
Saliency for Fine-grained Object Recognition in
Domains with Scarce Training Data

Carola Figueroa Floresa,b,∗, Abel Gonzalez-Garciaa, Joost van de Weijera,
Bogdan Raducanua

aComputer Vision Center
Edifici “O” - Campus UAB

08193 Bellaterra (Barcelona), Spain
bDepartment of Computer Science and Information Technology

Universidad del Bı́o Bı́o, Chile

Abstract

This paper investigates the role of saliency to improve the classification accu-

racy of a Convolutional Neural Network (CNN) for the case when scarce training

data is available. Our approach consists in adding a saliency branch to an exist-

ing CNN architecture which is used to modulate the standard bottom-up visual

features from the original image input, acting as an attentional mechanism that

guides the feature extraction process. The main aim of the proposed approach is

to enable the effective training of a fine-grained recognition model with limited

training samples and to improve the performance on the task, thereby alleviat-

ing the need to annotate a large dataset. The vast majority of saliency methods

are evaluated on their ability to generate saliency maps, and not on their func-

tionality in a complete vision pipeline. Our proposed pipeline allows to evaluate

saliency methods for the high-level task of object recognition. We perform ex-

tensive experiments on various fine-grained datasets (Flowers, Birds, Cars, and

Dogs) under different conditions and show that saliency can considerably im-

prove the network’s performance, especially for the case of scarce training data.

Furthermore, our experiments show that saliency methods that obtain improved

saliency maps (as measured by traditional saliency benchmarks) also translate
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to saliency methods that yield improved performance gains when applied in an

object recognition pipeline.

Keywords: object recognition, fine-grained classification, saliency detection,

scarce training data

1. Introduction

Fine-grained object recognition focuses on the classification of subclasses be-

longing to the same category. Examples of fine-grained datasets include natural

categories such as flowers [1], birds [2], dogs [3] and man-made categories such as

cars [4]. The problem of fine-grained object classification is difficult because the

differences between subclasses are often subtle and expert labelers, with knowl-

edge of the discriminating attributes, are needed for the collection of datasets.

Therefore the collection of large datasets is expensive and the development of

algorithms that only require few labeled examples is of special interest to the

field.

Computational saliency estimation aims to identify to what extent regions

or objects stand out with respect to their surroundings to human observers.

Saliency methods can be divided into methods that aim to identify the salient

object (or objects) and methods that aim to produce a saliency map that is in

according to measurements of human eye-movements on the same image. Itti

et al. [5] proposed one of the first computational saliency methods based on

combining the saliency cues for color, orientation and luminance. Many works

followed proposing a large variety of hand-crafted features for saliency [6, 7].

Similar as other fields in computer vision, computational saliency estimation

has moved in recent years from hand-designed features to end-to-end learned

deep features [8].

Saliency detection in human vision plays a role in the efficient extraction of

information by placing the attention on those regions in the image that are most

informative. However, the vast majority of saliency methods are not evaluated

on their efficiency to improve object recognition but instead are evaluated on
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the task of how accurate their generated saliency masks are. Given that saliency

is only an intermediate step of the visual pipeline, evaluating the efficiency of

saliency in terms of an improvement of the final task - here we consider fine-

grained recognition - could be considered a more valuable evaluation. Therefore,

in this paper we aim to evaluate the usefulness of saliency by directly evaluating

its improvement on image classification.

Previous works have found that the incorporation of attention mechanisms

in neural networks could be beneficial. This theory was subsequently extended

to captioning methods where the attention highlights the part of the image

that is currently being described by words. Similar to these methods we will

incorporate a saliency model, which modulates the normal forward pipeline

similarly as an attention model would, but now within the context of fine-grained

image classification. Contrarily to these attention methods, we use a saliency

network that is pretrained on the task of saliency estimation. Especially, we

are interested in demonstrating its effectiveness in the case of scarce training

data, a scenario where attending to the relevant information from the image can

significantly reduce the danger of overfitting. The main underlying idea is that

using saliency as an attention mechanism can help backpropagation to focus on

the relevant image information; something which is especially important when

only few training examples are available.

In this paper, we investigate to what extent saliency estimation can be ex-

ploited to improve the training of an object recognition model when scarce

training data is available. For that purpose we design an image classification

deep neural network that incorporates saliency information as input. This net-

work processes the saliency map through a dedicated network branch and uses

the resulting features to modulate the standard bottom-up visual features from

the original image input. The main aim of the proposed method is to enable

the effective training of a fine-grained recognition model with limited training

samples and to improve the performance on the task, thereby alleviating the

need to annotate a large dataset. We evaluate our method on different datasets

and under different settings, achieving considerable performance improvements
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when leveraging saliency data, especially when training data is scarce.

This paper is organized as follows. In section 2 we discuss the related work.

Section 3 describes our method in detail, and we perform extensive experiments

in section 4. Finally, section 5 presents the conclusions.

2. Related Work

Saliency estimation: The seminal work of Itti et al. [5] proposed one of

the first biologically motivated computational models for saliency estimation.

Their saliency map was inferred from multi-scale representations of color, ori-

entation and intensity contrast. Saliency research was propelled further by the

availability of large data sets which allowed for direct comparison of methods

and enabled the use of data-driven methods based on machine learning algo-

rithms. The question of whether saliency is important for object recognition

has been raised in [9]. Using a biologically plausible mechanism, the authors

demonstrated that indeed saliency (of a top-down nature) has a positive im-

pact on classification. Besides object recognition, saliency has also been used

for object tracking. In [10], the authors formulated discriminant tracking as a

saliency problem and addressed it using a biologically inspired framework.

Recent methods in saliency are mostly based on deep learning networks.

Initially, pretrained deep convolutional networks were used directly to extract

features for saliency estimation. Afterwards, end-to-end networks that learn a

mapping from the input image to the saliency map [8] were introduced. But

like most previous work on saliency estimation, the main focus of these works

is to estimate a saliency map, not how saliency could contribute in a object

recognition pipeline. In this paper, we aim to investigate if saliency can improve

the recognition of objects with deep neural networks.

Attention: The method proposed in this paper is partially based on insights

gained from some recent work on attention in neural networks. In [11] the

authors propose a method that incorporates attention branches within a feed-

forward network for object classification. The attention map, which is repeated
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for multiple layers in the network, learns to modulate the network features

with an attention mechanism. Our saliency branch is similar to the proposed

attention mechanism in [11]. In our work, however, we use a pretrained saliency

branch that is optimized to return a saliency map in accordance with human

vision. The fact that the network is pretrained is important because that allows

it to be used even for object classification problems with very few training

examples. In this case, the proposed method in [11] would probably fail because

it would have to train additional parameters for the attention branch, which

would be extremely challenging in the scarce data domain.

Zagoruyko and Komodakis [12] propose a method to train a student network

from a teacher network. Their novelty with respect to earlier work is the usage

of attention to guide the teaching of the student network. They construct a

spatial attention map by considering the activations of an image in a teacher

network, and mapping these activations to a single spatial attention map which

reflects on what locations the hidden neuron activations were most prominent.

They consider that this information is important and can help guide the training

process once it is also transfered to the student network. They show that their

approach significantly improves the learning of the student network. Concretely,

they show that guiding the backpropagation of gradients by telling to what

spatial coordinates to ‘attend’ can assist in the training process. Our paper

supports this claim by showing that spatial guidance can help training, although

within a different context as in our case we use saliency as attention map and

train the network for a new task.

Fine-grained recognition: Most of the state of the art general object classi-

fication approaches [11, 13] have difficulties in the fine-grained recognition task,

which is more challenging due to the fact that basic-level categories (e.g. dif-

ferent bird species or flowers) share similar shape and visual appearance. One

reason for this could be attributed to the popular codebook-based image repre-

sentation, often resulting in the loss of subtle image information that is critical

for the fine-grained task.
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Most current fine-grained recognition approaches operate on a two-stage

pipeline, first detecting some object parts and then categorizing the objects

using this information. The work of Huang et al. [14] first localizes a set of

part keypoints, and then simultaneously processes part and object information

to obtain highly descriptive representations. Mask-CNN [15] also aggregates

descriptors for parts and objects simultaneously, but using pixel-level masks

instead of keypoints. The main drawback of these models is the need of human

annotation for the semantic parts in terms of keypoints or bounding boxes.

For this reason, several recent approaches perform fine-grained recognition

without explicit part annotations. Some have attempted to detect semantic

parts using co-segmentation, like in [16]. In [17], their framework first performs

unsupervised part candidates discovery and global object discovery which are

subsequently fed into a two-stream CNN in order to model jointly both the local

and global features. Alternatively, [18] uses Fisher vectors for image represen-

tation and shows that larger codebooks are able to model subtle visual details

without explicitly modeling parts, which leads to better classification accuracy

compared to small codebooks. Regardless, most fine-grained approaches use the

object ground-truth bounding box at test time, achieving a significantly lower

performance when this information is not available. Moreover, automatically

discovering discriminative parts might require large amounts of training im-

ages. Our approach is more general, as it only requires image level annotations

at training time and could easily generalize to other recognition tasks.

Few-shot learning: Few-shot learning aims to create models for which very

few labeled samples are available. Early work on this topic is attributed to

Fei-Fei et al. [19], who showed that, taking advantage of previously learned

categories, it is possible to learn new categories using one or very few samples

per class. More recently, [20] proposed a conditional distance measure that takes

into account how a particular appearance model varies with respect to every

other model in a model database. The approach has been applied to one-shot

gesture recognition. Nowadays, several deep learning-based approaches have
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emerged to address the problem of few-shot learning. We can identify three

main strategies. One family is based on metric learning. In [21], the authors

propose a framework that trains a network to map a small labeled support set

and an unlabeled example to its label. An extension of this idea is presented

in Prototypical networks [22], but in this case each class in the support set has

been substituted by a ‘prototype’ (computed as the mean of the samples in the

corresponding class), to which each sample is compared.

A second family of approaches in based on meta-learning, i.e. learning a

model that given a few training examples of a new task tries to quickly learn

a learner model that solves this new task [23]. In [24], the authors propose an

LSTM-based meta-learner that is trained to optimize a neural network classifier.

The meta-learner captures both short-term knowledge within a task and long-

term knowledge common among all the tasks.

Finally, the third family of approaches is based on data augmentation for

data-starved classes. In [25], the authors propose a way to increase (“halluci-

nate”) the number of samples for the classes with limited data. Their method

is based on the intuition that certain aspects of intra-class variation general-

ize across categories, like for instance pose transformations. In practice, for

data-rich classes, they use a neural network to learn transformations between

pairs of samples and this transformation is later on applied on the real sam-

ples from data-starved classes to generate synthetic ones, thus increasing the

population of these classes. For the same purpose (i.e. data augmentation for

data-starved classes), in [26] the authors propose an attributed-guided augmen-

tation approach which learns a mapping that allows the creation of synthetic

data by manipulating certain attributes of real data. Thus, the newly cre-

ated data presents attributes based on user-defined criteria (values). Instead

of performing the data augmentation in image space, they perform it in fea-

ture space. This idea is further extended in [27], where the authors use a deep

encoder-decoder architecture to generate feature trajectories by exploiting the

pose manifold in terms of pose and appearance.
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Figure 1: Overview of our fine-grained recognition model using saliency information. We

process the two inputs, RGB and Saliency map, through two convolutional layers and then

fuse the resulting features with a modulation layer. We then continue processing the fused

features with three more convolutional layers and three fully connected layers, ending with

the final classification layer.

3. Saliency Modulation for Scarce Data Object Classification

Image classification results have improved much since the advent of deep

convolutional neural networks [13, 28] due to the excellent visual representa-

tions learned by these models. Given the great number of parameters of these

networks, we require large datasets of labeled data to effectively train them. For

example the popular ImageNet dataset has over 1M labeled images [29]. Once

learned, these strong image representations can be transfered to other related

tasks by a process called finetuning. This process allows to use deep learning on

tasks for which significantly less labeled data is available. In some cases, how-

ever, the available data for the target task is so scarce that is still insufficient

to finetune large networks and obtain satisfactory results.

Saliency is an attentional mechanism which allows humans to focus their

limited resources to the most relevant information in the image. Since process-

ing resources are limited, the data is processed in a serial manner, prioritizing

those parts that are expected to have high information content. In this paper,

we investigate another potential application of saliency, namely its function to

facilitate the fast learning of new objects in the context of deep neural net-
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works. Especially when only a few training examples are available, focusing on

the relevant parts of the image could significantly improve the speed of learning,

understanding speed as the number of example images required to learn a new

class. Therefore, we seek to incorporate saliency estimation into an image clas-

sification pipeline, with the aim to decrease the data requirements for learning

object categories.

Fig. 1 provides an overview of the proposed network architecture. Our net-

work contains two branches: one to process the RGB images and one to process

their corresponding saliency images, which are pre-computed and given as input.

They are combined with a modulation layer (× symbol) and further processed

by several shared layers of the joint branch to finally end on a classification

layer. Note how the RGB branch followed by the joint branch correspond to

a standard image classification network. The novelty of our architecture is the

introduction of the saliency branch, which transforms the saliency image to the

modulation image. This modulation image is then used to modulate the fea-

tures of the RGB branch, putting more emphasis on those features that are

considered important for the fine-grained recognition task. In the following sec-

tions we provide the details of the network architecture, the functioning of the

modulation layer, and the saliency methods used. We explain our model using

AlexNet [13] as base classification network, but the theory could be applied to

most convolutional neural network architectures. We also consider ResNet-50

and ResNet-152 [28] as base networks in our experiments (sec. 4.2).

3.1. Combining RGB with Saliency for Image Classification

Consider a saliency map s(x, y) where x and y are the spatial coordinates.

We will assume that saliency maps are of the same size as the original image

I(x, y, z), where z = {1, 2, 3} indicate the three color channels of the image.

A straightforward way to incorporate the saliency into the image classification

network is by concatenating the image and the saliency map into an image with

four channels such that I(x, y, 4) = s(x, y). This strategy has been previously

used by Murabito et al. [30] in a classification pipeline that combines two CNN
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networks: one to compute top-down saliency maps from an RGB image, and

a second network that appends the generated saliency map to the RGB image

channels to perform image classification. In this case, the classification network

only needs to train from scratch the weights of the first layer, the following

layers can be initialized with a pretrained network. We call this approach early

fusion of saliency and image content.

In this article we propose delayed fusion of saliency and image content, where

we use the saliency map to modulate the features of an intermediate network

layer. Consider the output of the ith layer of the network, li, with dimension

wi × hi × zi. Then we define the modulation with a function ŝ(x, y) as

l̂i (x, y, z) = li (x, y, z) · ŝ (x, y) , (1)

yielding the saliency-modulated layer l̂i. Here the modulation image ŝ is the

output of the saliency branch, which takes s as input (as depicted in Fig. 1).

Note that we consider a single saliency map ŝ that is independent of the number

of feature maps. To ensure that ŝ has the same spatial dimensions as li, we

use a similar architecture for both the saliency branch and the RGB branch.

Concretely, the main difference resides in the size of the channel dimension:

the saliency branch takes an intensity image as input (instead of a 3-channel

RGB image) and outputs a scalar modulation image of wi×hi× 1 (instead of a

wi×hi×ci feature map). Moreover, we use a sigmoid activation function at the

end of the saliency branch, as opposed to the ReLU non-linearity of the RGB

branch. This ensures that 0 ≤ ŝ (x, y) ≤ 1 and thus provides a suitable range

for feature modulation.

In the original architecture, max pooling is performed right after the second

convolutional layer. In our model, we postpone this max pooling to after the

features from both branches are fused, i.e. we perform max pooling on the

salience-modulated layer l̂i. The reasoning behind this choice is to leverage

the greater modulation potential of higher resolution saliency features. We

experimentally show (sec. 4.2) that this results in a small performance boost.

In addition to the formulation in Eq. (1) we also introduce a skip connection
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from the RGB branch to the beginning of the joint branch, defined as

l̂i (x, y, z) = li (x, y, z) · (ŝ (x, y) + 1) . (2)

This skip connection is depicted in Fig. 1 (+ symbol). It prevents the modu-

lation layer from completely ignoring the features from the RGB branch. This

is inspired by a previous work [12] that found this approach beneficial when

using attention for network compression. We confirm the usefulness of the skip

connection in the experiments section, sec. 4.2.

We train our architecture in an end-to-end manner. The backpropagated

gradient from the modulation layer into the image classification branch is equal

to
∂L

∂li
=

∂L

∂l̂i
· (s + 1) , (3)

where L is the loss function of the network. This shows that the saliency map

not only modulates the forward pass (see Eq. (2)), but it also modulates the

backward pass in exactly the same manner; in both cases putting more weight on

the features that are on locations with high saliency, and putting less weight on

the irrelevant features in the background on which the network could potentially

overfit.

3.2. Training the Saliency Branch

The aim of the saliency branch is to process the saliency map s(x, y) into ef-

fective modulation features ŝ(x, y) that increase the classification performance

when training with scarce data. The main intuition is that the saliency fea-

tures ŝ will focus the backpropagated gradient to the relevant image features,

thereby reducing the required data necessary to train the network. The addi-

tional saliency branch necessary to compute ŝ(x, y) has its own set of parameters

and could, in principle, increase the possibility of overfitting. We therefore con-

sider two different scenarios to initialize this branch. In both cases, we start with

an equivalent architecture to the one depicted in Fig. 1 but without the saliency

branch. We pretrain this network for image classification on ImageNet [29].

Then, we add the saliency branch and apply either of the following options:
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• Initialization from scratch: the weights of the saliency branch are ran-

domly initialized using the Xavier method.

• Initialization from pretrained : the weights of the saliency branch are pre-

trained on an image classification network for which abundant training

data is available. To do this, we first generate saliency images for the

ImageNet validation dataset, which consists of 50K images (40K for train-

ing and 10K for validation) using the saliency method of choice. On this

dataset we train our method, initializing the saliency branch from scratch.

We now have a good pretrained model for the saliency branch too. Finally,

we use this pretrained network (using both the saliency and RGB branch)

to initialize all the weights of our network except the top classification

layer.

3.3. Saliency input

The input to the saliency branch is a saliency map. Among the many saliency

methods that provide satisfactory results [31], we perform most of our experi-

ments using two of the top performing methods:

• iSEEL [32] leverages the inter-image similarities to train an ensemble of

extreme learners. The predicted saliency of the input image is then cal-

culated as the ensemble’s mean saliency value. Their approach is based

on two aspects: (i) the contextual information of the scene and (ii) the

influence of scene memorability (in terms of eye movement patterns by

resemblance with past experiences). We use MATLAB code released by

the authors.

• SALICON [33] exploits the power of high-level semantics encoded in a

CNN pretrained on ImageNet. Their approach represents a breakthrough

in saliency prediction, by reducing the semantic gap between the com-

putational model and the human perception. Their method has two key

elements: (i) an objective function based on saliency evaluation metrics
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and (ii) integration of information at different image scales. We use the

open source implementation provided by [34].

Besides these two methods, we also perform experiments with three other

approaches for a more comprehensive comparison.

• Itti and Koch [5]: First, we consider the classical saliency model of Itti

et al. Several activation maps, corresponding to multiscale image features

(color, intensity and orientations) are generated from the visual input and

combined into a single topographical saliency map. A neural network is

used to select the most salient locations in order of decreasing magnitude,

which could be subsequently analyzed by more complex, higher cognitive

level processes.

• GBVS [35]: The Graph-based Visual Saliency (GBVS) is also a biologically-

plausible bottom-up model following the approach proposed earlier by Itti

et al., but improving the performance of the generation of activation maps

and the normalization/combination step. They used the Markovian for-

malism to describe the dissimilarity and concentration of salient locations

of the image seen as a graph.

• BMS [36]: Boolean Map based Saliency (BMS) approach computes saliency

by analyzing the topological structure of the Boolean maps. These maps

are generated by randomly thresholding the color channels. As topological

element they choose ‘sorroundedness’ because it better characterizes the

image/background segregation.

Figure 2 depicts the estimated saliency maps for an example image using the

five different saliency methods presented above. In addition to these methods,

we consider two additional saliency map baselines. White regards all image

pixels as equally salient, and thus the saliency maps are uniformly white. On the

other hand, Center emulates a center prior by representing saliency as a centered

2-dimensional Gaussian distribution. These two baselines allow us to determine

whether our model is actually leveraging the saliency information contained
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Figure 2: Saliency images generated with the different saliency estimation approaches consid-

ered, as well as the two baseline saliency maps evaluated, White and Center. We also include

the original RGB image for reference.

in the maps, or it is simply adding a general image bias that is beneficial for

recognition (e.g. center bias). We are especially interested in assessing whether

saliency methods that obtain higher performance on saliency benchmarks also

yield better performance when incorporated into our saliency pipeline.

4. Experiments

4.1. Experimental Setup

Datasets. We have performed the evaluation of our approach on four standard

datasets used for fine-grained classification

• Flowers: Oxford Flower 102 dataset [1] consists of 8189 images of flowers

grouped in 102 classes. Each class contains between 40 and 258 images.

• Birds: is a dataset consisting of 11,788 images of bird species divided in

200 categories [2]. Each image is annotated with its bounding box and

the image coordinates of 15 keypoints. However, in our experiments we

used the whole image.

• Cars: the dataset in [4] contains 16,185 images of 196 classes of cars. The

data is split into 8,144 training images and 8,041 testing images, where

each class has been separated roughly in a 50-50 split.
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• Dogs: Stanford Dogs [3] consists of 20,580 images of different breeds of

dogs from around the world grouped in 120 categories. Since some of these

images appear also in Imagenet, in our experiments we have discarded the

repeated ones.

Networks. Our base network is AlexNet [13], which consists of five convolu-

tional layers followed by three fully connected layers. We used the pretrained

network on ImageNet [29] and fine-tuned it for fine-grained recognition on each

dataset for 70 epochs with a learning rate of 0.01 and a weight decay of 0.003.

The top classification layer is randomly initialized using Xavier. We have at-

tached a saliency branch to this network as shown in Figure 1.

For some experiments we have also used the ResNet-50 and ResNet-152 [28],

consisting of 50 and 152 convolutional layers, respectively, organized in 5 residual

blocks. The structure of the saliency branch has been kept the same as in

Figure 1, i.e. consisting of two convolutional layers and having a ReLu activation

function after the first one and a sigmoid function after the second.

Evaluation protocol. For all the above datasets, we randomly select and

fix 5 images for test, 5 for validation, and keep the rest for training. We do

this for each class in the dataset independently. In order to investigate different

data scarcity levels, we train each model with subsets of k training images

for k ∈ {1, 2, 3, 5, 10, 15, 20, 25, 30,K}, where K is the total number of training

images for the class, which does not include the 10 held out images for validation

and test. Contrarily to current few-shot approaches, this setting grants us a

more complete disclosure of the results of our model under multiple limited-

data scenarios. We use accuracy in terms of percentage of correctly classified

samples as evaluation measure. We train and test each model five times with

different random initializations, and show the average performance for the five

runs.
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4.2. Experimental Results

In the experimental section we evaluate the best strategies for fusing the

saliency and RGB branches, compare several network architectures, evaluate

various saliency methods as input to the saliency branch, and compare our

results with state of the art on standard benchmark datasets for fine-grained

object recognition.

Optimal architecture. In order to justify the design choices in our model, we

present here multiple architectural variations to integrate saliency information

into a neural network. We call Baseline-RGB to the original network model,

which only contains the RGB branch and thus does not use any saliency infor-

mation. We test an Early fusion model in which the saliency image is directly

concatenated to the RGB input.

We consider several variants of our model in which delayed fusion is per-

formed at different network levels, indicated as Fusion L1 for fusion after layer

1 (similarly for Fusion L2, L3, L4, and L5). In all cases, we use a two-layer

saliency branch, indicated by S2. Moreover, we evaluate whether performing

the fusion after the pooling layer is a better option than doing it before. Fi-

nally, we include a model without the skip connection from the RGB branch to

the joint branch (No SC).

We evaluate all models on Flowers [1] with AlexNet [13] and using iSEEL [32]

as the saliency method of choice. Table 1 shows the results for different num-

ber of training images. First, we observe how the performance of all methods

steadily grows when increasing the number of training images. In general, incor-

porating saliency information helps when fused within the network, but damages

the accuracy if concatenated to the input image. We attribute this to the need

to learn a low-level filter from scratch, which in turn affects the feature repre-

sentation at higher levels. Performing the fusion immediately after the second

convolutional layer seems to be the best option. Fusing before or after the

pooling layer leads to similar results, the advantage of fusing higher resolution

saliency features gives only a marginal boost. Finally, the skip connection from
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Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5

Early Fusion 19.3 25.7 30.1 40.8 60.9 69.2 75.3 79.9 82.4 83.7 56.7

Fusion L1-S2 33.3 47.9 54.3 65.1 71.9 76.3 82.1 85.9 87.9 90.7 69.5

Fusion L2-S2 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5

Fusion L3-S2 32.9 46.7 54.1 64.9 71.7 74.4 82.3 85.1 87.3 89.1 68.9

Fusion L4-S2 32.5 48.9 54.0 65.1 71.7 73.5 81.0 84.9 87.2 88.8 68.2

Fusion L5-S2 32.5 48.9 54.0 63.3 71.1 73.3 81.0 84.3 87.2 88.7 68.4

Fusion L2-S2 + After pool 34.3 49.1 55.5 66.0 72.1 77.5 83.6 85.6 88.9 90.2 70.2

Fusion L2-S2 + No SC 33.9 48.1 55.1 65.1 71.1 77.6 82.4 86.3 88.1 90.9 69.9

Table 1: Results for the baseline model and different variations of our architecture incorporat-

ing saliency information.The results correspond to the classification accuracy on the Flowers

dataset [1] with AlexNet [13]. Each column indicates the number of training images used, and

the rightmost column shows the average

.

the RGB branch to the joint branch is also beneficial.

We have also explored different architectures for the saliency branch. We

first assess whether an additional convolutional layer in the saliency branch

leads to better performance. Table 2 presents the comparison between a two-

layer saliency branch (S2) and a three-layer version (S3). For completeness,

we explore merging after the second layer of the RGB branch (L2) as in pre-

vious experiments, and merging after the third layer (L3). We observe how an

extra layer does not further improve the model’s performance. Alternatively,

we investigate whether having fewer parameters in the saliency branch achieves

higher results. We evaluate with 75% and 50% fewer parameters by reducing

the number of output channels in the first layer. Table 3 shows how reduc-

ing the number of parameters in the saliency branch slightly reduces the final

performance.

Pretraining the saliency branch on ImageNet. As described in sec-

tion 3, we consider two alternative ways of initializing the saliency branch: from

scratch and pretrained on ImageNet [29]. In this section, we compare these two

approaches with respect to the Baseline-RGB. The experiments are performed

on Flowers dataset (see Figure 3a) and represent the classification accuracy ver-

17



Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5

Fusion L2-S2 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5

Fusion L3-S2 32.9 46.7 54.1 64.9 71.7 74.4 82.3 85.1 87.3 89.1 68.9

Fusion L2-S3 34.5 48.2 55.9 65.0 72.8 76.1 83.0 86.5 89.0 91.0 70.2

Fusion L3-S3 33.1 49.3 54.2 65.1 72.1 74.9 82.9 85.3 88.0 89.0 69.4

Table 2: Results on Flowers [1] with AlexNet [13] using two (S2) or three (S3) convolutional

layers for the saliency branch.

Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5

Fusion L2-S2 (100%) 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5

Fusion L2-S2 (75%) 34.7 49.0 55.3 65.1 72.0 77.0 83.3 85.9 88.3 89.1 70.0

Fusion L2-S2 (50%) 34.7 49.1 55.9 65.1 71.8 77.1 83.5 86.2 88.0 89.0 70.0

Table 3: Results on Flowers [1] with AlexNet [13] when reducing the number of parameters

of the saliency branch.

sus the number of training samples. Adding a saliency branch initialized from

scratch already outperforms the baseline using only RGB (see also Tab. 1), and

pretraining this branch with ImageNet further increases the performance in a

systematic and substantial manner. Our method with pretraining is especially

advantageous in the scarce-data domain (i.e < 20 images per class). For ex-

ample, we obtain a better performance than the baseline using half the data,

10 images/class vs. 20 images/class, respectively. Furthermore, in the very

low-range of number of samples we obtain similar performance with only one

third of the samples (3 images/class vs. 10 images/class). Finally, our saliency

branch is still beneficial even when using all available training samples. In fact,

our method trained with a limited number of samples (around 25 per class)

already surpasses the final performance of baseline using all samples.

Figure 4 shows some qualitative results for the case when the pretrained

version of our approach predicts the correct label, meanwhile the Baseline-RGB

fails. Alternatively, figure 5 depicts the opposite case: the Baseline-RGB pre-

dicts the correct label of the test images, meanwhile the pretrained version of
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Baseline RGB
From Scratch 
Pretrained

Figure 3: Experiments on four datasets using iSEEL [32] to generate the saliency maps.

Baseline-RGB is compared against two different ways to initialize the saliency branch of our

model: from scratch and pretrained on ImageNet [29].

our approach fails. In both cases, the saliency images have been generated using

the iSEEL method. A possible explanation for the failures in this latter case

could be that the saliency images are not able to capture the relevant region of

the image for fine-grained discrimination. Thus, the salience-modulated layer

focuses on the wrong features for the task.

Different datasets. Besides Flowers dataset, we validate our approach on

three other datasets: Birds, Cars and Dogs (see figures 3b, c, and d, respec-

tively). We follow the same experimental protocol as in the Flowers case. We

can see how most trends observed in Flowers also apply to these datasets. For

example, incorporating saliency information improves the classification accu-

racy, especially when data is scarce. Moreover, pretraining the saliency branch
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Figure 4: Some success examples on Flowers [1]: when the prediction done by Baseline-RGB

fails to infer the right label for some test images, but the prediction by our approach is correct.

From left to right: input image, saliency images generated with iSEEL [32], example image

of the class with which the input image was wrongly predicted.

is beneficial for our method and leads to a further performance boost. Even

when using all available samples, our method outperforms the baseline model.

Therefore, we can claim that our approach successfully generalizes to other fine-

grained datasets.

Confirmation of intuition. Our method is based on the idea that adding a

saliency branch helps the network to focus on the relevant image regions during

the training. To verify that this is actually happening we propose the following

experiment: we measure if the percentage of backpropagated gradient magni-

tude which passes through the relevant image regions is increased by our pro-

posed network architecture. We perform this experiment on the Birds dataset

for which we have access to bounding box information of the birds (defining

the relevant region). We measure the percentage of backpropagated gradient
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Predicted (Baseline-RGB): Thorn Apple

Predicted (Ours Pretrained): Arum Lily

Ground Truth: Thorn Apple

Predicted (Baseline-RGB): Foxglove

Predicted (Ours Pretrained): Sweet Pea

Ground Truth: Foxglove

Predicted (Baseline-RGB): Hibiscus

Predicted (Ours Pretrained): Lotus

Ground Truth: Hibiscus

Figure 5: Some failure examples on Flowers [1]: when the prediction done by our method fails

to infer the right label for some test images, but the prediction by Baseline-RGB is correct.

From left to right: input image, saliency images generated with iSEEL [32], example image

of the class with which the input image was wrongly predicted.

energy which is in the bounding box of the bird (this is computed by dividing

the gradient magnitude in the bounding box by the gradient energy in the whole

image). We measure this just before the third convolutional layer for AlexNet

(which is just before the joint branch in Figure 1), and we measure this for both

the network with and without saliency branch.

The results are presented in Figure 6. The results show that the percentage

of backpropagated gradient that passes through the relevant image regions is

higher for our approach. As expected it is even higher for the network with

the pretrained saliency branch. However the gap with the network trained from

scratch diminishes with the number of epochs. The fact that more backpropa-

gated gradient energy goes through the relevant image regions may explain why

our method obtains better results than the standard baseline method.

Different saliency methods. Table 4 presents results on the Flowers us-

ing our full AlexNet model combined with the different input saliency maps.

We can observe how, instead of helping, the two saliency baselines are actu-

ally hurting the method performance with respect to the Baseline-RGB. We

hypothesize that this is due to the noise introduced in the network’s internal
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Figure 6: Average percentage of the total backpropagated gradient energy per epoch that

is inside the bird bounding box. The graph shows that for our approach significantly more

backpropagated gradient is on the relevant image region (for both the version trained from

scratch and the version with pretrained saliency branch).

representation when the input saliency map is independent of the input image.

On the other hand, all the saliency estimation methods increase the method

performance, especially in the scarce-data range (i.e. < 10 images). Moreover,

better saliency methods (e.g. iSEEL and SALICON) result in higher accuracies.

In order to experimentally confirm this observation, we show in Fig. 7 the ac-

curacy of our image classification model as a function of the saliency estimation

performance of the corresponding method. We measure saliency estimation per-

formance in terms of Normalized Scanpath Saliency (NSS), which is the official

measure currently used by the popular MIT saliency benchmark [31] to sort

all the participating methods. There is indeed a clear linear correlation, sup-

ported quantitatively by a Pearson product-moment correlation coefficient of

0.95. Therefore, we conclude that our model is agnostic to the saliency method

employed. More importantly, it shows that better saliency methods (evaluated

based on saliency estimation) actually lead to better image classification per-

formance once integrated into an object recognition pipeline. This observation
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Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 31.8 45.8 53.1 63.6 72.4 76.9 81.2 85.1 87.2 88.0 68.5

Baseline-White 23.1 29.7 37.2 55.1 66.9 73 82.5 84.8 86.6 87.9 62.7

Baseline-Center 24.3 30.3 39.2 55.7 68.3 74.1 82.7 84.5 86.8 87.8 63.4

Itti-Koch [5] 32.8 46.8 53.9 64.0 72.9 77.1 82.9 85.4 87.1 88.3 69.1

GBVS [35] 33.3 46.9 54.0 64.1 73.0 77.3 83.1 85.7 87.5 88.8 69.4

BMS [36] 34.2 47.3 54.9 64.8 73.3 77.8 83.4 86.1 88.1 90.1 70.0

iSEEL [32] 34.7 49.3 55.2 65.2 72.7 76.7 83.9 86.5 89.1 91.3 70.5

SALICON [37] 37.6 51.9 57.1 68.5 75.2 79.7 84.9 88.2 91.2 92.4 72.7

Table 4: Comparison of different saliency methods regarding the effect on our model. The

results correspond to the classification accuracy on the Flowers dataset [1] when using our

full model with AlexNet [13] as base network. Each column indicates the number of training

images used, and the rightmost column shows the average.

can be a motivation for saliency research: it not only leads to better saliency

estimation but indirectly also contributes to improved object recognition.

Different base networks. In order to evaluate the generality of our approach

across different base networks, we have considered ResNet-50 and ResNet-152

as alternatives to AlexNet. We have tested several possible fusion architectures

(Tables 5 and 6), but the optimal performance has been obtained when the

fusion between the RGB and saliency branches takes place after the fourth

residual block, with a two-layer saliency branch (Block4-S2). Results in Table 7

show the classification accuracy achieved on Flowers when using ResNet-50 and

ResNet-152 with SALICON salieny maps. Furthermore, we compared our two

initialization methods for the saliency branch (from scratch and pretrained on

ImageNet) against the Baseline-RGB. Although under both initializations we

obtained higher accuracy, the one that performs the best is the pretrained.

These results confirm the trend already observed for AlexNet regarding the

benefits of pretraining the saliency branch as shown in Fig. 3.

Comparison with standard dataset splits. All previous experiments use a

custom data split consisting of a fixed test set of 5 images and a varying number

of training images. In order to enable comparisons with published results by
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Figure 7: Correlation between the performance of the saliency method in terms of NSS and

the fine-grained recognition accuracy of our method using the corresponding saliency model.

Results with AlexNet [13] on Flowers [1].

other methods, we perform here experiments using the standard data split of

each dataset, employing the entirety of the corresponding given sets for training

and evaluation. Table 8 presents results for our approach and several state of the

art fine-grained recognition approaches for Flowers, Birds, and Cars datasets.

We discard Dogs dataset due to the overlap with the ImageNet images already

used for pretraining the network, as they can no longer be ignored when using

the full sets. Our approach uses SALICON saliency and ResNet152 as base

network, which is equivalent to the networks used by the most recent works.

Our method is competitive with specialized fine-grained approaches, despite

the more sophisticated techniques included in those (e.g. part localization),

some of which might be complementary to our saliency modulation. Moreover,

our approach is especially beneficial in the scarce training data regime, whereas

some of the state of the art methods may not work under these conditions.
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Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 39.1 59.6 67.8 81.6 89.0 91.7 92.7 93.0 93.0 95.4 80.3

Block1-S2 38.0 59.2 68.0 80.7 88.8 91.0 91.9 92.0 92.1 94.8 79.6

Block2-S2 38.2 59.5 68.0 81.4 90.0 91.6 92.0 92.4 93.0 94.9 80.1

Block3-S2 39.3 62.9 68.5 83.0 90.0 92.1 93.5 94.9 93.4 95.9 81.4

Block4-S2 45.8 64.3 72.8 83.0 90.5 93.0 93.9 94.6 93.7 96.7 82.7

Block5-S2 38.2 57.9 65.9 80.8 87.1 90.9 91.1 91.2 91.9 92.6 78.8

Table 5: Results for the baseline model and different variations of our architecture incorpo-

rating saliency information in different blocks. The results correspond to the classification

accuracy on the Flowers dataset [1] with ResNet-50 [28]. Each column indicates the number

of training images used, and the rightmost column shows the average

.

Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB 39.0 60.1 68.0 82.5 89.0 92.0 92.1 93.3 94.2 95.8 80.6

Block1-S2 39.0 59.9 68.0 82.1 88.6 91.9 92.2 93.0 94.2 95.1 80.4

Block2-S2 38.8 60.2 68.2 83.0 90.2 92.2 93.0 94.0 94.0 96.2 81.0

Block3-S2 43.0 63.7 68.9 83.1 90.2 92.1 93.1 94.3 96.1 96.3 82.1

Block4-S2 42.6 64.2 70.9 85.5 90.9 92.7 94.0 95.0 97.0 97.8 83.1

Block5-S2 39.0 58.0 65.8 80.3 87.1 90.8 91.5 92.0 92.3 92.7 79.0

Table 6: Results for the baseline model and different variations of our architecture incorpo-

rating saliency information in different blocks. The results correspond to the classification

accuracy on the Flowers dataset [1] with ResNet-152 [28]. Each column indicates the number

of training images used, and the rightmost column shows the average

.

Comparison with few-shot method. Our scarce-data approach is simi-

lar in spirit to the few-shot learning methods [21, 22, 23]. For this reason, we

propose here a comparison with the state of the art method for few-shot classi-

fication, Prototypical networks [22]. In the standard few-shot protocol, the task

is framed as N -way k-shot, i.e. provide each time a set of k labeled samples

from each of N classes that have not previously been trained upon. The goal is

then to classify a disjoint batch of unlabeled samples, known as ’queries’, into

one of these N classes. Therefore, some classes are used to train the few-shot

method, while others are only used at test time. In our case, we do not require
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Method 1 2 3 5 10 15 20 25 30 K AVG

Baseline-RGB Resnet-50 39.1 59.6 67.8 81.6 89.0 91.7 92.7 93.0 93.0 95.4 80.3

Resnet-50 Block4-S2 From Scratch 45.8 64.1 71.8 83.0 90.5 93.0 93.9 94.6 93.7 96.7 82.7

Resnet-50 Block4-S2 Pretrained 47.1 65.2 72.9 83.8 91.3 93.9 94.6 95.4 94.7 97.4 83.6

Baseline-RGB Resnet-152 39.0 60.1 68.0 82.5 89.0 92.0 92.1 93.3 94.2 95.8 80.6

Resnet-152 Block4-S2 From Scratch 42.6 64.2 70.9 85.5 90.9 92.7 94.0 95.0 97.0 97.8 83.1

Resnet-152 Block4-S2 Pretrained 46.9 65.5 73.0 84.7 92.0 94.2 95.3 95.8 97.3 98.1 84.3

Table 7: Results on Flowers [1] using ResNet-50 and Resnet-152 [28] as base networks and

SALICON [37] as saliency method.

Method Flowers Birds Cars

Krause et al. [16] - 82.0 92.6

RA-CNN [38] - 85.3 92.5

Bilinear-CNN [39] - 84.1 91.3

Compact Bilinear Pooling [40] - 84.3 91.2

Low-rank Bilinear Pooling [41] - 84.2 90.9

Cui et al. (with Imagenet) [42] 96.3 82.8 91.3

MA-CNN [43] - 86.5 92.8

Ge-Yu [44] 90.3 - -

DLA [45] - 85.1 94.1

Ours (Resnet152 Block4-S2 From Scratch) 96.4 85.6 92.1

Ours (Resnet152 Block4-S2 Pretrained) 97.8 86.1 92.4

Table 8: Comparison with state of the art methods for domain-specific fine-grained recognition

using the standard data splits of Flowers [1], Birds [2] and Cars [4]. Our approach uses ResNet-

152 [28] as base network and SALICON [37] saliency maps.

such split, as we can train and test the model in all classes simultaneously.

Moreover, their test episodes are composed of only N classes at a time, where

N is generally a small number (e.g. below 20). Contrarily, we follow a more

general classification approach and test on all classes simultaneously, which is

inherently more challenging as the misclassification probability increases.

We propose two different scenarios to compare our method to Prototypical

networks on the task of Flower [1] classification. The first, 20-way 5-shot, closely

resembles the setting introduced by [21] and usually employed by few-shot ap-
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Method 20-way 5-shot 102-way 5-shot

Prototypical networks [22] 53.8 26.2

Ours 81.0 73.8

Table 9: Results for few-shot classification on Flowers [1] when using our full model with

AlexNet [13] as base network.

proaches. We split the set of classes in train and test, selecting 20 random classes

for the testing phase. Then, we run Prototypical networks for the 20-way 5-shot

classification task, following similar settings to those used in the mini-ImageNet

experiment of [22]. We train until convergence using 100 training episodes and

test using 5 episodes, with 5 queries per episode both during training and test-

ing. The second scenario, 102-way 5-shot, is more similar to the conventional

classification task, in which all classes are used for training and testing. We

maintain the training settings for this case, but remove from the ‘shot’ set those

queries used at test time. Table 9 presents the results of these experiments.

Our method leads to substantially superior performance in both cases, but the

difference is especially remarkable for the 102-way setting. This demonstrates

the limitations of this type of few-shot approaches when scaling to many classes,

even when they are trained with the same set of classes used for test.

5. Conclusions

In this paper, we investigated the role of saliency in improving the classifi-

cation accuracy of a CNN when the available training data is scarce. For that

purpose we have considered adding a saliency branch to an existing CNN archi-

tecture, which is used to modulate the standard bottom-up visual features from

the original input image. We have shown that the proposed approach leads to

an improvement of the recognition accuracy with limited number of training

data, when applied to the task of fine-grained object recognition.

Extensive evaluation has been performed on several datasets and under dif-

ferent settings, demonstrating the usefulness of saliency for fine-grained object
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recognition, especially for the case of scarce training data. In addition, our ap-

proach allows to compare saliency methods on the high-level task of fine-grained

object recognition. Traditionally, saliency methods are evaluated on their abil-

ity to generate saliency maps that indicate the relative relevance of regions for

the human visual system. However, it remained unclear if these saliency meth-

ods would actually translate into improved high-level vision results for tasks

such as object recognition. Our experiments show that there exists a clear

correlation (Pearson product-moment correlation coefficient of 0.95) between

the performance of saliency methods on standard saliency benchmarks and the

performance gain that is obtained when incorporating them in a object recog-

nition pipeline. Future work will be devoted to extend the current framework

by proposing an end-to-end deep architecture that estimates automatically the

saliency map, thus eliminating the need for pre-computing it off-line.
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