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Abstract

The automatic image annotation can provide semantic illustrations to under-

stand image contents, and builds a foundation to develop algorithms that can

search images within a large database. However, most current methods focus

on solving the annotation problem by modeling the image visual content and

tag semantic information, which overlooks the additional information, such as

scene descriptions and locations. Moreover, the majority of current annotation

datasets are visually consistent and only annotated by common visual objects

and attributes, which makes the classic methods vulnerable to handle the more

diverse image annotation. To address above issues, we propose to annotate

images via collective knowledge, that is, we uncover relationships between the

image and its neighbors by measuring similarities among metadata and con-

duct the metric learning to obtain the representations of image contents, we

also generate semantic representations for images given collective semantic in-

formation from their neighbors. Two representations from different paradigms

are embedded together to train an annotation model. We ground our model

on the heritage image collection we collected from the library online open data.

Annotations on the heritage image collection are not limited to common visual

objects, and are highly relevant to historical events, and the diversity of the

heritage image content is much larger than the current datasets, which makes it
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more suitable for this task. Comprehensive experimental results on the bench-

mark dataset indicate that the proposed model achieves the best performance

compared to baselines and state-of-the-art methods.

Keywords: Annotation Diversity, Image Annotation, Representation

Learning, Collective Knowledge, Heritage Image Collection

1. Introduction

The automatic image annotation is a fundamental research problem in com-

puter vision and pattern recognition. Multiple applications require the image

annotation to understand, search and guide massive image visual information.

It is indispensable to train an automatic annotation model, which is in favor of5

understanding image contents and browsing them within a large-scale database.

Methods for automatically annotating images have been extensively studied

for decades, and most mainstream methods have been focused on annotating

common visual objects and attributes [1, 2, 3, 4]. Given a set of training im-

ages with ground-truth, the direct way to uncover the relationship between the10

image visual content and tags is to train classifiers independently for each tag.

Hand-crafted image features like SIFT [5], LBP [6] and GIST [7] combined with

classifiers such as random forest [8], SVM [9] and voting [10] are widely adopted

to fulfill the task. Most recently, deep convolutional neural network (CNN) has

shown the advanced ability on various computer vision and pattern recognition15

tasks, including the image classification [11, 12] and retrieval [13, 14]. CNN

can obtain high-quality image representations based on the purely supervised

learning, and training CNN with a logistic loss function [15] has established

a solid baseline for the annotation problem, while multiple works have been

focused on modifying the loss function to better fit the problem, such as the20

pair-wise ranking loss [16]. However, by treating each tag independently, this

line of works only model the relationship between the image visual content and

each tag but overlook semantic information carried by tags themselves.

To bridge the semantic gap, a multi-modal representation is often carried
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（a）
blue, cloud, landscape, sunset, sky

（b）
procession, crowd, city street, band,

festival, anniversary

Figure 1: Examples of the training image from Flickr dataset and the heritage image collection.

As we can see, the tags of the heritage image collection are more diverse and semantical.

out to learn the image representation as well as the tag representation. Canon-25

ical correlation analysis (CCA) [17] and kernel canonical correlation analysis

(KCCA) [18] based methods project both visual and semantic representations

into a latent space to tackle the annotation and retrieval problem. There are

also related works leverage the semantic information by capturing the depen-

dencies between tag pairs. In general, images with multiple tags have strong30

correlations among attached tags. For example, the tag ‘ocean’ and ‘boat’ have

the potential to appear in the same image, while ‘ocean’ and ‘tiger’ do not.

Probabilistic graphical models (PGM) such as Markov random field (MRF) [19]

and conditional random field (CRF) [20], as well as the widely used recurrent

neural network (RNN) [21], have been proved their efficiencies on capturing35

high-order tag dependencies.

Aforementioned methods are mainly proposed for the image annotation of

common objects and their attributes and have achieved satisfactory results.

However, there are two major drawbacks when they handle the more diverse

image annotation. First of all, state-of-the-art methods on the image annotation40

problem use CNN as the backbone model, which heavily relies on the fine-tuning

the pre-trained image representation on the large-scale image dataset ImageNet
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（a） （b） （c） （d）

Figure 2: The visual ambiguous of the heritage image collection. All images are annotated

with the tag ‘theatre.’ However, the visual appearance of them is quite different. Fig. (a) is

the exterior of a theatre, fig. (b) is the interior of a theatre, fig. (c) is the hall of a theatre,

while fig. (d) is a group people taking a photo outside a theatre.

[22]. However, the tags of the real-world image can be more obscure and diverse.

Take Fig. 1 as an example. The left image is sampled from the Flickr dataset [4].

These tags indicate the objects and their attributes, which are tightly related45

to the image visual content, while the right image is selected from the heritage

image collection we collected online, it contains not only the easily recognized

tags ‘crowd’ and ‘city street’, but also tags that can be inferred from context or

related knowledge, such as ‘anniversary’ and ‘festival’. Even for the same tag,

the image visual appearance can be very different. For example in Fig. 2, all50

images are annotated with the tag ‘theatre.’ But the visual appearance of these

images is quite diverse. Moreover, the domain difference between the training

image set and ImageNet can be much larger than current datasets. Directly

learning the image visual representation from the training set could degrade

the performance. Secondly, since the tags of the real-world images can be very55

diverse, and classic annotation methods tend to treat tags as equally related to

the image visual content or rule out ones that are less relevant, which makes

their performances unsatisfactory.

To address above issues, we propose to uncover relationships between the

image and its neighbors and utilize them to conduct the image representation60

learning and train an annotation model, namely annotation via collective knowl-

edge. We ground our proposed model on the heritage image collection, given its

visual and tag diversity. The whole framework is shown in Fig. 3. Specifically,
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Figure 3: The framework of the proposed model. At the training stage, we first generate

image pairs (i, i′) for the visual representation learning based on the metadata similarity,

in our case, the combination of the description similarity dsim and location similarity gsim.

Image pairs are passed through the siamese network and trained with the contrastive loss.

Then we retrieve image neighbors and summarise the semantic representation by adopting

the weighted sum based on the image pair similarity and tag relevance. Both the visual

representation GX(i) and the semantic representation GS(i) are fed into the fully-connected

network to compute hidden states and further trained with the sigmoid cross-entropy loss.

we define neighborhood relationships between images based on their metadata,

which are the descriptions of the background of images and locations. Images65

with similar contexts have the similar visual appearance, which can help us

to eliminate the visual ambiguous. Therefore, we conduct the metric learning

among image neighbors to learn effective visual representations. To handle the

diversity of the tag set, we collect tag candidates from image neighbors and em-

bed their semantic information with the visual representation to help infer all70

possible tags. The deep neural network is adopted in the representation learn-

ing and the annotation model. We collect a heritage image collection from the
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library online open data as the benchmark dataset to verify the effectiveness of

the proposed model. In summary, the main contributions of our model are as

follows:75

1) We propose to learn the image visual representation based on the metric

learning. Different from previous works, we use metadata to measure similarities

among image neighbors. The superior experimental results against hand-crafted

features and CNN finetuned features indicate the significance of our proposed

representation learning methods.80

2) Different from previous works, our model annotates all tags via collective

knowledge from image neighbors, including the visual representation learning

and the semantic embedding, which is crucial for the real-world image annota-

tion, since it focuses on not only the visually related tags but also the semantical

tags which are related to the events.85

3) We collect a heritage image collection as the benchmark dataset and

ground our proposed model on it. Experimental results show that our model

achieves the best performance against the state-of-the-art annotation methods.

The preliminary version of this work was published at ACPR 2017 [23]. The

new material in this paper comprises a new perspective on the diverse image90

annotation, and we ground it on the heritage image collection, a new annotation

model is proposed to tackle the problem. We collect a new benchmark dataset

with more compared baselines, state-of-the-art methods, and ablation models

are implemented and studied. More importantly, the proposed model achieves

the best results against all compared methods.95

2. Related Works

2.1. Mainstream Image Annotation Methods

As addressed before, the automatic image annotation, as a fundamental

computer vision and pattern recognition problem, has been studied for decades.

Multiple image datasets have been proposed for the research purpose, such as100

the PASCAL VOC [2], MS COCO [1], Flickr [4] and NUS-WIDE [3] etc. One
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way to tackle the problem is to directly model the relationship between the

image visual content and associated tags. Image visual representations can be

chose from traditional hand-crafted features [5, 6, 7, 24] to the advanced CNN

feature [11, 12], while the classifier can be a wide range of options including105

the random forest [8], SVM [9] and neural networks with suitable loss func-

tions [15, 16]. These methods establish the baselines of the image annotation

with satisfactory results, while some works focus on improving the baseline per-

formances by leveraging image regions. In [25], Xue et al. use the multi-label

multi-instance method to explore the image features both at the image level and110

the regional level. In [26], Wei et al. use BING [27] to generate object propos-

als and annotate tags independently inside each region, all regional annotations

are fused together as the final annotation. Despite the fact that image visual

representations are enhanced by introducing the regional information, most of

these methods are targeting object-centered images.115

To efficiently exploit the abundant semantic information carried by tags,

several approaches [28, 29, 30, 31, 32] have been proposed to design a multi-

modal representation of the image and its tags. The CCA [17] and KCCA [18]

based methods and their variations are widely used in the image annotation

and retrieval. In [33], Hwang et al. use the KCCA to leverage the impor-120

tance of textual objects for the image annotation and retrieval. They reveal

implied cues about object importance based on how people naturally annotate

images with the text and then translate those cues into a dual-view semantic

representation. In [30], a third view of the category or concept is added to the

CCA to capture the high-level image semantics, which improves the retrieval125

performance. In [31], Murthy et al. propose to combine the CNN visual rep-

resentation with the word embedding by using the CCA, while in [28], authors

propose a label propagation framework based on the KCCA to tackle the an-

notation problem regardless whether the training set is annotated by experts.

In [32], authors design a multi-modal curriculum learning (MMCL) strategy130

to tackle the semi-supervised image annotation problem. Different from pre-

vious works, our multi-modal representation is designed based on the visual
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representation which is learned from the metric learning, and the semantic rep-

resentation which is collected from image neighbors and the external knowledge

base, in this way, we can infer all tags both visual and event-related.135

There are also series of works focus on uncovering semantic information by

modeling the tag pair correlation. Probabilistic graphical models are usually

employed [34, 35, 36, 37, 38]. Different graph structures can model the visual

representation-tag joint distribution from different perspectives, such as the

Chow-Liu tree [34], directed acyclic graph [35], group sparsity [36], CRF [37]140

and ML-TLLT [38] etc. Most recently, RNN has been applied to capture the

sequential dependencies, which is suitable for the image to language problem

including the annotation and captioning, etc. In [21], Wang et al. have shown

that RNN can efficiently capture high order label dependencies. They define

each image ground-truth as an ordered sequence of tags and use CNN-RNN as145

one unified framework to annotate images in an end-to-end fashion. However,

when it comes to the more complicated annotation such as the heritage image

collection, the tag pair correlation can be too diverse to be captured as an

ordered sequence.

There are also related works that utilize metadata to assist the annotation150

process. In [39], Johnson et al. propose to generate image neighbors by exploit-

ing image metadata, and build a framework to merge the visual information

between image and its neighbors. In [40], Jin et al. use WordNet as the knowl-

edge base to analyze the hierarchical relationship in the tag set. In [41], personal

annotation preference is considered in the form of tag statistics computed from155

images a user has uploaded in the past. These past images are used in [42]

to learn a user-specific embedding space. Photo timestamps are exploited for

time-sensitive image retrieval [43], where the connection between image occur-

rence and various temporal factors is modeled. In [44], time-constrained tag

co-occurrence statistics are considered to refine the output of visual classifiers160

for the tag assignment. Different from these prior works, the metadata in our

model is used to identify image neighbors and guide the image visual repre-

sentation learning process by conducting the metric learning at the training
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stage.

2.2. Tag Relevance Analysis165

Given the diversity of the tag set in the image training set, tag relevance can

guide the annotation process in an effective way. Therefore, we review related

works on the tag relevance analysis. In early works [45, 46, 47], the tag relevance

is estimated based on the semantic similarities between tag pairs. In [48], Sun et

al. propose two distance metrics to quantify the tag relevance of the image visual170

content, which is measuring the tag visual relevance at a global level. In [49], Li

et al. use the low-level visual feature similarity to find each image’s neighbors

and employ the KNN method to vote the tag relevance to the image content,

which is measuring the image-specific tag relevance. In [50], the tag relevance

is initially leveraged by the kernel density estimation; then the random walk is175

employed to refine the relevance based on the visual and semantic information.

In [15, 51], nearest neighbor voting is used to estimate the tag visual relevance

and annotate images. Inspired by these works, we also measure the tag relevance

to guide the combination of neighborhood contributions for collective knowledge.

2.3. Heritage Image Research180

There are some researches focus on the heritage image annotation problem.

In our previous work [52], we establish a baseline by employing the basic CNN

model for the heritage image collection annotation. In [53], Zhao et al. propose

a CNN based framework (Sherlocknet) to tag the British Library one million

images dataset into twelve categories and discover trends in art styles over his-185

torical time.

3. Image Annotation via Collective Knowledge

3.1. Model Overview

The key characteristic of our model is that we use collective knowledge to

solve the image annotation problem, which is grounded on the heritage image190
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collection. The collective knowledge is reflected from two perspectives. One is

the image visual representation. We uncover relationships between the image

and its neighbors by measuring similarities among their metadata and conduct

the metric learning to obtain the effective visual representation. The other is

that we generate the semantic representation for the image by summarising195

contributions from its neighbors’ tags. The visual and semantic representations

are embedded together and passed through a neural network to finalize the

annotation model. The entire model is shown in Fig. 3.

In the following part, the metadata similarity measurement and the metric

learning for the image visual representation are first introduced in Sec. 3.2, and200

the tag relevance analysis and the semantic representation are described in Sec.

3.3. The final annotation model and training details are summarised in Sec. 3.4

and Sec. 3.5 respectively.

3.2. Visual Representation Learning

Considering the visual diversity of the training set, and tags are related205

to the image visual content in varying degrees, directly finetuning the visual

representation of the deep neural network towards the training ground-truth can

compromise the representational capacity. However, metadata as the reflection

of the image content can be used to eliminate the image visual ambiguous and

locate image neighbors. In our case, the heritage image collection is attached210

with the abundant information noted by photographers and librarians when

cataloging them. These metadata are presented as the descriptions of historical

events when the images were taken, and the locations of where these events

happened, which reflect the visual content in a semantical way. See Fig. 4

for an example. Inspired by [39], we define image neighbors for the heritage215

collection based on metadata and conduct the metric learning to obtain the

effective visual representation.

An ideal annotation model should be flexible to handle the different forms

of metadata, to this end, we measure the similarity between metadata nonpara-

metrically to define image neighbors. Let I be the heritage image collection,220
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（a）
Description: St Patrick’s Day procession

Location: Hyde Park, College Street, 

Sydney

（b）
Description: Royal Easter Show

Location: Sydney Showground

（c）
Description: Women’s winter fashion

Location: Snow’s Department Store, Pitt 

Street, Sydney

Figure 4: Examples of the description and the location of the heritage image collection. As

we can see, these metadata can help understand the image at a semantical level.

T be the set of tag candidates, and D = {(i,t)|i ∈ I, t ⊆ T} indicates im-

ages associated with a set of tags. Metadata of the heritage image collection

can be various, and based on the benchmark dataset we use, we consider the

descriptions of historical events and the locations.

The description of a historical event is presented as a free-form phrase. Given

the image i, we tokenize the description di into words, which results in a vocab-

ulary V of word candidates. Therefore, for each image i ∈ I, a subset vi ⊆ V

represents the description. We use the Jaccard similarity to compare two de-

scriptions, that is, given two images i and i′:

dsim = |vi ∩ vi′ |/|vi ∪ vi′ | (1)

Since each image i only possesses one geographical location gi, we simply

use the indicator function to represent the location similarity:

gsim = 1(gi, gi′) :

 1 if gi = gi′

0 otherwise
(2)

After we have the similarities of the different type of metadata, we now give

the final form of the metadata similarity, where λ is used to balance the two

metrics:

metasim = dsim + λgsim (3)

Based on the metadata similarity, we apply the nearest neighbor approach225

to generate image pairs for the metric learning. For each image i, we select top
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np similar images to form positive pairs, while negative pairs are composed of

top nn dissimilar images. We pass image pairs through the siamese network to

conduct the metric learning for the visual representation. The siamese network

consists of two identical neural networks; each receives one of input image pairs,230

the last layers of networks are fed to a contrastive loss function [54], which

captures the similarity between two images. That is, given the image pair i and

i′, with the label y indicates the similarity, 1 for the positive pair, while 0 for

the negative one. The networks are trained by minimizing the loss L:

DW =
√
{GX(i)−GX(i′)}2 (4)

L = y 1
2D

2
W + (1− y) 1

2{max(0,m−DW )}2 (5)

where GX is the output of the neural network that stands for the visual rep-235

resentation of the input image, m is the margin. DW measures the Euclidean

distance between two image representations GX(i) and GX(i′). The contrastive

loss L constrains the image pairs with the similar metadata to have the closer

visual representations, while pushing the dissimilar pairs beyond the margin m.

Since the metadata is the reflection of the image content, by training based240

on the metadata similarity, we can eliminate the image visual ambiguous and

locate image neighbors, and by training with image pairs, we avoid finetuning

the visual representation directly based on the diverse ground-truth. The ex-

perimental results, which are presented in Sec. 4, prove the effectiveness of the

metric learning for the visual representation.245

3.3. Tag Relevance Analysis & Semantic Summarisation

Since we consider the annotation for the individual image via collective

knowledge from its neighbors, it is important to evaluate each tag’s relevance

to the image content. We choose evaluation metrics from two aspects: the se-

mantic and visual information, namely the semantic field [45] and the neighbor250

voting, which is orthogonal to each other.

Given the image i, semantic field evaluates the tag τ ∈ t based on average

semantic similarities between τ and other tags that are associated with the

12



image i. We consider the semantic similarity from two aspects: the context of

the current image collection and the general knowledge base. Given two tags τj255

and τk, the context similarity refers to the semantic similarity that is obtained

based on the context information of the current image collection. We adopt

the normalized Google distance [55], where context statistics, including the tag

frequence and tag pair co-occurrence, are sampled from the image collection

instead of the webpage. For the general knowledge base, we use the Euclidean260

distance between word2vec vectors that are pre-trained from the Google News

corpus [56]. We combine two metrics to balance the general and domain-specific

knowledge for the given collection, that is:

sctx(τj , τk) =
max(logf(τj),logf(τk))−logf(τj ,τk)

logN−min(logf(τj),logf(τk)) (6)

s(τj , τk) = sctx(τj , τk) + αsw2v(τj , τk) (7)

ξτj,k = exp(−s(τj , τk)2/σ) (8)

where f(τ) indicates the frequence of tag τ in the image collection, f(τj ,τk) is

the co-occurrence of tag τj and τk, α is the weight, σ is the medium value of ξ,265

and N is the total number of images in the collection. Then the semantic filed

similarity score of tag τj for image i can be computed by:

rss(τj |i) = 1
|t|−1

∑|t|−1
k=1,k 6=j ξτj,k (9)

r(τj |i) = CombSUM(rss(τj |i), r(τj |i)) (10)

The neighbor voting measures the tag relevance of τj with respect to the

image i by examining the visually similar images. Based on the visual repre-

sentation we obtained from the last step, the metric retrieves multiple nearest270

neighbors, and the number of images annotated with tag τj is used as the sim-

ilarity score rnn(τj |i). Finally, two relevance scores are normalized and merged

by the CombSUM as r(τj |i). By performing the tag relevance analysis, we con-

vert the ground-truth of the training set from the hard assignment 0-1, where

0-1 denotes the absence-present of a tag, to a confidence vector, where each275

dimension indicates the tag relevance (0 occupies the absent tag). Considering
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the diversity of the tag set, this step can benefit the summarization of collective

knowledge by leveraging the tag relevance.

Since the tags are relevant to the image visual content in various degree, some

of them are easier predicted based on the combination of semantical information280

than the individual image. We generate a semantic representation of the image

to help infer all possible tags by summarising tag information from its neighbors.

This is intuitive that when librarians manually annotate the heritage image

collection, they not only observe the individual image but also look into the

archived collection to find connections between images, and consider whether285

to transfer the tags.

Given image i, we retrieve m nearest neighbors based on the visual repre-

sentation to form a candidate set Zi, each image ij ∈ Zi is associated with

a relevance vector rij , where |rij | = |T |, we reserve the KD-tree structure for

training set after we perform the nearest neighbor approach, which will be used290

during the tag prediction for new images. The summarised tag information of i

is indicated as:

ϕi,ij = exp(−‖GX(i)−GX(ij)‖2/σ) (11)

GS(i) =
∑m
j=1 ϕi,ij (rij ·H) (12)

where σ is the medium value of ϕ. ϕi,ij is the similarity of the image pair i

and ij , H is the matrix of the pre-trained word2vec, and each row of H stands

for the word2vec of a tag. GS(i) gathers all the tag information from image295

neighbors based on the image similarity and the tag relevance of each neighbor.

The reason that we adopt the weighted sum is to better leverage the importance

of the annotation carried by the image neighbor with respect to the query image.

Therefore, we can summarise the semantic information in a more accurate way.

3.4. Annotation via Collective Knowledge300

For each image i ∈ I, we now have a visual representation GX(i) by the met-

ric learning and a semantic representation GS(i) by summarising from its neigh-

bors. We compute h1 and h2 dimensional hidden states for each image’s visual

14



and semantic representations respectively, by a fully connected layer followed

by a ReLU nonlinearity transform ψ, which are parameterized by (wX , bX),305

and (wS , bS). At this point, we concatenate hidden states of visual and seman-

tic representation, and feed into a third fully connected layer parametered by

(wP , bP ) to obtain the probabilities of tags, that is:

ϑX = ψ(wX ·GX(i) + bX) (13)

ϑS = ψ(wS ·GS(i) + bS) (14)

P (t|i) = wP · [ϑX ;ϑS ] + bP (15)

where ϑX and ϑX indicate the hidden states of visual and semantic representa-

tions respectively. The neural network can be trained by minimizing the sigmoid310

cross-entropy loss towards the image ground-truth.

3.5. Training and Prediction

We use the VGGNet-16 as our backbone network for the metric learning,

the output of the fc7 layer with ReLU transform is used as the visual repre-

sentation. The training process is three-stage: first, we generate positive and315

negative image pairs for the visual representation learning based on similari-

ties between image metadata. Then, we measure the tag relevance of the image

content by exploring the semantic and visual information from image neighbors,

and summarise the semantic representation for each image based on collective

knowledge. And finally we fuse the visual and semantic representations together320

and feed it into fully connected layers. The whole training process is shown in

Alg. 1.

As for the tag prediction during the test, when a new image k arrives, we first

extract its visual representation by GX(k), since we build the KD-tree during

training, we can easily query its neighbours from the training set, and summarise325

the semantic representation GS(k). Then we feed two representations into the

annotation model to compute hidden states and predict tags.
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Algorithm 1 Training stages of the annotation model.

Input: D, ∀i ∈ I, t ⊆ T , vi ⊆ V

1: Measure the metadata similarity metasim of image pairs based on eq. 3;

2: Generate positive and negative training samples for the metric learning by

minimizing eq. 5, and obtain the visual representation GX(i);

3: Evaluate each tag’s relevance of image i based on eq. 10;

4: Summarise the semantic representation GS(i) based on eq. 12;

5: Compute the hidden states of representations and concatenate them to pass

through fully connected layers for the tag generation based on eq. 15;

6: Training the network with the sigmoid cross-entropy loss.

4. Experiments

In this section, we present the experimental details and results. Our model

is evaluated on the heritage image collection we collected online. By comparing330

with baseline models and state-of-the-art methods, we show that our model

achieves the best performance, and comprehensive ablation studies indicate the

significance of each component in our model.

4.1. Data Preprocessing & Evaluation Metrics

We collect the raw heritage image collection from the library online open335

data. The dataset contains 37,931 valid images with textual information, in-

cluding tag, description, and location, etc., which are annotated by librarians.

To conduct the effective annotation, we lemmatize all the textual words to their

dictionary forms, then we exclude tags that blew the occurrence threshold (0.2%

of |I|) to avoid the insufficient sampling. Finally, images without tags are re-340

moved. The preprocessing results in 31,815 images with a size of the tag set

|T | = 257; each image is attached with metadata: a description and a geo-

graphic location. We use 21,210 images for the training and 10,605 images for

the test, the metadata is only used with training images. 1

1The raw dataset is available at https://bitbucket.org/Junjie Avalon/heritage image dataset
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For overall and per-tag evaluation metrics, we use the average precision (AP).345

As an effective annotation model, the relevant tag should be ranked higher than

irrelevant ones with respect to the image, and the same applies to the image with

respect to a tag query. Therefore, we compute both the mean image average

precision (imAP), which is averaging APs over all images and the mean average

precision (mAP), which is averaging APs over all tags. Moreover, to conduct350

the quantitative evaluation, we predict up to three highest ranked tags above

the threshold for each image to compare against the ground-truth. Overall

and per-tag precision/recall/F1 score noted as (OP , OR, OF1, CP , CR, CF1) are

reported.

4.2. Implementation Details355

As mentioned in Sec. 3.5, the output of last two fully connected layer in the

VGGNet-16 is used for the visual representation. For the neighbor voting in

the tag relevance analysis and the semantic summarization, we retrieve m = 50

neighbors. The pre-trained word2vec for each tag is queried from the Google

News corpus, which is a 300-d vector. And we set the hidden state dimension360

h1 = 512 and h2 = 256 for the visual and semantic representation respectively.

As for the hyperparameters including λ and α, by referring to the previous

works [39, 57], we adopt the grid-search to tune them. Our experimental result

λ = 0.85 indicates that, in the given heritage image collection, we rely on the

description similarity dsim more, which is reasonable considering multiple his-365

torical events can happen in the same location. Similarly, α is used to balance

the domain-specific and general knowledge for the given collection. The experi-

mental result α = 0.76 illustrates that we value domian-specific knowledge sctx

more when measuring the semantic similarity, and the general knowledge base

sw2v is jointly considered to ensure the similarity metric’s generalization. And370

we set np = 1 and nn = 2 for the metric learning2. We train all models in-

2We varied the values of np and nn during the experiments and no significant differences

were observed.
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cluding the siamese network and fully-connected layers for 30 epochs, with the

SGD optimization and the learning rate decreases from 0.001 to 1/10 every ten

epochs. During the test, a new image is extracted with the visual and semantic

representation and passed through the annotation model to get the prediction.375

4.3. Baselines and Compared Methods

To evaluate the effectiveness of our proposed model, we implement four

baselines for comparisons, here we give the descriptions of these baselines and

compared state-of-the-art annotation methods:

RandomGuess. All the annotation methods should achieve better results against380

RandomGuess [57], which randomly selects a subset of tags. The random pre-

diction is run 50 times, and average evaluation scores are reported.

Multi-CNN. This is a standard CNN model without involving any additional

information [52]. The VGGNet-16 is used as the backbone model and trained

on the image ground-truth with the sigmoid cross-entropy loss. The model is385

trained for 30 epochs with the SGD optimization and the learning rate decreases

from 0.001 to 1/10 every ten epochs.

KNN. This is a simple and widely used annotation baseline model [58]. KNN

annotates the image by retrieving the m nearest neighbors, and tags are assigned

based on the occurrence among neighbors. We set m = 50, and use the 4096-d390

visual representation from Multi-CNN last two fully-connected layer.

CNN+LSTM. This is a equivalent model proposed in [21]. CNN+LSTM an-

notates images by leveraging the image visual-tag relationship and tag pair

dependencies simultaneously at the image level. Tags associated with the image

are ranked as an ordered sequence based on the occurrence rate. The image is395

first sent to the CNN for the visual representation extraction, then the visual

representation and tags are recurrently encoded and fed to the LSTM to infer

the next tag. The embedded dimensions for the visual representation and tag

are 512 and 256 respectively.
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Compared Methods. We compare our proposed model with several state-of-the-400

art annotation methods, including CCA [59], TagProp [15], HCP [26] TagFea-

ture [60], and TagExample [51]. For fair comparisions, the image representation

used in these model are 4096-d vector from Multi-CNN last two fully-connected

layer. Moreover, since these methods are not originally designed to take the

metadata into consideration, to further show the effectiveness of our proposed405

model, we implement five comparison experiments that utilize the metadata,

including KNN*, CCA*, TagProp*, TagFeature* and TagExample*, where *

stands for the image features in these models are obtained after the proposed

visual representation learning.

4.4. Results on Image Annotation410

Tab. 1 shows that our proposed model achieves the best performance on

all evaluation metrics against all baselines and state-of-the-art methods. As

expected, all methods outperform the baseline RandomGuess in a large margin,

which proves the learning from the image ground-truth is necessary for the effec-

tive annotation. Multi-CNN baseline directly models the relationship between415

the image visual content and associated tags, since our model uses metadata for

the visual representation learning and summarise the semantic representation

from image neighbors, the performance of our model surpasses this baseline.

KNN baseline only uses the image visual representation to retrieve relevant

neighbors to vote the annotation; therefore, with the more accurate visual rep-420

resentation obtained from the metric learning, our model also outperforms this

baseline. CNN+LSTM is the state-of-the-art model for the image annotation,

which models the image-tag and the tag sequence correlation by utilizing a uni-

fied framework of CNN and LSTM. However, it is hard for LSTM to directly

model the diverse tag correlation as an ordered sequence.425

As for the compared methods, CCA [59] learns a latent space to embed the

image and tag representation together to enhance the representation, and the

similar idea is also used in TagFeature [60], where the predictions from tag clas-

sifiers are concatenated with the image representation to retrain the annotation
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Table 1: Results of the Image Annotation.

Method imAP mAP OP OR OF1 CP CR CF1

RandomGuess [57] 0.008 0.009 0.008 0.011 0.009 0.008 0.000 0.000

Multi-CNN [52] 0.411 0.346 0.541 0.315 0.398 0.515 0.200 0.288

KNN [58] 0.330 0.282 0.399 0.360 0.378 0.425 0.143 0.214

CNN+LSTM [21] 0.410 0.342 0.539 0.316 0.399 0.517 0.314 0.391

CCA [59] 0.424 0.367 0.498 0.384 0.434 0.509 0.286 0.366

TagProp [15] 0.430 0.366 0.555 0.329 0.413 0.520 0.257 0.344

HCP [26] 0.449 0.390 0.536 0.394 0.454 0.519 0.308 0.387

TagFeature [60] 0.417 0.357 0.520 0.297 0.378 0.509 0.229 0.315

TagExample [51] 0.425 0.368 0.525 0.353 0.422 0.517 0.314 0.391

KNN* 0.391 0.331 0.475 0.350 0.403 0.464 0.286 0.354

CCA* 0.443 0.386 0.500 0.410 0.450 0.513 0.310 0.387

TagProp* 0.475 0.408 0.541 0.403 0.462 0.529 0.257 0.346

TagFeature* 0.425 0.359 0.499 0.378 0.430 0.506 0.305 0.381

TagExample* 0.441 0.376 0.511 0.389 0.442 0.513 0.342 0.410

Our Model 0.511 0.445 0.607 0.416 0.494 0.575 0.371 0.451

model. We also learn the hidden states of both image and semantic represen-430

tation for the annotation, however, since we obtain the semantic representation

from image neighbors and we have better image visual representation based on

the metric learning, our model outperforms both methods. TagProp [15] is a

trained nearest neighbor approach, which directly maximizes the probability of

the tag distribution in training set by the integration of the metric learning.435

Different from this method, our metric learning for the visual representation

is performed under the guidance of image metadata instead of modeling the

tag distribution, considering the diversity of tags. The superior performance

against TagProp verifies this assumption. Instead of operating at the image

level, HCP [26] proposes to apply the bottom-up proposal method to generate440

image regions, captures image regions with associated tags and fuse them to-

gether. However, considering the various range of the image visual content in

the training set, the bottom-up proposal methods like BING [27] fail to capture

valid image regions in most cases. TagExample [51] explores both positive and

negative training samples by analyzing the tag relevance with respect to the445

image content. Compared to this method, we use the metadata similarity for

the image representation learning to avoid any visual ambiguous caused by the
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（a）
Ground-Truth: historic building; house; panoramic 

view; suburb; city view

KNN: historic building; city street; city view

Multi-CNN: historic building; panoramic view

Our Model: historic building; house; city street; 

panoramic view; city view, suburb

（b）
Ground-Truth: festival; procession; official event; bridge; 

float procession; band

KNN: festival; anniversary; procession; bridge

Multi-CNN: festival; procession; official event; bridge;

Our Model: festival; procession; official event; bridge; 

float procession

（c）
Ground-Truth: historic building; children; teacher; 

bank roof

KNN: historic building;

Multi-CNN: historic building;

Our Model: historic building; children; teacher

（d）
Ground-Truth: crowd; evening clothes; theater 

foyer

KNN: crowd; theater; association; audience

Multi-CNN: crowd

Our Model: crowd; evening clothes; theater foyer

（a）
Ground-Truth: historic building; house; panoramic 

view; suburb; city view

KNN: historic building; city street; city view

Multi-CNN: historic building; panoramic view

Our Model: historic building; house; city street; 

panoramic view; city view, suburb

（b）
Ground-Truth: festival; procession; official event; bridge; 

float procession; band

KNN: festival; anniversary; procession; bridge

Multi-CNN: festival; procession; official event; bridge;

Our Model: festival; procession; official event; bridge; 

float procession

（c）
Ground-Truth: historic building; children; teacher; 

bank roof

KNN: historic building;

Multi-CNN: historic building;

Our Model: historic building; children; teacher

（d）
Ground-Truth: crowd; evening clothes; theater 

foyer

KNN: crowd; theater; association; audience

Multi-CNN: crowd

Our Model: crowd; evening clothes; theater foyer

（e）
Ground-Truth: streetscape; coronation; decoration; 

city street

KNN: streetscape; commercial establishment; flag

Multi-CNN: crowd; city street; procession; decoration

Our Model: city street; streetscape; decoration

（f）
Ground-Truth: group people; uniform; football team

KNN: group people; football team; children

Multi-CNN: group people; football team

Our Model: group people; uniform; football team

（g）
Ground-Truth: historic building; horse; family

KNN: horse

Multi-CNN: horse

Our Model: historic building; horse

（h）
Ground-Truth: swimsuit; swimming pool; swimmer

KNN: performer; wrestler; swimming pool

Multi-CNN: swimming pool; swimmer

Our Model: swimsuit; swimming pool; swimmer

Figure 5: Some example annotation results on the heritage image collection.

tag diversity and apply tag relevance analysis later to help summarise the se-

mantic representation from neighbors. The advanced performance indicates the

effectiveness of our proposed model. These compared methods are not originally450

designed to take the metadata into consideration, which is one of the advantages
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Figure 6: (a) The first row is the PR-curves of the tag ‘festival’ compared with baselines

and state-of-the-art methods. (b) The second row is the PR-curves of the tag ‘Art Deco

architecture’ compared with baselines and state-of-the-art methods. The average precision is

also given in the figure. Better view in color.

of our proposed model when we tackle the diverse image annotation problem

on the heritage image collection. To include the metadata in these models, we

also report the results of the *-models in Tab. 1. As we can see, the *-models

outperform their original models in most cases, which validate the effectiveness455

of the learned image visual representation. Moreover, our model achieves best

performance against *-models again shows the significance of the annotation via

collective knowledge. Annotation examples of the proposed model are shown in
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Figure 7: The comparisions of the average precision (AP) values between the proposed model

and baselines on all tags. The left one is the AP values of our model against KNN baseline,

while the right one is our model against Multi-CNN baseline. Better view in color.

Fig. 5.

In Fig. 6, we show the precision-recall curves of our model against baselines460

and compared methods on the tag ‘festival’ and ‘Art Deco architecture.’ As we

can see, our model achieves the best performance compared against baselines

and state-of-the-art methods. The tag ‘festival’ and ‘Art Deco architecture’ are

both semantical and related to the image visual content. By combining the

visual and semantic representation, we show large improvements compared to465

baselines. We also compare the average precisions (AP) between the proposed

model and KNN/Multi-CNN baselines. The results are shown in Fig. 7, where

the x-ray stands for the baseline AP value, and y-ray is the corresponding pro-

posed model’s AP value. As we can see, the majority of the values are above

the y = x, which proves the effectiveness of our model on the whole tag set.470

4.5. Ablation Study

We conduct the comprehensive ablation study to further investigate the in-

dividual contribution of each component in the proposed model. In this section,

we first analyze the effectiveness of the metric learning on the visual represen-

tation. Then we investigate the contribution of the semantic summarisation for475
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Figure 8: The examples of training pairs for the metric learning based on the metadata

similarity. The first column is the query image with the blue box, the second column is its

positive pair with the green box, and the third and fourth columns are negative ones with

brown boxes.

the annotation.

Table 2: Results of the Ablation Study.

Method imAP mAP OP OR OF1 CP CR CF1

Multi-CNN 0.411 0.346 0.541 0.315 0.398 0.515 0.200 0.288

MeL+Fc 0.455 0.403 0.508 0.410 0.454 0.514 0.286 0.367

Our Model 0.511 0.445 0.607 0.416 0.494 0.575 0.371 0.451

4.5.1. Visual Representation

To conduct quantitative analysis, we extract the image visual representation

after the metric learning and fed into the fully-connected network to train an

annotation model. The network is trained with the sigmoid cross-entropy loss,480

same as Multi-CNN baseline. We note this model as MeL+Fc and show the

results in Tab. 2. As we can see, MeL+Fc shows large improvement compared

to baseline Multi-CNN, which proves the metric learning based on the metadata

similarity is necessary to obtain the accurate visual representation.
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（a）
Ground-Truth: 

crowd; festival; city street; procession; band; anniversary

Suggestions from neighbors:

crowd; procession; band; festival; spectator; city street; 

association; anniversary;

（b）
Ground-Truth: 

official event; harbor; bridge

Suggestions from neighbors:

harbor; bridge; official event; bridge 

construction; ship

（c）
Ground-Truth: 

evening clothes; table setting; dance

Suggestions from neighbors:

evening clothes; table setting; dance; group people; 

convention;

（d）
Ground-Truth: 

theatrical costume; actor; theatrical production

Suggestions from neighbors:

portrait; theatrical costume; actor; theatrical 

production

（a）
Ground-Truth: 

crowd; festival; city street; procession; band; anniversary

Suggestions from neighbors:

crowd; procession; band; festival; spectator; city street; 

association; anniversary;

（b）
Ground-Truth: 

official event; harbor; bridge

Suggestions from neighbors:

harbor; bridge; official event; bridge 

construction; ship

（c）
Ground-Truth: 

evening clothes; table setting; dance

Suggestions from neighbors:

evening clothes; table setting; dance; group people; 

convention;

（d）
Ground-Truth: 

theatrical costume; actor; theatrical production

Suggestions from neighbors:

portrait; theatrical costume; actor; theatrical 

production

Figure 9: Some examples of tag suggestions retrieved from image neighbors. We summarise

these suggestions as the semantic representation.

In Fig. 8 we show some examples of training pairs for the metric learning485

based on the metadata similarity. As we can see, it is reasonable to generate

positive and negative samples for the visual representation learning based on

the metadata similarity.

4.5.2. Semantic Summarization

As we mentioned in Sec. 3.3, after we obtain the visual representation, we490

retrieve nearest neighbors and utilize them to generate the semantic represen-

tation. In Tab. 2, we observe the improvement from the comparison between

MeL+Fc and our final model, which proves that summarise semantic informa-

tion from neighbors can help boost the annotation performance. We show some

examples of tag suggestions retrieved from image neighbors in Fig. 9. As we495
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can see, these suggestions can assist the annotation model to infer all tags.

5. Conclusions

Images are the visual reflections of the real world. Building an automatic

annotation model is a crucial step to understand these images as well as effi-

ciently retrieve them. In this paper, we ground the diverse image annotation500

on the heritage collection and conduct the image representation learning based

on collective knowledge. The proposed image representation is consist of both

visual and semantic information. That is, we allocate the image neighbors by

measuring the metadata similarity and obtain the visual representation of the

image by performing the metric learning within the neighborhood. Moreover, we505

generate the semantic representation by summarizing the neighborhood anno-

tations based on the tag relevance. Comprehensive experiments are conducted

on the heritage image dataset, and advanced results against compared models

indicate the significance of the proposed method. Since the textual based meta-

data is mainly used in our work, the precision of the provided metadata can510

influence the annotation accuracy, we will investigate other types of metadata

and the combination of late-fusion methods to improve the robustness as our

future work.
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