

gene expression data, however, have no obvious complementary information similar to faces. Training samples 

from other categories may lead to interference information rather than complementary information. Therefore, it 

is important to utilize the characteristics of the gene data. Unfortunately, microarray gene expression data have 

the characteristics of small samples (patients), high dimensions (thousands of genes) and high redundancy [15], 

which impose a great challenge to tumor classification. 

As a dimension reduction method for small sample problem, gene selection aims to remove irrelevant, 

redundant genes and obtain a small set of information genes [16]. Therefore, an effective gene selection method 

may enhance the representation ability for small sample problem. The general gene selection methods can be 

classified into three categories: filters [17, 18], embedded [19] and wrappers [20, 21] methods. As a filter method, 

Dudoit [17] proposed a between-groups to within-groups sum of squares (BW) method, which is simple and 

stable. Algamal et al. [19] proposed a sparse logistic regression-based embedded method. Embedded gene 

selection methods, however, combine gene selection and classification in an optimal process, where classifier 

training may weaken the ability of gene selection to a certain extent. Moreover, implementation and computation 

process of the embedded methods are always complex. Ruiz et al. [20] proposed a wrapper method based on 
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statistical significance. Xie et al. [21] proposed a differentially expressed gene selection algorithm for 

unbalanced gene datasets by maximize the area under curve (AUC), where the curve is receive operating 

characteristic curve (ROC). ROC exhibits the accuracy of a binary classifier as its discrimination threshold varies 

[22]. The larger the AUC is, the better the classifier is. However, ROC only focuses on AUC without taking into 

account that misdiagnosis rate and missed diagnosis rate, while the clinic is more concerned with the latter. 

Decision curve analysis (DCA) [23] is just a way of evaluating treatment plans by maximizing the clinic net 

benefit (NB) of profit minuses harm. DCA evaluates a treatment plan by risk (of illness) – (clinic) NB ratio, 

which aims to select treatments corresponding to low clinical misdiagnosis rate. It is undoubted that there is 

more practical value by integrating clinical needs into gene selection-based tumor classification. 

Feature learning can further explore the more essential information contained in the selected information gene 

subset. NMF [24] is a feature learning method that does not rely on category information, and can explore useful 

information contained in all available samples simultaneously, even if there are only a small number of training 

samples. In recent years, NMF and its improved methods have achieved good results in many fields [25-31]. 

Hoyer [32] proposed a sparse NMF (SNMF). Zheng et al. [29] used SNMF to perform gene selection and tumor 

classification by combining SVM. However, NMF methods are affected by the initial value of the iteration. Deep 

learning is a popular feature representation learning method [33]. Some preliminary results in recognizing benign 

and malignant tumor have been obtained [34, 35]. However, the success of deep learning relies on the available 

large-scale training data, complex network structures, high-performance GPU devices and optimized parallel 

algorithms. As a data-driven feature learning method deep learning relies on large number of effective training 

samples. Tumor classification, however, is a typical small sample problem. Xu and Sun et al. proposed a 

model-driven deep learning method [36] to complement the advantages between the model and the data. It is 

interesting and promising that different feature representation learning approaches complement each other. 

From the viewpoint of optimization, SRC methods belong to an underdetermined linear system. To alleviate 

this problem, different constraints have been introduced by considering priori information. In the field of 

microarray gene expression data-based tumor recognition, sparsity is important prior information. The sparsity 

embodies 0l -regularization constraint and can be relaxed to 1l -regularization. Commonly used methods for 

solving 1l -regularization problems are least angle regression (LARS) [37] and the alternating direction method 

of multipliers (ADMM) [38, 39]. For biostatistics, ADMM has attracted a great deal of attention because it 

mainly deals with convex optimization problems with constraints. Xiao et al. [39] proposed a generalized 

ADMM with semi-proximal terms, denoted as GsADMM, which is competitive to the classic ADMM in terms of 
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the convergence error and the convergence speed. 

Motivated by these works, a tumor classification framework is proposed based on an integrated inverse space 

sparse representation classification (ISSRC) model, whose performance is further enhanced by integrating gene 

selection and feature learning. It is noted that the integrated ISSR model focuses on utilizing the existing 

available samples to alleviate small sample problem and classification stability problem. The main contributions 

are as follows and shown in Fig. 1. 

 
Fig. 1. Framework of the proposed tumor classification. 

(1) An ISSRC model is constructed for alleviating the problems by insufficient training samples. The ISSRC 

model fully explores information embedded in existing available samples, especially test samples. The 

representation ability and classification stability of the ISSRC is similar to PFSRC [14] and superior to SRC [7], 

which relies on a large number of training samples. 

(2) A DIF-based gene selection method is proposed to improve the representation ability of the ISSR model to 

small sample problem. Compared to existing gene selection methods, the proposed DIF-based technique is 

established for the first time by incorporating clinical misdiagnosis rate into gene selection. 

 (3) A layer-wise pre-training multi-layer sparse NMF (LPML-SNMF)-based feature learning method is 

proposed to further enhance the representation ability and classification stability of the ISSRC model, especially 

for unbalanced classification problem. The advantage of LPML-SNMF method is that it combines 

complementary strengths from NMF [24] and deep learning [33]. The hierarchical strategy enhances the 

representation learning ability of NMF by exploring the essential information contained in existing available 

training and test samples. The layer-wise pre-training strategy enhances the stability NMF by alleviating its 



      

5 

sensitivity to iteration initials. 

(4) The ISSRC combined with DIF-based gene selection and LPML-SNMF-based feature learning is called 

the integrated ISSRC, whose stability, optimization and the corresponding convergence are analyzed. 

(5) The performance of the proposed integrated-based tumor classification framework is fully verified on six 

microarray gene expression datasets, which contain three stages of early diagnosis, tumor type recognition and 

postoperative metastasis. 

The remainder of this paper is organized as follows. The methodology is given in Section 2, which mainly 

includes the construction, optimization and convergence analysis of the integrated ISSRC model. Extensive 

experiments on six public tumor gene expression datasets will be shown in Section 3. Finally, conclusions will be 

drawn in Section 4. 

2. The integrated ISSR-based tumor classification 

The integrated ISSRC model is proposed for microarray gene expression data-based tumor classification, and 

then the stability analysis, optimization and convergence analysis are given. 

2.1 Construction of the Integrated ISSRC model 

2.1.1 ISSRC model 

Firstly, an ISSRC model is proposed and its representation ability and classification stability will be analyzed. 

Suppose 
11[ , , , , ] c

c

d s
s sX x x x R   

 
is a training sample set, 1

1

d  ( )

1[ , , ] j j
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j s sX x x R 
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 

   are the j

-th category samples, where 1, ,j c   is the number of category. 1[ , , ] d k
kY y y R    is a test sample set. In 

SRC [7], each test sample ly  can be linearly represented by the training sample set X  . Without causing 

confusion, the corresponding projection way and representation space of SRC are called positive projection and 

positive space. PFSRC [14], by contrast, represents each training sample ix  by its corresponding 

pseudo-full-space { , } { },  1, ,i i cV X Y x i s    , where the projection way is inverse to SRC and called inverse 

projection. It is worth noting that the PFSRC aims to explore complementary information contained in available 

face samples. However, there is no such obvious complementarity between gene data, and there are few effective 

labeled training samples. To tackle this problem, an inverse space representation is proposed. In a sense, inverse 

space is a special case of pseudo-full-space. 

Definition 1 (Inverse space representation) Suppose Y  is a test sample space, ,  1, ,i cx X i s    are 
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training samples. The inverse space representation means each training sample ix  is represented by Y . 

,1 1 , , ,
1

,
k

i i i l l i k k i l l i
l

x y y y y Y    


                              (1) 

where
 ,1 , ,[ , , , ]T

i i i l i k     
 
is the representation coefficients of inverse space representation. The 

corresponding optimization problem can be written as, 

2

2
min

i
i ix Y


 . 

Considering there is an obvious sparse characteristic in microarray gene expression data, the sparsity 

constraint can be introduced into the inverse space representation and called the inverse space sparse 

representation (ISSR). 

2

2 1
min ,

i
i i ix Y


                                     (2) 

where   is regularization parameter, and i  is the representation coefficient vector of ix . 

Similar to PFSRC [14], the category contribution rate (CCR) can be introduced to complete the classification. 

A test sample ly  is classified into the category with the maximal CCR. It has been demonstrated that the 

PFSRC is more stable and effective than standard SRC, especially when there’s a small number of training 

samples. Obviously, the ISSRC model inherits the advantages of the PFSRC in terms of representation ability 

and classification stability. 

However, microarray gene expression data have the characteristics of small samples and high redundancy. 

How to further improve the representation stability and stability of the ISSRC model is interesting and necessary, 

especially there are a small number of training samples. 

2.1.2 DIF-based gene selection 

For further enhance the representation ability of the ISSRC model to small sample problem, a simple but 

effective quantitative index named DIF is established to select the small subset of information genes. 

DCA [23] is a way of evaluating treatment plans by maximizing the clinic NB of profit minuses harm. As 

shown in Fig. 2, DCA evaluates a treatment plan by risk (of illness) – (clinic) NB ratio. The horizontal axis 

indicates when the risk of illness reaches a certain probability, the patient is considered to be positive and 

treatment is adopted. As shown in Fig. 2, the vertical axis indicates, after taking treatment, the corresponding NB 

of profit minus harm. The higher the NB is, the better the treatment plan is. It seems to be valuable to use DCA 

for predicting the usefulness of each gene. Let TP, TN, FP and FN denote the numbers of true-positive, 

true-negative, false-positive and false-negative of the patients. Suppose all the patients are negative, the NB is 
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denoted as 1 : 0D NB   (blue dotted line in Fig.2), which is just the horizontal axis. Suppose all the patients are 

positive, the corresponding NB is denoted as, 2 :
1

t

t

pP n P
D NB

n n p


  


 (black dotted line in Fig.2, where tp  

is a threshold probability. n  is the total number of patients and the prevalence ( p ) is just the intersection of 

1D  and 2D . 

In fact, the patients usually contain both TP and FP, so 2D  can be rewritten more generally as, 

3 : .
1

t

t

pTP FP
D NB

n n p
  


                              (3)  

It is worth noting that, for curve 3D (green line in Fig.2), TP detection rate increases or FP decreases when 

NB is maximized. This means that misdiagnosis rate is reduced, which is exactly what clinical concerns and 

needs. Therefore, the treatment plan with the maximum NB will be adopted to obtain the lowest misdiagnosis 

rate. 

On the other hand, [23] demonstrates that the effectiveness of the treatment in the areas among the three 

curves, 1D , 2D  and 3D , is valuable. Based on the characteristics of DCA, it is believed that DCA is suitable 

for predicting the usefulness of genes. The main idea of this lies in selecting information genes that can lead to 

the lowest misdiagnosis rate for clinical diagnosis. The higher the NB is, the lower the clinical misdiagnosis rate 

is, and the better the gene is. For convenience, a statistics index is defined to select information genes. 

Definition 2 (Decision information factor, DIF) Suppose the threshold probability tp  varies in the valid 

probability interval 1[ ,  ]p p , which is the intersection abscissa range of 1D , 2D  and 3D . Each treatment plan 

corresponds to a curve 3D
 
and the best one is just with the maximal value of NB. Similarly, each gene 

corresponds to a curve 3D  and the curve with the maximum NB will be focused. The point corresponding to 

the maximum NB is defined as a DIF index of a gene. 

1

1 2

1 1 1 1 1 3

max ,
1

{ | ( , ) },

max({ | ( , ) }),

t

t

p p p
t

pTP FP
DIF

n n p

p x x y D D

p x x y D D

 

 
   

 

  

  

 

where [0,1]DIF  . Our purpose is to find information gene bringing the largest NB. The bigger the DIF value of 

a gene is, the higher benefit of the gene is to clinical diagnosis, and the better the gene is for classification.  



      

8 

     

Fig.2. Construction of DIF index. 

In short, the DIF-based gene selection method combined with the clinical misdiagnosis rate can simply and 

effectively select a small number of information genes, which are more likely to be used for tumor classification. 

The proposed DIF-based gene selection further enhances the representation ability of ISSRC model rather than 

original gene data. 

2.1.3 LPML-SNMF-based feature learning 

Based on the subset of information genes selected by DIF, a feature learning method named LPML-SNMF is 

proposed to further enhance the representation ability and classification stability of the ISSRC model. The 

superiority of the LPML-SNMF is that it complements the advantages of NMF and deep learning. 

A) Hierarchical representation learning strategy 

A hierarchical strategy is introduced into NMF, whose feature representation learning ability can be enhanced 

by deeply exploring more essential features than original gene data. 

Suppose d qV R   is a non-negative matrix, which is decomposed into two non-negative matrices W  and 

H , V WH . The object function to be optimized is as follows, 

2

,

1
min ,  . .  0,   0

2 FW H
V WH s t W H   , 

where d rW R   is basis matrix and r qH R   is coefficients matrix. Each column of H  is an encoding 

correspondence with V . The rank r  of the factorization is generally chosen so that ( )d q r d q   . Hoyer 

[32] proposed the SNMF, which added sparse regularization constraints to H . The corresponding objective 

function is revised as, 

2

1 1,
1

1
min , . .  0,   0,

2

q

iFW H
i

V WH h s t W H


                          (4) 

where 1 0   is a regularization parameter and 1 2[ , , , ]qH h h h  , ,  1, ,ih H i q   . 

Motivated by deep learning, the hierarchical representation learning strategy is introduced and a multi-layer 

DIF

p
1p

1tp p p 
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SNMF (ML-SNMF) is performed on V , 

1

2

1 1 2 1 1, , ,
1 1

1

1
min ( ) ( ) ,  

2

. . 0, , 0, 0.

L L

q q

L L L L i L L iFW W H
i i

L L

V W W H W W h h

s t W W H

 
 

   

  

 


  



             (5) 

By comparing model (5) with model (4), one can notice that the representation ability is indeed enhanced by 

the deep representation learning. 

B) Layer-wise pre-training strategy 

A critical problem in NMF is that the results are heavily influenced by initial values. Layer-wise pre-training 

strategy can be introduced to mitigate the sensitivity of NMF to initial values and enhance its stability. 

The model is based on the fact that the optimal output of the first layer is as the input of the second layer, and 

so on. Suppose the decomposition level is L , compared with the model (5), the model is as follows,  

2

1 1,
1

1
min ( )  ,   . .  0,   0,  1,2, , ,

2l l

q

l l l l l i l lFW H
i

H W H h s t W H l L


                   (6) 

where the initial matrix 0H  represents V . By comparing model (6) with model (5), one can notice that the 

initialization effect of the NMF-based model can be alleviated to some extend by hierarchical representation 

learning and layer-wise pre-training strategy.  

Similar to classical machine learning methods, NMF can be done on training samples. Suppose the training 

sample set X  is a non-negative matrix, which is decomposed into the corresponding non-negative basis matrix 

train d rW R   and coefficients matrix cr strainH R  . The model is as follows, 

2

1 1,
1

1
min ( )  ,   . .  0,   0,  1,2, , ,

2

c

train train
l l

s
train train train train train train
l l l l l i l lFW H

i

H W H h s t W H l L


              (7) 

where the initial matrix 0
trainH  represents training sample set X . 

C) LPML-SNMF model 

By combing the hierarchical and layer-wise pre-training strategies, a LPML-SNMF is constructed to explore 

available information embedded in the existing available training and test samples, especially when the training 

samples are small. 

An observation shows that Eq. (7) depends heavily on the training samples, while gene-based tumor 

classification is a typical small sample problem. It is worth noting that there are usually a lot of unlabeled test 

samples that are not being used. NMF, however, has exactly the advantage of paying attention to category 

information. That is, NMF can make comprehensive use of training and test samples simultaneously. Therefore, 

the unlabeled test samples can be introduced into model (7) to improve the representation ability and stability of 
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the model. 

Suppose 
( )[ , ] cd s kV X Y R     is a collection of training samples and test samples after gene selection, where 

cq s k  . Compared with the model (7), the LPML-SNMF is as follows, 

2

1 1 1 1,
1

1
min [ , ] [ , ] ( )  , . .  0,   0,

2l l

q
train test train test
l l l l l l i l lFW H

i

H H W H H h s t W H 


   
               

(8) 

where the initial matrix 0 0[ , ]train testH H  represents the sample set [ , ]X Y , d r
lW R   is basis matrix, 

1[ , ] [( ) , , ( ) ]train test r q
l l l l l qH H H h h R     is coefficient matrix, , cr strain

lH R   and test r k
lH R   are the l -th 

level coefficient matrices of training and test samples, respectively, lr  is the l -th level rank of the matrix after 

feature learning, where 0r  represents d  and 1min{ , }l lr r q . The corresponding improved NMF is called 

LPML-SNMF. 

By comparing model (8) with model (7), one can notice that the LPML-SNMF integrates both training and test 

samples. The addition of the test samples makes the model can reflect internal essential information in test 

samples. Therefore, the LPML-SNMF model is more stable and more conductive for classification. See 

Subsection 3.4.2 for detailed experiments. 

Taking two-layer model as an example, the LPML-SNMF model can be written as follows, 

1 1

2

1 1 1 1 1 1 11,
1

1
min [ , ] [ , ] ( )  ,  . .  0,   0,

2

q
train test

iFW H
i

X Y W H H h s t W H


                      (9a) 

2 2

2

1 1 2 2 2 2 2 2 21,
1

1
min [ , ] [ , ] ( ) ,  . .  0,   0,

2

q
train test train test

iFW H
i

H H W H H h s t W H


   
            

   (9b) 

where 1

1
d rW R  , 1 2

2
r rW R  , and 2 1

2( ) , 1, ,r
ih R i q  

 
represent the second level coefficients corresponding 

to the i -th sample iv , 2

2 2 2 2 1 2[ , ] [( ) , , ( ) ] r qtrain test
qH H H h h R    . 

From the optimization point of view, each layer of LPML-SNMF model is similar to SNMF [32] and the 

variables are alternately iterated by gradient descent method. When the feature learning model is optimized by 

layer-wise pre-training technique, that is, the obtainable optimal solution of the previous layer is regarded as the 

input of the latter layer. The specific optimization process can see Appendix A. The comparison of LPML-SNMF 

and other improved NMF methods [31] is given in Subsection 3.4.2. 

2.1.4 The integrated ISSRC model 

A) Construction of the integrated ISSRC model 

Based on the above proposed DIF-based gene selection and LPML-SNMF-based feature learning, an 

integrated ISSRC model is formed with more representation ability and classification stability. 
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Suppose the training feature sets 2
trainH  and the test feature set 2

testH  obtained by the two-level LPML-SNMF 

(9), the integrated ISSR is as follows. 

2 ,1 2 1 , 2 , 2 , 2 2
1

( ) ( ) ( ) ( ) ( ) ,
k

train test test test train test
i i i l l i k k i l l i

l

h h h h h H    


                    (10) 

where
 ,1 , ,[ , , , ]T

i i i l i k     
 

is the representation coefficients. 

By comparing Eqs. (10) and (1), one can observe that the differences between the integrated ISSR and ISSR 

are representation space, an intuitive example is given in Fig. 3. Comparing Figs. 3 (a) and (b), it is easy to 

notice that the integrated ISSR focuses on the deeper and more essential characteristics contained in data, rather 

than the ISSR addresses the original data. The feature representation way makes the integrated ISSR less 

sensitive to the original samples than that of the ISSR, whether it’s small sample or category-imbalance. As a 

result, the integrated ISSR is more stable and effective than ISSR. 

   

(a)                                       (b) 

Fig.3. Comparison of different representation ways. (a) ISSR, (b) integrated ISSR. 

For any 2 2
train trainh H , the integrated ISSR model represents 2

trainh  by 2
testH , 

2

2 2 12
min ,train testh H


                                     (11) 

where 0   is a regularization parameter, and   is the representation coefficient vector of 2
trainh .  

The integrated ISSRC is constructed by the integrated ISSR model and the corresponding classification 

criterion, CCR, which is similar to [14]. 

B) Stability analysis of integrated ISSRC model 

The stability analysis of the integrated ISSRC model and the corresponding stability theorem is given below. 

Theorem 2.1 (Classification stability of the integrated ISSRC) Suppose 2( )train
ih  and 2( )train

jh  are the i -th 

and j -th training samples features, and the relationship 2( )train
ih  and 2( )train

jh  is 

 2 2 2( ) ( ) ( )train train train
j i ih h h   , where  2( )train

ih  is a disturbance of 2( )train
ih . Based on the test samples 

features 2
testH , the inverse space representations of 2 2( ) , ( )train train

i jh h
 
are as follows: 2 2( )train test

i ih H  , 
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2 2( )train test
j jh H  , where i  and j  are representation coefficients, respectively. Let  2

testH  represents the 

disturbance corresponding to  2( )train
ih . If 

     
 

2 2 22 2

2 2 1 22 2

( )
max ,

( )

train test test
i k

train test test
i

h H H

h H H






   
  

  

, 

and   2 2
sin / ( ) 1train

LS ih   , where 2 2 2|| ( ) ||
i

test train
LS LS iH h   , 2 2 2arg min || ( ) ||

i

i

train test
LS i ih H



   , then 

   
22 22 2

2 2

2

|| || 2 ( )
tan ( ).

|| || cos( )

test
j i test

i

H
H O

  
   

 

  
   

                 

 (12) 

where 2 2( )testH  ( 1

2 2 2 2 2 2 2 2( ) (( ) (|| || || ) ) ||T Ttest test test test testH H H H H 
  , 2 12

2 2 2 2 2 2 2( ) (( )|| || || ) ||Ttest test test testH H H H   ) is 

the 2l -norm conditional number of 2
testH , and   is angle between 2( )i

trainh  and its projection vector on 2
testH . 

The conclusion indicates that the distance between 
i

  and 
j  is very small when 2( )

i

trainh  is similar to 

2( )
j

trainh  (in other words, 2
testH  has a small disturbance 2( )testH ). From Eq. (12), one can see that coefficients 

are more sensitive to a small disturbance   than that of reconstruction error. Because, for nonzero residual 

problems, it is the square of the condition number that measures the sensitivity of coefficients. Moreover, it is 

worth noting that we focus on the column coefficient vector 1,1 1,2 ,1, , ,
cs      before each test sample when we 

calculate the CCR similar to [14]. The difference lies in the representation coefficients   of different 

representation spaces. However, it has been demonstrated that disturbance will affect row coefficients rather than 

column coefficients. Moreover, the effect on column coefficients is a positive impact when CCRs of different 

categories are calculated. Please see Appendix B for the detailed proof of the classification stability Theorem.  

2.2 Optimization of the integrated ISSR model by GsADMM 

The integrated ISSRC model can be optimized by GsADMM [39], which has a smaller convergence error and 

a faster convergence speed than the classic ADMM algorithm.  

The integrated ISSRC model in Eq. (11) can be rewritten as 

2

2 2 12,
min  . . - 0train test

b
h H b s t b


     .                            (13) 

For 2 1
2

rtrainh R  , 2

2
r ktestH R  , the augmented Lagrangian function of (13) is defined as, 

2 2

2 2 1 22
( , ; ) , ,

2
train testL b h H b b b


                                   (14) 

Let 0   be the penalty parameter, and 1kR   be the Lagrange multiplier, ,   denotes the inner product. 
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The GsADMM scheme takes the following form 

2

2

1

1
arg min ( , ; ) , ( )

2

( ),                               ( )

1
arg min ( , ; ) ,   ( )

2

( ),                           ( )

k k k k

K

k k k k

k k k k

Tb

k k k k

L b a

b b

b L b b b c

w w w w d






    

   

 




  


  


   



  

  





                           

(15) 

where ( , , )k k k kw b  , 
1 0    , 

1 0b b   , 
1 1: k kK R R   and 

1 1: k kT R R   are two semi-proximal 

matrixes. A more natural choice of the semi-proximal terms is to add  
1

2
k

K
  

 
and 

1

2
k

T
b b   to the 

sub-problems for computing the values 
k  and 

kb . For the sake of generality and numerical convenience, the 

latter variant with only semi-proximal terms is considered. The most adopted values of the variables are used in 

the proximal terms. 

Please see Appendix C for detailed optimization process of the integrated ISSRC model. 

2.3 Convergence analysis 

Convergence analysis is crucial to optimization. The convergence theorem and the corresponding lemmas are 

given below. In order to prove the theorem, Karush-Kuhn-Tucker (KKT) for model (13) is given first. 

Let 
2

2 2 2
( ) train testf h H   , 

1
( )g b b , a vector ( , , )b     is a saddle point to the Lagrangian function if 

it is a solution to the following KKT system 

( )f  , ( )g b  , and 0b   .                         (16) 

Next, let ( , , )b   be an arbitrary solution to the KKT system (16). For any ( , , )b  , we denote 

e    , e   
 
and eb b b  . In order to give the convergence theorem of integrated ISSR model 

based on GsADMM optimization, two lemmas are given below. 

Lemma 2.1 Let ( , , )b   be a solution to the KKT system (16) and ( , , )k k kb   be the sequence 

generated by Eq. (15). For any 0k  , the following equations hold. 

2 2 21 1 1 1 1, ,
2 2 f

k k k k k k k k k k

K K

 
             


        

  

              (17) 

and 

2 2 21 1 1 1 1 1 11
(1 ) , [ (1 ) (1 ) ].

2 2
k k k k k k k k k k
e e e e e e e e e eb b


             


                 

  

(18) 

Lemma 2.2 Assume Eq. (15) holds and the sequence {( , , )}b   is generated by Eq. (15). Then for any 
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0k  , one can get 

22 2 2 21 1 1
1

2 21 2 1 1 1

2 2 (2 ) (2 ) (2 )

                 (2 ) 2(2 ) .

f g

f

k k k k k k k k
k k e e e e KT

k k k k
e e

b b b b         

       

  
  

   



           

     

 

       

(19) 

Now, we are ready to establish the global convergence of Eq. (15). 

Theorem 2.2 Suppose there exists a vector ( , , )b     satisfying the KKT system. Let {( , , )}k k kb   be the 

sequence generated by Eq. (15). Then the whole sequence{( , , )}k k kb   converges to a solution to the KKT 

system. 

Theorem 2.2 enlightens that if the solution of the model exists, the iterative solution satisfies the constraint 

condition. Furthermore, if the solution is unique, the iterative solution of each single variable converges to the 

real solution. Please see Appendix D for the detailed proof of the convergence Theorem 2.2. Convergence 

analyses are verified in the experimental subsection 3.4.3 B). 

For convenience, the integrated ISSR-based tumor classification is called the integrated ISSRC. The 

corresponding algorithm is given as follows. 

Algorithm 1: The integrated ISSRC algorithm 

Input: Training sample set 1[ , , ]
csX x x  , training label set 1 2[ , , ]

csL l l l 
 

and test sample set 

1 2[ , , , ]kY y y y  . 

Gene selection step 
1) DIF-based gene selection is based on BW-based gene pre-selection. 

2) By 
1

1 2 1 1 1 1 1 3max ,  { | ( , ) },  max({ | ( , ) })
1t

t

p p p
t

pTP FP
DIF p x x y D D p x x y D D

n n p 

 
         

 
, every pre-selection 

gene DIF are obtained. 
3) The DIF is sorted in descending order, and the genes corresponding to the first 10 DIFs are selected as the 

information gene subset. 
Feature representation learning step 

The information genes selected based on DIF importing LPML-SNMF model. 

1) By model

 
1 1

2

1 1 1 1 1 1 11,
1

1
min [ , ] [ , ] ( )  ,  . .  0,   0

2

q
train test

iFW H
i

X Y W H H h s t W H


    , the first layer of LPML-SNMF feature 

learning is realized. 

2) By model 
2 2

2

1 1 2 2 2 2 2 2 21,
1

1
min [ , ] [ , ] ( ) ,  . .  0,   0

2

q
train test train test

iFW H
i

H H W H H h s t W H


    , the second layer of 

LPML-SNMF feature learning is realized. 
Classification step 

Feature learning based on LPML-SNMF and classification based on integrated ISSRC. 

1) For the training feature set 2
trainH  and the test feature set 2

testH  obtained by the two-level LPML-SNMF. 

The integrated ISSR model is realized based on 
2

2 2 12
min train testh H


    . 

2) By subsection 2.2 and appendix C, for the optimization process, the projection coefficient matrix is obtained. 

3) By , , , 1

1
({ }) { } , 1, ,j l j i l i l c

i ij

C i s s
s

  
 

  
 

    , the CCR matrix is obtained, relevancies between each test 

sample and all categories are obtained.  
Output: Each test sample can be classified into the category with the maximal CCR. 
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3. Experiments and discussions 

The performance of the proposed method will be demonstrated on three stage datasets: early diagnosis, tumor 

type recognition and postoperative metastasis. Firstly, early diagnosis is done on Colon dataset [40], and 

compared with other state-of-the-art SRC methods and the latest published classification results. Secondly, tumor 

type recognition is done on DLBCL [41] and Leukemia [42] datasets, and compared with other state-of-the-art 

SRC methods and the latest published classification results. Finally, postoperative metastasis is deeply analyzed 

on three Breast datasets [3], which is fully verified by verifying the performance of gene selection, feature 

learning and classification. Moreover, meaningful biological analysis of the selected pathogenic genes is made 

by enrichment analysis and survival curve analysis. Without loss of generality, the 10-fold cross-validation is 

used. All experiments have been carried out using MATLAB R2016a on a 3.30GHz machine with 4.00GB RAM 

and R-3.5.0. 

3.1 Tumor datasets 

The dataset of early diagnosis: Colon [40] is a binary category dataset, which consists of 40 tumor and 22 

normal colon tissue samples. Each sample has 2000 genes. 

The dataset of tumor type recognition: DLBCL [41] dataset consists of gene expression data of diffuse large B 

cell lymphoma, follicular lymphoma. There are 77 samples, each of which contains 5469 genes. Leukemia [42] 

dataset consists of gene expression data of acute myelogenous leukemia, acute lymphoblastic leukemia and 

mixed-lineage leukemia, including 72 samples. Each sample has 11225 genes. 

The dataset of postoperative metastasis: Breast-2 is a dataset of the primary breast tumors of 25,000 genes 

from 117 young patients. In [3], 79 patients with ages under 55 with primary lymph node-negative breast tumor 

are selected for testing, where 34 from patients who have developed distant metastases within 5 years, and 45 

from patients who are disease-free after a period of at least 5 years. From all patients, tumor sizes are under 5cm. 

The patients who have developed distant metastases within 5 years are recorded as tumor samples without any 

confusion, the patients who are continues to be disease-free after a period of at least 5 years are called a normal 

sample. Breast-2(77) is a subset of Breast-2 [3]. There are 44 developed distant metastases within 5 years and 33 

remained to be metastases free for at least 5 years. Breast-2(97) is another subset of Breast-2. There are 97 lymph 

node-negative breast tumor patients. Among them, 46 developed distant metastases within 5 years and 51 are 

remained to be metastases free for at least 5 years. 
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3.2 Recognition of early diagnosis 

In the same experimental environment and on the same dataset [40], the performance of the proposed 

integrated ISSRC method are compared with the latest published classification results [11-12, 20, 44-49], and 

some other state-of-the-art SRC methods [7, 14, 43]. Table 1 shows that the classification accuracies of our 

method are higher than those of in the nine latest published results. Especially, the classification accuracy of our 

method achieves 98.70% and is much higher than other methods. Table 2 gives the extensive experiment results 

conclude accuracy, sensitivity, specificity. One can observe that our method has a significant advantage than 

other approaches. All this suggests that our approach is effective in early identification (normal or tumor). 

Table 1 Classification performance with the latest published results on Colon dataset 

Experiments Methods Accuracy (%) 

Deng et al.(2013) [48] GRRF-RF 82.50 

García et al. (2015) [45] MLP-D 83.74 

Dettling et al.(2004) [46] BagBoost 83.90 

Ruiz et al.(2006) [20] BIRS+NB 85.48 

Younsi et al.(2016) [49] αRSE 86.98 

Zheng et al.(2011) [12] MSRC-SNMF 90.32 

Gan et al. (2014) [11] SRC-LatLRR 90.32 

Gan et al.(2016) [47] MRSRC-SVD 90.32 

Liu et al.(2015) [44] RPCA+LDA+SVM 90.45 

Our paper Integrated ISSRC 98.70 

Table 2 Classification results based on different methods on Colon dataset 

Methods Accuracy (%) Sensitivity (%) Specificity (%) 

SRC [7] 89.28 90.00 88.33 

RRC_L1 [43] 92.14 95.00 90.83 

RRC_L2 [43] 90.71 92.50 90.83 

PFSRC [14] 93.81 92.50 93.33 

Integrated ISSRC 98.70 97.50 100 

3.3 Recognition of tumor types 

In the same experimental environment and on the same datasets [41, 42], the performance of the proposed 

integrated ISSRC are compared with the latest published classification results [11-12, 20, 45-48, 50-51], and 

some other state-of-the-art SRC methods [7, 14, 43]. Table 3 shows that, the classification accuracies of our 

method are higher than those of the latest published results except for Gan et al. [11]. From Table 4, one can 

observe that our method has a significant advantage in identifying different types of tumors. 
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Table 3 Classification performance with the latest published results on DLBCL and Leukemia datasets 

Experiments Methods Accuracy (%) 

DLBCL dataset 

García et al. (2015) [45] MLP-D 96.24 

Hong et al.(2009) [51] Gene boosting-KNN 97.20 

Zheng et al.(2011) [12] MSRC-SNMF 97.40 

Gan et al. (2014) [11] SRC-LatLRR 97.40 

Our paper Integrated ISSRC 97.50 

Leukemia dataset 

Piao et al.(2012) [50] ECBGS 90.28 

Deng et al.(2013) [48] GRRF-RF 92.00 

Ruiz et al.(2006) [20] BIRS+NB 93.04 

Zheng et al.(2011) [12] MSRC-NMF 95.83 

Dettling et al.(2004) [46] BagBoost 95.92 

Gan et al.(2016) [47] MRSRC-SVD 97.22 

Gan et al. (2014) [11] SRC-LatLRR 98.61 

Our paper Integrated ISSRC 98.61 

Table 4 Classification results based on different methods on DLBCL and Leukemia datasets 

Methods Accuracy (%) Sensitivity (%) Specificity (%) 

DLBCL dataset 

SRC [7] 96.07 84.21 100 

RRC_L1 [43] 96.25 94.74 96.55 

RRC_L2 [43] 94.82 89.47 96.55 

PFSRC [14] 93.57 94.74 93.10 

Integrated ISSRC 97.50 100 96.55 

Leukemia dataset 

SRC [7] 91.67 100 87.50 

RRC_L1 [43] 93.06 95.83 91.67 

RRC_L2 [43] 91.78 95.83 89.58 

PFSRC [14] 94.28 95.83 93.75 

Integrated ISSRC 98.61 100 97.92 

3.4 Recognition of postoperative metastasis 

From subsections 3.2 and 3.3, one can see that the proposed integrated ISSRC method achieves good 

recognition effects not only on early diagnosis dataset but also on tumor type recognition datasets. Surgery can 

remove the tumor to some extend, however, there is residual cancer, regional lymph node metastasis, or the 

presence of cancer emboli in the blood vessels, the risk of recurrence and metastasis is still very high. Residual 

cancer cells develop rapidly in patients with weak immunity and form new lesions. Therefore, it is necessary and 

important to identify the metastasis of cancer after surgery. 

In this subsection, the effectiveness and stability of the proposed method are demonstrated through 

comprehensive and in-depth experiments on three breast tumor gene expression datasets. The experiments 
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include the following aspects: (1) the proposed DIF-based gene selection compared with those of BW [17], 

signal noise ratio (SNR) [18] and the latest ROC gene selection method proposed in [21]; (2) the performance of 

LPML-SNMF is compared with ML-NMF [31], SNMF [32] and MI-SNMF; (3) classification performance is not 

only compared with those of the traditional classification methods NN [52], SVM [6], CRC [13] and SRC [7], 

but also compared with the latest SRC methods, such as PFSRC [14], RRC_L1 [43] and RRC_L2 [43]; (4) many 

kinds of measures are used to measure the performance of these methods, such as accuracy, sensitivity, positive 

predictive value, negative predictive value, error reduction rate (ERR) [53], ROC [22], DCA [23], heatmap, 

correlation coefficient (CC) and box plots; (5) the biological analysis of the selected information genes. 

3.4.1 Performance of DIF-based gene selection  

In this subsection, the effectiveness and efficiency of the proposed DIF-based information gene selection 

method is demonstrated. DIF-based gene selection is based on BW-based gene pre-selection. Here, 200 genes are 

pre-selected by BW. 

 Fig.4 shows that the DIF values of the 200 pre-selected genes. One can observe that most of the DIF values 

concentrate in the interval of [0,0.15] , where the red line is the threshold for selecting genes. In this paper, the 

top-ranked 10 genes are selected that correspond to the maximum DIF values. 

     
Fig. 4. Gene selection based on DIF. The blue circles are DIF values of the 200 genes selected by BW, the red line is the threshold 

for selecting the top-ranked 10 genes. 

The performance of gene selection will be conducted using DCA and the principal component analysis (PCA). 

The DCA is adopted to furthermore demonstrate the performance of the top-10 information genes selected by 

DIF. DCA curves of the top-10 genes based on BW pre-selection (green curves) and those of the proposed DIF 

selection (red curves) are shown in Fig.5, where red curves are higher than green curves in the threshold interval. 

The higher the decision curve is, the greater the net benefit is, and the lower the clinical misdiagnosis rate of the 

classification is. Fig.6 gives 79 samples consisting of 34 tumor (red stars) and 45 normal (blue squares) using the 

top three principal components of 200 genes based on BW gene primary selection and 10 genes based on DIF, 

respectively. From Fig.6 (a) to (c), it is obvious that the normals and tumors become more and more 
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distinguishable. Fig.5 and Fig.6 show that the superiority of applying the proposed DIF-based gene selection. 

However, it can be also seen form Fig. 6 (c) that there is still a degree of confusion that affects recognition. 

 
Fig. 5. Comparison of 10 genes selected based on DIF and BW on Breast-2 dataset.

 

(a)                         (b)                    (c) 

Fig. 6. Visualization of the first three principal components of PCA. Representation of all samples consisting of red stars and blue 

squares corresponds to 45 normals and 34 tumors on Breast-2 dataset. (a) original genes, (b) BW-based 200 genes; (b) DIF-based 

10 genes.

For further accessing the performance of the DIF-based gene selection, experiments are conducted on Breast-2 

dataset. Compared methods contain original gene data (no gene selection), BW [17], SNR [18], ROC [21] and 

DIF. The same classification method ISSRC is adopted. It can be seen from Table 5 that the classification 

performance of DIF is superior to all the other compared methods. In conclusion, DIF-based information genes 

selection has greatly improved the classification performance. 

Table 5 Comparison of different gene selection methods. 

Methods Original gene data BW [17] SNR [18] ROC [21] DIF 

Accuracy (%) 58.39 61.15 62.76 59.88 70.97 

3.4.2 Performance of LPML-SNMF-based feature representation learning 

In this subsection, the effectiveness and efficiency of the proposed LPML-SNMF-based feature learning 

method are demonstrated. Without causing confusion, V  represents the original information genes matrix, 1H  

and 2H  represent the first and second layer feature matrix of LPML-SNMF, respectively. The decomposition 

dimensions corresponding to the first and second layer are 1 8r   and 2 6r   by experience and experiments. 
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A) Performance of feature representation 

The representation ability of the integrated ISSRC model will be verified. The comparison of representation 

coefficients before and after adding the test samples into the integrated ISSRC is shown in Fig. 7. The first 40 

training samples are normals, and the last 30 are tumors. In Fig.7, the green curves denote the integrated ISSRC 

representation coefficient of the normals and the red curves expressed those of the tumors. The horizontal 

straight lines indicate the mean values of representation coefficients in the corresponding category. The 

difference between the two means of the LPML-SNMF model with test samples is much more obvious than that 

with training samples only. Therefore, one can conclusion that the LPML-SNMF model added the test samples 

can increase the representation of the integrated ISSR model. 

   

(a)                                      (b) 

Fig.7. The integrated ISSR representation coefficient of different features. (a) the integrated ISSR representation coefficient of the 

feature obtained LPML-SNMF-0, (b) the integrated ISSR representation coefficient of the feature obtained LPML-SNMF-1. 

For further accessing the performance of the test samples added for LPML-SNMF model, experiments are 

conducted on Breast-2 dataset. Without causing confusion, the LPML-SNMF model using only training samples 

is called LPML-SNMF-0, while the model using both training and test samples is called LPML-SNMF-1. 

Compared methods contain the first layer and the second layer of LPML-SNMF-0 and LPML-SNMF-1. The 

same classification method ISSRC is adopted. It can be seen from Table 6, in either case, the classification 

accuracies of the LPML-SNMF-1 is higher than that of the LPML-SNMF-0. The LPML-SNMF-1 model shows 

good and stable classification performance. 

Table 6 Classification accuracies (%) of LPML-SNMF on Breast-2 dataset.  

Methods  The first layer The second layer 

LPML-SNMF-0 74.35 88.59 

LPML-SNMF-1 77.14 96.03 
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(a)                   (b)                  (c)                   (d)                  (e) 

Fig. 8. LPML-SNMF feature learning. (a) Original matrix V  of all information genes, (b) and (d) are the first and second layer 

basis matrix 1W  and 2W , (c) and (e) are the first and second layer feature matrix 1H
 

and 2H . 

 
(a)                   (b)                     (c) 

Fig. 9. The CC between samples as a three-dimensional heatmap. (a) the original matrix of all information genes V , (b) the first 

layer feature matrix 1H  of LPML-SNMF, (c) the second layer feature matrix 2H  of LPML-SNMF. 

 
(a)V                    (b) 1H                      (c) 2H  

Fig.10. LPML-SNMF features of each layer box plots 

The performance of LPML-SNMF-based feature learning is analyzed by heatmap, correlation and box plots. 

Heatmap is an intuitive visualization method for analyzing the distribution of experimental data. Correlation 

analysis is used to analyze the correlation of the LPML-SNMF features obtained by each layer. Fig.8 shows the 

heatmap of LPML-SNMF-based feature learning, where blue to red colors represent low to high expression 

levels of genes or features. Fig.8 (a) represent the original information genes matrix V , Figs.8 (b) and (d) are 

the first and second layer basis matrices 1W  and 2W , and Figs.8 (c) and (e) are the first and second layer 

feature matrices 1H  and 2H . Fig.8 shows that the representation ability of features becomes stronger with 

feature learning. This is reflected in the more and more similar gene expression levels of the same category 

samples, and the more and more different gene expressions of difference categories samples. Fig.9 shows that the 

CC between samples as a three-dimensional heatmap, where blue to red color represents low to high expression 

levels of CCs. Fig.9 (a) represents the matrix of all information genes V , Figs.9 (b) and (c) represent the first 

and second layer feature matrix 1H  and 2H  of LPML-SNMF. From Fig.9 (a) to Fig. 9 (c), it can be seen that 
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the one diagonal is getting red and the other diagonal is getting blue, which shows the relevancy of the same 

categories is increasing, and that of different categories is decreasing. Fig. 10 is the comparison of the box plot, 

one can see that the median of the two categories of samples is farther apart from each other with increasing the 

number of the decomposition layers. The expression level of tumor samples is getting lower and lower. Figs. 8, 9 

and 10 show that the classification performance of features improves as the number of the LPML-SNMF 

decomposition layers increases. 

B) Regularization parameters analysis 

As shown in subsection 2.1.3, there are two regularization parameters, 1  and 2 , which control the sparsity 

of matrix 1H  and 2H
 

in LPML-SNMF model (9a) and (9b). It is well known that these parameters have a 

great effect on the overall performance of the model. Therefore, the setting of this set of parameters is tested, and 

the appropriate values of 1 , 2  are selected through the experimental results, in the case of the same initial 

value 0
1W , 0

2W , 0
1H , 0

2H . Fig. 11 shows that the regularization parameters 1 20.2, 0.5    are the best 

one corresponding to the classification results. As a result, this set of parameters is adopted. 

 
Fig.11. Accuracies based on ISSRC with different 1 , 2  

three-dimensional surface on Breast-2 dataset. 

 

C) Performance of classification 

In this subsection, the classification performance of the LPML-SNMF-based feature learning method is 

demonstrated. It is well known that postoperative metastasis is essential for breast tumor, and low missed 

diagnosis rate is needed for clinical use. 

It can be seen from Table 7 that the classification performance of feature learning is better than those of raw 

information genes data before feature learning, and LPML-SNMF is superior to other feature learning methods 

under all gene selection methods. Table 8 gives the extensive experiments conclude accuracy, sensitivity, 

specificity, missed diagnosed, misdiagnosis, positive predictive value and negative predictive value. Table 8 shows 

that the LPML-SNMF has higher accuracy, sensitivity, specificity, positive predictive value and negative 

predictive value, and lower missed diagnosed, and misdiagnosis. All the results demonstrate the advantages of the 

LPML-SNMF-based feature learning method for tumor classification. 
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Table 7 Classification accuracies of feature learning based on different gene selection methods. 

Methods Information genes SNMF [32] ML-NMF [31] ML-SNMF LPML-SNMF 

BW [17] 61.15 67.70 79.72 81.15 86.05 

SNR [18] 62.76 65.12 76.89 78.611 86.51 

ROC [21] 59.88 69.86 80.34 81.31 88.59 

DIF 70.97 77.14 84.94 87.94 96.03 

Table 8 Classification accuracies of feature learning based on different classification methods. 

Indexes Methods SNMF [32] ML-NMF [31] ML-SNMF LPML-SNMF 

Accuracy 
ISSRC 77.14 84.94 87.94 96.03 

SRC 73.08 80.97 82.08 90.63 

Sensitivity 
ISSRC 77.50 84.50 87.00 97.50 

SRC 75.00 84.50 86.50 93.00 

Specificity 
ISSRC 76.67 85.83 89.17 94.17 

SRC 70.00 75.83 75.83 87.50 

Missed diagnosed 
ISSRC 22.50 15.50 13.00 2.50 

SRC 25.00 15.50 13.50 7.00 

Misdiagnosis 
ISSRC 23.33 14.17 10.83 5.83 

SRC 30.00 24.17 24.17 12.50 

Positive predictive 

value 

ISSRC 82.67 90.33 90.50 95.83 

SRC 79.50 84.83 84.83 93.00 

Negative predictive 

value 

ISSRC 72.00 75.00 86.67 96.67 

SRC 67.83 85.00 87.00 93.00 

3.4.3 Performance of the integrated ISSRC 

In this subsection, the performance of the integrated ISSRC is verified. Firstly, the feasibility of the integrated 

ISSRC model is verified. Secondly, the convergence of integrated ISSR model by GsADMM optimization is 

verified. Thirdly, it is verified that the integrated ISSRC model alleviates the classification unstable problem to 

some extent. Finally, classification performance of the integrated ISSRC is verified by comparing with some 

classical classification methods, nearest neighbor (NN) [52], SVM [6], CRC [13] and SRC [7], and some newly 

SRC improvement methods, PFSRC [14], RRC_L1 [43] and RRC_L2 [43]. Without loss of generality, all the 

classification results are all based on the DIF-based information selection and LPML-SNMF-based information 

feature learning. 

A) Feasibility analysis of the integrated ISSRC 

In order to verify the feasibility of the integrated ISSRC, experiments are performed based on the same 

classification method ISSRC. The performance of the integrated ISSRC is compared with those of ISSRC 

(classification based on original gene data), DIF-based gene selection and ISSRC-based classification (no feature 

learning), LPML-SNMF-based feature learning and ISSRC-based classification (no gene selection). Table 9 
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shows that both DIF-based gene selection and LPML-SNMF-based feature learning can improve classification 

performance. The classification result of the integrated ISSRC is higher than that of single addition gene 

selection and feature learning. Hence, the following experiments are based on the integrated ISSRC model. 

Table 9 Classification accuracies of different methods. 

Methods ISSRC DIF+ISSRC LPML-SNMF+ISSRC Integrated ISSRC 

Accuracy (%) 58.39 70.97 87.16 96.03 

B) Convergence analysis of the integrated ISSR model by GsADMM optimization 

In subsection 2.2, the integrated ISSR model is optimized by GsADMM. Here, the corresponding convergence 

is analyzed and compared with the classic ADMM. The convergence results are shown in Fig. 12. 

Fig.12 (a) is the iteration error between exact and iterative solutions, Fig.12 (b) is the iteration error between 

the adjacent iterations. And Fig. 12 (c) gives the trend graph, which shows that the solution gradually becomes 

stable and converges to the numerical solution. It can be seen from Fig.12 that the iterative rate of GsADMM 

(red line) is faster than ADMM (blue line), while the convergence error of GsADMM is less than that of ADMM. 

Specifically speaking, the convergence error of ADMM is about 0.002, and iteration time is about 80s. The 

convergence error of GsADMM is about 0, and iteration convergence time is about 5s. Fig. 12 demonstrates that 

GsADMM is superior to the classic ADMM when solving the integrated ISSR model. Therefore, GsADMM is 

adopted in this paper. 

 
(a)                         (b)                           (c) 

Fig. 12. Convergence analysis of the integrated ISSR model. (a) The iteration error between the exact and iterative solutions; (b) 

The iteration error between the adjacent iterations; (c) the optimization solution trend graph. 

C) Classification stability analysis based on LPML-SNMF-based feature learning   

For testing the performance of the proposed integrated ISSRC model when the test data is not balanced in each 

category, the experiments on Breast-2 dataset are done. In order to verify that the feature learning method 

LPML-SNMF alleviates the problem of classification unstable, we compared the integrated ISSSRC model with 

DIF+ISSRC. We fix the total number of the test samples as 20 and change the number of tumors and normals. 

Fig. 13(a) gives the classification result at different ratios of tumor and normal in the test set, where red curve 

denotes integrated ISSRC and blue one is DIF+ISSRC, the values on the curves are the ratios of tumor to normal. 
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In addition to the commonly used classification accuracy, ERR is also adopted into the comparison. 

 

1 2

1

100%
ER ER

ERR
ER


  ,  

where 2ER  the error rate of highest recognition result on the same method, 1ER  is the error rate of other 

recognition result on the same method, and ERR is denoted by a notion ↓. Fig.13 (b) and Table 10 are ERR 

values of different ratios of tumor to normal in test samples. Fig. 13 (b) is rose figure of ERR, the smaller the 

ERR value is, the more concentrated the rose figure is. Experiments are given in the Fig. 13, which shows that: 

(1) the category-imbalance does affect the classification results, and the classification accuracies of 

category-balance are superior to category-imbalance. (2) the optimal classification accuracy is achieved when the 

numbers of samples are balanced. (3) LPML-SNMF-based feature learning makes the classification more stable 

regardless of whether the category of the test sample is in equilibrium or not. 

  

(a)                                     (b) 

Fig. 13. Comparison of classification accuracies when the test data is not balanced in each category. (a) line chart of recognition rate, 

(b) rose figure of ERR. 

Table 10 Classification ERR based on different methods on Breast-2 dataset. 

Methods 
Ratio of tumor to normal in the test samples 

9.00 4.00 2.33 1.50 1.00 0.67 0.43 0.25 0.11 0 

Integrated 

ISSRC  
11.76 5.56 6.74 4.40 0 1.06 3.26 7.95 11.76 11.76 

DIF+ISSRC 14.29 11.11 6.67 5.26 0 14.29 25.00 31.15 33.33 42.86 

D) Stability of the integrated ISSRC 

By taking full advantage of the information embedded in test samples, the integrated ISSRC can relieve the 

problem of insufficient training samples. The performance of SRC and the proposed integrated ISSRC are 

compared by reducing the number of training samples. In order to verify the stability of the integrated ISSRC, 

SRC is also based on DIF-based gene selection and LPML-SNMF-based feature learning, without confusion, it is 

called the integrated SRC. The percentage of the training samples is decreased from 90% to 10%. From Fig. 14, 

it can be seen that the integrated SRC and the integrated ISSRC reach the similar results when the number of the 
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training samples is more than 80% percentage. With decreasing the number of the training samples, classification 

accuracy of the integrated SRC will soon lower than the integrated ISSRC. On the whole, the integrated ISSRC 

performs more stable than the integrated SRC, especially when there are few training samples.  

 

Fig. 14. Comparison of accuracies with decreasing training samples on Breast-2 dataset. 

E) Comparison of the classical classification methods 

 
(a)                              (b) 

 

                                   (c)                               (d) 

Fig. 15. Comparison of different classification methods on Breast-2 dataset. (a) Histogram for accuracy. (b) box plots for error rates, 

(c) ROC analysis, (d) DCA analysis.  

The performance of the integrated ISSRC is compared with those of NN [52], SVM [6], CRC [13] and SRC 

[7]. Fig.15 (a) shows the accuracies of different classifiers in the same environment, when comparing the five 

columns of classification results from Fig.15 (a), it can be seen that the classification accuracy based on the 

integrated ISSRC is higher than the other methods. In order to give more intuitive comparison of different 

classifiers, box plots of error rates and ROC analysis are shown in Fig.15. Fig.15 (b) illustrates that NN, SVM, 
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CRC, SRC and the integrated ISSRC achieve average error rates (red line), and thereby showing that ISSRC has 

the smallest error rate. Fig.15 (c) gives the ROCs of different classifiers. Specifically speaking, the AUC values, 

corresponding to ROC, of NN, SVM, CRC, SRC and the integrated ISSRC, are 0.8353, 0.8895, 0.8915, 0.9059 

and 0.9458, respectively. DCA analysis is shown in Fig.15 (d), the integrated ISSRC has the highest DCA values, 

where the higher the DCA is, the smaller the loss of the model is. As can be seen from Fig.14, all the four 

indexes show that integrated ISSRC is better than other methods. 

F) Comparison of with state-of-the-art methods 

In addition to these classical classifiers, our method has also compared with the latest published classification 

results on the same breast dataset [48-49, 54-57], and some other state-of-the-art SRC methods, including 

PFSRC [14], RRC_L1 [43] and RRC_L2 [43].  

Table 11 shows that, on the Breast-2 (77) Breast-2(97), classification accuracy of our method higher than those 

of in the latest published results given in the same dataset and same environment. Especially, on the Breast-2 (97) 

dataset, classification accuracy of our method achieves 94%, 14%, 8.85% and 6.6% higher than those of in the 

three latest published results given in [55], [47] and [56] in the same dataset and same environment. And on the 

Breast-2(77) dataset, the accuracies of our method achieves 94.92% and of increases about 14 percent. The 

corresponding classification ERR drops about 74 percent.  

Table 11 Classification performance with the latest published results on different datasets 

Experiments Methods Accuracy (%) 

Breast-2(77) dataset 

Deng et al.(2013) [48] GRRF-RF 65.50 

Zheng et al.(2017) [57] CAP-SQDA 80.00 

Fan et al.(2015) [54] IIS-SQDA 80.03 

Our paper Integrated ISSRC 94.92 

Breast-2(97) dataset 

Jiang et al.(2017) [55] DLPD 80.00 

Younsi et al.(2016) [49] αRSSE 85.15 

Su et al.(2017) [56] K-S test-CFS 87.40 

Our paper Integrated ISSRC 94.00 

Table 12 Classification accuracies of different methods 

Methods Breast-2 Breast-2(97) Breast-2(77) 

RRC_L1 [43] 89.38 84.31 85.12 

RRC_L2 [43] 88.59 85.44 86.55 

PFSRC [14] 88.27 84.32 85.44 

Integrated ISSRC 96.03 94.00 94.92 

RRC_L1 and RRC_L2 are the recently proposed SRC method, RRC coding model with the L1 and L2 

constraints, respectively [43]. PFSRC is another improved SRC method proposed by our team for face 
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recognition [14]. Table 12 shows the results on Breast-2, Breast-2(97) and Breast-2(77) datasets under the same 

experimental setting. One can observe that our method has a significant advantage, which embodies good 

recognition results in the prognosis evaluation datasets. 

3.4.4 Analysis of candidate’s pathogenic genes 

Tumor characteristics or morphology is very likely to have some relationships with gene expression data. To 

find out these relationships, the information genes selected based on DIF were further subjected to biological 

analysis. Our method has achieved good results on postoperative metastasis dataset. The information gene based 

on DIF selection whether a gene that causes cancer metastasis after treatment? Therefore, the information genes 

selected based on DIF were further subjected to biological analysis. Identifying candidate’s pathogenic genes is 

important because it can be a biomarker of the candidate’s pathogenic genes and it is helpful to auxiliary 

diagnosis. As shown in subsection 2.1.2, candidate’s pathogenic genes can be selected by the proposed DIF index. 

In this subsection, survival curve analysis is given to a further understanding of its biological meaning. The aim 

is to study whether these candidate pathogenic genes are used as biomarkers for postoperative metastasis 

diagnosis. After examining these survival-associated variables, we find that the selected information genes are 

indeed biologically different foe postoperative metastasis.  

Table 13 shows the basic biological attributes of the 10 information genes selected by DIF. Since there are two 

genes that do not contain the gene name and description, only 8 genes have been analyzed. 

Table 13 Some candidate’s pathogenic genes and their biological properties for classification on Breast-2 dataset 

Index No. of selected genes Gene accession number Gene description 

NM_000286 PEX12 peroxisomal biogenesis factor 12 

AL080059 TSPYL5 TSPY like 5 

NM_014968 PITRM1 pitrilysinmetallopeptidase 1 

AF052087 CACTIN cactin, spliceosome C complex subunit 

NM_003239 TGFB3 transforming growth factor beta 3 

U45975 INPP5J inositol polyphosphate-5-phosphatase J 

NM_001685 ATP5J 
ATP synthase, H+ transporting, 

mitochondrial Fo complex subunit F6 

NM_019028 ZDHHC13 zinc finger DHHC-type containing 13 

In order to check the quality of DIF-based candidate’s pathogenic genes, the expression profiles of these genes 

for the opposite category are analyzed. For comparison, irrelevant genes chosen randomly are presented. Fig.16 

illustrates the two exemplary expression levels of the patients for the candidate’s pathogenic genes (TSPYL5 and 

ATP5J) listed in Table 13 and one irrelevant gene (PTPN1). In Fig.16, the red curve denotes the gene expression 

levels of the 45 normal samples and the blue curve expresses the gene expression levels of the 34 tumor samples. 
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The horizontal straight lines indicate the mean values of gene expression levels in the corresponding class. In the 

case of the pathogenic genes (Figs.16 (a) and (b)), the difference of the mean values is large. For the irrelevant 

gene (Figs.16 (c)), the difference of the mean values is 0.0132. Moreover, considerable fluctuation can be seen 

between the binary-category and the irrelevant genes in terms of standard deviation (std). It is implied that gene 

expression levels of candidate’s pathogenic genes are indeed different between normals and patients, while 

irrelevant genes are normally identical. Therefore, candidate’s pathogenic genes can be used to effectively 

distinguish patients and normals. 

 

(a)                          (b)                           (c) 

  Fig. 16. Comparison of expression levels for candidate’s pathogenic genes and irrelevant genes. The red and blue curves 

correspond to normals and tumors, respectively. (a, b) are pathogenic genes (TSPYL5and ATP5J), and (c) is the irrelevant genes 

(PTPN1). 

 
Fig.17. Heatmap of the expression levels for the candidate’s pathogenic genes (TSPYL5 and ATP5J, the first two columns) and the 

irrelevant genes (PTPN1 and ATP2C2-AS1, the last two columns). 

Fig.17 shows the heatmap of gene expression levels in two candidate’s pathogenic genes (TSPYL5 and ATP5J, 

the first two columns) and two irrelative genes (PTPN1 and ATP2C2-AS1, the last two columns). It can be seen 

that the expression levels of the candidate’s pathogenic genes have an obvious difference, while there are very 

similar expression levels in irrelative genes. 

Kaplan–Meier estimator is used for patient stratification, and p  value is calculated with the log-rank test, 

where 0.05p   is considered significant. For the 10 candidate’s pathogenic genes selected by DIF, we further 

plot Kaplan-Meier curve by analyzing survival curves and the corresponding Log-Rank p  values on website 

http://www.oncolnc.org and http://ualcan.path.uab.edu/index.html. Fig.18 indicates that TSPYL5 ( 0.0362p  ) is 

anti-oncogene, PITRM1 ( 0.0066p  ) and ATP5J ( 0.0104p  ) are proto-oncogenes. 
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(a)                        (b)                       (c) 

Fig. 18. Kaplan-Meier survival curves of ( 0.05p  ). (a) TSPYL5, (b) PITRM1, (c) ATP5J. 

In order to further analyze the selected pathogenic genes, find out whether the specific biological functions of 

these genes in NCBI and related materials have biological significance for breast tumor. The specific biological 

information of several genes is given below. Some genes from the final candidate subset for Breast-2 data are 

shown in Table 13, which are believed to be closely related to Breast tumor. Gene TSPYL5 has been turned out 

to be associated with Breast tumor in clinical and some pathogenic genes also emerged in the study of others. 

Gene TSPYL5 specific biological description: TSPYL5 knockdown decreased, and overexpression increased 

aromatase (CYP19A1) expression in MCF-7 cells, LCLs, and adipocytes through the skin/adipose (I.4) promoter. 

TSPYL5 induced CYP19A1 expression and that of many other genes. In summary, genome-wide significant 

SNPs in TSPYL5 were associated with elevated plasma E2 in postmenopausal breast tumor patients. 

Gene ATP5J specific biological description: Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an 

electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. Alternatively 

spliced transcript variants encoding different isoforms have been identified for this gene. 

PITRM1: The protein encoded by this gene is an ATP-dependent metalloprotease that degrades post-cleavage 

mitochondrial transit peptides. Genetic variation in the hPreP gene PITRM1 may potentially contribute to 

mitochondrial dysfunctions [58]. 

4 Conclusions 

In this paper, an integrated ISSR-based tumor classification framework is proposed based on the intrinsic 

characteristics of microarray gene expression data. The proposed DIF can adaptively select the candidate 

pathogenic genes, which are consistent with the actual clinical needs and has important biological significance. 

The LPML-SNMF-based feature learning complements the advantages of deep learning and NMF. The 

integrated ISSRC is effective and stable, even there are few training samples or the data are unbalanced. 

Moreover, the integrated ISSRC can effectively identify whether there is a tumor, which kind of tumor, and 

whether metastasis occurs after surgery. 

There remain some interesting questions. One is combing gene network analysis with single gene analysis. 
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The other is how to further optimize the model, such as adding more targeted prior information as regular terms, 

considering mixed driven of unlabeled data and model. 
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Appendix A   

Firstly, 1H  is optimized for a given basis 1W . Since the objective function (9a) is quadratic with respect to 

1H , and the feasible region is of convex type, it is guaranteed that there exists a local minimum. To address this 

problem, [32] has given an iterative update rule. 

1
1 1 1 1 1 1 1.*( ) . / (( ) ).k k k T k T k kH H W V W W H                                (20) 

In order to satisfy the nonnegative constraints 1 0H  , projection operators 
1

ˆ
ijh  can be constructed as follows, 

and they are applied on the optimization solutions. 

1 1 1
1 1 1

,  0,
ˆ  ,

0,    .

ij ij k
ij

h if h
h h H

otherwise




 


                             (21) 

where 1h  is the vectors of the matrices 1
1
kH  , 1ijh  is the elements in 1h . Eq. (21) denotes that all elements 

in matrix 1
1
kH   is projected into a non-zero space.  

Then 1H  is fixed and the basis 1W  is optimized. 

1 1 1
1 1 1 1 1 1( )( ) ,k k k k k TW W W H V H                                 (22) 

where 1 0   is an iteration step. In order to satisfy the nonnegative constraints 1 0W  , projection operators 

1
ˆ

ijw  can be constructed as follows, and they are applied on the optimization solutions. 

1 1 1
1 1 1

,  0,
ˆ  ,

0,    .

ij ij k
ij

w if w
w w W

otherwise




 


                             (23) 

where 1w  is the vectors of the matrices 1
1
kW  , 1ijw  is the elements in 1w . Eq. (23) denotes that all elements 

in matrix 1
1
kW   is projected into a non-zero space.  

Similarly, the model in Eq. (9b) can be also optimized and 2H  and 2W are updated by alternating iterations 

1
2 2 2 1 2 2 2 2.*( ) . / (( ) ),k k k T k T k kH H W H W W H                           (24) 

2 2 1
2 2 2

,  0,
ˆ  ,   

0,    .

ij ij k
ij

h if h
h h H

otherwise


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 


                             (25) 

1 1 1
2 2 2 2 2 1 2( )( ) ,k k k k k TW W W H H H                                (26) 
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2 2 1
2 2 2

,  0,
ˆ  .

0,    .

ij ij k
ij

w if w
w w W

otherwise




 


                              (27) 

Appendix B 

Proof: In order to discuss the value of 2

2

|| ||

|| ||

j i

i

 




, we need to find the relationship between i  and j . Let  

 i t   is continuously differentiable for all [0, ]t  , where  0i i   and  j i   . Let  i t  do the 

Taylor expansion at 0t  : 2
( ) (0) (0) ( )i i i
t O t     . We have 2(0) ( )ij i

O       when t  . Then 

   2 2 2

2 2

|| || || 0 ||

|| || || ||

j i i

i i

O
  

 
 


  .                     (28) 

In order to obtain   2|| 0 ||i  , similar to Theorem 5.3.1 in [59], one can construct      2 2
test test

iH tf H tf t


  , 

where  2 /testf H   , then 

           2 2 2 2 2(( ) / )test test test train test
i i iH tf H tf t H tf h t H t  

 

      . 

Let  2( ) /train
iE h   , then 

 

         2 2 2 2( )test test test train
i iH tf H tf t H tf h tE

 

     .                   (29) 

In order to bound   2|| 0 ||i  , one can take the derivative of Eq. (29) and set 2( )train
jh , 

2 2 2 2 2 2( ) (0) ( )( ) ( )T T T T T

i i i

test test test test test train
if f E fH H H H H h     
 
i.e., 

         
1 1

2 2 2 2 2 2 20 ( ) ( ) ( ) ( )test test test test test train test
i i i iH H H E f H H f h H  

         .             (30) 

By singular value decomposition theorem [59], we have  2
testrank H tf k   for all  0,t  , where  

   2 2
2

test test
kH H  (  2

test
k H  is the largest singular value of 2

testH ).  Then 

   2 2 2 2 2 2|| || || / || || || ,test test test
kf H H H      

and  2 2 2 2 2|| || || ( ) / || || ( ) ||train train
i iE h h   . 

By substituting Eq. (30) result into Eq. (28), taking norms, the inequality can be obtained, 
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Since 2 2 2( ) ( ( ) ) 0test T test train
i iH H h   , 2

test
iH   is orthogonal to 2 2( )test train

i iH h  , it is also known that 

2 2 2

2 2 2 22 2 2
( ) ( )train test test train

i i i ih H H h    , then 2 2 2 2
2 2 2 2 2|| || || || || ( ) ||test train

i i LSH h    .  

The relationship between i  and j  will be 

   22 2
2 2 2 2

2

|| || sin1
( ) 1 ( ).

|| || cos( ) cos( )

j i test test

i

H H O
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Appendix C 

The integrated ISSR model in Eq. (11) can be rewritten as Eq. (13) (in subsection 2.2) 

2

2 2 12,
min  . . - 0train test

b
h H b s t b


     .                            (13) 

For 2 1
2

rtrainh R  , 2

2
r ktestH R  , the augmented Lagrangian function of (13) is defined as, 

2 2

2 2 1 22
( , ; ) , ,

2
train testL b h H b b b


                                   (14) 

Let 0   be the penalty parameter, and 1kR   be the Lagrange multiplier, .,.  denotes the inner product. 

The GsADMM scheme takes the following form 

2

2
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1
arg min ( , ; ) , ( )

2

( ),                               ( )

1
arg min ( , ; ) ,   ( )

2
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k k k k
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(15) 

where ( , , )k k k kw b  , 
1 0    , 

1 0b b   , 
1 1: k kK R R   and 

1 1: k kT R R   are two semi-proximal 

matrixes. A more natural choice of the semi-proximal terms is to add  
1

2
k

K
  

 
and 

1

2
k

T
b b   to the 

sub-problems for computing the values 
k  and 

kb . For the sake of generality and numerical convenience, the 

latter variant with only semi-proximal terms is considered. The most adopted values of the variables are used in 

the proximal terms. 

Sub-problem 
k  can be approximated by 
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where 2 2 2 2( ) ( ) ,k test T test k test T train k k kZ H H H h b           and 
TY Y I K  , 

2

K F
K  . 

Sub-problem 
kb  can be approximated by 

22

1 2
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 argmin , ,

2 2
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where 0T  , then 
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2

 argmin ,
2

k k
k k k

b

b b b S 

  
  

 
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      
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where S   is a soft threshold function given below 

,   

[ ] ,   

0,        

x if x

S x x if x

otherwise


 

 

 


   



. 

Algorithm 2: Optimization of integrated ISSR based on GsADMM 

Input: Training samples feature matrix 2 2 1 2[( ) , ,( ) ]
c

train train train
sH h h  , test samples feature 

matrix 2 2 1 2[( ) , ,( ) ]test test test
kH h h  . Set (0,2)  and 0  . 

Initialize: Initialize 
0 0 0( , , ) (0,0,0)b    , 0k  , TY Y I K  , 

2

K F
K  . 

Iterate the following processes until convergence 

1) 2 2 2 2(( ) ( ) ) /k k test T test k test T train k k k
KH H H h b               , 

2) ( )k k k kb      , 

3)  / /k k kb S      , 

4) 
1 ( )k k k kw w w w      , 

5) 1k k  . 

End while 

Output An optimal solution can be obtained. 

Appendix D 

For a further discussion of the analyzed results, the notations 1 1: ( , , )i i     , 1: ( , , )i i p      and 
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similar notations for b  are employed. Let 
1

( ) ( )
q

j j
j

f f 


 , which is abbreviated as f ,
1

( ) ( )
q

j j
j

g b g b


 , 

1 j q   for g . 

In [39], two conditions for f K 
 
and g T I    are needed. So, the following two basic equalities are 

given first. 

2 2

1 2 1 2 1 2 1 1

2 2

2 1 2 2

2 , ( )

,

G G

G G

u u G v v u v u v

u v u v

     
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                        (33) 

2 2 2

1 2 1 2 1 2

2 2 2

1 2 1 2

2 ) +

,

G G G

G G G

u Gu u u u u

u u u u

   

   
                            (34) 

where 1 2 1 2,  ,  ,  u u v v are vectors, and G  is an arbitrary self-adjoin positive semi-definite linear operator from a 

space to itself. 

Next, let ( , , )b   be an arbitrary solution to the KKT system (16). For any ( , , )b  , we denote 

e    , e   
 
and eb b b  .  

Proof: Note that (0,2) . It is clear to see from Eq. (19) (in subsection 2.3) that { } 0k k   is a nonnegative 

and monotonically non-increasing sequence. Hence, { }k  is also bounded. As a result, the following sequences 

are bounded, 

   1(1 ) , ,k k k
e e K

         ,k

T
b  ,k k

K
   and { }k

e .                 (35)
 

Moreover, it is known that the following inequalities hold with k   , 

1 0,
f

k
e



  0,

g

k
eb




 

1 0,k k
e eb    1 1 0,k k

K
     

0,k k

T
b b  1 1 0

f

k k  


 

 
and 1 0k k

e e    .                     (36) 

Thus, it can be seen that k

K
 is bounded by the fact of k k k k

K K K
       . Consequently, the 

sequence  
f

k

K


 
is bounded. Since 0f K   , the sequence  k is also bounded. Similarly, the 

sequences  k

T
b ,  kb and  

g

k

T I
b

  
are both bounded, which leads to the bounded sequence as well. 

It is implied that the sequence  kb  is bounded from 0g T I    . The boundedness of 

 (1 )k k
e e      and  k  further indicate that the sequence  k  is bounded. The above arguments 
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have shown that  ( , , )k k kb   is a bounded sequence. 

Consequently, the sequence  ( , , )k k kb   admits at least one convergent subsequence. Assume that 

 ( , , )i i ik k kb   is a subsequence of  ( , , )k k kb   converging to  ( , , )b    . It follows from Eq. (15b) that 

( ) ( )k k k kK f      , and 1 1 1 1( ) ( ),k k k kK f                     (37) 

Now, from Eq. (15c) we can get 

1 1( ) ( ) ( ) ( )k k k k k k k kb T b b g b              .                    (38) 

It follows from Eqs. (37) and (38) that 

( ) ( ),

( ) ( ) ( ).

i i i i

i i i i i i

k k k k

k k k k k k

K f

b T b b g b

   

  

   

     




                         (39) 

lim ( ) 0k k
k b    can be obtained from Eq. (36). Taking limit on Eq. (36) and using Eq. (39), one obtains 

( )f   , ( )g b  
 and 0,b    

which indicates that ( , , )b     is a solution to the KKT system (16). 

Next we will show that ( , , )b     is the unique limit point of the sequence  ( , , )k k kb  . Without loss of 

generality, let ( , , ) ( , , )b b      . Consequently, the sequence { }k  itself converges to zero and the 

lim k
k   

 
by the definition of k . Moreover, from 1 1 0k k

K
     in Eq. (36), it is easy to get 

0k
e K

   as k   . Noting that 0k
e K

   in Eq. (35) and 0
f

k
e


  in Eq. (36), we have 

{ } 0
f

k k k
e e eK

  


    as k   . Hence, lim k
k     under the condition of 0f K   . Finally, 

from the facts of 1 0k
e   , 1 0k k

e eb     in (36), and 
 

1 1 ,k k k k
e e e eb b     

 

0k
eb   can be derived. Since 0k

e T
b   and 0

g

k
eb


  owing to Eq. (36), one can get 

  0
g

k k k
e e eT

b b b


     as k   . Therefore, by the fact that 0g T I    , it is known that lim k
k b b  .  


